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SPRT AND CUSUM IN HIDDEN MARKOV MODELS

BY CHENG-DER FUH1

Academia Sinica

In this paper, we study the problems of sequential probability ratio tests
for parameterized hidden Markov models. We investigate in some detail
the performance of the tests and derive corrected Brownian approximations
for error probabilities and expected sample sizes. Asymptotic optimality of
the sequential probability ratio test for testing simple hypotheses based on
hidden Markov chain data is established. Next, we consider the cumulative
sum (CUSUM) procedure for change point detection in this model. Based
on the renewal property of the stopping rule, CUSUM can be regarded as a
repeated one-sided sequential probability ratio test. Asymptotic optimality of
the CUSUM procedure is proved in the sense of Lorden (1971). Motivated
by the sequential analysis in hidden Markov models, Wald’s likelihood ratio
identity and Wald’s equation for products of Markov random matrices are
also given. We apply these results to several types of hidden Markov models:
i.i.d. hidden Markov models, switch Gaussian regression and switch Gaussian
autoregression, which are commonly used in digital communications, speech
recognition, bioinformatics and economics.

1. Introduction. A hidden Markov model is a doubly stochastic process with
an underlying stochastic process that is not directly observable (it is hidden) but
can be observed only through another set of stochastic processes that produces
the sequence of observations. The hidden Markov model has become important
in a number of application areas, such as speech recognition [Rabiner and Juang
(1993)], molecular biology [Krogh, Brown, Mian, Sjolander and Haussler (1994)],
ion channel [Ball and Rice (1992)], economics [Hamilton (1989, 1994)] and digital
communications over unknown channels [Elliott, Aggoun and Moore (1995)]. The
main focuses of these efforts have been state space estimation, algorithms for
fitting these models and the implementation of likelihood based methods. The
statistical inference for hidden Markov models was first studied by Baum and
Petrie (1966), and more recently by Leroux (1992), Bickel and Ritov (1996), Fuh
(1998) and Bickel, Ritov and Rydén (1998).

The issue of hypothesis testing for hidden Markov models, whose statistics
are not explicitly given, is of considerable importance in speech recognition ap-
plications [Merhav (1991) and Rabiner and Juang (1993)], in digital communi-
cations over unknown channels [Ziv (1985) and Csiszár and Narayan (1988)],
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in bioinformatics [Churchill (1989) and Liu, Neuwald and Lawrence (1999)],
and in economics [Hamilton (1996)]. Sequence alignments and sequential algo-
rithms for the on-line estimation are among the most commonly used methods,
and some of these can be formulated as the binary hypothesis testing problem in
the Neyman–Pearson setting. Merhav (1991) proposed an asymptotically optimal
decision rule, and presented several types of hidden Markov models commonly
used in speech recognition and communication applications. Another important
subject related to this area is quick detection, with a low alarm rate, of parameter
changes in state space models (hidden Markov models) on the basis of sequential
observations from systems. This has numerous applications in statistical quality
control, edge detection in images and the diagnosis of faults in the elements of
computer communication networks. A comprehensive summary of this area was
given by Basseville and Nikiforov (1993). See also Lai (1995) for a recent survey.

Motivated by the analysis of the cumulative sum (CUSUM) procedure for
change point detection in hidden Markov models, we first study the fundamental
issue of the performance of sequential probability ratio tests for parameterized
hidden Markov models. The hidden Markov model considered here is in the
general sense so as to cover the examples of switch Gaussian regression and
switch Gaussian autoregression. It is well known [Wald and Wolfowitz (1948)]
that Wald’s sequential probability ratio test (SPRT) for testing simple hypotheses
based on independent and identically distributed (i.i.d.) observations {ξn, n ≥ 0} is
uniformly most efficient; that is, it simultaneously minimizes the expected sample
sizes under both the null and the alternative hypotheses among all tests with the
same or smaller error probabilities and with finite expected sample sizes under
the two hypotheses. Their argument breaks down when the ξn are not i.i.d., and it
has remained an open problem whether the SPRT has any optimality properties
when {ξn, n ≥ 0} is a Markov chain or a hidden Markov model. Theorems 1
and 2 provide basic tools for an asymptotic solution of this long-standing problem.
Before that, we analyze some basic properties of SPRT with simple hypotheses
for hidden Markov chain data, and also for approximating error probabilities with
composite statistical hypotheses, that is, hypotheses consisting of classes of hidden
Markov chain distributions.

