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In the common trigonometric regression model, we investigate the
optimal design problem for the estimation of the individual coefficients,
where the explanatory variable varies in the interval [−a, a], 0 < a ≤ π . It is
demonstrated that the structure of the optimal design depends sensitively on
the size of the design space. For many important cases, optimal designs can be
found explicitly, where the complexity of the solution depends on the value
of the parameter a and the order of the term, for which the corresponding
coefficient has to be estimated. The main tool of our approach is the reduction
of the problem for the trigonometric regression model to a design problem
for a polynomial regression. In particular, we determine the optimal designs
for estimating the parameters corresponding to the cosine terms explicitly, if
the design space is sufficiently small, and prove that under this condition all
optimal designs for estimating the parameters corresponding to the sine terms
are supported at the same points.

1. Introduction. Trigonometric regression models of the form

y = β0 +
m∑

j=1

β2j−1 sin(j t) +
m∑

j=1

β2j cos(j t) + ε,

(1.1)
t ∈ [−a, a], 0 < a ≤ π,

are widely used to describe periodic phenomena [see, e.g., Mardia (1972), Graybill
(1976) and Kitsos, Titterington and Torsney (1988) or the recent collection of
research papers in biology edited by Lestrel (1997)]. The problem of designing
experiments for Fourier regression models has been discussed by several authors
[see, e.g., Karlin and Studden (1966), page 347, Fedorov (1972), page 94, Hill
(1978), Lau and Studden (1985) and Riccomagno, Schwabe and Wynn (1997)].
While most authors concentrate on the design space [−π,π ] much less attention
has been paid to the case of a smaller design space [see, e.g., Hill (1978) and Wu
(2002)]. This situation is of practical importance because in many applications
it is impossible to take observations on the full circle [−π,π ]. We refer to
Kitsos, Titterington and Torsney (1988), who investigated a design problem in
rhythmometry involving the circadian rhythm exhibited by peak expiratory flow,
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for which the design region has to be restricted to a partial circle of the complete
24-hour period. Further applications can be found in McCool (1979) in the context
of precision engineering. A rather different field of application of trigonometric
regression models on an incomplete circle is in agronomy, where these models
are used for the prediction of the length of growth processes [see, e.g., Weber and
Liebig (1981)].

It is the purpose of the present paper to study the optimal design problem for
the estimation of the individual coefficients βk in the trigonometric regression
model (1.1) on the interval [−a, a]. The estimation of the individual coefficients
and the corresponding optimal designs is of importance for several reasons. First,
the precise estimation of the top coefficients is useful for model diagnostics, more
precisely, for the investigation of the degree of regression [see, e.g., Dette and
Haller (1998)]. In particular, if Fourier series are used as curve estimators, the
degree corresponds to some kind of smoothing parameter and it is important to
estimate these coefficients with sufficient efficiency. Moreover, there are several
applications of trigonometric regression models in two-dimensional shape analysis
in biology, where the coefficients of lower order are of particular importance,
because they have a specific meaning in the biological context. We refer for
concrete examples to Younker and Ehrlich (1977) and Currie, Ganeshanandam,
Noiton, Garrick, Shelbourne and Oraguzie (2000). Second, the optimal designs
for the individual coefficients are the basis of all standardized optimality criteria
introduced by Dette (1997), and E-optimal designs can often be found as
convex combinations of the optimal designs for the estimation of the individual
coefficients [see Pukelsheim and Studden (1993), Melas (2000), Imhof and
Studden (2001) and Dette and Melas (2002)]. Third, optimal designs are useful
as benchmarks in evaluating the performance of other designs and therefore
provide a means of identifying efficient designs. Here it is of practical importance
to know the efficiency of the designs for the estimation of the top individual
coefficients, because, in practice, these coefficients are tested for significance in
order to reduce the number of parameters in the model. Consider, for example,
the quadratic trigonometric regression model on the full circle [−π,π ]. Table 1
shows the efficiencies of the (equally spaced) D-optimal design for estimating the
top coefficients β2, β3, β4 in the trigonometric model on various design spaces.
The D-optimal design on the interval [−π,π ] is taken from Pukelsheim (1993),
Chapter 9, the D-optimal designs on the intervals [−π

2 , π
2 ] and [−π

4 , π
4 ] can

be found in Dette, Melas and Pepelyshev (2002), while the optimal designs for
estimating the coefficients β2, β3, β4 are obtained from the results given in this
paper (see Sections 2–4). We observe that the D-optimal design (in other words,
the uniform and commonly believed optimal allocation of observations) is not a
good choice for model diagnostics in a quadratic trigonometric regression model
on the interval [−π,π ], because it does not allow efficient testing of the top
coefficients in this model. On the other hand, on a small design space, say [−π

2 , π
2 ]
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TABLE 1
Efficiencies of the D-optimal design for a quadratic trigonometric

regression on the intervals [−π,π], [−π
2 , π

2 ] and
[−π

4 , π
4 ] model with respect to various optimality criteria

Efficiency

Interval β2 β3 β4

[−π,π] 50% 50% 50%

[−π
2 , π

2 ] 89.41% 77.32% 79.77%

[−π
4 , π

4 ] 85.27% 74.31% 82.68%

or [−π
4 , π

4 ], the situation changes completely. Here the D-optimal design (not
necessarily a uniform distribution) produces reasonable efficiencies for testing the
top coefficients in the quadratic regression model. A similar statement can be made
for higher order degree models and a simple rule of thumb would be to recommend
D-optimal designs only for inference in trigonometric regression models with a
“small” range for the explanatory variable, because only in this case do they have
reasonable efficiency for model diagnostics.

