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We study the blind deconvolution problem in the case where the input
noise has a finite discrete support and the transfer linear system is not
necessarily minimum phase. We propose a new family of estimators built
using algebraic considerations. The estimates are consistent under very
wide assumptions: The input signal need not be independently dis-
tributed; the cardinality of the finite support may be estimated simultane-
ously. We consider in particular AR systems: In this case, we prove that
the estimator of the parameters is perfect a.s. with a finite number of
observations.

Ž .1. Introduction. Here we consider the linear process Y [ Y ,t t g Z

1.1 Y s u X ,Ž . Ýt k tyk
kgZ

Ž . Ž .where u s u is a deterministic filter, Z and X s X are randomk k g Z t t g Z
series and Z is the set of signed integers. In this system, the variables X aret
unobservable, the filter u is unknown and the observations are the Y ,t
t s 1, . . . , n.

We will make the following assumptions throughout the paper:

Ž .M1 X , t g Z, are discrete, real with unknown common support A [t
� 4x , . . . , x , where x - x - ??? - x and p G 2.1 p 1 2 p

Ž . Ž . ik xM2 Let U x [ Ý u e . U is a continuous function and does notk g Z k
w . Ž .vanish on 0, 2p . u s u is the inverse filter of u; that is,k k g Z

u u s d , k g Z,Ý j kyj k
jgZ

where d denotes the Kronecker symbol.k

ŽThe problem of the estimation of the unknown inverse filter u and
.simultaneously the restitution of the input X by inversion using only thet

observations Y is known as the blind deconvolution problem.t
In this paper, we do not assume that the system is causal; that is, u mayk

Ž .be nonzero for negative integers k. When the sequence X is indepen-t t g Z
Ž .dent identically distributed i.i.d. , and with a causal system, classical linear
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w Ž .prediction can be used see Azencott and Dacunha-Castelle 1984 for details
xand further references . Linear prediction is optimal in the Gaussian case.

Otherwise, Kreiss proposed adaptive estimators that are asymptotically mini-
w Ž .xmax for causal ARMA processes see Kreiss 1987 . When the system is not

a priori causal, other procedures of estimation exist. In general, these proce-
w Ž .xdures use higher order moments for example, cumulants; see Gassiat 1990

wof the observations or empirical spectral functions not only spectral density,
Ž .xsee Lii and Rosenblatt 1982 . Indeed, second order moments are unable to

distinguish between systems with the same spectral density but with differ-
Ž .ent phases. Optimal procedures are investigated in Gassiat 1993 for regular

Žmodels i.e., for models where the distribution of X is absolutely continuous1
. Ž .with respect to Lebesgue measure . Gassiat 1993 proves asymptotic mini-

max lower bounds in the general noncausal case and shows how the causality
allows adaptivity or not.

In this paper, we study the case where X is a discrete-valued process. This
w Ž .xis a case of interest especially in digital communications see Feher 1987 ,

where X stands for the transmitted signal, u represents the communication
Žchannel and Y is the signal observed at the receiver cellular telephone,

.high-definition satellite, . . . . For such situations, and if the process X is i.i.d.,
earlier nonminimum phase estimations may be used, as described in Gassiat
Ž .1990 . However, these procedures, since they are adapted to nearly any
distribution of X , do not incorporate the information of discreteness of thet
input signal and are consequently far from being optimal. A deconvolution

Ž .method has recently been proposed in Li 1992, 1995 for multilevel inputs.
This method presents the advantage of being able to handle nonstationary

Žindependent inputs that is, independent but not necessarily identically
.distributed inputs . However, this method involves knowledge of the set A in

which the values of X lie. In some sense, it is not really a blind method.t
We propose in this work a new and powerful method of estimation that

incorporates only the discreteness as prior information:

1. The estimators are proved in Theorem 2.8 to be asymptotically consistent
under very wide assumptions: The input signal does not need to be
independently distributed; the support A does not need to be known.

2. The method can be adapted to estimate simultaneously the cardinality of
A without any upper bound on it, and leads to consistent estimators; see
Theorem 4.2.

3. For particular systems such as AR systems, the estimator is a.s. perfect
Ž .with a finite number of observations see Theorem 3.1 even when the

input signal is neither stationary nor independently distributed.
4. Though the method is very general, examples of estimators are very

simple, using, for example, Hankel forms or Toeplitz forms. In these cases,
the method requires the computation of the determinant of a matrix whose
dimension is related to the cardinality of A, which is not very big in most

Žapplications 2]32 symbols depending on the alphabet, that is, the set A,
.which is used in the transmission .
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5. The method may be extended to deal with noisy observations, where some
unknown noise is added to the observation Y . This point is developed int

Ž .Gassiat and Gautherat 1994 , where numerical simulations show the
efficiency of the method in various situations.