Next, we will consider the problem of change point detection via the CUSUM
procedure for hidden Markov models, in the case of the distribution before and
after change is given. As noted by Basseville and Nikiforov (1993) in their
monograph, there is a great deal of literature on detection algorithms in complex
systems but relatively little on the statistical properties and optimality theory of
detection procedures beyond very simple models. The primary goal of this paper
is to investigate the theoretical aspects of this procedure in hidden Markov models.
Based on renewal property of the stopping rule, CUSUM can be regarded as
a repeated one-sided sequential probability ratio test. Asymptotic optimality of
the CUSUM procedure is proved in the sense of Lorden (1971). Motivated by
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the sequential analysis, Wald’s likelihood ratio identity and Wald’s equation for
products of Markov random matrices are also given.

A difficulty in analyzing likelihood based inferences for hidden Markov models
is partly due to the nonadditive form [see (1.3)] of the log-likelihood function.
A key idea to get rid of this difficulty is the representation of the likelihood function
as the L1-norm of products of Markov random matrices. This device has been
proposed by Fuh (1998) to study efficient likelihood estimation for hidden Markov
models. Here, we modify that method to represent the likelihood ratio as the ratio
of the L1-norm of products of Markov random matrices, and then to have the
additive form of the log-likelihood ratio.

This paper is organized as follows. In the remainder of this section we give a
formal definition of hidden Markov models and provide a representation of the
likelihood ratio. In Section 2 we give the necessary definitions in products of
Markov random matrices and state Wald’s likelihood ratio identity and Wald’s
equation; their proofs will be deferred to the Appendix. In Section 3 we investigate
in some detail the performance of the sequential probability ratio tests and derive
corrected Brownian approximations for the error probabilities and expected sample
sizes. In Section 4 we establish the asymptotic optimality of the sequential
probability ratio test with simple hypotheses, based on hidden Markov chain data.
In Section 5 we study the properties of the CUSUM procedure and provide an
asymptotic lower bound under the average run length (ARL) constraint. This result
is shown to imply the asymptotic optimality of the CUSUM scheme under the ARL
constraint. In Section 6 we apply these results to several types of hidden Markov
models: i.i.d. hidden Markov chains, switch Gaussian regression and switch
Gaussian autoregression, which are commonly used in digital communications,
speech recognition, bioinformatics and economics.

A hidden Markov model is defined as a parameterized Markov chain in a
Markovian random environment [Cogburn (1980)], with the underlying environ-
mental Markov chain viewed as missing data. This setting generalizes the hidden
Markov models considered by Leroux (1992), Bickel and Ritov (1996), Fuh (1998)
and Bickel, Ritov and Rydén (1998), in order to cover several interesting exam-
ples of switch Gaussian regression and switch Gaussian autoregression studied by
Merhav (1991), Rabiner and Juang (1993) and Hamilton (1994). That is, for each
θ ∈ � ⊂ Rq , the unknown parameter, we consider X = {Xn,n ≥ 0} as an ergodic
(positive recurrent, irreducible and aperiodic) Markov chain on a finite state space
D = {1,2, . . . , d}, with transition probability matrix P (θ) = [pxy(θ)]x,y=1,...,d

and stationary distribution π(θ) = (πx(θ))x=1,...,d . Suppose that an additive com-
ponent �n = ∑n

k=0 ξk, taking values in R, is adjoined to the chain such that
{(Xn, ξn), n ≥ 0} is a Markov chain on D × R and conditioning on the full X se-
quence, ξn is a Markov chain with probability

P (θ){ξn+1 ∈ B|X0,X1, . . . ; ξ0, ξ1, . . . , ξn} = P (θ)(Xn+1 : ξn,B) a.s.(1.1)
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for each n and B ∈ B(R), the Borel σ -algebra of R. Furthermore, we assume the
existence of a transition probability density for the Markov chain {(Xn, ξn), n ≥ 0}
with respect to a σ -finite measure µ on R such that

P (θ){X1 ∈ A,ξ1 ∈ B|X0 = x, ξ0 = s0}
= ∑

y∈A

∫
B

pxy(θ)f
(
s;ϕy(θ)|s0

)
dµ(s),(1.2)

where f (ξk;ϕXk
(θ)|ξk−1) is the transition probability density of ξk given ξk−1,

