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A FREQUENCY DOMAIN BOOTSTRAP FOR RATIO
STATISTICS IN TIME SERIES ANALYSIS

BY R. DAHLHAUS AND D. JANAS

Universitat Heidelberg¨
The asymptotic properties of the bootstrap in the frequency domain

based on Studentized periodogram ordinates are studied. It is proved that
this bootstrap approximation is valid for ratio statistics such as autocorre-
lations. By using Edgeworth expansions it is shown that the bootstrap
approximation even outperforms the normal approximation. The results
carry over to Whittle estimates. In a simulation study the behavior of the
bootstrap is studied for empirical correlations and Whittle estimates.

w Ž .x1. Introduction. The bootstrap Efron 1979 is generally accepted as a
powerful tool for approximating certain characteristics, for example, bias,
variance or the distribution of statistics that cannot at all or only with
excessive effort be calculated by analytical means. For example, the bootstrap
provides second-order corrected approximations to sampling distributions in

w Ž . Ž .xthe i.i.d. setup Singh 1981 and Babu and Singh 1984 . In time series
analysis, where the data obey a certain dependence structure, this kind of
difficulty quite often comes up, particularly, if one is not willing to assume
Gaussianity of the data. In principle, one has with a time series only one
observation of a multivariate random variable and it is obvious that a
bootstrap can only be applied to parts of the data or to certain transforma-

Ž .tions e.g., residuals . Very often this requires additional assumptions on the
Ž .dependence structure e.g., mixing assumptions or on the underlying model

Ž .e.g., for a residual-based bootstrap .
Ž . Ž .Kunsch 1989 and Liu and Singh 1992 propose resampling whole blocks¨

of consecutive observations. Instead of resampling from the data themselves,
another idea is to resample from residuals that are approximately i.i.d.

Ž . Ž .Freedman 1984 , Efron and Tibshirani 1986 , Swanepoel and van Wyk
Ž . Ž .1986 and Kreiss and Franke 1992 consider resampling the estimated
innovations of parametric time series models.

A different approach is to apply Efron’s bootstrap method to periodogram
ordinates, more precisely to Studentized periodogram ordinates, where the

wperiodogram is Studentized by a spectral density estimate cf. Franke and
Ž . Ž . Ž .xHardle 1992 , Hurvich and Zeger 1987 , and Nordgaard 1992 . For obvious¨
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reasons this method may be denoted as a frequency domain bootstrap,
whereas all procedures above resample in the time domain. Franke and

Ž .Hardle 1992 apply this procedure to kernel spectral density estimates and¨
show a consistency result. They motivate the approach by interpreting the
spectral estimation problem as an approximate regression problem. Unfortu-
nately, the periodogram ordinates are only approximately independent. This
causes trouble for other estimates such as estimates of the autocovariance
function. The dependence between different periodogram ordinates leads for
non-Gaussian processes to an individual contribution to the asymptotic vari-
ance of this estimate. Since the bootstrap replicates are independent, the
additional part of the variance cannot be imitated. Therefore, the method
fails in such cases.

In this paper we study in more detail the class of estimators for which this
bootstrap with periodogram ordinates works. As mentioned above, it works
for all spectral mean estimates if the data are assumed to be Gaussian. The
procedure keeps working without this assumption for the kernel spectral

w Ž .xdensity estimate Franke and Hardle 1992 since these estimators have a¨
rate of convergence less than Ty1r2. However, in other cases the validity of
this bootstrap is not obvious. The main result of this paper is that there exists
an important class of statistics for which the bootstrap works: ratio statistics.
These statistics may be represented as ratios of spectral mean estimates and
the integrated periodogram. For example, the usual moment estimator for the
autocorrelation is a ratio statistic. This estimate is a normalized version of
the autocovariance estimate for which the procedure fails. An inspection of
the cumulants reveals that the method does not only approximate the mean
and the variance of ratio statistics, but also leads to the correct skewness.
Besides, by means of Edgeworth expansions for the statistics of interest and
their bootstrapped versions, we find that the error of the bootstrap approxi-
mation is of order less than Ty1r2 and therefore outperforms the normal
approximation.

Ž .A different approach was considered in Janas and Dahlhaus 1994 . There
we have suggested a modification of the frequency bootstrap which imitates
the weak dependence structure of the periodogram and leads to a consistent
bootstrap approximation for general spectral mean estimates in the non-
Gaussian case. However, one can check that this procedure does not lead to a
correct estimate of the skewness.

The paper is organized as follows. In Section 2 we discuss the problem. The
bootstrap procedure based on the sample of the Studentized periodogram
ordinates is presented and ratio statistics are introduced. At the end of the
section we summarize the assumptions and notation needed throughout the
paper. The main results are presented in Section 3 and applied to Whittle
estimates in Section 4. In Section 5 some simulation examples illustrate the
performance of the method. To make the paper more convenient for the
reader, some of the proofs are deferred to the Appendix.

� 42. Preliminaries. Consider a real-valued stationary time series Xt t g Z
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Ž .with E X s 0 and spectral density sd f. Let us denote byt

A f , fŽ .
X

p p
Ž1. Žd .' f a f a da , . . . , f a f a da ' f fŽ . Ž . Ž . Ž .H H Hž /ž /0 0

2.1Ž .

the spectral mean, where f Žr . are functions of bounded variation, r s 1, . . . , d.
Ž .The canonical estimate of A f, f is

A f , IŽ .T
X

p p
Ž1. Žd .' f a I a da , . . . , f a I a da ' fI ,Ž . Ž . Ž . Ž .H H HT T Tž /ž /0 0

2.2Ž .

Ž .where I a is the tapered periodogram that is,T

y12.3 I a ' 2p H d a d ya ,Ž . Ž . Ž . Ž . Ž .T 2,T T T

where
T

2.4 d a ' h X exp yia tŽ . Ž . Ž .ÝT t t
ts1

Ždenotes the tapered finite Fourier transform with data taper h see Assump-t
.tions 5 and 6 ,

T
k2.5 H a s h exp yia tŽ . Ž . Ž .Ýk , T t

ts1

Ž .is the spectral window and H s H 0 .k , T k , T
The following special cases are covered by this class.

Ž . Ž . Ž .EXAMPLE 1 Autocovariance estimate . Let f a s 2 cos a u , u g Z. Then

p

A f , I s I a exp yia u daŽ . Ž . Ž .HT T
yp

T
y1s H h X h X ' c uŽ . Ž .Ý2, T t t tqu tqu T

ts1

Ž .with h s 0 for t F 0 and t ) T is the usual moment estimator witht
Ž . Ž .tapered data for the autocovariance c u ' E X X .t tqu

Ž . Ž .EXAMPLE 2 Spectral distribution function estimate . With f a s
Ž . w xx a , where x is the indicator function on 0, l , we get the integratedw0, lx w0, lx

periodogram

l
A f , I s I a da ' F l ,Ž . Ž . Ž .HT T T

0

Ž . Ž .which is an estimate for the spectral distribution function sdf F l s
l Ž . .H f a da .0
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Ž . � 4 pEXAMPLE 3 Whittle estimate . Let FF s f : u g Q , Q ; R , be a para-u

metric family of spectral densities. Then the parameter u may be estimated
by minimizing the Whittle likelihood

p I aŽ .Ty1
LL u s 2p log f a q da .Ž . Ž . Ž .HT u½ 5f aŽ .0 u

y1 w Ž . y1 xWith f ' =f where = s ru , . . . , ru 9 and f s 1rf , we haveu 1 p u u

=LL u s 0 m A u , I y A f , f s 0,Ž . Ž . Ž .T T

where f is the true spectral density.