6. Similar ideas apply in different contexts: for instance, to estimate the
number of components in a mixture, see Dacunha-Castelle and Gassiat
Ž .1994 or, for the problem of source separation when the source is discrete,

Ž .see Gamboa and Gassiat 1995 .
7. Our work clarifies the structure of linear discrete models, that is, why and

how this structure can be exploited to obtain estimators converging very
fast.

Our work originates in two very simple remarks:

REMARK 1.1. When adding two discrete variables, the support of the
resulting variable is larger than the original ones.

REMARK 1.2. We are able to propose functions that distinguish between
Ždiscrete variables with support of cardinality p and the others they will be

.described further .

Now, if we consider for a possible inverse filter s the filtered series
Ž . Ž Ž ..Z s s Z s ,t t g Z

1.2 Z s [ s Y s s)u X , t g Z,Ž . Ž . Ž .Ý Ý kt k tyk tyk
kgZ kgZ

Ž .then u is the only value of s such that Z s is a discrete variable witht
Ž .support of cardinality p see Theorem 2.2 . u may then be recovered through

Ž .the investigation of the support of Z s , which is systematically done using
Ž .the previously announced functions of the variables Z s .t

The paper is organized as follows: in Section 2, we give the assumptions
ˆand the construction of the estimator u of u . The main theorem is then

Theorem 2.8 that states the convergence of the estimator. In Section 3, we do
not assume that X is stationary. We state precisely the speed of convergence
for the special case of autoregressive processes: Perfect estimation is achieved
with a finite number of observations, which is specified. In Section 4, we
explain how it is possible to estimate simultaneously the inverse filter u and
the cardinality of A. In Section 5, we explore how our results may be
extended to other models. All proofs are collected in Section 6.

2. The estimation method. In this section, we explain how the struc-
ture of the model allows a very simple characterization of the inverse filter.
For a while, we assume that the cardinality p of the support A is known.
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2.1. Assumptions. We first give our assumptions on the process X:

Ž .M3 X is a stationary ergodic process.

Ž . � 4M4 For any integer n and for any integers j , . . . , j in 1, . . . , p ,1 n

P X s x , . . . , X s x ) 0.Ž .1 j n j1 n

Ž .Assumption M3 allows us to approximate all expectations of linear
Ž .processes constructed with X through the empirical means. Assumption M4

is sufficient to formalize Remark 1.1 in the following way:

Ž . Ž . 1Ž .PROPOSITION 2.1. Assume that M1 and M4 hold. Let a g l Z be a
Ž .filter with at least two nonzero coefficients. Let W a [ Ý a X . Thenk g Z k k

there exist p q 1 disconnected intervals I , . . . , I such that1 pq1

P W a g I ) 0, j s 1, . . . , p q 1.Ž .Ž .j
Let us give simple examples where the assumptions hold:

1. White noise: When the variables X , t g Z, are independent identicallyt
Ž . Ž . Ž .distributed, M1 , M3 and M4 hold.

Ž .2. Thresholded process: Let W be a stationary process such that for anyt t g Z

Ž .j ) 0 and t F t F ??? F t , the distribution of W has a positive1 2 j t is1, . . . , ji
j Ždensity with respect to the Lebesgue measure on R for example, a

.Gaussian process . Let m - m - ??? - m be real numbers and set1 2 py1
Ž .m s y`, m s q`. Define the thresholded process X by X s x if0 p t t g Z t j

Ž x Ž . Ž . Ž .and only if W g m , m . Then M1 , M3 and M4 hold.t j jq1
Ž .3. Aperiodic recurrent Markov chain: Let X be a Markov chain witht t g Z

state space of cardinality p and a transition matrix such that any transi-
Ž . Ž .tion probability is positive all states communicate in one step . Then M1

Ž .and M4 hold. It is also easy to see that the chain is aperiodic and
Ž .recurrent, so that M3 holds.

Proposition 2.1 gives the following simple characterization of the inverse
filter u :

Ž .THEOREM 2.2. For any summable filter s, the random variable Z s is1
discrete with at most p points of support if and only if s is the inverse u up to
scale and delay, that is,

'K g Z, 'l g R, ;k g Z, s s l ? u .k kyK

Ž .Theorem 2.2 is an obvious consequence of Proposition 2.1 and 1.2 .
The deconvolution problem is ambiguous on the scale and the delay of the

filter. Indeed, if

1
X

'r ) 0, 'K g Z, ;k g Z, v s ru , X s X ,k kyK k kyKr
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then the series Y X [ Ý v X X satisfies Y 9 s Y, so that we have to fix thet k k tyk
scale and the delay. Hence, we define the parameter space Q as a subset of
Ž .l Z which is unambiguous on scale and delay. Here, unambiguous means1