Xk , with respect to µ, θ ∈ � is the unknown parameter, and ϕy(·) is a function
defined on the parameter space � for each y = 1, . . . , d . Here and in the sequel,
we assume the Markov chain {(Xn, ξn), n ≥ 0} has stationary probability � with
probability density πx(θ)f (·;ϕx(θ)) with respect to µ. Note that in (1.2), we
assume that the distribution of the Markov chain ξn depends on ξn−1 and Xn. It can
be generalized to depend on ξn−p, . . . , ξn−1 and Xn−p, . . . ,Xn−1,Xn without any
difficulty. The usual parameterization for θ ∈ � is θ = (p11, . . . , pdd, θ1, . . . , θd)

with pxy(θ) = pxy and ϕy(θ) = θy . In this paper, we assume that only one
parameter is of interest and treat the other parameters as nuisance parameters.
That is, for simplicity, we consider θ ∈ � ⊆ R as a one-dimensional unknown
parameter. For convenience of notation, we will use πx for πx(θ) and pxy for
pxy(θ), respectively, in the sequel. We give a formal definition of a hidden Markov
model as follows:

DEFINITION 1. A process {ξn, n ≥ 0} is called a hidden Markov model if there
is a Markov chain {Xn,n ≥ 0} such that the process {(Xn, ξn), n ≥ 0} satisfies (1.1)
and (1.2).

Note that if ξn are conditionally independent given the full sequences X, then the
Markov chain {(Xn,�n), n ≥ 0} is called a Markov random walk, and {ξn, n ≥ 0}
is the hidden Markov model studied by Leroux (1992), Bickel and Ritov (1996),
Fuh (1998) and Bickel, Ritov and Rydén (1998).

Now, let ξ0, ξ1, . . . , ξn be the observations from the hidden Markov model
{ξn, n ≥ 0} with an unknown parameter θ . Let

Sn := pn(ξ0, ξ1, . . . , ξn; θ1)

pn(ξ0, ξ1, . . . , ξn; θ0)

:=
∑d

x0=1 · · ·∑d
xn=1 πx0(θ1)f (ξ0;ϕx0(θ1))∑d

x0=1 · · ·∑d
xn=1 πx0(θ0)f (ξ0;ϕx0(θ0))

×
∏n

k=1 pxk−1xk
(θ1)f (ξk;ϕxk

(θ1)|ξk−1)∏n
k=1 pxk−1xk

(θ0)f (ξk;ϕxk
(θ0)|ξk−1)

(1.3)

for fixed θ0, θ1 ∈ �.
Let θ0 ∈ �0 (the interior of �) and consider the problem of testing hypothesis

θ ≤ θ0. Given θ1 > θ0, we can construct a sequential probability ratio test of
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θ = θ0 versus θ = θ1 and use it to test the composite hypothesis θ ≤ θ0. Then,
the sequential probability ratio test of θ = θ0 versus θ = θ1 stops sampling at stage

T := inf{n : log Sn ≤ a or logSn ≥ b}(1.4)

for a ≤ 0 < b and accepts the null hypothesis that θ = θ0 (or the alternative
hypothesis that θ = θ1) according to logST ≤ a (or logST ≥ b). When it is
regarded as a test of θ ≤ θ0, the SPRT rejects θ ≤ θ0 if and only if logST ≥ b.
The problem of interest here is to approximate the type I error probability α =
P (θ0){logST ≥ b}, the type II error probability β = P (θ1){logST ≤ a} and the
expected sample sizes E(θ0)T (E(θ1)T ) of the test, where P (θ)(E(θ)) refers to
the probability (expectation) with initial distribution as the stationary distribution
πx(θ)f (·;ϕx(θ)).

Given a column vector u = (u1, . . . , ud)t ∈ Rd , where t denotes the transpose
of the underlying vector in Rd , define the L1-norm of u as ‖u‖ = ∑d

i=1 |ui|. The
likelihood ratio (1.3) then can be represented as

Sn = pn(ξ1, . . . , ξn; θ1)

pn(ξ1, . . . , ξn; θ0)
= ‖Mn(θ1) · · ·M1(θ1)M0(θ1)π(θ1)‖

‖Mn(θ0) · · ·M1(θ0)M0(θ0)π(θ0)‖ ,(1.5)

where

M0 = M0(θ) =



f (ξ0;ϕ1(θ)) 0 · · · 0
...

. . .
...

...