Ž . Ž . Ž .The basic idea of a bootstrap for A f, I relies on the fact that I a rf aT T
� 4are for a fixed set of frequencies a , . . . , a with a / 0 mod p asymptoti-1 K j

w Ž . xcally independent exponential variables cf. Brillinger 1981 , Theorem 5.2.6 .
w xThis suggests the following bootstrap procedure. Let n s Tr2 and I sj

Ž .I 2p jrT .T

Bootstrap procedure.

� 41. Obtain the sample of periodogram ordinates I for j s 1, . . . , n.j
ˆ Ž .2. Obtain an estimate f of the spectral density f e.g., a kernel estimate .

ˆ� 4 � 43. Form the Studentized periodogram ordinates « ' I rf .ĵ j j
� 4 � 4 Ž . n4. Rescale « and consider « ' « r« . , where « .s 1rn Ý « .ˆ ˜ ˆ ˆ ˆ ˆj j j js1 j

� U45. Draw independent bootstrap replicates « from the empirical distribu-j
tion of the « .j̃

U ˆ U� 4 � 46. Define bootstrap periodogram values by I ' f « .j j j

REMARK 1. The rescaling in step 4 avoids an unneccessary bias at the
resampling stage.

REMARK 2. Exploiting our knowledge about the asymptotic distribution of
Ž . Ž . � U4I a rf a , we may modify the procedure by replacing « by independentT j

� U4and standard exponentially distributed variables E . As in step 6 we getj
q ˆ U� 4 � 4modified bootstrap periodogram values I ' f E . We see in the nextj j j

section that all results hold for both the original procedure as well as the
modified one.

Ž . Ž .We now try to approximate the distribution of A f, I y A f, f by theT
U ˆŽ . Ž .distribution of B f, I y B f, f , whereT

np
U U2.6 B f , I ' f IŽ . Ž . ÝT j jn js1

Ž .and f ' f 2p jrT .j
To get an idea on the quality of this bootstrap approximation, we study the

asymptotic behavior of both statistics.
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'w Ž .x Ž Ž . Ž ..It is well known cf. Dahlhaus 1983, 1985a that T A f, I y A f, fT
� 4 Ž .is asymptotically normal. For a linear process X cf. Assumption 1 andt

h ' 1, the asymptotic variance is given byt

2
2 2 42.7 2p f f q k rs f f ,Ž . Ž .H H4 ž /

where k is the fourth cumulant and s 2 is the variance of the innova-4
tions « .t

U ˆ' Ž Ž . Ž ..Under appropriate assumptions T B f, I y B f, f is also asymptoti-T
cally normal, but with a variance proportional to

2.8 2p f 2 f 2 .Ž . H
The difference in the two asymptotic distributions relies on the fact that the
IU are independent while the dependence structure of the I cannot beT T
neglected completely.

Ž .Therefore, this bootstrap can only work if the additional term in 2.7
vanishes. There are two cases in which this term is 0.

Ž .CASE 1. Hf f s 0. If =H log f s 0 this is fulfilled for A f, I in the case ofu T
Ž .the Whittle estimate Example 3 . Note that =H log f s 0 holds for severalu

wparametrizations. This can be deduced from Kolmogorov’s formula cf. Brock-
Ž . xwell and Davis 1987 , Section 5.8 .

CASE 2. k s 0. This condition is fulfilled, for example, if the innovations4
are assumed to be Gaussian.

In these cases the procedure leads to a correct approximation of the
variance. In general, there is no hope for this. For instance, consider the

Ž .examples of the autocovariance estimate Example 1 and the sdf estimate
Ž .Example 2 in the non-Gaussian case.

In this paper we prove that the above bootstrap can be used successfully
for the important class of ratio statistics defined below. Denote the normal-
ized spectral density by

2.9 g a ' f a rF p ,Ž . Ž . Ž . Ž .
Ž .where F is the sdf. We consider the functionals A f, g ' Hf g, where

Ž Ž1. Žd .. Žr . w xf s f , . . . , f and f : 0, p ª R are functions of bounded variation
Ž .r s 1, . . . , d .

Ž .Note that A f, g is the normalized spectral mean. The corresponding
normalized spectral mean estimate is defined by

p

2.10 A f , J ' f a J a da ' f J ,Ž . Ž . Ž . Ž .H HT T Tž /0

Ž . Ž . Ž .where J is the normalized periodogram, that is, J a ' I a rF p withT T T T
Ž .F being the integrated periodogram see Example 2 .T
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Ž .The estimate A f, J can be written as a ratio of two spectral meanT
estimates

p p

2.11 A f , J s f a I a da I a da ,Ž . Ž . Ž . Ž . Ž .H HT T T
0 0

and is therefore denoted as the ratio statistic.

Ž . Ž . Ž .EXAMPLE 4 Autocorrelation estimate . Let f a s cos a u , where u g Z.
Then

p p

A f , J s I a exp yia u da I a daŽ . Ž . Ž . Ž .H HT T T
yp yp

' c u rc 0 ' r uŽ . Ž . Ž .T T T

Ž . Ž . Ž .is an estimator for the autocorrelation r u ' c u rc 0 of lag u.

Ž . Ž . Ž .EXAMPLE 5 Normalized sdf estimate . With f a s x a , where l gw0, lx
w x0, p , we get

A f , J s F l rF p ,Ž . Ž . Ž .T T T

the normalized integrated periodogram which represents an estimate for the
Ž . Ž .normalized sdf F l rF p .

Often, only the information about the normalized quantities is needed. For
instance, the Yule]Walker estimates of autoregressive parameters are based
on estimates of the autocorrelations and not on the autocovariances, and
Bartlett’s U -statistic for a goodness-of-fit test is based on the normalizedp

w Ž .xversion of F cf. Dahlhaus 1985b .T
Easy calculation shows that

'T'T A f , J y A f , g s c I ,Ž . Ž .Ž . HT TH fH IT

with c s fH f y Hf f. Since Hc f s 0 it follows that the asymptotic distribu-
' Ž Ž . Ž ..tion of T A f, J y A f, g does not depend on the fourth-order cumu-T

lant. Furthermore, it is equal to the asymptotic distribution of the corre-
sponding bootstrap statistic

np
U U2.12 B f , J ' f J ,Ž . Ž . ÝT j jn js1

where
np

U U UJ s I I ,Ýj j kž /n ks1

with IU defined as above. This is a necessary property for the bootstrap to bej
valid. In Section 3 we will prove that the above bootstrap really works for
ratio statistics.
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We now set down the assumptions.

� 4ASSUMPTION 1. X is a real-valued linear process, that is,t t g Z

X s a j ,Ýt u tyu
ugZ

� 4 2 8where j are i.i.d. random variables satisfying Ej s 0, Ej s 1, Ej - `t t g Z 1 1 1
2 < < Ž . Ž .and Ý u a - `. Denote by A a ' Ý a exp ia u the transfer functionu u ug Z u
Ž . Ž .y1 < Ž . <2 � 4and by f a ' 2p A a the spectral density of X . It is assumed thatt

Ž .inf f a ) 0.a gw0, p x

ASSUMPTION 2. The third moment of the innovations vanishes, that is
Ej 3 s 0.t

ˆASSUMPTION 3. f is an estimate of f , which is uniformly strongly consis-
tent, that is,

ˆ< <sup f a y f a ª 0 almost surely a.s. .Ž . Ž . Ž .
w xag 0, p

Ž Ž1. Žd ..XASSUMPTION 4. f ' f , . . . , f is a d-dimensional vector of bounded
Žr . w xfunctions f : 0, p ª R having bounded variation. For convenience, we

Žr . Žr .Ž . Žr .Ž .assume that f is extended to the real line with f ya s f a and
Žr .Ž . Žr .Ž .f a q 2p s f a , r s 1, . . . , d.