Ž .that Q is a subset of l Z that does not contain two different filters s, s9 such1
that

'r g R*, 'K g Z, ;k g Z, s s rsX .k kyK

For example, we may take for Q a subset of
< < < <s s s g l Z : s s 1, s - 1, k ) 0, s F 1, k - 0 .� 4Ž . Ž .k 1 0 k kkgZ

The method we propose to estimate the inverse filter u is derived from
Ž .contrast estimation. To do this, we need to define a contrast function H s ,

defined for filters s in the space Q of filters, and that achieves its unique
minimum at the true value u of the inverse filter. We also need a sequence

Ž .H s of random functions that involves only the observations and thatn
Ž .converges uniformly enough to the contrast function H. Then, if the estima-

ˆ Ž .tor u is defined as any minimizer of H s on a compact space of filters, thisn
estimator converges asymptotically to the true value of u .

2.2. The contrast function.
Ž .2.2.1. Definition of the contrast function. H s has only to discriminate

between discrete variables with support of cardinality p and the others. In
Ž .other words, H s has to be a systematic computational description of the

Ž . Ž .support of the variable Z s . To do this, let F s 1, F , . . . , F be a Tcheby-1 1 2 p
Ž . w x wchev system T-system of functions on 0, 1 for the definition of T-system,

Ž .xsee Krein and Nudel’ man 1977 . A classical example consists of the p first
sine and cosine functions. For any filter s, define

c s s c i s ,Ž . Ž .Ž . is1, . . . , 2 p

ic s s E F w Z s ,Ž . Ž .Ž .Ž .i 1

Ž .where w is a given continuous bijective function which maps R onto 0, 1 .
Ž Ž .. Ž .Notice that w Z s is now a variable taking value in 0, 1 . Now, a nice1

property of a T-system is the following: Let PP be the set of all probability
w xmeasures on 0, 1 and

12 pKK [ c g R : 'P g PP, F dP s c .H½ 5
0

Ž .THEOREM 2.3. If V is a random variable taking value in 0, 1 , then
Ž Ž ..E F V lies on the boundary of KK if and only if V is discrete with at most p

points of support.

The proof is immediate by applying Theorem 4.1 of Krein and Nudel’man
wŽ . x1977 , page 78 .

Let now h be a nonnegative and continuous function defined on KK such
that

h c s 0 m c g bd KK .Ž . Ž .
Examples of such functions follow. We then define our function H.
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DEFINITION 2.4.

H s s h c s , s g Q.Ž . Ž .Ž .

The following result states that H is a contrast function:

Ž . Ž . Ž .THEOREM 2.5. Assume that M1 , M2 and M4 hold. For any filter s in
Ž .the parameter space Q, H s is nonnegative. Moreover,

H s s 0 m s s u .Ž .

2.3. Examples of contrast functions.
2.3.1. Toeplitz form. Let F be the usual trigonometric system; that is,
Ž . Ž . Ž . Ž .F x [ cos 2p jx , F x [ sin 2p jx , j s 1, . . . , p. Define the complex2 j 2 jy1

Fourier coefficients of the distribution by setting d [ c2 j q ic2 jy1, d [j yj
c2 j y ic2 jy1, j s 1, . . . , p and d [ 1. We then define the Toeplitz matrix0
Ž . Ž . Ž . Ž .T c [ d . Let h c [ det T c . Using the Fejer factorization theo-iy j 1F i, jF p

w Ž . xrem it is well known see Krein and Nudel’man 1977 , Theorem 2.6, page 65
that the function h satisfies for c g KK the following properties:

h c s 0 m c g bd KK ,Ž . Ž .
h c G 0 m c g KK.Ž .

Ž2.3.2. Maximum entropy on the mean. In Gamboa and Gassiat 1991,
.1994 , we gave a wide family of discriminating functions h. This was the

result of constructive methods and stochastic investigation of particular
F-moment problems. To set them, let us introduce some notation.

w x Ž� 4.1. F is a distribution with support 0, q` such that F 0 ) 0.
Ž . Ž . Ž .2. c t s log H exp tx ? dF x is the log-Laplace transform of F. We assume

Ž .that c has domain y`, a , where a - q`.
3. For any c in R2 p, define

1² : ² :� 4h c [ a y log F 0 y sup v , c y c v , F x dx ,Ž . Ž .Ž . Ž .˜ Hž /
2 pq1 0vgR

Ž² :. 2 pq1where the angle brackets , denote the usual scalar product in R
Ž .and c [ 1, c˜

Ž .Interpretation of h c in terms of large deviations involving F may be
Ž .found in Gamboa and Gassiat 1991 and will not be recalled here.

This function h is convex and has the powerful discriminating property
w Ž .xthat follows and which is proved in Gamboa and Gassiat 1991 .