In Section 2, we introduce the general notation and state several preliminary
results. The main tool of our approach is the reduction of the design problem for the
trigonometric regression model to a design problem for a polynomial regression
model. On incomplete intervals, we study the support points and weights of the
optimal designs as functions of the length of the design space. In Section 3, we
consider the optimal design problem for the estimation of the coefficients of the
cosine terms. The optimal design problem for the estimation of the parameter βk

can be solved analytically for any k ∈ {0,2, . . . ,2m}, provided that the design
space [−a, a] is sufficiently small (see Theorem 3.1), where the critical value
of a depends on the index of the coefficient and is always larger than π/2.
In this case, the supports of the optimal designs for estimating the coefficients
β0, β2, . . . , β2m are the same and can be expressed through the extremal points
of a Chebyshev polynomial of the first kind. Section 4 considers the problem of
estimating individual coefficients of the sine terms, for which the situation is more
difficult. For sufficiently small design spaces [−a, a], we prove that the supports of
the optimal designs for estimating the coefficients β1, β3, . . . , β2m−1 are the same
and can be characterized as the extremal points of a function (see Theorem 4.5).
However, neither this function nor these points can be found in an explicit form.
Only the limit of the support points and the weights (after renormalization) can
be found analytically, if the length of the design space tends to 0. Moreover, the
points and weights considered as functions of the length of the design interval are
real analytic and for this reason the optimal designs can be obtained numerically
by a Taylor expansion. Finally, some conclusions are given in Section 5 and the
proofs and technical details are deferred to the Appendix.
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2. Optimal designs for estimating individual coefficients. Consider the
trigonometric regression model (1.1), define β = (β0, β1, . . . , β2m)T and let

f (t) = (
1, sin t, cos t, . . . , sin(mt), cos(mt)

)T = (
f0(t), . . . , f2m(t)

)T(2.1)

denote the vector of regression functions. An approximate design is a probability
measure ξ on the design space [−a, a] with finite support [see, e.g., Kiefer (1974)].
The support points of the design ξ give the locations where observations are taken,
while the weights give the corresponding proportions of total observations to be
taken at these points. For uncorrelated observations (obtained from an approximate
design by some rounding procedure), the covariance matrix of the least squares
estimator for the parameter β is approximately given by

σ 2

n
M−1(ξ),

where n denotes the sample size and the matrix

M(ξ) =
∫ a

−a
f (t)f T (t) dξ(t) ∈ R

2m+1×2m+1(2.2)

is called the information matrix in the design literature. An optimal design
minimizes (or maximizes) an appropriate convex (or concave) function of the
information matrix and there are numerous criteria proposed in the literature,
which can be used for the discrimination between competing designs [see, e.g.,
Fedorov (1972), Silvey (1980) and Pukelsheim (1993)].

In this paper, we are interested in optimal designs for the estimation of the
individual coefficients βk in the trigonometric regression model (1.1). To be
precise, let ek ∈ R

2m+1 denote the (k + 1)st unit vector (k = 0, . . . ,2m) and
A− be a generalized inverse of the matrix A ∈ R

2m+1×2m+1; then a design ξ is
called ek-optimal or optimal for estimating the coefficient βk, if βk is estimable by
the design ξ [i.e., ek ∈ Range(M(ξ))] and ξ minimizes the function

�k(η) = eT
k M−(η)ek(2.3)

in the set of all designs η such that βk is estimable by the design η. The ek-optimal
designs have been discussed by several authors, mainly for the case of polynomial
regression on the interval [−1,1] [see, e.g., Studden (1968) and Sahm (2000)], but
nothing is known for the trigonometric case.

It follows by standard arguments [see Pukelsheim (1993), Chapters 4 and 5]
that � is a convex function on the set of designs on the interval [−a, a], which
is invariant with respect to a reflection of the design at the origin. Consequently,
there exists a symmetric ek-optimal design (which is not necessarily unique), and
we will restrict ourselves to the determination of optimal designs in the set �s of
all symmetric designs on the interval [−a, a]. As pointed out by Dette and Haller
(1998), this set can be mapped in a one-to-one manner onto the set of designs on
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the interval [α,1], where α = cosa. More precisely, define for a symmetric de-
sign ξ on the interval [−a, a] its projection ηξ as the design on the interval [α,1]
given by

ηξ (cosx) =
{

ξ(x) + ξ(−x), if 0 < x ≤ a,

ξ(0), if x = 0.
(2.4)

It is now easy to see that after an appropriate permutation P ∈ R
2m+1×2m+1 on

the order of the regression functions the information matrix M̃(ξ) = PM(ξ)P of
a symmetric design is block diagonal with diagonal blocks given by

Mc(ξ) =
(∫ a

−a
cos(it) cos(j t) dξ(t)

)m

i,j=0
(2.5)

=
(∫ 1

α
Ti(x)Tj (x) dηξ (x)

)m

i,j=0
,

Ms(ξ) =
(∫ a

−a
sin(it) sin(j t) dξ(t)

)m

i,j=1
(2.6)

=
(∫ 1

α
(1 − x2)Ui(x)Uj(x) dηξ (x)

)m−1

i,j=0
,

where Ti(x) = cos(i arccosx) and Ui(x) = sin((i + 1) arccosx)/sin(arccosx)

denote the Chebyshev polynomials of the first and second kind, respectively
[see, e.g., Rivlin (1974)]. Note that this transformation transfers the optimal
design problem for the estimation of the individual coefficients in a trigonometric
regression model to a design problem for the estimation of the coefficients in the
weighted polynomial regression models

y =
m∑

j=0

δjTj (x) + ε, x ∈ [α,1],(2.7)

y =
√

1 − x2
m−1∑
j=0

δjUj (x) + ε, x ∈ [α,1].(2.8)

The following result will be used frequently in the proofs of a number of
subsequent results. Its proof is straightforward and therefore omitted.

LEMMA 2.1. (i) A symmetric design ξ∗ on the interval [−a, a] is optimal for
estimating the coefficient β2l (0 ≤ l ≤ m) in the trigonometric regression (1.1)
if and only if the design ηξ∗ obtained by the transformation (2.4) is optimal for
estimating the parameter δl in the Chebyshev regression model (2.7).

(ii) Similarly, a symmetric design ξ∗ on the interval [−a, a] is optimal for
estimating the coefficient β2l−1 (1 ≤ l ≤ m) in the trigonometric regression
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model (1.1) if and only if the design ηξ∗ obtained by the transformation (2.4) is
optimal for estimating the coefficient δl−1 in the weighted Chebyshev regression
model (2.8).

Lemma 2.1 relates our problem to a corresponding design problem in a
polynomial model. Our main application of this result is the derivation of bounds
on the number of support points of the optimal designs [for a proof, see Dette and
Melas (2001)].

THEOREM 2.2. If ξ∗
k denotes a symmetric optimal design for estimating the

parameter βk in the trigonometric regression model (1.1), then

max{2l + 1,m − l + 1} ≤ # supp(ξ∗
2l) ≤ 2m + 1,

max{2l,m − l + 1} ≤ # supp(ξ∗
2l−1) ≤ 2m,

whenever 0 ≤ l ≤ m.

It turns out that the optimal designs for estimating the top individual coefficients
in the trigonometric regression model (1.1) with design space [−π,π ] can
be found explicitly. As indicated in Section 1, these designs are of particular
importance from a practical viewpoint. The following lemma is proved in the
Appendix and will be frequently used in subsequent sections.

LEMMA 2.3. Consider the trigonometric regression model (1.1) on the design
space [−π,π ].