Ž .ASSUMPTION 5. The taper h is of the form h s h trT , where h: R ªt t
w x Ž . Ž x0, 1 is a function of bounded variation, h x s 0 for x f 0, 1 and H '2

1 2Ž .H h x dx ) 0.0

wSuch a taper h is introduced in practice to reduce leakage effects cf.
Ž .xDahlhaus 1988 . In addition to Assumption 5, we assume the following.

Ž . Ž rT .Ž .ASSUMPTION 6. The function h is given by h s h trT s h trT ,t
where

hŽ r . x ' u xrr x x q x x q u 1 y x rr x xŽ . Ž . Ž . Ž . Ž . Ž .Ž .Ž0, r r2. wr r2, 1yr r2x Ž1yr r2, 1x

w x w xand u: 0, 1r2 ª 0, 1 is twice differentiable with bounded second derivative
Ž . Ž .and u 0 s 0, u 1r2 s 1 and 0 - r F 1 denotes the proportion of the data

which is tapered. Furthermore, r depends on T, such that r ; Tyd , whereT
d - 1r6.

Ž r .Ž .Most of the tapers used in practice are of the form h x . The assumption
yd Ž rT .Ž . Ž .r s T implies that the sequence of tapers fulfills h x ª x xT Ž0, 1.

pointwise, which is called ‘‘asymptotically vanishing.’’
To derive Edgeworth expansions, we need the following assumptions.
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� 4ASSUMPTION 7. The filter coefficients a and the Fourier coefficientsu
ˆ� Ž .4f u of f decrease exponentially that is, for all large u,

< u < ˆ < u <5 5< <a F t , f u F t ,Ž .u

where t is a fixed number with 0 - t - 1.

Ž 2 .ASSUMPTION 8. j , j satisfies Cramer’s condition that is, there exist´1 1
5 5d ) 0 and d ) 0 such that, for all t ) d,

XX 2E exp it j , j F 1 y d .Ž .Ž .1 1

ASSUMPTION 9. Denote by S the eight-dimensional finite Fourier trans-T
form

X2p 2p
y1r2 � 4T d j 1 , . . . , d j 8 , j 1 , . . . , j 8 g 1, . . . , Tr2 y 1Ž . Ž . Ž . Ž .Ž .T Tž / ž /ž /T T

Ž . Ž X .Xor the d q 1 -dimensional spectral mean estimate H f , 1 I . In both casesT
Ž .Ý ' lim D S exists and is positive definite, where D denotes theT ª` T

Ž X .XŽ X . 2dispersion matrix. Furthermore, the matrix W s H f , 1 f , 1 f is positive
definite.

3. The validity of the bootstrap procedure. We now prove that the
bootstrap approximation holds for ratio statistics. In particular, the following
theorem states that the bootstrap approximation is even better than the
normal approximation. The result is proved by using Edgeworth expansions
for the original and the bootstrapped statistic and by comparison of the
cumulants in both expansions. The evaluation of the cumulants will give
additional insight into the approximation. In particular, we will see that the
skewness of the distribution is correctly approximated.

Ž . Ž .To bootstrap the distribution of A f, J y A f, g , we use the statisticT
Ž U . Ž .B f, J y B f, g , whereˆT

npˆ ˆg s f f .ˆ Ýj j kž /n ks1
2 y1 ' Ž .Furthermore, let D s V , where V is the dispersion matrix of T A f, JT T T T

U2 y1ˆ ˆ ˆ ' Ž .and D s V , where V is the dispersion matrix of T B f, J .T T T T
By PU we denote the conditional distribution given the data and by EU the

corresponding conditional expectation.

THEOREM 1. Suppose Assumptions 1]9 hold. Then for almost all samples
� 4I ,j

'sup P T D A f , J y A f , g g CŽ . Ž .Ž .Ž .T T
dCgCC

U U y1r2ˆ'y P T D B f , J y B f , g g C s o T .Ž . Ž . Ž .Ž .ˆŽ .I T

where CC d denotes the class of convex measurable C : R d.

Before proving the theorem we make some comments on the result.
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REMARK 3. The theorem says that the bootstrap approximation holds for
the distribution of ratio statistics that fulfill Assumptions 1]9. Thus the
method of resampling from standardized periodogram ordinates is consistent.
Furthermore, Theorem 1 gives an upper bound for the rate of convergence of
the bootstrap estimate: the accuracy of the bootstrap approximation is of
order less than Ty1r2 and therefore outperforms the normal approximation.
This is an unexpectedly strong result, since the method does not even imitate
the covariance structure of the underlying periodogram sample.

REMARK 4. If the mean is unknown we may use X y X instead of X fort t
the calculation of I . Unfortunately, this causes an extra bias of the peri-T

Ž . Ž . Ž y1 .odogram and we have only E A f, I s A f, f q O T . This implies thatT
Ž y1r2 . Ž .Theorem 2 holds only with O T . Furthermore, 3.2 no longer holds}we

Ž . Ž y1r2 . U Ž U . Ž y1r2 .have only cum V s O T and cum V s O T a.s., which leadsT , r T , r
Ž y1r2 . Ž y1r2 .to the same result as in Theorem 1 with o T replaced by O T . Thus

the bootstrap approximation is in this case at least as good as the normal
approximation and we may hope that it still does better in practice. At least

Žit is better in certain misspecified situations cf. the second example in Sec-
.tion 5 .

REMARK 5. As indicated in the proof of Theorem 4, the above result does
3 Ž .not hold if Assumption 2 is violated, that is, if Ej / 0. In this case 3.4 not

Ž . Ž y1r2 .longer holds. Both sides of 3.4 are of order O T which leads to the
Ž y1r2 . Ž y1r2 .result of Theorem 1 with o T replaced by O T .

REMARK 6. The proof of the validity of the bootstrap procedure in this
� U4section reveals that all results hold, if we replace the variables « byj

variables drawn from the known asymptotic distribution. By Theorem 1 we
Ž y1r2 .know that this modified procedure is accurate up to order o T as well as

the original one. On the other hand the formal Edgeworth expansions show
Ž y1 .that for both methods the approximation is not better than O T , since the

fourth-order cumulants of bootstrapped and unbootstrapped terms do not
match. Unfortunately, higher-order asymptotics does not detect differences

w Ž .xbetween both approaches as conjectured in Franke and Hardle 1992 and¨
none of them is preferable. However, there exists a significant difference
between both methods. The modified procedure avoids one potential error
source: resampling from the Studentized periodogram ordinates. At this
stage the bias of the spectral density estimate influences the method heavily.
It seems reasonable to avoid this danger and to use the information on the
asymptotic distribution of the residuals.

REMARK 7. Returning to the examples, it is to say that Theorem 1 is
Ž .applicable for the autocorrelation estimate Example 4 . If, for example, the

Ž .underlying process is an ARMA p, q process, then all assumptions can be
fulfilled including the technical one, Assumption 7. This assumption causes

Ž .some trouble for the normalized sdf estimate Example 5 . The reason is that
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for f s x the Fourier coefficients do not decrease exponentially. Thisw0, lx
problem can be solved by modifying the estimate with a smoothed function f.
On the other hand, the authors conjecture that the Edgeworth expansion is
also valid under a weaker condition than Assumption 7. But the proof seems

Žto be rather complicated. In Section 4 we consider Whittle estimates Exam-
.ple 3 in some detail.