0 0 · · · f (ξ0;ϕd(θ))


 ,

Mk = Mk(θ) =



p11(θ)f (ξk;ϕ1(θ)|ξk−1) · · · pd1(θ)f (ξk;ϕ1(θ)|ξk−1)
...

. . .
...

p1d(θ)f (ξk;ϕd(θ)|ξk−1) · · · pdd(θ)f (ξk;ϕd(θ)|ξk−1)




for k = 1, . . . , n, and

π(θ) = (
π1(θ), . . . , πd(θ)

)t
.(1.6)

Note that each component pxyf (ξk;ϕy(θ)|ξk−1) in Mk represents Xk−1 = x

and Xk = y, and ξk is a Markov chain with transition probability density
f (ξk;ϕy(θ)|ξk−1), for k = 1, . . . , n, and therefore the Mk are random matrices.
Since {(Xn, ξn), n ≥ 0} is a Markov chain by definition (1.1) and (1.2), this implies
that {Mk,k = 1, . . . , n} is a sequence of Markov random matrices (see Section 2
for a formal definition). Hence, Sn is the ratio of the L1-norm of the products of
Markov random matrices via representation (1.5). Note that π is fixed in (1.5).

In this paper, we assume that the parameter θ is identifiable in the sense
that if, for some θ, θ ′ ∈ �, P

(n)
θ = P

(n)
θ ′ for all n, then θ = θ ′. A necessary

and sufficient condition was given by Itô, Amari and Kobayashi (1992) for
deterministic functionals of Markov chains.
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2. Wald’s equation for products of Markov random matrices. Since
{(Xn, ξn), n ≥ 0} considered in (1.1) is a Markov chain on a general state space
D × R, for simplicity of the notation, we let {Xn,n ≥ 0} be a Markov chain on
a general state space D with σ -algebra D, which is irreducible with respect to
a maximal irreducibility measure on (D,D) and is aperiodic. Let P (·, ·) denote
the transition probability kernel and assume that Xn has stationary measure π(·).
Define Gl(d,R) as the set of invertible d × d matrices with real entries and let
M̃ , M be functions from D × D to Gl(d,R) with

M0 = M̃(X0,X0), M1 = M(X0,X1), . . . , Mn+1 = M(Xn,Xn+1).

Denote Sn = Mn · · ·M0. Then the system {(Xn,Sn), n ≥ 0} is called a product of
Markov random matrices on D ×Gl(d,R) [cf. it is called a multiplicative Markov
random walk in Bougerol (1988)]. Denote Px as the probability of {(Xn,Sn),

n ≥ 0} with X0 = x and M0 = Id , the identity matrix, and Ex as the expectation
under Px .

Let u ∈ Rd be a d-dimensional vector, ū := u/‖u‖ the normalization of u

(‖u‖ �= 0), and denote P (Rd) as the projection space of Rd which contains all
elements ū. For given ū ∈ P (Rd) and M ∈ Gl(d,R), denote M · ū = Mu and let

W0 = (X0,S0 · ū), W1 = (X1,S1 · ū), . . . ,Wn = (Xn,Sn · ū).(2.1)

Then, W0,W1, . . . ,Wn is a Markov chain on the state space D × P (Rd), with
the transition kernel P((x, ū),A × B) := Ex(IA×B(X1,M1 · ū)) for all x ∈ D,
ū ∈ P (Rd), A ∈ D and B ∈ B(P (Rd)), the Borel σ -algebra of P (Rd). For
simplicity, we let P(x,ū) := P(·, ·) and denote E(x,ū) as the expectation under P(x,ū).
Under Condition A given below, an argument similar to Lemma 3.5 of Bougerol
(1988) results in the Markov chain {Wn,n ≥ 0} having an invariant probability
measure m on D × P (Rd). Now, for x, y ∈ D, ū ∈ P (Rd) and M = M(x,y) ∈
Gl(d,R), let σ : (D × P (Rd)) × (D × P (Rd)) → R be σ((x, ū), (y,M · ū)) =
log ‖Mu‖

‖u‖ . Then, for ū ∈ P (Rd) and ‖u‖ = 1,

log‖Snu‖ = log
‖Snu‖

‖Sn−1u‖ + · · · + log
‖S1u‖
‖S0u‖ + log

‖S0u‖
‖u‖(2.2)

= σ(Wn−1,Wn) + · · · + σ(W0,W1) + σ(W0,W0)

is an additive functional of the Markov chain {Wn,n ≥ 0}, where σ(W0,W0) =
log ‖S0u‖

‖u‖ .