(a) For any l such that m/3 < l ≤ m and any δ ∈ [0, 1
2l

], the design

ξ∗
2l =


 −π −π + π

l
· · · −π + 2l−1

l
π π

1
2l

− δ 1
2l

· · · 1
2l

δ


(2.9)

is optimal for estimating the parameter β2l . Moreover, in this case, �2l(ξ
∗
2l) = 1.

(b) For any l such that m/3 < l ≤ m, the design ξ∗
2l defined by (2.9) is optimal

for the estimation of the intercept β0.
(c) For any l such that m/3 < l ≤ m, the design

ξ∗
2l−1 =


−π + π

2l
−π + 3π

2l
· · · −π + 2l−3

2l
π −π

2l
+ π

1
2l

1
2l

· · · 1
2l

1
2l




is optimal for estimating the coefficient β2l−1. Moreover, in this case,
�2l−1(ξ

∗
2l−1) = 1.
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3. Optimal designs for estimating individual coefficients of cosine terms on
a partial circle. In this section we investigate the e2l-optimal design (0 ≤ l ≤ m)

for the trigonometric regression model (1.1) with design space [−a, a] in more
detail. It will be demonstrated that there exists a point, say a∗

l ∈ (0, π ], such that
for all a ≤ a∗

l the optimal design for estimating the parameter β2l can be found
explicitly. Our second result gives the lower bound a∗

l ≥ π/2 (l = 0, . . . ,m) for a∗
l ,

and for lower order trigonometric regression we observe numerically a∗
l ≥ 0.7π .

Finally, it is indicated at the end of this section that an explicit solution of the
e2l-optimal design problem for any value of a satisfying a∗

l < a ≤ π can only be
found in particular cases.

In many cases, c-optimal designs for regression models are supported at the
extremal points of an equi-oscillating function [see Kiefer and Wolfowitz (1959)
and Studden (1968)]. For this reason, we consider the set of extremal points

ti = ti (a) = arccos
{

1 − α

2
cos

iπ

m
+ 1 + α

2

}
, i = 0, . . . ,m,(3.1)

xi = cos ti (i = 0, . . . ,m), of the mth Chebyshev polynomial Tm((2x − 1 −
α)/(1 − α)) of the first kind on the interval [α,1] = [cosa,1] (with α =
cosa) as a candidate for the support of the optimal design for estimating the
individual coefficient in the Chebyshev regresion model (2.4). The optimal weights
corresponding to these points can be obtained by standard methods [see, e.g.,
Pukelsheim and Torsney (1991) and Dette and Melas (2001)],

w0 = A0∑m
j=1 Aj

, wi = Ai

2
∑m

j=1 Aj

, i = 1, . . . ,m,(3.2)

where

Ai = Ai(a) = (−1)m−l+i
∫ 1

−1
li (x)Tl(x)

dx√
1 − x2

, i = 0, . . . ,m,(3.3)

and

li (x) =
n∏

j=1
i �=j

x − xj

xi − xj

(3.4)

denotes the ith Lagrange interpolation polynomial with nodes xi = cos ti (i =
0, . . . ,m). The following result shows that this design is indeed optimal for a
sufficiently small design space.

THEOREM 3.1. Consider the trigonometric regression model (1.1) on the
interval [−a, a]. For any l ∈ {0, . . . ,m}, the quantity

a∗
l = a∗

l,m

= sup
{
z ∈ (0, π ] | Ai(a) > 0 for all i = 0, . . . ,m and for all a ∈ (0, z)

}(3.5)
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is always positive and the design

ξ∗
2l,a =

(−tm · · · −t1 t0 t1 · · · tm

wm · · · w1 w0 w1 · · · wm

)
,(3.6)

with support points (3.1) and weights (3.2), is optimal for estimating the parameter
β2l , whenever a ≤ a∗

l .

The critical bound a∗
l can be determined numerically from (3.5) and (3.3) by

standard numerical integration. Table 2 gives some values of the critical point a∗
l

for various degrees of the trigonometric regression model. Note that Theorem 3.1
covers a relatively large range of the interval [0, π ]. The following theorem shows
that the critical bound in (3.5) is at least π/2 independent of the degree of the
trigonometric model and of the parameter that has to be estimated.

THEOREM 3.2. Let x∗
l denote the smallest root of the polynomial(

d

dx

)l

{(x + 1)Um−1(x)}, l = 1, . . . ,m − 1,(3.7)

and x∗
m = 0. Then for any l ∈ {1, . . . ,m} the critical value a∗

l defined in (3.5)
satisfies

a∗
l ≥ a∗∗

l = arccos
x∗
l + 1

x∗
l − 1

.

In particular, we have a∗
l ≥ a∗∗

l > π/2 for all l ∈ {1, . . . ,m} and for any fixed l we
have

lim
m→∞a∗∗

l = π

2
.

EXAMPLE 3.3. Consider the case of estimating the coefficient of the highest
cosine term, that is, l = m in Theorem 3.2. In this case, the polynomial defined
in (3.7) is constant, which implies a∗∗

m = a∗
m = π , and the e2m-optimal design is

TABLE 2
Critical values a∗

l defined in (3.5) for various values of l and m

m = 2 m = 3 m = 4 m = 5

1 2π/3 0.6881π 0.7411π 0.7666π

cos(x) 0.6082π 0.7323π 0.7311π 0.7765π

cos(2x) π 2π/3 0.7576π 0.7598π

cos(3x) π 0.7048π 0.7709π

cos(4x) π 0.7323π

cos(5x) π



OPTIMAL DESIGNS FOR ESTIMATING INDIVIDUAL COEFFICIENTS 1677

given by (3.6) for any a ∈ (0, π ]. Moreover, the weights of the e2m-optimal design
can be found explicitly by a careful inspection of the proof of Theorem 3.2, which
shows that the corresponding design problem in the model (2.7) is the D1-optimal
design in an ordinary polynomial regression on the interval [α,1]. The D1-optimal
design for polynomial regression has been determined by many authors on the
interval [−1,1] [see, e.g., Studden (1980) and Spruill (1990)] and puts masses

1
2m

, 1
m

, . . . , 1
m

, 1
2m

at the points x0, x1, . . . , xm, where xi = cos ti (i = 0, . . . ,m)

and the nodes ti are defined by (3.1). Observing the transformation (2.4), it follows
that for any a ∈ (0, π ] an optimal design for estimating the coefficient β2m is given
by

ξ∗
2m =


−tm −tm−1 · · · −t1 t0 t1 · · · tm−1 tm

1
4m

1
2m

· · · 1
2m

1
2m

1
2m

· · · 1
2m

1
4m


 ,

where the support points ti are defined in (3.1).