PROOF OF THEOREM 1. Let

'V s T A f , J y A f , gŽ . Ž .Ž .T T

and
U U'V s T B f , J y B f , g .Ž . Ž .Ž .ˆT T

ˆ UWe need Edgeworth expansions for D V and D V as proved in TheoremsT T T T
2 and 3 below. We then have only to verify for the occurring expansion terms

3.1 L C y LU C s o Ty1r2Ž . Ž . Ž . Ž .T , 3 T , 3

uniformly in C. These expressions are the usual terms in an Edgeworth
w Ž . xexpansion cf. Bhattacharya and Ranga Rao 1976 , pages 51]57 . In this

Ž .special situation L ? is the signed measure with densityT , 3

d 
1 y cum D VŽ .Ž .Ý T T r  xrrs1

d d1   
y cum D V , D V , D V w x ,Ž . Ž . Ž . Ž .Ž .Ý ŁT T T T T T jr s t6  x  x  x js1r s tr , s , ts1

Ž . U Ž .where w x is the density of the standard Gaussian distribution, and L ?T , 3
U ˆ UŽŽ . .is the signed measure with the analogous density with cum D V andT T r

U ˆ U ˆ U ˆ UŽŽ . Ž . Ž . . Ž .cum D V , D V , D V . In order to verify 3.1 we therefore haveT T r T T s T T t
to prove

3.2 cum V s cumU V U q o Ty1r2 a.s.,Ž . Ž . Ž . Ž .T , r T , r

3.3 cum V , V s cumU V U , V U q o 1 a.s.,Ž . Ž . Ž . Ž .T , r T , s T , r T ,s

3.4 cum V , V , V s cumU V U , V U , V U q o Ty1r2 a.s.Ž . Ž . Ž . Ž .T , r T , s T , t T , r T , s T , t

Since V and V U are ratio statistics, these cumulants are difficult to calcu-T T
w Ž .xlate. However, due to Bhattacharya and Ghosh 1978, Theorem 2 b , it is

sufficient if we prove these equations for stochastic approximations W andT , r
W U withT , r

W s V q o Ty1r2 ,Ž .T , r T , r p

W U s V U q o U Ty1r2 .Ž .T , r T , r p

This is done in Theorems 4 and 5 below. Several lemmas provide the
technical details.
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THEOREM 2. Suppose Assumptions 1]9 hold. Then the following approxi-
mation holds uniformly over convex measurable C : R d:

y1r2'P T D A f , J y A f , g g C s L C q o T .Ž . Ž . Ž . Ž .Ž .Ž .T T T , 3

wŽ . xPROOF. From Janas 1993 Theorem 2.3 , we obtain the following
˜ X̃ XŽ . Ž .Edgeworth expansion for the statistic A f, I , where f s f , 1 and f is asT

defined in Assumption 4:

yŽ sy2.r2˜ ˜'P T A f , I y E A f , I g C s C C q o TŽ . Ž .Ž . Ž .ž /ž /T T T , s

Ž wŽ . x .cf. Gotze and Hipp 1983 , page 217 for the definition of C . Lemma 1¨ T , s
Ž . Ž . Ž . Ž y1 .below yields E A f, I s A f, f q o T and we can therefore replaceT

Ž . Ž .E A f, I by A f, f in this expansion for s s 3. We now apply the transfor-T
wŽ . xmation lemma of Bhattacharya and Ghosh 1978 , Lemma 2.1 , with the

transforming function
x x1 p

H x , . . . , x , y s , . . . , .Ž .1 p ž /y y

We have to check that this function is sufficiently smooth in a neighborhood
Ž X .X Ž .Ž .of m s H f , 1 f and that grad H m has full rank p. The first statement

Ž .follows from the positivity of F p s H f , the variance of the underlying
� 4process X ; the second is trivial. It

THEOREM 3. Suppose Assumptions 1]9 hold. Then, for almost all samples
� 4 dI and uniformly over convex measurable C : Rj

U U U 1r2ˆ'P T D B f , J y B f , g g C s L C q o T .Ž . Ž . Ž . Ž .Ž .ˆŽ .T T T , 3

PROOF. We only sketch the proof. As in Theorem 2, we first establish an
˜ U X̃ XŽ . Ž .expansion for the statistic B f, I with f s f , 1 and then apply theT

Ž U .transformation lemma to get the expansion for the ratio B f, J . Note thatT
Ž U .B f, I is a weighted mean of independent and identically distributedT

˜random variables with common distribution function F , the empirical distri-n
� 4bution function of the rescaled Studentized periodogram ordinates « de-j̃

Ž .fined in step 4 of the bootstrap procedure. Corollary 1 below shows the weak
˜convergence of F to an exponential distribution. Now we can prove then

Edgeworth expansion as it was done for the ordinary sample mean in Babu
Ž .and Singh 1984 . Only two changes are required: the cumulants have to be

Ž wŽ .replaced by averaged cumulants cf. Bhattacharya and Ranga Rao 1976 ,
x.page 71 and Cramer’s condition has to be modified in an obvious way. I´

We now construct stochastic approximations for V and V U for whichT , r T , r
we check afterwards the required equality of the cumulants. We start with an
approximation for V . LetT , r

3.5 DŽr . ' f Žr . y f Žr .g g ,Ž . Hž /
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where g s frHf is the normalized spectral density. Then we have

Hf Žr .I Hf Žr . fT1r2V s T yT , r ž /HI HfT

H f Žr . y Hf Žr .g g I rfŽ .Ž . T1r2s T
Hg I rfŽ .T

HDŽr . I rfŽ .T1r2s T
Hg I rfŽ .T

s T 1r2HDŽr . I rf 2 y Hg I rf q o Ty1r2 .Ž . Ž . Ž .Ž .T T p

Ž < < .The last equation follows since 1rx s 2 y x q o x y 1 . Note the equality

3.6 HDŽr . s 0,Ž .
which is of particular importance as will be seen later. Define the above
approximation of V as W , that is,T , r T , r

W ' T 1r2 DŽr . I rf 2 y g I rf .Ž . Ž .H HT , r T Tž /
To calculate the first three cumulants of W , we need the following lemma.T , x

LEMMA 1. Suppose c are bounded functions and Assumptions 1, 5 and 6j
hold. Then we have

i cum c I s c f q o Ty1 ,Ž . Ž .H H1 T 1ž /
ii cum c I , c I s O Ty1 ,Ž . Ž .H H1 T 2 Tž /
iii cum f I , . . . , c I s o Tyl r2 l G 3.Ž . Ž .H H1 T l Tž /

< <2 < Ž . <PROOF. We give only a sketch. Assumption 1 implies Ý u c u - ` andu
therefore also

< X < 2f a q b y f a y b f a F Kb ,Ž . Ž . Ž .
with some constant K. Then we obtain

cum c I y c fH H1 T 1ž /
2< <p p1 H bŽ .1, Ts c a f a q b y f a db da� 4Ž . Ž . Ž .H H12 2p Hyp yp 2, T

< <2p H bŽ .1, T2 y2q4d y1F K b db F O T s o TŽ . Ž .H Hyp 2, T
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Ž . wby using Lemma 5.4 of Dahlhaus 1988 note that the taper of Assumption 6
Ž . x Ž . Ž .is of degree 1, 2d in the terminology of that paper . The proof of ii and iii
Ž wŽ . x.is standard cf. Dahlhaus 1983 , Lemmas 6 and 7 . I

The application of this lemma leads to the following expressions:

3.7 cum W s yTq1r2cum DŽr . I rf , g I rf q o Ty1r2 ,Ž . Ž . Ž . Ž . Ž .H HT , r T Tž /
cum W , WŽ .T , r T , s

s T cum DŽr . I rf , DŽ s. I rf q o T 1r2 ,Ž . Ž . Ž .H HT Tž /3.8Ž .

and

cum W , W , WŽ .T , r T , s T , t

s T 3r2cum DŽr . I rf , DŽ s. I rf , DŽ t . I rfŽ . Ž . Ž .H H HT T Tž /
y 2T 3r2cum DŽr . I rf , g I rfŽ . Ž .H HT Tž /

=cum DŽ s. I rf , DŽ t . I rfŽ . Ž .H HT Tž /
y 2T 3r2cum DŽ s. I rf , g I rfŽ . Ž .H HT Tž /3.9Ž .