PROPOSITION 2.6.

h c s y` m c f KK,Ž .
h c s 0 m c g bd KK ,Ž . Ž .
h c G 0 m c g KK.Ž .
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2.3.3. Hankel forms. We propose here a similar contrast function using
Hankel forms based on the algebraic moments. Let F be the sequence

Ž . j Ž . Ž .of moment functions F x s x , j s 1, . . . , 2 p. Let M s be the p q 1 =j
Ž . Ž .p q 1 Hankel matrix given by M s c s , i, j s 1, . . . , p, where herei, j iqjy2
Ž . Ž Ž Ž ... Žc s s E F Z s . Notice that here we do not need to map R on the interval1
Ž . .0, 1 . This matrix is nonnegative as soon as c is the beginning of the
moment sequence of a random variable, and degenerates if and only if this
random variable is discrete with at most p points of support. If we set
Ž . w x Ž . Ž Ž ..h c s det M and H s s h c s , H is a contrast function.

2.4. Definition and convergence of the estimator. The sequence H isn
defined as an empirical contrast function in the following way. To use only

Ž .the observations Y , . . . , Y , we need to truncate the filter s. Let m n - nr21 n
be an increasing sequence of integers. Define

Ž .qm n

Ẑ s s s YŽ . Ýt k tyk
Ž .ksym n

Ž . Ž .for t s 1 q m n , . . . , n y m n and
Ž .nym n1 ˆc s [ F w Z s .Ž . Ž .Ž .Ý ž /tn n y 2m nŽ . Ž .ts1qm n

We may now define

H s [ h c s .Ž . Ž .Ž .n n

We are now able to define our estimator:

ˆDEFINITION 2.7. u is any minimizer of H over Q :n n

< <Q s Q l s : s s 0 for k ) m n .� 4Ž .n k

We assume throughout the sequel that

m nŽ .
lim m n s ` and lim s 0.Ž .

nnª` nª`

Our main result is then the following theorem.

Ž . Ž . Ž . Ž .THEOREM 2.8. Assume that M1 , M2 , M3 and M4 hold. If Q is
ˆ 1Ž .compact, then u converges almost surely, in l Z , to u as n tends to infinity.

REMARK 2.1. In practice, we can choose the compact space Q in the
following way:

1 < <Q ; s g l Z : d k s F MŽ . Ž .Ý k½ 5
k

Ž .with lim d k s q` and M is a given constant.k ª`
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REMARK 2.2. Of course, the asymptotic behavior of the estimator depends
on the contrast function: The rate depends on the smoothness, and with the
same smoothness, the asymptotics differ by the constants involved asymptoti-
cally. Further investigation on the asymptotics will give guidelines for the
choice of the contrast function.

Ž Ž ..REMARK 2.3. The use of m n has two simultaneous effects: a truncation
of the filtered series and a resulting number of observations involved in the

Ž .estimation process. To reduce the truncation effect, m n should be large, but
Žto increase the number of observations and consequently the accuracy of the

. Ž .moments estimators m n should be small. A first attempt in the choice of
w Ž .xthe sequence m n should be the study of the asymptotic consequences of

the two effects, so that a good choice would be a compromise between both.
This is similar to the choice of a regularization parameter where bias and
variance have to be balanced.

REMARK 2.4. The behavior of the numerical algorithm depends on the
choice of the contrast function. We give at the end easy computations for the

Ž .Toeplitz contrast function. In Gassiat and Gautherat 1994 , we give exten-
sive numerical examples using the Hankel contrast function. Other numeri-
cal examples using the Hankel contrast function in different models may be

Ž .found in Dacunha-Castelle and Gassiat 1994 and Gamboa and Gassiat
Ž .1995 .

3. Some special cases. In this section, we study the situation where the
parameter is finitely parameterized, either with unknown dimension in the
AR situation or with known parameterization in the general situation.

3.1. Autoregressive process. In this section we will assume that Y is an
autoregressive process of unknown order. That is,

u s 0 for k - yq and k ) q for some q , q g N.k 1 2 1 2

The parameter space is now

� 4Q [ s : s s 1, 'q , q g N, s s 0, k - yq and k ) q .0 1 2 k 1 2

Notice that here the problem may be seen as purely algebraic: Find a finite
Ž .filter s that leads to no more than p values for the series Z s . Indeed, ast

Ž . Ž .soon as m n ) max q , q , there are no truncation effects. However, numer-1 2
ical algorithms for such algebraic guesses are not evident, so that our
optimization method stays interesting. Moreover, its speed of convergence is
exactly the same as the best algebraic one. We shall use the following
assumption:

Ž . 1Ž . Ž . � 4M5 For all a g l Z such that C a [ j: a / 0 is infinite, the distri-j
Ž .bution of W a is continuous.
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ˆŽ . Ž . Ž .THEOREM 3.1. Under assumptions M1 , M2 and M5 , if u is chosen as
the minimum length minimizer of H in Q , thenn n