Previous work on limiting theory for products of Markov random matrices
was done by Bougerol (1988) via perturbation theory. It is clear from represen-
tation (2.2) that limit theorems for products of random matrices are based on
limit theorems for Markov chains. In fact, Bougerol’s results are based on the
perturbation theory for operators developed by Nagaev (1957) for Markov chains.
Since Nagaev’s representation theory and hence, Bougerol’s results, require uni-
form ergodicity for the underlying Markov chain, it excludes many important
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time series models and stochastic systems. For example, the autoregressive model
Xn = αXn−1 + εn with 0 < |α| < 1 and i.i.d. standard normal εn does not satisfy
such a uniformity condition. In this section we extend Nagaev’s representation the-
ory in two directions. First we replace the one-dimensional partial sum

∑n
t=1 g(Xt )

in his paper by the additive component, induced by products of Markov random
matrices. The second extension is to relax the uniformity in his ergodicity condi-
tion, by imposing a w-uniform ergodicity condition (defined in A1 below).

We first define the necessary terminology and give a brief summary of
the spectral decomposition theory for products of Markov random matrices.
Definition 2 is taken from Bougerol (1988).

DEFINITION 2. (i) A subset � of Gl(d,R) is said to be contracting if there
exists a sequence {Mn,n ≥ 0} in � for which ‖Mn‖−1Mn converges to a rank 1
matrix, where ‖Mn‖ = sup{‖Mnu‖;u ∈ Rd,‖u‖ = 1}. A product of Markov
random matrices {(Xn,Sn), n ≥ 0} on D × Gl(d,R) is said to be contracting
if π{x ∈ D;�x is contracting} = 1, where �x is the smallest closed semigroup
in Gl(d,R) which contains the support of Px((X1,M1) ∈ D × ·).

(ii) A product of Markov random matrices {(Xn,Sn), n ≥ 0} on D × Gl(d,R)

is strongly irreducible if, for all p with 1 ≤ p < d , there does not exist a family
of p-dimensional linear subspaces of Rd , V1(x), . . . , Vk(x), such that V (x) :=
V1(x) ∪ · · · ∪ Vk(x) and

SnV (X0) = V (Xn), Pπ -a.s. for all n = 1,2, . . . .

Let χ(M) = sup(log‖M‖, log ‖M−1‖). The following Condition A will be
assumed throughout this section.

A1. {Xn,n ≥ 0} is w-uniformly ergodic, that is, there exists a measurable
function w : D → [1,∞), with

∫
w(y)dπ(y) < ∞, such that, for any Borel

measurable function h on D satisfying supx |h(x)|/w(x) < ∞, we have

lim
n→∞ sup

x∈D

{ |E(h(Xn)|X0 = x) − ∫
h(y) dπ(y)|

w(x)
:x ∈ D, |h| ≤ w

}
= 0,

sup
x

{
Ex(w(X1))

w(x)

}
< ∞.

A2. There exist a,C > 0, such that Ex(exp{aχ(M1)}) ≤ C for all x ∈ D.
A3. The system {(Xn,Sn), n ≥ 0} is strongly irreducible and contracting.

REMARK. Under irreducibility and aperiodicity, Condition A1 implies that
there exist r > 0 and 0 < ρ < 1 such that for all h and n ≥ 1,

sup
x∈D

|E(h(Xn)|X0 = x) − ∫
h(y) dπ(y)|

w(x)
≤ rρn sup

x∈D

h(x)

w(x)
;
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see pages 382–383 of Meyn and Tweedie (1993). When w is 1, this reduces
to the classical uniform ergodic condition. Note that the assumption of weight
function w allows us to develop the perturbation theory for Markovian operators,
and to have the twisting transformation (2.5) of the transition probability. The
w-uniform ergodicity assumption also allows us to study the example of general
hidden Markov models, including switch autoregression with Markov regime
[Hamilton (1989, 1994)]. The exponential moment assumption A2 is suitable for
the log likelihood function studied in this paper. A positivity hypothesis on the
matrices in the support of the Markov chain leads to contraction and irreducibility
properties A3. Note that the elements in random matrices (1.5) are probability
densities and, hence, are nonnegative Px-almost surely.