=cum DŽr . I rf , DŽ t . I rfŽ . Ž .H HT Tž /
y 2T 3r2cum DŽ t . I rf , g I rfŽ . Ž .H HT Tž /

=cum DŽr . I rf , DŽ s. I rf q o Ty1r2 .Ž . Ž . Ž .H HT Tž /
Observe that all cumulants can be expressed in terms of cumulants of second

Žr .Ž . Žr . � Žr . 4and third order of statistics of the form Hf I rf with f g D , g . ForT
an asymptotically vanishing taper these cumulants are given in the next
lemma.

LEMMA 2. Under Assumptions 1 and 4]6, we have

i T cum f Žr . I rf , f Ž s. I rfŽ . Ž . Ž .H HT Tž /
s 2p f Žr .f Ž s. q k rs 4 f Žr .Hf Ž s. q o 1 ;Ž .Ž .H H4
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ii T 2cum f Žr . I rf , f Ž s. I rf , f Ž t . I rfŽ . Ž . Ž . Ž .H H HT T Tž /
s 8p 2 f Žr .f Ž s.f Ž t . q k 2rs 6 4pŽ .H 3

Žr . Ž s. Ž t . Ž s. Žr . Ž t . Ž t . Žr . Ž s.= f 0 f f q f 0 f f q f 0 f fŽ . Ž . Ž .H H H H H H
p p

Žr . Ž s. Ž t . Ž t .q f a f a f a q a q f a y aŽ . Ž . Ž . Ž .�H H 1 2 1 2 1 2
0 0

Ž t . Ž t .qf ya q a q f ya q a da daŽ . Ž . 41 2 1 2 1 2

q k rs 4 4p f Žr .f Ž s. f Ž t . q f Žr .f Ž t . f Ž s. q f Ž s.f Ž t . f Žr .Ž . H H H H H H4 ž /
q k rs 6 f Žr . f Ž s. f Ž t . q o 1 ,Ž .Ž .H H H6

where k is the kth cumulant of the innovations j .k t

PROOF. The lemma is proved by using the product theorem for cumulants
Ž wŽ . x.cf. Brillinger 1981 , Theorem 2.3.2 and applying again Lemma 5.4 of

Ž .Dahlhaus 1988 . We omit the details. I

For the calculation of the cumulants of W , we need only three kinds ofT ,r
Ž . Ž . Žr .cumulants of the statistics HD I rf and Hg I rf . Since HD s 0 we obtainT T

Ž .for these cumulants from Lemma 2 under Assumption 2 k s 0 the follow-3
ing expressions:

3.10 T cum DŽr . I rf , g I rf s 2p DŽr .g q o 1 ,Ž . Ž . Ž . Ž .H H HT Tž /
3.11 T cum DŽr . I rf , DŽ s. I rf s 2p DŽr .DŽ s. q o 1 ,Ž . Ž . Ž . Ž .H H HT Tž /
3.12 T 2cum DŽr . I rf , DŽ s. I rf , DŽ t . I rfŽ . Ž . Ž . Ž .H H HT T Tž /

s 8p 2 DŽr .DŽ s.DŽ t . q o 1 .Ž .H
Ž . ŽDue to the central equation 3.6 which holds since we are dealing with

.ratio statistics , the above cumulants are independent of the cumulants k4
Ž .and k of the innovations while k s 0 has to be assumed . In particular, all6 3

contributions from the dependence structure of the periodogram ordinates
disappear. For the above cumulants it makes no difference if we replace the

� 4 � 4dependent I rf by i.i.d. r.v.’s E where E is exponentially distributed.j j j j
� 4Later we will see that the bootstrap counterparts of I rf behave similarlyj j

as independent and exponentially distributed variables, and that the corre-
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sponding bootstrap cumulants have the same limits as above. We now
summarize our results on the cumulants of WT , r .

THEOREM 4. Under Assumptions 1, 2, 4 and 6, we have

cum W s yTy1r2 2p DŽr .g q o Ty1r2 ,Ž . Ž .HT , r

cum W , W s 2p DŽr .DŽ s. q o 1 ,Ž . Ž .HT , r T , s

and

cum W , W , WŽ .T , r T , s T , t

s Ty1r28p 2 DŽr .DŽ s.DŽ t . y DŽr .g DŽ s.DŽ t .H H Hž
y DŽ s.g DŽr .DŽ t . y DŽ t .g DŽr .DŽ s. q o Ty1r2 ,Ž .H H H H /

Žr . Ž Žr . Žr . . Ž .where D ' f y Hf g g, g ' frF p .

Before calculating the bootstrap cumulants of the corresponding approxi-
mation of V U , we set down some auxiliary results. Let G denote theT , r n

� 4 Ž . Ž .empirical distribution function of I rf and G x s 1 y exp yx . The nextj j
� 4lemma provides a Glivenko]Cantelli lemma for I rf .j j

LEMMA 3. Suppose Assumptions 1, 4 and 6]8 hold. Then

< <i sup G x y G x ª 0 a.s.Ž . Ž . Ž .n
xgR

and

` `

ii g x dG x ª g x dG x a.s.Ž . Ž . Ž . Ž . Ž .H Hn
0 0

Ž .for every function g x which is piecewise uniformly continuous and satisfies

< <g xŽ .
sup - `.8< <1 q xxgR

PROOF. The proof is analogous to the proof of Theorem 1 in Chen and
Ž .Hannan 1980 . However, due to the data taper we have to replace the

required Edgeworth expansion by the expansion given in Theorem 4.3 of
Ž .Janas and von Sachs 1995 I

ˆ ˜Ž .From Lemma 3 we deduce the following corollary. Let F F denote then n
� 4 Ž� 4.empirical distribution function of « « . Here F « F means that theˆ ˜j j n

Ž .distribution F converges weakly to F F may be random .n n
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COROLLARY 1. Under Assumptions 1]3, 5 and 7]9, we have
n1

p pi « ª E x a.s.Ž . ˆÝ j 1n js1

and
n1

p p« ª E x a.s.˜Ý j 1n js1

for all p F 8 where x ; G, and1

ˆ ˜ii F « G a.s. and F « G a.s.Ž . n n

The proof is given in the Appendix.
˜The corollary says that the bootstrap distribution F converges to then

exponential distribution in the Mallow’s metric d defined as in Bickel andp
Ž .Freedman 1981 . The exponential distribution is absolutely continuous and

fulfills Cramer’s condition, which is important in the context of Edgeworth´
expansions. From the first part of the corollary and by the linearity of the
cumulants, we obtain the next lemma on the cumulants of the bootstrapped

Ž U .statistic B f, I .T

LEMMA 4. Under Assumptions 1]5 and 7]9, we have, for all p F 8,
n np p

U U Upy1 Žr . Žr .1 pT cum f I , . . . , f IÝ Ýj j j jž /n njs1 js1

p
py1 Žr . pjª p y 1 ! 2p f f a.s.,Ž . Ž . ŁH

js1

� 4where r , . . . , r g 1, . . . , d .1 p

PROOF. The result follows by using straightforward calculations. I

The lemma shows that the cumulants of order p G 2 of the bootstrapped
Ž U .statistic B f, I do not converge to the same limit as the cumulants ofT

Ž .A f, I . We already know the reason why the bootstrap approximation failsT
in this situation: independent resampling does not take care of the depen-
dence structure among the random variables in the basic sample.