ˆas soon as n y 2m n ) p q 1 and m n ) max q , q , u s u .Ž . Ž . Ž .1 2

Notice that we do not assume here that the input process is stationary. The
only assumption made is that any infinite linear combination built with X
has continuous distribution. This is true, for example, if X is an independent
sequence and

'« ) 0, P X s x G « , i g N, j s 1, . . . , p.Ž .i j

wIndeed, in this case, applying theorems of Jessen Wintner Theorem VI.23.4
Ž .x win Hennequin and Tortrat 1965 and of Levy Theorem VI.23.5 in Hen-´

Ž .x Ž .nequin and Tortrat 1965 , the distribution of W a is pure and continuous
Ž .as soon as C a is infinite. The proof of Theorem 3.1 relies on the following

Ž̂ .finite sample property of Z s :

Ž . Ž . Ž . Ž .PROPOSITION 3.2. Assume M1 , M2 and M5 . Then, for n y 2m n ) p,

ˆP a Z s , t s 1 q m , . . . , n y m F p ) 0Ž .� 4ž /t

implies that s is a finite linear combination of shifted u .

We conjecture that Theorem 3.1 stays true with much weaker conditions
Ž .than M5 . Using similar arguments as in Proposition 2.1, we believe that it

ˆcan be shown with extra work that u converges almost surely to u in a finite
number of steps. Indeed, looking at the proof of Proposition 3.2, we see that
û s u a.s. as soon as

ˆa Z s , t s 1 q m , . . . , n y m ) p if s / u .Ž .� 4t

EXAMPLE. AR1 Process. As an example let us consider the simplest model:

< <Y y u Y s X , u / 1, t g Z.t ty1 t

Recall that the estimator is perfect when the order of the AR is unknown.
Ž .However, if we know that the model is AR1, the process Z s has the simple

form

ˆZ s s Z s s Y y sY , t s 2, . . . , n ,Ž . Ž . tt t ty1

y1 n ˆŽ . Ž . Ž Ž Ž . ..and c s s ny1 Ý F w Z s . Theorem 3.1 says that for n)p qn ts2 t
2, u can be found exactly. With binary inputs the contrast function given in

Ž .Section 2.3 Toeplitz is

2 2 2 21 2 3 4h c s 1 y 2 c q c y c q cŽ . Ž . Ž . Ž . Ž .ž / ž /
2 21 3 1 2 4 2 3q 2 c c q 2c c c y c c .Ž . Ž .ž /
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FIG. 1. Contrast function using Toeplitz determinant.

Ž . Ž Ž ..The function H s s h c s is not easily tractable. Its graph is drawn in
1Figure 1 for u s . A realization of the graph of H is drawn in Figure 2 forn2

1Ž Ž . Ž . .various values of n w x [ 1rp arctan x q .2

3.2. The parametric case. Suppose that the set Q can be represented as a
parametric model with real-valued parameter vector z in a set SS of dimen-

Ž .sion l: z s z :j js1, . . . , l

Q [ s z , z g SS .� 4Ž .

Ž .Let z * be the true parameter value. To estimate z *, we minimize L z [n
ˆŽ Ž ..H s z . Let z be any minimizer of L over a given compact set K contain-n n

ing z *.

Ž . l 1Ž .COROLLARY 3.3. Assume that the application z ª s z from R to l Z is
Ž . Ž .continuous and that assumptions M1 ] M4 hold. Assume the identifiability

assumption:

s z s rs z 9 ;k g Z m r s 1, K s 0 and z s z 9.Ž . Ž .k kyK

ˆThen z converges, almost surely, as n approaches infinity, to z *.
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FIG. 2. Estimation for the model Y y u Y s X .t ty1 t

REMARK 3.1. In the case of Hankel forms and under some smoothness
Ž .assumptions on the mapping z ª s z , the following inequality is proved in

Ž .Gassiat and Gautherat 1995 : There exists a constant K ) 0 such that for n
large enough,

ˆ5 53.1 z y z * F K s z * a.s.Ž . Ž . Ž .Ý
< < Ž .j )m n

Ž 5 5 l .here, ? denotes a norm on R and the constant K depends on z * .

Ž .REMARK 3.2. Simulations in Gassiat and Gautherat 1994 lead to appar-
ently perfect estimation in MA models. This experimental result may be

Ž . Ž .explained by 3.1 . Indeed, in this case the right side of 3.1 goes to zero
exponentially fast.