EXAMPLE 3.4. In the second example of this section, we will present a
complete solution of the design problem for the estimation of the cosine terms in
a quadratic trigonometric regression. It is easy to see that for a ≥ 2

3π the uniform
distribution at the points −2π

3 , 0, 2π
3 is optimal for estimating the intercept in

the trigonometric regression of degree 2 on the interval [−a, a]. If a ≤ 2
3π , the

situation changes and the design

ξ∗
0,a =

(−a t∗ 0 t∗ a

w∗
2 w∗

1 w∗
0 w∗

1 w∗
2

)
,(3.8)

with

t∗ = t∗(a) = arccos
(
cos(a)/2 + 1/2

)
(3.9)

and

w∗
1 = w∗

1(a) = 1 + 2 cosa

5 + 6 cosa + cos2 a
, w∗

2 = 1 + (cosa)/2

5 + 6 cosa + cos2 a
,(3.10)

is e0-optimal on the interval [−a, a] (see Theorem 3.1). The optimal design for the
estimation of the coefficient of cos t on the interval [−a, a] is obtained as

ξ∗
2,a =

(−a −π + a π − a a
1
4

1
4

1
4

1
4

)
(3.11)

if arccos(−1/3) ≤ a ≤ π (see Lemma 2.3 and note that α∗ = 0 for m = 2) and as

ξ∗
2,a =

(−a −t∗ 0 t∗ a

w∗
2

1
4 w∗

0
1
4 w∗

2

)
(3.12)



1678 H. DETTE AND V. B. MELAS

in the case 0 ≤ a ≤ arccos(−1/3), where t∗ is defined by (3.9) and the weights
w∗

0 and w∗
2 are given by

w∗
2 = 1

16

cosa + 3

cosa + 1
, w∗

0 = 1

2
− 2w∗

2(3.13)

(see Theorem 3.1). Finally, the design for estimating the coefficient of cos(2t) on
the interval [−a, a] is given by

ξ∗
4,a =

(−a −t∗ 0 t∗ a

1
8

1
4

1
4

1
4

1
8

)
,(3.14)

where the point t∗ is defined by (3.9) (see Example 3.3).

4. Optimal designs for estimating individual coefficients of the sine terms
on a partial circle. In this section, we concentrate on the optimal design problem
for the estimation of the individual coefficients corresponding to the sine terms in
the trigonometric regression model (1.1). In this case, the situation is substantially
more difficult, because in most cases the design points cannot be found explicitly.
The difficulties will be illustrated in the following example.

EXAMPLE 4.1. Consider the quadratic trigonometric regression model on
the interval [−a, a]. We are interested in the optimal designs for estimating the
coefficient of the terms sin t and sin(2t). Define z∗ as the unique positive solution
of the equation

z4 + 2z3 cosa + z2 sina − 2z cosa − 1 = 0

and

t∗ = t∗(a) = arccosz∗.(4.1)

Note that the uniqueness of z∗ follows easily from Descartes’ rule of signs [see
Karlin and Studden (1966), page 27, and Pólya and Szegö (1971), page 43]. If
π
2 ≤ a ≤ π , the optimal design ξ∗

1,a for estimating the coefficient of sin t on the
interval [−a, a] has equal masses at the points −π

2 and π
2 (see Corollary 4.2),

while for 0 < a ≤ π
2 the design

ξ∗
1,a =


 −a −t∗ t∗ a

1
2 − w∗

1 w∗
1 w∗

1
1
2 − w∗

1


 ,(4.2)

with t∗ defined by (4.1) and

w∗
1 = w∗

1(a)

= 1

2

cos(a)

(cos(a) − e)

× (cos(a) − 1)(cos(a) + 1)(cos(a)e − 2e2 + 1)

(cos(a)e3 + (3 − 2 cos(a)2)e2 − 2 cos(a)e + cos(a)3e + cos(a)2 − 2)

(4.3)
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is e1-optimal on the interval [−a, a] (see Example 4.3). Similarly, if 3
4π ≤ a ≤ π ,

the design ξ∗
3,a with equal masses at the points −3π

4 , π
4 , π

4 and 3π
4 is optimal for

estimating the coefficient of sin(2t) (see Corollary 4.2), while for 0 < a ≤ 3
4π the

e3-optimal design is of the form (4.2) with t∗ given by (4.1) and weight w∗
1 defined

by

w∗
1 = w∗

1(a)
(4.4)

= 1

2

(cos(a) − 1)(cos(a) + 1)(e cos(a) + 1 − 2e2)

(cos(a) − e)(cos(a) + e cos(a)2 − e2 cos(a) − e3)

(see Theorem 4.4).

Example 4.1 indicates that the e1- and e3-optimal designs for the quadratic
trigonometric model have the same support points whenever a ≤ π

2 . One of the
main results of this section shows that this property is also true for general degree
m ≥ 2. In other words, if a is suffciently small (which will be made precise later),
the support points of the e2m−1-optimal design in the trigonometric regression
model (1.1) on the interval [−a, a] coincide with the support points of the e2l−1-
optimal design for any l ∈ {1, . . . ,m}. Note that this property simplifies the optimal
design problem for estimating the coefficients of the sine terms substantially.
As soon as the e2m−1-optimal design has been identified and the design space
is sufficiently small, only the weights of the e2l−1-optimal designs have to be
determined, which can be done by standard techniques [see Pukelsheim and
Torsney (1991)].

For this reason, we will start our investigations of the sine case with a careful
discussion of the optimal design problem for the estimation of the parameter β2m−1
in the trigonometric regression model (1.1). In this case, we determine the optimal
design numerically using a technique, which was introduced by Melas (1978) in
the context of optimal design. Our next result considers the case a > π(1 − 1/2m)

and is an immediate consequence of Lemma 2.3.

COROLLARY 4.2. Let m/3 < l ≤ m and π(1 − 1/2l) ≤ a ≤ π . Then the
optimal design for estimating the coefficient β2l−1 in the trigonometric regression
model (1.1) on the interval [−a, a] is given by the design ξ∗

2l−1 defined in part (c)
of Lemma 2.3.