However, for ratio statistics we now prove that the bootstrap approxima-
tion with independent resampling is sufficient. Let W U denote the bootstrapT , r
version of W , that is,T , r

n U n Up I p Ij jU 1r2 Žr .ˆW ' T D 2 y g ,ˆÝ ÝT , r j jž /ˆ ˆn nf fjs1 js1j j

where
n np p

Žr . Žr . Žr .ˆ ˆ ˆD ' f y f g g , g ' f f .ˆ ˆ ˆÝ Ýj j k k j j j kž / ž /n nks1 ks1
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Ž . Ž .Replacing the cumulants in 3.10 ] 3.12 by the corresponding bootstrap
Žcumulants from Lemma 4 and proceeding as in the proof of Theorem 4 with

.the integrals replaced by sums leads to the following result on the bootstrap
U ˆŽr . Žr . ˆw Ž . Ž . xcumulants note that E prn Ý D I rf s 0 .j j j

THEOREM 5. Under Assumptions 1]5 and 7]9, we have

cumU W U s yT 1r2 2p DŽr .g q o Ty1r2 a.s.,Ž . Ž .HT ,r

cumU W U , W U s 2p DŽr .DŽ s. q o 1 a.s.,Ž . Ž .HT , r T , s

and

cumU W U , W U , W UŽ .T , r T , s T , t

s Ty1r28p 2 DŽr .DŽ s.DŽ t . y DŽr .g DŽ s.DŽ t .H H Hž
y DŽ s.g DŽr .DŽ t . y DŽ t .g DŽr .DŽ s. q o Ty1r2 a.s.Ž .H H H H /

Since the first three cumulants of W and W U are the same, we haveT , r T , r
established Theorem 1.

4. Whittle estimates. Whittle estimates are based on the periodogram
w Ž .x Ž .Whittle 1953 . They are obtained by minimizing the distance LL u ofT
Example 3 between the periodogram and the parametric form of the spectral
density. A detailed discussion may be found in Dzhaparidze and Yaglom
Ž .1983 .

� 4Suppose X is a linear process with spectral density f that fulfillst t g Z

� 4Assumptions 1, 2 and 7 and we fit a parametric model FF s f : u g Q to theu

Ž 2 . Ž . 2 Ž .data. Suppose u s s , t , f a s s h a and Kolmogorov’s formula holds,u t

that is,
p

2s
log f a da s 2p log .Ž .H u 2pyp

This is, for example, true for ARMA models where s 2 is the innovation
wvariance and t contains the ARMA parameters c.f. Brockwell and Davies

Ž . x1987 , Section 5.8 . We do not assume that f g FF, that is we allow the model
to be misspecified.

ˆ 2Ž .The Whittle estimate u s s , t is determined by minimizing theˆ ˆT T T
Ž .Whittle function LL u of Example 3; that is it fulfills the equationsT

p
y1I a = f a da s 0Ž . Ž .ˆH T t u T

0

and
p1 y1f a I a da s 1.Ž . Ž .ˆH u TTp 0
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ˆ 2Ž .It is known that u converges to u s s , t which minimizes the corre-T 0 0 0
sponding theoretical function

p1 y1LL u s log f a q f u f a da ;Ž . Ž . Ž . Ž .� 4H u u2p 0

that is, u is determined by the equations0

p
y1f a = f a da s 0Ž . Ž .H t u 0

0

and
p1 y1f a f a da s 1.Ž . Ž .H u 0p 0

Ž .The bootstrap version of LL u isT

2 n1 s 1 2p j
U Uy1LL u s log q f IŽ . ÝT u jž /2 2p 2n Tjs1

U Ž 2U U .and the bootstrap Whittle estimate u s s , t is determined by minimiz-
U Ž .ing LL u which leads to the equationsT

n1 2p j
U y1

UI = f s 0Ý j t u ž /n Tjs1

and
n1 2p j

Uy1
Uf I s 1.Ý u jž /n Tjs1

U 2Ž .It is heuristically obvious that u y u will converge to 0, where u s s , t is
obtained by minimizing

2 n1 s 1 2p j
y1 ˆLL u s log q f fŽ . ÝT u jž /2 2p 2n Tjs1

ˆ Ž .and f is the nonparametric estimate of the bootstrap procedure. Here u
U U ˆ Žfulfills the same equations as u with I replaced by f. Intuitively, one

Uˆmight expect u as the limit of u . The limit u is a consequence of the
U U ˆ .bootstrap which implies that E I is equal to f and not equal to I . Note thatj j

Uu and u depend on T.
The heuristics in Section 2 indicate that the bootstrap is valid for the

Ž y1 .parameter t since Hf = f s 0 . This will be proved below. However, thet u 0
2 Žbootstrap does not work for the parameter s unless k s 0 e.g., if the4

.innovations are Gaussian .
We restrict ourselves to the one-dimensional case. However, we conjecture

that an analogous result also holds in the general case. To eliminate the
U2 Ž .dependence of the parameter s , we note that t t , t , t are also theˆT 0

Ž . y1 w Ž . y1 Ž . Ž . U Ž .y1minima of L t ' HI h L t ' Hfh , L# t ' prn Ý I h 2p jrT ,T T t t j j t
y1ˆŽ . Ž . Ž . xL t ' prn Ý f h 2p jrT , respectively . We need the following assump-j j t

tion in addition to Assumptions 1]9.



R. DAHLHAUS AND D. JANAS1952

ASSUMPTION 10. The set of parameters TT ; R is compact. The parameters
are identifiable; that is, t / t implies h / h on a set with positive1 2 t t1 2

Ž .Lebesgue measure. The function h a is four times continuously differen-t

tiable with respect to t g TT and two times continuously differentiable with
w x Ž .respect to a g 0, p . Here h a and its derivatives are uniformly bounded,t

w xthat is, ' 0 - c F c - ` ; t g TT, a g 0, p ,
i

y1c F h a F c, h a F c, i s 1, . . . , 4,Ž . Ž .t tž /t

and
j
h a F c, j s 1, 2.Ž .tž /a

Ž Ž1. Ž2. Ž3.. Ž i. Ž .i y1Let f s f , f , f with f ' rt h , i s 1, 2, 3. There existst t t t t t

Ž . Ž2.Ž . Ž2.d ) 0 such that K t ' L t s Hf f G d for all t g TT.0 t 0

Ž X .XFurthermore, in Assumption 9 we have to replace H f , 1 I by Hf I andT t T
X 2 Ž .to define the weight matrix W as Hf f f . In addition, let J t 't t

Ž Ž1. .2 Ž . U Ž Ž1.Ž ..2 Ž . U Ž2.Ž .2pH f f , J# t ' TE L# t and K# t ' E L# t .t

THEOREM 6. Suppose Assumptions 1]10 hold. Then, for almost all sam-
� 4ples I ,j

1r22sup P TK t rJ t t y t F xŽ . Ž . Ž .ˆŽ .ž /0 0 T 0
xgR

1r2U U2 y1r2yP TK# t rJ# t t y t F x s o T .Ž . Ž . Ž . Ž .Ž .ž /
The proof is deferred to the Appendix.