4. Simultaneous estimation of the cardinality p. In this section, we
assume that the cardinality p of the support A is unknown. No upper bound
on p has to be known. For any possible cardinality q ) 0 we consider the
contrast function built as if q were the true cardinality of the support. Let
Ž . Ž qŽ ..H s, q [ h c s , s g Q, whereq

q Žq .c s [ E F w Z s ,Ž . Ž .Ž .Ž .1

FŽq . [ F , . . . , F ;Ž .1 2 q
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Ž Žq .. Ž .F is such that for all q, 1, F , . . . , F is a T-system. Such systems ofq G1 1 2 q
Ž .functions are called M-systems; see Krein and Nudel’man 1977 . For in-

stance, trigonometric or algebraic functions as described in Sections 2.3.1 and
2.3.3 are M-systems. h is a given nonnegative function defined on KK , theq q

Žq . Ž .set of F moment sequences of probabilities on 0, 1 that only vanishes on
the boundary of KK . We have the following characterization of the parame-q
ters, which is an obvious consequence of Theorem 2.3:

Ž . Ž .THEOREM 4.1. i If q - p, then ;s g Q, H s, q ) 0.
Ž . Ž . Ž .ii H u , p s 0 and ;s g Q, s / u , H s, p ) 0.

Ž .In other words, p is the smallest integer q such that the equation H s, q s 0
has a solution s, which is then u .

Ž . Ž .To estimate u , p , we consider the empirical contrast functions H s, q .n
Minimizing simultaneously in both variables s and q would not lead to good
estimators; it would lead to systematic overestimation of p. To rank small
values of the integer q, we shall use a compensation technique, as usual for
the estimation of the order of a model; see, for instance, Azencott and

Ž . Ž . Ž .Dacunha-Castelle 1984 or Dacunha-Castelle and Gassiat 1994 . Let d n be
a sequence of positive real numbers with limit 0 as n tends to infinity. Define

J s, q s H s, q q d n ? q.Ž . Ž . Ž .n n

ˆŽ .Let now the estimator u , p be defined as a minimizer of J over Q = N*.ˆ n n
To have good asymptotic properties of the estimator, roughly speaking, the

Ž .compensation sequence d n has to be related to the stochastic variations of
H , so that we introduce the following assumption:n

ˇ ˇŽ . w < < Ž .M6 Let u be the truncation of the filter u u s u if k F m n andk k
ˇ < < Ž .xu s 0 if k ) m n :k

ˇH u , pŽ .n
lim s 0 a.s.

d nnª` Ž .

We then have the following theorem:

1Ž .THEOREM 4.2. Assume that Q is a compact subset of l Z . Under assump-
ˆŽ . Ž . Ž . Ž . Ž .tions M1 , M2 , M3 , M4 and M6 , as n tends to infinity, u converges a.s.

in l to u and p converges a.s. to p.ˆ1

Ž .REMARK ON ASSUMPTION M6 . As soon as the discriminating function has
Ž .continuous derivatives which is the case for Toeplitz and Hankel forms ,

Ž .assumption M6 relates the speed of convergence of the F-moments to the
Ž . Ž . Ž .y1compensator sequence d n . For instance, M6 holds with d n s

Ž .'o nr log log n as soon as the input sequence obeys the iterated logarithmŽ .
law.
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5. Extension to other models.

5.1. Nonstationary inputs. Roughly speaking, the method proposed in
Ž .this paper works because of the properties of the empirical measure n s ,n

built on the observations
Ž .nym n1

n s [ d .Ž . ˆÝn w ŽZŽ s. .tn y 2m nŽ . Ž .ts1qm n

By ergodicity, this sequence of random measures converges weakly to a
distribution which has support of cardinal p if and only if s s u . Now, define

Ž .the random measure without truncation n s :ñ

Ž .nym n1
n s [ d .Ž .˜ Ýn w ŽZ Ž s..tn y 2m nŽ . Ž .ts1qm n

Without any assumption on the probabilistic nature of the input signal, it is
Ž .easy to see that n s has, for any n and for s s u , at most p points ofñ

support. This applies with increasing probability only for s s u under very
Ž .wide assumptions, for instance, under M4 for n ) p. Now, in the nonsta-

tionary case, if this remains true for all the accumulation points of the
Ž Ž ..sequence n s , all the previous results stay valid.n

5.2. Multidimensional systems. Similar ideas may be developed in the
Ž .case where the variables X are random vectors i.e., are multidimensionalt

by an appropriate choice of the functions F . In this case, difficulties arisej
wfrom the fact that T-systems of functions do not exist see Krein and

Ž . xNudel’man 1977 , page 32 so that an analogue of Theorem 2.3 is not
obvious. However, Proposition 2.1 and Theorem 2.2 may be easily extended
Ž .just using some partial order in multidimensional space , so that the struc-
ture of the model and the characterization of the inverse filter is essentially
the same as in the one-dimensional situation.