DEFINITION 3. Given α > 0, for any continuous function ϕ : D × P (Rd)

→ C, the set of complex numbers, define |ϕ|w := sup{|ϕ(x, ū)|/w(x) : x ∈ D, ū ∈
P (Rd)} and mα(ϕ) := sup{|ϕ(x, ū) − ϕ(x, v̄)|/δ(ū, v̄)α;x ∈ D, ū, v̄ ∈ P (Rd)},
where δ(ū, v̄) := | sin{angle(u, v)}|, for u, v ∈ Rd . We define H(α) as the set of
Hölder continuous functions ϕ on D × P (Rd) for which ‖ϕ‖α = |ϕ|w + mα(ϕ) is
finite.

Let ν be an initial distribution of W0, and let x ∈ D, ū ∈ P (Rd), θ ∈ C,
M1 ∈ Gl(d,R) and ϕ be a Hölder continuous function in H(α). We define linear
operators T(θ), T, ν(θ) and T0 on the space H(α) as follows:

T(θ)ϕ(x, ū) = E(x,ū)

{
eθ log ‖M1u‖ϕ(X1,M1 · ū)

}
,

Tϕ(x, ū) = E(x,ū){ϕ(X1,M1 · ū)},
ν(θ)ϕ(x, ū) = Eν

{
eθ log ‖M0u‖ϕ(X0,M0 · ū)

}
,

T0ϕ(x, ū) = Em{ϕ(X0,M0 · ū)}.

(2.3)

Recall that m is the invariant probability measure for the Markov chain {Wn,n ≥ 0}
defined at (1.1) and (1.2). Condition A2 ensures that T(θ), T, ν(θ) and T0 are
bounded linear operators on the Banach space H(α) with the Hölder continuous
norm ‖ · ‖α . By making use of A1 and an argument similar to Theorem 3.7 of
Bougerol (1988), there exist constants γ∗ > 0 and 0 < ρ∗ < 1, such that

‖Tn − T0‖α := sup
ϕ(x,ū)∈H(a), ‖ϕ(x,ū)‖α=1

‖Tnϕ(x, ū) − T0ϕ(x, ū)‖α < γ∗ρn∗ .

For a bounded linear operator L :H(α) → H(α), the resolvent set is defined as
{z ∈ C : (L−zI )−1 exists} and (L−zI )−1 is called the resolvent (when the inverse
exists). From the result of the geometric bound of ‖Tn − T0‖α , it follows that for
z �= 1 and |z| > ρ∗,

R(z) := T0/(z − 1) +
∞∑

n=0

(Tn − T0)/z
n+1
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is well defined. Since R(z)(T − zI ) = −I = (T − zI )R(z), the resolvent of T
is −R(z). Moreover, by A2 and an argument similar to the proof of Lemma 2.2
of Jensen (1987), there exist K > 0 and η > 0 such that for |θ | ≤ η, |z − 1| >

(1 − ρ∗)/6 and |z| > ρ∗ + (1 − ρ∗)/6,

‖T(θ) − T‖α ≤ K|θ |,

Rθ(z) :=
∞∑

n=0

R(z)
{(

T(θ) − T
)
R(z)

}n is well defined.

Since Rθ(z)(T(θ) − T) = Rθ(z){(T(θ) − T) + (T − zI )} = −I = (T(θ) −
zI )Rθ(z), the resolvent of T(θ) is −Rθ(z). Moreover, there exists sufficiently
small η > 0 such that for |α| ≤ η, the spectrum of T(θ) lies inside the two circles

C1 = {z : |z − 1| = (1 − ρ∗)/3}, C2 = {z : |z| = ρ∗ + (1 − ρ∗)/3}.
Hence, by the Riesz’s spectral decomposition theorem [cf. page 421 of Riesz and
Sz.-Nagy (1955)], H(α) = H1(α) ⊕ H2(α), the direct sum of H1(α) and H2(α),
and

Q(θ) := 1

2πi

∫
C1

Rθ(z) dz, I − Q(θ) := 1

2πi

∫
C2

Rθ(z) dz

are parallel projections of H(α) onto the subspaces H1(α) and H2(α), respectively.
Moreover, by an argument similar to the proof of Lemma 1.1 of Nagaev (1957),
there exists 0 < δ ≤ η such that H1(α) is one-dimensional for |α| ≤ δ and

sup
|θ |≤δ

‖T(θ) − T‖α < 1.