Let us now consider the case 0 < a ≤ π(1 − 1/2m). It can be shown [see Dette
and Melas (2001)] that the optimal design for estimating the coefficient β2m−1 in
the trigonometric regression model is of the form

ξ∗
2m−1,a =


 −a at∗2 (a) · · · at∗m(a) −at∗m(a) · · · −at∗2 (a) a

1
2w∗

1(a) 1
2w∗

2(a) · · · 1
2w∗

m(a) 1
2w∗

m(a) · · · 1
2w∗

2(a) 1
2w∗

1(a)


 ,(4.5)
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where the weights are given by

w∗
i = w∗

i (a)
(4.6)

= (−1)m−i{
√

1 − x2
i

∏
j �=i(xi − xj )}−1

∑m
k=1(−1)m−k{

√
1 − x2

k

∏
j �=k(xk − xj )}−1

,

with x1 = cosa, xi = cos(at∗i (a)). Moreover, the support points and weights of
the optimal design for the coefficient ξ∗

2m−1,a are real analytic functions of the
parameter a. This result can be used for the determination of these quantities by
elementary Taylor expansions. The calculation of the coefficients in this expansion
is complicated and can be found in the technical report of Dette and Melas (2001).
The algorithm in this reference allows the determination of the support points and
weights of the e2m−1-optimal design with arbitrary precision. We will illustrate the
application of this method in the following example.

EXAMPLE 4.3. In the case m = 3, the support points of the optimal design
for the coefficient of sin(3x) in the cubic trigonometric regression model (1.1) on
the interval [−a, a] for 0 < a < 5π/6 are given by −a, at∗2 (a), at∗3 (a), −at∗3 (a),
−at∗2 (a), a and the weights are obtained from (4.6). It is easy to see that t∗i (a)

defines an even function and Table 3 shows the first six nonvanishing coefficients
of the expansion

t∗i (a) =
∞∑

j=0

t∗i,2j

(2j)!
(

a

π

)2j

.(4.7)

The optimal designs are depicted in Figure 1 for a ∈ (0,5π/6).

Observing the results of Section 3, it is natural to investigate if the e2l−1-
optimal design has the same support points as the e2m−1-optimal design. By
Lemma 2.1, this is equivalent to investigating if the em−1- and el−1-optimal
designs for the weighted Chebyshev regression model (2.8) have the same support

TABLE 3
Coefficients in the Taylor expansion (4.7) for the interior negative support

points t∗2 (a), t∗3 (a) of the e5-optimal designs in the cubic trigonometric regression
model (1.1) on the interval [−a, a]. The e1- and e3-optimal designs have the

same support points if a ≤ b∗
l , l = 1,2, where b∗

l is defined in (4.10)

j 0 2 4 6 8 10

t∗3,2j −0.8090 0.1839 0.1490 0.0683 −0.0254 −0.0825

t∗2,2j −0.3090 0.1839 −0.0412 −0.0099 0.0148 −0.0049
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FIG. 1. Support points and weights of the e1-, e3- and e5-optimal design in the cubic trigonometric
regression model (m = 3). The support points are calculated by the Taylor expansion (4.7) (upper
left figure), while the weights are obtained from the support points using formula (4.6).

points. Let −a = at∗1 (a) < at∗2 (a) < · · · < at∗m(a) < 0 denote the negative support
points of the e2m−1-optimal design and define xi = cos(at∗i (a)) (i = 1, . . . ,m).

The optimal weights [for the el−1-optimality criterion in the model (2.8)] at these
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points are then given by

w∗
i = w∗

i (a) = |Bi|∑m
j=1 |Bj | , i = 1, . . . ,m,(4.8)

where

Bi = Bi(a) =
∫ 1

−1

∏
j �=i

x − xj

xi − xj

√√√√1 − x2

1 − x2
i

Ul−1(x) dx, i = 1, . . . ,m,(4.9)

[see Pukelsheim and Torsney (1991) and Dette and Melas (2001)]. The proof of
the following theorem can be found in Dette and Melas (2001).

THEOREM 4.4. If 1 ≤ l ≤ m − 1, then the quantity

b∗
l : = b∗

l,m

: = sup
{
z ∈

(
0, π

(
1 − 1

2l

))∣∣∣w∗
i (a) > 0(4.10)

for all i = 1, . . . ,m and all a ∈ (0, z)

}

is always positive. If a < b∗
l , then the e2l−1- and e2m−1-optimal designs have the

same supports while the weights of the e2l−1-optimal design at the support points
±at∗i (a) are given by w∗

i (a)/2, i = 1, . . . ,m, where t∗1 (a) = −1 and the weights
w∗

i (a) are defined in (4.8).

For trigonometric regression of lower order, the critical bounds are listed in
Table 4. If a is smaller than the corresponding bound, the e2l−1-optimal design
in the trigonometric regression model (1.1) has the same support points as the
optimal design for estimating the coefficient of sin(mx), which can be obtained
numerically. Moreover, for any l ∈ {1, . . . ,m − 1}, it can be shown that b∗

l ≥ π/2

TABLE 4
Critical values b∗

l defined in (4.10) for various values of l and m.
The optimal design for estimating the coefficient β2l−1

in the trigonometric regression model (1.1) on the interval [−a, a]
has the same support points as the e2m−1-optimal design, whenever a ≤ b∗

l

m = 2 m = 3 m = 4 m = 5

sin(x) π/2 0.59π 0.66π 0.66π

sin(2x) · 0.53π 0.65π 0.69π

sin(3x) · · 0.63π 0.71π

sin(4x) · · · 0.67π
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[see Dette and Melas (2001)]. The corresponding weights are found by numerical
integration using formula (4.8).

We have illustrated these calculations in the cubic trigonometric regression
model in Figure 1, which shows the support points and corresponding weights of
the optimal designs for estimating the coefficient of sinx, sin(2x) and sin(3x),
respectively. For example, in the cubic trigonometric regression model on the
interval [−1,1], all optimal designs for estimating the coefficients of the sine terms
have the same support points, namely, −1, −0.655, −0.251, 0.251, 0.655, 1. The
masses of the e1-optimal designs are given by 0.125, 0.209, 0.166, 0.166, 0.209,
0.125, while the e3- and e5-optimal designs have masses 0.119, 0.210, 0.171,
0.171, 0.210, 0.119 and 0.103, 0.201, 0.196, 0.196, 0.201, 0.103 at these points,
respectively.

Note the clear sensitivity of the weights of the optimal designs for estimating the
coefficients of sinx and sin(3x) with respect to the length of the design space. If
a approaches the critical value b∗

l (l = 1,2), the weight at one support point tends
to 0 and the e2l−1-optimal design in the trigonometric regression on the interval
[−b∗

l , b
∗
l ] is a four-point design. Moreover, there exists an interval Il = [b∗

l , b
∗
l +ε)

such that for any a ∈ Il the e2l−1-optimal design for the cubic trigonometric
regression model is only supported at four points (l = 1,2).