6. Proofs.

PROOF OF PROPOSITION 2.1. Without loss of generality, we may assume
Ž . Ž .that the integers 1 and 2 are in C a . Using assumption M4 , the support of

� 4the variable a X q a X is exactly a x q a x , i, j s 1, . . . , p , which1 1 2 2 1 i 2 j
contains at least p q 1 distinct points j - ??? - j . Now:1 pq1

Ž . Ž . w Ž .xi If C a is finite using again assumption M4 , we may deduce that
Ž .the support of W a contains the following distinct p q 1 points:

j q x Ý a , j s 1, . . . , p q 1.j 1 l g CŽa. , l/1, 2 l

Ž . Ž .ii If C a is infinite, let

W a s a X .Ž . ÝN j j
< <j )N
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The following inequality holds almost surely:

< < < < < <6.1 W a F sup x , . . . , x a .Ž . Ž . � 4 ÝN 1 p j
< <j )N

� 4Let « - inf j y z , j s 1, . . . , p, and N be such thatjq1 j

< < < < < <sup x , . . . , x a - « .� 4 Ý1 p j
< <j )N

Define now

I s j q x a y « , j q x a q « .Ý Ýj j 1 l j 1 lž /
< < < <l FN , l/1, 2 l FN , l/1, 2

Ž Ž .The intervals I are disconnected thanks to the choice of « , and P W a gj
. Ž . Ž .I ) 0 thanks to assumption M4 , the bound 6.1 and the choice of « . Ij

Ž . w Ž Ž Ž ...xPROOF OF THEOREM 2.5. By definition, c s s E f w Z s . Using Theo-1
Ž .rem 2.3, c s lies on the boundary of KK if and only if the distribution of

Ž Ž ..w Z s is purely atomic with support of cardinality less than or equal to p.1
Ž . Ž .However, Z s s Ý s)u ? X so that, applying Proposition 2.1, only1 k g Z k 1yk

Ž .one s)u can be nonzero. That is, ;t g Z, s s u . Ik t t

ˆPROOF OF THEOREM 2.8. As the sequence u belongs to a compact set, it
possesses at least one accumulation point u . Now

ˆ;s g Q , H u F H s ,Ž .Ž .n n

so that

ˆ6.2 lim sup H u F H s a.s.Ž . Ž .Ž .n
nª`

Indeed, h is a continuous function on KK, and by Lemma 6.2,

;s g Q : lim c s s c s .Ž . Ž .n
nª`

In this proof, all the involved limits are almost sure so that the convergence
ˆof u will be almost sure.
We now prove that

ˆlim H u s H uŽ .Ž .n
nª`

ˆŽ .so that 6.2 together with Theorem 2.5 implies u s u and, consequently, the
almost sure convergence of u to u :

ˆ ˆH u y H u s H u y H u q H u y H u .Ž . Ž . Ž . Ž .Ž . Ž .n n n n

Now

lim H u y H u s 0,Ž . Ž .n
nª`

ˆ ˆH u y H u s h c u y h c u .Ž . Ž .Ž . Ž . Ž .Ž .n n n n
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For any filters s and s ,1 2

c s y c sŽ . Ž .n 1 n 2

Ž .nym n1
s F w Z s y F w Z s .Ž . Ž .Ž . Ž .Ž . Ž .Ý t 1 t 2n y 2m nŽ . Ž .ts1qm n

6.3Ž .

Ž .F(w is uniformly continuous on R, so that using 6.3 and Lemma 6.1,
5 Ž . Ž .5 5 5c s y c s becomes arbitrarily small with s y s .1n 1 n 2 1 2

Now KK is a compact set, so that the function h is uniformly continuous on
< Ž Ž .. Ž Ž .. < 5 5KK. So h c s y h c s becomes arbitrarily small with s y s . There-1n 1 n 2 1 2

ˆŽ .fore, since u is an accumulation point of u , we find

ˆlim H u s H uŽ .Ž .n
nª`

and the proof is complete. I

LEMMA 6.1.
1 < < < < 5 5 5 5;s , s g l Z , Z s y Z s F sup x , . . . , x u s y s .Ž . Ž . Ž . � 4 1 11 2 t 1 t 2 1 p 1 2

PROOF.

Z s y Z s s u) s y u) s X ,Ž . Ž . Ž . Ž .Ýt 1 t 2 1 2 tykk k
k

so that, ;t,

5 5Z s yZ s F u) s y s XŽ . Ž . Ž . `t 1 t 2 1 2 11

< < < < 5 5 5 5F sup x , . . . , x u s y s . I� 4 1 11 p 1 2

LEMMA 6.2.