For |θ | ≤ δ, let λ(θ) be the eigenvalue of T(θ) with corresponding eigen-
space H1(α). Letting ν denote the initial distribution of W0, and defining the
operator ν(θ) by (2.3), we then have for ϕ ∈ H(α),

Eν

{
eθ log‖Snu‖ϕ(Xn,Sn · ū)

}
= ν(θ)Tn(θ)ϕ = ν(θ)Tn(θ)

{
Q(θ) + (

I − Q(θ)
)}

ϕ

= λn(θ)ν(θ)Q(θ)ϕ + ν(θ)Tn(θ)
(
I − Q(θ)

)
ϕ.

(2.4)

An argument similar to (1.22) of Nagaev (1957) shows that there exist K∗ > 0
and 0 < δ∗ < δ such that for |θ | ≤ δ∗,∥∥ν(θ)Tn(θ)

(
I − Q(θ)

)
ϕ

∥∥
α ≤ K∗‖ϕ‖α|θ |{(1 + 2ρ∗)/3}n.

We next consider the summand λn(θ)ν(θ)Q(θ)ϕ which appeared in (2.4). Since
A2 holds, then for any integer r ≥ 3, analogous to Lemma 1.2 of Nagaev (1957),
λ(θ) has the Taylor expansion

λ(θ) = 1 +
r∑

k=1

ikλkθ
k/k! + �(θ)
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in some neighborhood of the origin, where �(θ) = O(|θ |r ) as |θ | → 0.
Let h1 ∈ H(α) be the identity function h1 := 1, and consider the case that

the initial distribution ν is degenerate at x, so that ν(θ)Q(θ)h1 has continuous
partial derivatives of order r − 2 in some neighborhood of the origin. Let
r(·; θ) := (Q(θ)h1)(·). From (2.4) and Q(θ) is a parallel projection of H(α) onto
H1(α), it follows that r(·; θ) is an right eigenfunction of T(θ) associated with the
eigenvalue λ(θ); for example, r(·; θ) generates the one-dimensional eigenspace
H1(α). This result is due to Nagaev (1957) in the special case of uniform ergodic
Markov chains and ξn = g(Xn), for which Jensen (1987) has given the full details
of the argument that can clearly be extended to general ξn (not necessarily of the
form g(Xn)). The following proposition generalizes Proposition 3.8 of Bougerol
(1988).

PROPOSITION 1. Let {(Xn,Sn), n ≥ 0} be a sequence of products of Markov
random matrices satisfying Condition A. Then, there exists δ > 0 such that for
|θ | < δ, ν(θ)T(θ) = ν(θ)λ(θ)Q(θ) + ν(θ)T(θ)(I − Q(θ)), and:

(i) λ(θ) is the unique eigenvalue of maximal modulus of T(θ);
(ii) Q(θ) is a rank-one projection such that Q(θ)(I − Q(θ)) = (I − Q(θ)) ×

Q(θ) = 0;
(iii) the mappings λ(θ),Q(θ) and I − Q(θ) are analytic for |θ | < δ;
(iv) there exists 0 < ρ∗ < 1 such that |λ(θ)| > ρ∗ and for each p ∈ N , there

exists c > 0 such that for each n ∈ N ,∥∥∥∥ dp

dθp

(
I − Q(θ)

)n∥∥∥∥
α

≤ cρn∗;
(v) defining γ := limn→∞(1/n)Ex log ‖Sn‖ as the upper Lyapunov exponent,

it follows that γ = ∂λ(θ)
∂θ

|θ=0 = ∫
E(x,ū)(log‖M1u‖/‖u‖) dm(x, ū) and with

probability 1, limn→∞(1/n) log‖Snu‖ = γ .

Our main results in this section are stated in Lemma 1, Theorems 1 and 2. Their
proofs will be deferred to the Appendix.

LEMMA 1. Let {(Xn,Sn), n ≥ 0} be a sequence of products of Markov random
matrices satisfying Condition A. Let λ(θ) be defined as (2.4), and let �(θ) be
(the principal branch of ) logλ(θ) so that λ(θ) = e�(θ). For any ū ∈ P (Rd), let
G

(θ)
n = r(Wn; θ) exp{θ log ‖Snu‖−n�(θ)} and let Fn be the σ -algebra generated

by {(Xk,Sk), k ≤ n}. Then, for δ > 0 small enough, |θ | ≤ δ, {G(θ)
n ,Fn, n ≥ 0} is a

martingale for any initial distribution ν on W0.