5. Summary. In this paper, the problem of designing experiments for esti-
mating individual coefficients in Fourier regression models on the interval [−a, a]
is studied. On a complete design space [−a, a] = [−π,π ], the optimal designs
for estimating the top coefficients can be determined explicitly (see Lemma 2.3)
and these designs have a similar structure as the classical D-optimal design for
the trigonometric regression model (but they are not identical). On an incomplete
interval (0 < a < π), the optimal design problem is substantially more difficult. If
the design space is sufficiently small, then the optimal designs for estimating the
coefficients corresponding to the cosine terms can be found explicitly. In partic-
ular, all designs are supported at the same points, which are the extremal points
of a scaled Chebyshev polynomial (see Theorem 3.1). A sufficient condition for
this property is a ≤ π

2 (see Theorem 3.2), but for lower order trigonometric regres-
sion the range is substantially larger. Similarly, the optimal designs for estimating
the coefficients corresponding to the sine terms are all supported at the same set
of points provided that the design space [−a, a] is sufficiently small (see The-
orem 4.4), and the condition a ≤ π

2 is sufficient for this property. The common
support points vary analytically with the parameter a but cannot be determined
explicitly. For this reason, a numerical construction based on a Taylor expansion
is applied, which allows us to determine the support points of the optimal designs
for estimating the individual coefficients corresponding to the sine terms with ar-
bitrary precision. The results of this paper are based on certain relations between
the trigonometric and the polynomial regression models. In many important cases,
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the optimal designs for estimating individual coefficients in the Fourier regres-
sion model can be determined, either explicitly or numerically. However, there are
still some remaining open cases, for which the optimal design problem cannot be
solved by the methods proposed in this paper and which require further research
in the future.

APPENDIX:
PROOFS AND TECHNICAL DETAILS

A.1. Preliminaries. We begin with a couple of technical lemmas, which are
required for the proofs of the main results in the previous sections. Our first result
is an important tool for the determination of optimal designs and gives a slightly
different formulation of the equivalence theorem for ek-optimal designs than is
usually stated in the literature [see, e.g., Pukelsheim (1993), Section 2, and Studden
(1968)]. The result is stated here for general regression models and a proof can be
found in Dette, Melas and Pepelyshev (2000).

LEMMA A.1. For k = 0,1, . . . , d , let f̄k(t) = (f0(t), . . . , fk−1(t), fk+1(t),

. . . , fd(t))T denote the vector obtained by omitting the component fk(t) in the
vector f (t) = (f0(t), . . . , fd(t))T . A design ξ∗ is optimal for estimating the
parameter βk in the model

y =
d∑

j=0

βjfj (t) + ε, t ∈ τ ⊂ R,

if and only if there exist a positive number h and a vector q ∈ R
d such that the

function ϕ(t) = fk(t) − qT f̄k(t) satisfies:

(i) hϕ2(t) ≤ 1 for all t ∈ τ ;
(ii) supp(ξ∗) ⊂ {t ∈ τ | hϕ2(t) = 1};

(iii)
∫
τ ϕ(t)f̄k(t) dξ∗(t) = 0 ∈ R

d .

Moreover, in this case h = �k(ξ
∗); the function ϕ is called an extremal

polynomial.

Note that there is an alternative formulation of Lemma 2.1 (see Section 2) in
terms of c-optimality in the ordinary polynomial regression model. A c-optimal
design minimizes the variance of the least squares estimator for the linear
combination

∑d
j=0 δj cj , where c = (c0, . . . , cd)T ∈ R

d+1 is a given vector and
d ∈ {m − 1,m} corresponding to the cases (2.8) and (2.7), respectively [see
Pukelsheim (1993)]. To be precise, let T ∈ R

m+1×m+1 and U ∈ R
m×m denote the

matrix of the coefficients of the Chebyshev polynomials of the first and second
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kind, that is, (
T0(x), . . . , Tm(x)

)T = T · (1, x, . . . , xm)T ,
(A.1) (

U0(x), . . . ,Um−1(x)
)T = U · (1, x, . . . , xm−1)T .

Defining t (l) = T −1el (l = 0, . . . ,m) and u(l) = U−1el (l = 0, . . . ,m − 1), we
obtain by straightforward algebra the following auxiliary result.

LEMMA A.2. A symmetric design ξ∗ on the interval [−a, a] is optimal
for estimating the individual coefficient β2l (0 ≤ l ≤ m) in the trigonometric
regression (1.1) if and only if the design ηξ∗ obtained by the transformation (2.4)
is t (l)-optimal in the ordinary polynomial regression model of degree m on the
interval [α,1].

Similary, a symmetric design ξ∗ on the interval [−a, a] is optimal for estimating
the coefficient β2l−1 (1 ≤ l ≤ m) in the trigonometric regression model (1.1) if and
only if the design ηξ∗ obtained by the transformation (2.4) is u(l − 1)-optimal in
the ordinary weighted polynomial regression model of degree m−1 with efficiency
function λ(x) = 1 − x2 on the interval [α,1].

A.2. Proof of Lemma 2.3. We will only consider the first case (a), the
remaining parts being treated similarly. The proof follows essentially by an
application of Lemma A.1 and the discrete orthogonality properties of the
Chebyshev polynomials of the first kind. To be precise, let ti = −π + i

l
π

(i = 0, . . . ,2l) and consider the trigonometric polynomial ϕ(t) = cos(lt), which
obviously satisfies conditions (i) and (ii) of Lemma A.1 with h = 1. To prove the
remaining condition (iii), we have to establish the identities

s2j =
∫ π

−π
ϕ(t)f2j (t) dξ∗

2l(t) = 1

2l

2l−1∑
i=0

cos(j ti ) cos(lti) = 0(A.2)

for all j = 0,1, . . . , l − 1, l + 1, . . . ,m, and

s2j−1 =
∫ π

−π
ϕ(t)f2j−1(t) dξ∗

2l(t) = 1

2l

2l−1∑
i=0

sin(j ti ) cos(lti) = 0(A.3)

for all j = 1, . . . ,m. Note that the relation (A.3) is obvious by the symmetry of
the design ξ∗

2l . For the quantities s2j , we obtain, with the notation xi = cos(ti) =
cos(−ti ) = cos(t2l−i ), i = 0, . . . , l,

s2j = 1

2l

{
Tj (x0)Tl(x0) + Tj (xl)Tl(xl)

}+ 1

l

l−1∑
i=1

Tj (xi)Tl(xi).