REMARK 8. Without proof we remark that the bootstrap also works for s 2

Ž . Uif k s 0. In the case of an AR p model, u is the Yule]Walker estimate4
with the covariances

n2p 2p j
U Uc u s I cos u .Ž . Ý j ž /n Tjs1

5. Practical considerations and simulation examples. We now re-
port on two simulation examples and make remarks on the design of the

ˆbootstrap with respect to the estimate f and to data tapers.
ˆA natural candidate for f seems to be a kernel estimate as suggested in

Ž .Franke and Hardle 1992 . However, our simulations with kernel estimates¨
were not convincing. It is usually recommended for a bootstrap in nonpara-
metric regression to choose a bandwidth which is a bit larger than the

w Ž .xoptimal one cf. Franke and Hardle 1992 . However, choosing a large¨
bandwidth leads to a strong bias in the neighborhood of peaks in the
spectrum. We are convinced that this trade-off is the reason for our bad
results.
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The behavior of our estimates became much better when smoothing the log
periodogram. Although this method is less efficient than smoothing the
periodogram itself it is obvious that the bias is strongly improved in the
neighborhood of peaks. Furthermore, the log transformation is asymptotically
variance stabilizing for the periodogram. In the simulations below we used a
kernel estimate with Epanecnikov kernel. A bias correction is obtained fromˇ
the following heuristic consideration. Suppose Z are i.i.d. exponentiallyj

Ž . Ž . Ždistributed random variables with constant mean f l this is the asymp-
.totic distribution of the periodogram ordinates in a local neighborhood and

w are the kernel weights. Thenj

E exp w log Z s EZ w j s f l G 1 q w ,Ž . Ž .Ž .Ý Ł Łž /j j j j
j j

where G is the Gamma function. We therefore estimate f byk

exp w log I y log G 1 q w ,Ž .Ý j kqj jž /
j

where
1 1 2p j

w s Kj ž /b b T
and

23 x
< <� 4K x s p 1 y x F p .Ž . ž /ž /4 p

With this estimate the results turned out to be quite good. In particular,
they were insensitive with respect to the choice of b. We therefore chose b by
‘‘eye inspection’’ having in mind that the bandwidth in the bootstrap step

Žshould be a bit larger than the optimal one with respect to the mean square
.error .

Our theoretical results hold only for an asymptotically vanishing taper
Ž .which is a realistic assumption . Since a taper is very often essential to
obtain reasonable results for small samples, we recommend to correct for the
taper by using

UTH rH B f , J y B f , gŽ . Ž .' Ž .ˆ4, T 2, T T

as the bootstrap estimate for the distribution of

A f , J y A f , g .Ž . Ž .T

The additional factor tends to 1 for an asymptotically vanishing taper and to
Ž .a correct first order! bootstrap approximation in the general case.

In the first example we considered the estimate for the autocorrelation
Ž .function from Example 4. Samples of size 64 of the AR 1 process

X s aX q « ,t ty1 t

' 'w xwith a s 0.9 and « uniform on y 3 , 3 were considered. A 10%t
Tukey]Hanning taper was applied and the bandwidth of the above estimate
was chosen to be b s 0.1. Figure 1 shows the logarithm of the periodogram of
the sample together with the logarithm of the kernel estimate.
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Ž .FIG. 1. Log periodogram and kernel estimate for an AR 1 process.

Ž .Note that r 1 is also the Yule]Walker estimate for a. It is known thatT

2 2'T r 1 y r 1 ª NN 0, H rH 1 y a ,Ž . Ž . Ž .Ž . Ž .Ž .T DD 4 2

where H s lim Ty1H . In Figure 2 this asymptotic distribution is shownk k , T
Žas the dashed line. The solid line is the true distribution simulated with

.2000 replications . The dotted line is a ‘‘typical’’ bootstrap approximation with
the frequency bootstrap as described above calculated from 2000 bootstrap
samples. The corresponding plots for eight additional original processes can
be found in Figure 3. The bootstrap approximation is always better than the
asymptotic distribution. In particular, it gives a good bias correction.

The second example shows the bootstrap in a much more complicated
Ž .situation. In this example T s 64 observations of an ARMA 4, 2 process with

AR roots 0.9y1e i0.2p , 0.9y1eyi0.2p , 0.9y1e i0.5p , 0.9y1eyi0.5p , MA roots
y1 i0.35p y1 yi0.35p ' 'w x0.8 e , 0.8 e and uniform innovations on y 3 , 3 were gener-

Ž . Ž .ated. A misspecified AR 4 model was fitted to the data and the Whittle
estimate a for the parameters with a 10% Tukey]Hanning taper wasˆT

Ž . Ž . Ž .FIG. 2. True solid , asymptotic dashed and bootstrap dotted distribution of the first-order
Ž .correlation for an AR 1 process.
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Ž . Ž . Ž .FIG. 3. True solid , asymptotic dashed and bootstrap dotted distribution of the first-order
Ž .correlation for eight different realizations of an AR 1 process.
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Žcalculated in this case the Whittle estimate is identical to the Yule]Walker
.estimate . Our goal is now to estimate the distribution of the Mahalanobis

distance in this misspecified situation.
Ž .If the AR 4 model were correct we would have

2 2 y1'T a y a ª NN 0, H rH s S ,Ž .ˆ Ž .Ž .T 0 DD 4 2

where S is the covariance matrix. In the misspecified case a similar result
holds with a different limit covariance matrix where a now is the minimizer0

Ž . Ž .of LL u cf. Section 4 . In that case a is the best approximating value.0
Suppose we want to construct a confidence set for a . In the correct0

specified case the above result implies for the Mahalanobis distance

TH 2 1X2, T 2a y a S a y a ª x .Ž . Ž .ˆ ˆT 0 T 0 DD 42H s4, T

Ž 2 .Replacing 1rs S by a consistent estimate leads to an asymptotic confi-
dence set for a . As proved in Section 4, a is approximately a ratio statistic.ˆ0 T
Furthermore, we may estimate

1
S by r i y jŽ .i j Tc 0Ž .

and
2 ps

by 1 y a r j ,Ž .ˆÝ j Tc 0Ž . js1

which again are ratio statistics. Therefore, it is heuristically clear that the
frequency bootstrap also works for the above Mahalanobis distance.

Ž .Figure 4 shows the logarithm of the true spectral density of the ARMA 4, 2
Ž . Ž .process connected crosses and the parametric AR 4 spectral density esti-

Ž .mate solid line . Figure 5 shows the tapered periodogram with the kernel
estimate as discussed above where b s 0.05. In Figure 6 the asymptotic
x 2-distribution of the above distance is shown as the dashed line. The solid4

Ž . Ž . Ž . Ž .FIG. 4. Log spectrum of an ARMA 4, 2 process crosses and an AR 4 fit solid line .
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Ž .FIG. 5. Log periodogram and kernel estimate for an ARMA 4, 2 process.

Ž 2 .line is the true distribution of the statistic with 1rs S replaced by the
Ž .above estimates in the misspecified situation! . It was obtained by simulation

with 2000 samples. The dotted line again is a ‘‘typical’’ bootstrap approxima-
tion with the frequency bootstrap calculated from 2000 bootstrap samples.
The corresponding plots for eight additional original processes can be found
in Figure 7.

Only the fourth picture of Figure 7 shows a bad result. In this case the
Ž .nonparametric estimate showed a third small peak and one of the two peaks

Ž .of the fitted bootstrap AR 4 model sometimes fell on that small peak result-
ing in a large Mahalanobis distance.