;s g Q : lim c s s c s a.s.Ž . Ž .n
nª`

PROOF. Let, for s g Q,
n1 ˆc s [ F w Z s ,Ž . Ž .˜ Ž .Ý ž /tn n ts1

n1
c s [ F w Z s .Ž . Ž .Ž .ˆ Ž .Ýn tn ts1

Ž Ž .. Ž .Thanks to the ergodic theorem, c s converges almost surely to c s . Fromn̂
Ž Ž ..Lemma 6.1 this is the same for c s . Nowñ

Ž .m nn 1 ˆc s s c s y F w Z s .Ž . Ž . Ž .˜ Ž .Ý ž /tn nn y 2m n n y 2m nŽ . Ž . ts1

Ž . Ž Ž .. Ž Ž ..Therefore, as m n has been chosen such that lim m n rn s 0, c snª` n
Ž .converges almost surely to c s . I
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PROOF OF PROPOSITION 3.2.

� Ž . 4LEMMA 6.3. The set k g Z, u) s / 0 has finite cardinality if and onlyk
if

h
h h'h g N, ' a , . . . , a g R , ' l , . . . , l g Z : ;k , s s a u .Ž . Ž . Ý1 h 1 h k i kyl i

is1

� Ž . 4 � 4 Ž .PROOF. Obvious, with k g Z, u) s / 0 s l , . . . , l and u) s s a .k 1 h l ii

I

Ž .We have, as soon as n y 2m n ) p,

ˆP a Z s , t s 1 q m , . . . , n y m F pŽ .� 4ž /t

ˆ ˆF P Z s s Z sŽ . Ž .Ý ž /t ti j
1qmFt /t Fnymi j

ˆ ˆs P Z s y Z s s 0 .Ž . Ž .Ý ž /t ti j
1qmFt Ft Fnymi j

Ž .For j g Z, let s [ s 1 the truncated filter . Now,j̃ j < j < F mŽn.

ˆ ˆZ s y Z s s u) s y u) s XŽ . Ž . Ž . Ž .˜ ˜ t ykt ykÝ jt t kii j
k

and the set

k g Z: u) s y u) s / 0 s k g Z: u) s / u) sŽ . Ž . Ž . Ž .� 4 � 4˜ ˜ ˜ ˜t yk t ykt yk t ykj ji i

has infinite cardinality as soon as the set

k g Z: u) s / 0� 4Ž .˜ k

has infinite cardinality too. Indeed, if it was not, there would exist an integer
k such that0

;k G k , u) s s u) sŽ . Ž .˜ ˜ kq t ytk j i0

ŽŽ . . < <and the sequence u) s would be periodic with period t y t , which˜ k k G k j i0

is impossible since it is summable, except if it is identically 0.
Ž . �Then, using assumption M5 , we may conclude that if the set k g Z:

ˆ ˆŽ . 4 Ž . Ž .u) s / 0 is infinite, then the distribution of Z s y Z s is continuous˜ k t ti j

ˆ ˆ ˆŽ Ž . Ž .. Ž � Ž .for all distinct t and t . Consequently, P Z s s Z s s 0 and P a Z s ,i j t t ti j
4 . � Ž . 4t s 1 q m, . . . , n y m F p s 0. By Lemma 6.3 the set k g Z: u) s / 0 is˜ k

finite if and only if

'h g N, 'a , . . . , a g R, 'l , . . . , l g Z, ;k g Z:1 h 1 h

h

s s a u . I˜ Ýk i kyl i
is1

6.4Ž .

PROOF OF THEOREM 3.1. If s s Ýh a u with at least two nonzerok is1 i kyl i

coefficients a , then the length of s is greater than the length of u . Ii
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ˆŽ . Ž .PROOF OF THEOREM 4.2. Since Q is compact in l Z , the sequence u1
possesses at least one a.s. accumulation point u *. If this accumulation point is
proved to be unique and equal to u and if p is proved to converge to p, thenˆ
the theorem is proved. We now work on the subsequence converging to u *.
Using the definition of the estimator, we have

ˆJ u , p F J u , p .ˆ Ž .Ž .n n

We then have

ˆH u , p H u , pˆ Ž .Ž .n nq p F q p.ˆ
d n d nŽ . Ž .

ˆŽ . Ž .Since H u , p and d n are nonnegative, this impliesˆn

H u , pŽ .n
p F q p ,ˆ

d nŽ .
so lim sup p F p and the sequence p is bounded. Let p* be an accumula-ˆ ˆnª`

tion point of the sequence p. We thus haveˆ
6.5 p* F p a.s.Ž .

Ž .using M6 . Now, using the same tricks as for the proof of Theorem 2.8, it can
be proved that

ˆ6.6 lim H u , p s H u *, p* a.s.Ž . Ž .ˆŽ .n
nª`

We then obtain

6.7 H u *, p* s 0.Ž . Ž .
Ž . Ž .Now, using Theorem 4.1, 6.5 and 6.7 imply

p* s p , u * s u

and the theorem is proved. I
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