Note that x0, . . . , xl are the extremal points of the Chebyshev polynomial of the
first kind and that the orthogonality properties of these polynomials with respect
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to discrete measures [see Rivlin (1974), Exercise 1.5.28] show that s2j = 0 if and
only if for all j ∈ {0, . . . , l − 1}∪ {l + 1, . . . ,m} the quantities l + j and |l − j |
are not multiples of 2l. A simple calculation shows that this is obviously satisfied
if l > m/3, which completes the proof of the first assertion of Lemma 2.3.

A.3. Proof of Theorem 3.1. First, we will prove that if the parameter a

approaches 0 the quantities Ai defined in (3.3) are all positive. To this end, let
si = cos(iπ/m) denote the extremal points of the Chebyshev polynomial of the
first kind Tm(x). Then we have

2m−1
m∏

j=0,j �=i

(si − sj ) = d

dx
(x2 − 1)Um−1(x)

∣∣∣∣
x=si

= d

dx

(
Tm+1(x) − xTm(x)

)∣∣∣∣
x=si

= (m + 1)Um(si) − msiUm−1(si) − Tm(si)

= (−1)i

γi

,

(A.4)

where γ0 = γm = 1/(2m) and γi = 1/m if 1 ≤ i ≤ m − 1. For the derivation of
this identity, we use the well-known facts [see Szegö (1959)] T ′

k(x) = kUk−1(x),
Um(si) = (−1)i if 1 ≤ i ≤ m−1 and Uk(1) = (−1)kUk(−1) = k+1. This implies,
for the weights in (3.3),

Ai = (−1)m−l+i
∫ 1

−1

m∏
j=0,j �=i

x − xj

xi − xj

Tl(x)
dx√

1 − x2

(A.5)

= 2m−1(−1)m−l

(1 − α)m
γi

∫ 1

−1

m∏
j=0,j �=i

(2x − 1 − α − {1 − α}sj )Tl(x)
dx√

1 − x2
.

This means, for a → 0 (which implies α = cosa → 1),

lim
a→0

(1 − α)mAi = 22m−1(−1)m−lγi

∫ 1

−1
(x − 1)mTl(x)

dx√
1 − x2

= γi2
2m−1

∫ 1

−1
(1 + x)mTl(x)

dx√
1 − x2

(A.6)

= γi2
3m−1 �(1

2)�(m + 1
2)

�(m + 1)

P
(m,−m−1)
l (−1)

P
(m,−m−1)
l (1)

= γi2
3m−1 �(1

2)�(m + 1
2)

�(m + 1 − l)

�(m + 1)

�(m + 1 + l)
,
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where P
(α,β)
n (x) denotes the nth Jacobi polynomial [see, e.g., Szegö (1959)]. The

second equality follows by the substitution x → −x and Tl(−x) = (−1)lTl(x);
the third equality is obtained from the identity (4.10.11) in Szegö (1959), which
reduces in the present context to the equation (α = β = −1

2 ,µ = m + 1
2 , x = −1)

2m P
(m,−m−1)
l (−1)

P
(m,−m−1)
l (1)

= �(m + 1)

�(1
2)�(m + 1

2)

∫ 1

−1

(1 + y)m+1/2

(1 − y)1/2

P
(−1/2,−1/2)
l (y)

P
(−1/2,−1/2)
l (y)

dy

[note that Tl(y) = 2l(l!)2/(2l)!P (−1/2,−1/2)
l (y)]. The final equality is a con-

sequence of the relations P
(α,β)
l (1) = �(l + α + 1)/{�(α + 1)�(l + 1)} and

P
(α,β)
l (−x) = P

(β,α)
l (x)(−1)l [see formulas (4.1.1) and (4.1.3) in the same ref-

erence]. Consequently, if a → 0 all quantities Ai defined in (3.3) are positive and
by continuity the supremum a∗

l defined by (3.5) is also positive.
For the proof of the second assertion of Theorem 3.1, recall that by Lemma 2.1

the e2l-optimality of the design ξ∗
2l,a defined by (3.6) in the trigonometric

regression model (1.1) is equivalent to the el-optimality of the design

ηξ∗
2l,a

=
(

x0 x1 · · · xm

w0 2w1 · · · 2wm

)

in the Chebyshev regression model (2.7) on the interval [cosa,1]. We will now
use Lemma A.1 to establish this optimality. To this end, assume that a∗

l > a and
define

ϕ(x) = Tm

(
2x − 1 − α

1 − α

)
ϕl =

m∑
j=0

bjTj (x),(A.7)

where the coefficient ϕl is defined by the condition that the coefficient bl of Tl(x)

in the above expansion of ϕ equals 1 and α = cosa. This polynomial obviously
satisfies conditions (i) and (ii) of Lemma A.1 with h = 1/ϕl . It can be shown by a
straightforward calculation [see Dette and Melas (2001)] that condition (iii) of this
lemma is equivalent to the existence of a solution of the equation

FDw = 0,(A.8)

with positive coefficients, where D = diag(1,−1, . . . , (−1)m) and the matrix F is
defined by

F =




T0(x0) · · · T0(xm)
...

...
...

Tl−1(x0) · · · Tl−1(xm)

Tl+1(x0) · · · Tl+1(xm)
...

...
...

Tm(x0) · · · Tm(xm)




∈ R
m×m+1.(A.9)
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However, it is easy to see that the vector (A0,−A1, . . . , (−1)mAm) is always a
solution of Fµ = 0. Because Ai > 0 (i = 0, . . . ,m) whenever a < a∗

l , it follows
that the vector w̃ = (w̃0, . . . , w̃m)T , with

w̃i = Ai∑m
j=0 Aj

, i = 0, . . . ,m,

is a solution of (A.8) with positive coefficients. Consequently, by Lemma A.1
the design with masses w̃0, w̃1, . . . , w̃m at the points x0, x1, . . . , xm is optimal
for estimating the parameter δl in the Chebyshev regression model (2.7). The
assertion now follows from the above discussion, which shows that the design ξ∗

2l,a

defined in (3.6) is optimal for estimating the coefficient β2l in the trigonometric
regression (1.1) on the interval [−a, a] whenever a < a∗

l . The remaining assertion
for a = a∗

l follows by continuity.