In the other cases the bootstrap distribution is quite close to the true one.
Since the bootstrap is a nonparametric bootstrap, it can be used to estimate
also the effects due to model misspecification.

It is obvious that more simulation studies are needed. In particular, it
Ž .would be interesting to see how the above bootstrap compares to an AR `

bootstrap or to a block bootstrap.

Ž . Ž . Ž .FIG. 6. True solid , asymptotic dashed and bootstrap dotted distribution of the Maha-
Ž .lanobis distance for an AR 4 model.
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Ž . Ž . Ž .FIG. 7. True solid , asymptotic dashed and bootstrap dotted distribution of the Maha-
Ž . Ž .lanobis distance of an AR 4 model for eight different realizations of an ARMA 4, 2 process.



A FREQUENCY BOOTSTRAP FOR TIME SERIES 1959

APPENDIX

Ž .PROOF OF COROLLARY 1. As in Bickel and Freedman 1981 , we introduce
the metric d as a measure for the distance between distributions F and G,p
for which the pth absolute moment exists:

1rpp< <� 4A.1 d F , G ' inf E X y Y ,Ž . Ž .p

where the infimum is taken over all pairs of random variables X and Y
having marginal distributions F and G, respectively. For p s 2 this metric is

Ž . Ž .Mallow’s metric. We write d X, Y instead of d F, G .p p
We show that

A.2 d x , «U ª 0 a.s.Ž . Ž .p 1 1

By the triangle inequality we have

A.3 d x , «U F d x , « 0 q d « 0 , « q d « , «U ,Ž . Ž . Ž .ˆ ˆŽ . Ž .p 1 1 p 1 1 p 1 1 p 1 1

0 ˆŽ . Ž . � 4 Žwhere the df of « « is the edf G F of the true residuals I rf of theˆ1 1 n n j j
ˆ� 4.unscaled empirical residuals I rf . We prove that all three terms on thej j

Ž .right-hand side of A.3 converge to 0 almost surely.
For the first term the assertion follows from Lemma 3. To get an upper

Ž 0 . Ž 0 .bound for d « , « , we choose the joint distribution of « , « such that itˆ ˆp 1 1 1 1
ˆ y1Ž .assumes the value I rf , I rf with probability n , j s 1, . . . , n. Thenj j j j

p
n1 I Ip j j0d « , « F yˆŽ . Ýp 1 1 ˆn f fjjs1 j

ppn1 I fj js 1 yÝ ž / ˆn f fjjs1 j

p pnf 1 Ij jF sup 1 y .Ý ž /ˆ n ffj jjs1j

Ž .By Lemma 3 ii we obtain

pn1 Ij pª E x - ` a.s.Ý 1ž /n f jjs1

Ž .Therefore, the second term in A.3 converges to 0 by the convergence of the
ˆ Ž .estimate f to f Assumption 2 .
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Using exactly the same argument as above, we get also
n1p pU < <d « , « F « y «Ž .ˆ ˆ ˜Ýp 1 1 j jn js1

pn1 « « .y 1Ž .ˆ ˆjs Ýn « .ˆjs1

ppn n n1 1 1
ps « y 1 « «ˆ ˆ ˆÝ Ý Ýj j jž /n n njs1 js1 js1

ª 0 a.s.
Ž .by Lemma 3 ii and Assumption 2. I

PROOF OF THEOREM 6. As in the proof of Theorem 1, we derive Edgeworth
expansions for the distribution of the Whittle estimate and for its boot-
strapped version. Then the result follows by a comparison of the corre-
sponding coefficients of the polynomials occurring in these expansions. The

wŽ .Edgeworth expansion for the Whittle estimate is given in Janas 1993 ,
x Ž .Theorem 3.1 , for the case where the model is correctly specified f s f . Theu0

proof for the more general case discussed here is exactly the same. The
expansion for the bootstrap counterpart can be deduced in a similar way.
Therefore, we mention only the essential steps.

We set down
U'A.4 V# ' T t y t ,Ž . Ž .

Ž i. Ž i. Ž i.'A.5 Z# t ' T L# t y E L# t ,Ž . Ž . Ž . Ž .Ž .
A.6 K# t ' yEUL#Ž2. tŽ . Ž . Ž .

and

Z#Ž1. t 1 Z#Ž1. t Z#Ž2. tŽ . Ž . Ž .
U# t ' y qŽ . 'K# t K# t K# tŽ . Ž . Ž .T

A.7Ž . 2Ž3. Ž1.1 Z# t Z# tŽ . Ž .
y .ž /' K# t K# tŽ . Ž .2 T

We will show that the following stochastic expansion holds:

1
A.8 V# s U# t q j#,Ž . Ž .

T
U y1r2'Ž < < . Ž .where j# satisfies P j# ) r T s o T a.s. for some sequence r ªT T'0, r T ª ` as T ª `.T

Ž wŽ . x.By a lemma of Chibisov cf. Janas 1993 , Lemma 4.5 , the Edgeworth
y1r2Ž .expansions for V# and U# t match up to order T . However, the Edge-

Ž .worth expansion for U# t follows from Theorem 1 by the transformation
w Ž .xlemma of Bhattacharya and Ghosh cf. Janas 1993 .
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Ž .For the proof of A.8 we consider the following Taylor expansion. Since
Ž1.Ž U .L# t s 0, we have

1
Ž1. Ž2.'0 s T L# t q Z# t V# q K# t V#Ž . Ž . Ž .'T

1 1
Ž3. 2 Ž4. 3q L# t V# q L# t V#,Ž . Ž .˜' 6T2 T

A.9Ž .

U< < < < Ž .where t y t F t y t . We rewrite A.9 as˜
Ž1. Ž2.'T L# t Z# tŽ . Ž .

V# s y y V#'K# tŽ . K# t TŽ .
A.10Ž .

Ž3. Ž4.L# t L# tŽ . Ž .˜
2 3y V# y V#.' 6K# t TŽ .2 K# t TŽ .

The following bounds for tail probabilities can be derived analogously to the
Ž .corresponding bounds in Janas 1993 .

For every a ) 0 there exist positive constants d , d and d such that1 2 3

U U ay1r2 y1r2< <A.11 P t y t )d T s o T a.s.Ž . Ž .Ž .1

U UŽ i. Ž i. ay1r2 y1r2< <A.12 P L# t y E L# t )d T s o T a.s. for i s 1, 2, 3,Ž . Ž . Ž . Ž .Ž .2

U < Ž4. < a y1r2A.13 P sup L# t )d T s o T a.s.Ž . Ž . Ž .3ž /
tgTT

Ž . Ž . Ž .By A.11 ] A.13 with 0 - a - 1r10, we can write A.10 as

Ž1.'T L# t 1Ž . ˜A.14 V# s y q j#,Ž . 'K# tŽ . T

U ˜ 2 a y1r2Ž < < . Ž .where P j# ) d T s o T a.s. for some d ) 0.4 4
Ž . Ž .Substituting A.14 for the right-hand side of A.10 and noting

U Ž1.Ž .E L# t s 0 a.s., we have

Ž1. Ž1. Ž2.Z# t 1 Z# t Z# tŽ . Ž . Ž .
V# s y q 'K# t K# t K# tŽ . Ž . Ž .T

2Ž3. Ž1.1 L# t Z# t 1Ž . Ž .
y q j#,ž /' K# t K# t TŽ . Ž .2 T

U Ž < < 3a . Ž y1r2 .where P j# ) d T s o T for some d ) 0. I5 5

Acknowledgment. The computations were done together with M. Diller
by using a version of SPECSIM which is based on the framework of RAN-
DOM&TEMPLATE.
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