A.4. Proof of Theorem 3.2. Note that by Lemma A.2 a design ξ∗
2l is

e2l-optimal in the trigonometric regression if and only if the measure ηξ∗
2l

induced
by the transformation (2.4) is t (l)-optimal in the ordinary polynomial regression
on the interval [α,1], where t (l) = T −1el and T denotes the matrix of coefficients
of the Chebyshev polynomial of the first kind defined by (A.2). Let ti,j denote
the entries of the matrix T −1. Then it follows by Cramer’s rule that ti,j = 0
whenever i + j is odd and ti,j = 0 whenever i < j . Moreover, the nonvanishing
coefficients in the Chebyshev expansions of the monomials xk =∑k

j=0 ηk,j Tj (x)

(k = 0, . . . ,m) are all positive [see, e.g., Rivlin (1974), Exercise 1.5.32], and, as a
consequence, the vector t (l) = T −1el can be written as

t (l) =
�(m−l)/2∑

j=0

αl,j el+2j ,(A.10)

with positive coefficient αl,j (j = 0, . . . , �(m − l)/2; l = 0, . . . ,m). We will
now investigate the el+2j -optimal designs in ordinary polynomial regression using
recent results of Sahm (2000). Note that the design space, which has to be
considered, is the interval [α,1], where α → 1 as a → 0. Sahm (2000) showed that
the structure of the optimal design for estimating the ith coefficient in an ordinary
polynomial regression on the interval [α,1] is determined by the symmetry
parameter s(α) = (α + 1)/(α − 1). In particular, he proved that the ei -optimal
design for the ordinary polynomial regression is supported at the transformed
Chebyshev points

xj = cos(tj ) = 1 − α

2
cos

(
jπ

m

)
+ 1 + α

2
, j = 0, . . . ,m,(A.11)

whenever s(α) = (α + 1)/(α − 1) < x∗
i , where x∗

i is the smallest 0 of the
polynomial

ki(x) =
(

d

dx

)i

{(x + 1)Um−1(x)},
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if 0 ≤ i ≤ m−1 and x∗
m = 0. Now it is easy to see that the roots of the polynomials

ki(x) and ki+1(x) are interlacing, and, consequently, we have for the smallest roots
of these polynomials x∗

i < x∗
j whenever i < j . This implies that, whenever

a < a∗∗
l = arccos

x∗
l + 1

x∗
l − 1

,

we have

a < arccos
x∗
i + 1

x∗
i − 1

, i = l, l + 1, . . . ,m.

Consequently, it follows from Sahm (2000) that in this case for all i = l, l + 1,

. . . ,m the ei-optimal designs in the ordinary polynomial regression on the interval
[α,1] are supported at the points in (A.11). We will now prove that the t (l)-optimal
design in the ordinary polynomial regression [which is the el-optimal design for
the Chebyshev regression (2.7)] is also supported at the full set of Chebyshev
points defined in (A.11) whenever a < a∗∗

l . If this assertion has been proved, we
obtain by a standard calculation [see Dette and Melas (2001)] that the weights of
the design ηξ∗

2l
are given by

wi = |ui|∑n
j=1 |uj | , i = 1, . . . , n,(A.12)

where the quantities ui are given by

ui =
∫ 1

−1
li (x)Tl(x)

dx√
1 − x2

, i = 1, . . . , n,(A.13)

and li (x) denotes the ith Lagrange interpolation polynomial with nodes x1, . . . , xn

defined in (3.4). This implies that the quantities Ai = (−1)m−l+iui defined in (3.3)
are positive for all a ∈ (0, a∗∗

l ). This follows because by the first part of this proof
the quantities Ai are positive if a → 0 and they have to be of the same sign, and
because we will prove below that for all a ∈ (0, a∗∗

l ) the design ηξ∗
2l

is supported
at the full set of Chebyshev points.

To this end, recall that for 0 < a < a∗∗
l the el+2j -optimal design (j = 0,

. . . , �(m − l)/2) is supported at the Chebyshev points defined in (A.11) with
extremal polynomial given by (A.7). Lemma A.1 for the vector f (x) = (1, x,

. . . , xm)T shows that the corresponding vector of optimal weights wj = (w
j
0 , . . . ,

w
j
m)T satisfies

GjDwj = 0, j = 0, . . . ,

⌊
m − l

2

⌋
,

where the matrix D is given by D = (−1)m−l · diag(1,−1, . . . , (−1)m) and
the matrices Gj are obtained from the matrix Ḡ = (xi

j )i,j=0,...,m by deleting
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the (l + 2j + 1)st row. Condition (ii) of the same lemma implies, for some hj > 0,

ḠDwj = 1

hj

el+2j , j = 0, . . . ,

⌊
m − l

2

⌋
,

which yields that for all j ∈ {0, . . . , �(m − j)/2} the (k + 1)st component of the
vector Ḡ−1el+2j is nonzero and has sign (−1)k+l+m (by the pattern of the diagonal
elements of the matrix D). Introducing the notation [see Studden (1968)]

Dν(c) =

∣∣∣∣∣∣∣∣∣

1 · · · 1 1 · · · 1 c0
x0 · · · xν−1 xν+1 · · · xm c1
...

...
...

...
...

xm
0 · · · xm

ν−1 xm
ν+1 · · · xm

m cm

∣∣∣∣∣∣∣∣∣
, ν = 0, . . . ,m,

for a vector c = (c0, . . . , cm) ∈ R
m+1, we obtain for this component the represen-

tation

0 �= eT
k Ḡ−1el+2j = (−1)m−k Dk(el+2j )

det Ḡ
,

(A.14)

j = 0, . . . ,

⌊
m−l

2

⌋
, k = 0, . . . ,m,

and, consequently, Dk(el+2j ) has sign (−1)l for all j = 0, . . . , �(m − l)/2.
Therefore, it follows from the representation (A.10) that

Dk(t (l)) =
�(m−l)/2∑

j=0

αl,jDk(el+2j ) �= 0(A.15)

for all k = 0, . . . ,m, and the results of Studden (1968) show that the t (l)-optimal
design in the ordinary polynomial regression is supported on the full set of
Chebyshev points defined by (A.11) whenever 0 < a < a∗∗

l .
By the argument in the paragraph following formula (A.13), the quantities Ai

defined in (3.3) are all positive for a ∈ (0, a∗∗
l ), which implies a∗∗

l ≤ a∗
l and

completes the proof of the first part of the theorem.
For the second part, we note that all roots of the polynomial (x +1)Um−1(x) are

real and located in the interval [−1,1] [see, e.g., Szegö (1959)], and, consequently,
the roots of the lth derivative have the same property, which implies x∗

l > −1
or, equivalently, a∗∗

l > arccos 0 = π/2. Similarly, the roots of (x + 1)Um−1(x)

become dense in the interval [−1,1] as m → ∞ [see Szegö (1959)], and by the
interlacing property the roots the lth derivative have the same property, which
implies, for any fixed l,

lim
m→∞a∗∗

l = lim
m→∞ arccos

x∗
l + 1

x∗
l − 1

= arccos0 = π

2

and completes the proof of the theorem.
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