Now, for a given δ > 0 which is small enough and |θ | ≤ δ, we define the
“twisting” transformation for the transition probability of {Wn,n ≥ 0} as

P(θ)
(
(x, ū), d(y, v̄)

) = r((y, v̄); θ)

r((x, ū); θ)
e−�(θ)+θσ((x,ū),(y,v̄))P

(
(x, ū), d(y, v̄)

)
.(2.5)
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Let {W(θ)
n , n ≥ 0} be the Markov chain with transition probability kernel P(θ).

Call this the θ -conjugate Markov chain. If the function �(θ) is normalized so that
�(0) = �′(0) = 0, then P(0) = P is the transition probability kernel of the Markov
chain {Wn,n ≥ 0}, with invariant measure m. Let P(θ)

ν denote the probability
measure under which {W(θ)

n , n ≥ 0} has initial distribution ν, and let E(θ)
ν denote

the expectation under P(θ)
ν here and in the sequel.

Taking F∞ = σ(X0, (X1,S1), (X2,S2), . . .), we say that an integer-valued ran-
dom variable N ≥ 0 is a stopping time if, for each n = 0,1,2, . . . , the condi-
tional probability P (N = n|F∞) is Fn-measurable. That is, there exists a Borel
measurable function αn such that P (N = n|F∞) = αn(X0, (X1,S1), (X2,S2), . . . ,

(Xn,Sn)). Denote

FN = {
A ∈ F∞ :A ∩ {N = n} ∈ Fn for all n ≥ 0

}
.

The following theorems are Wald’s likelihood ratio identity and Wald’s equation
for products of Markov random matrices.

THEOREM 1. Let {(Xn,Sn), n ≥ 0} be a sequence of products of Markov
random matrices satisfying Condition A. Let N be any stopping time. Then, for
any x ∈ D, ū ∈ P (Rd), B ∈ FN and |θ | ≤ δ for δ > 0 small enough,

P(θ)
(x,ū)

{
B ∩ {N < ∞}}

=
∫
B∩{N<∞}

r(WN ; θ)

r((x, ū); θ)
exp

(
θ log ‖SNu‖ − N�(θ)

)
dP(x,ū).

(2.6)

THEOREM 2. Let {(Xn,Sn), n ≥ 0} be a sequence of products of Markov
random matrices satisfying Condition A. Let ν be an initial distribution of W0, and
let N be a stopping time such that EνN < ∞. Suppose sup(x,ū) E(x,ū)| log‖S1u‖|
< ∞, and let γ be the upper Lyapunov exponent defined in Proposition 1(v). Then,
for any ū ∈ P (Rd),

Eν log‖SNu‖ = γ EνN − Eν{r ′(WN ; 0) − r ′(W0; 0)},(2.7)

where r ′(·; θ) denotes the derivative of r(·; θ) with respect to θ . Furthermore,
r ′((x, ū); 0) is the solution g of the following Poisson equation:

(I − T)g = E(x,ū) log‖S1u‖ − γ,(2.8)

where I is the identity operator and T is the operator defined in (2.3).

REMARK. Wald’s equation for uniformly ergodic Markov chains was em-
ployed by Fuh and Lai (1998). The uniform ergodicity assumption in that paper
guarantees that r ′(·; 0) defined in (2.7) is uniformly bounded. Theorem 2 general-
izes that to products of Markov random matrices. Since the induced Markov chain
{Wn,n ≥ 0} is not uniformly ergodic in general, the results obtained by Fuh and
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Lai (1998) can not be applied. As an alternative, in Theorem 2, we characterize
r ′(·; 0) as the solution of the Poisson equation (2.8) and then apply Foster’s drift
criterion for Markov chains to ensure the boundedness of r ′(·; 0). A weaker as-
sumption, based on the existence of solutions for the Poisson equation, to ensure
Wald’s equation in Theorem 2 is valid can be found in Theorem 4 of Fuh and
Zhang (2000).

3. Performance analysis of SPRT. To analyze the properties of the sequen-
tial probability ratio tests, the following Condition C will be assumed throughout
this paper.

C1. For each θ ∈ �, the Markov chain X = {Xn,n ≥ 0} is ergodic (positive
recurrent, irreducible and aperiodic) on a finite state space D = {1, . . . , d}.
Moreover, the Markov chain {(Xn, ξn), n ≥ 0} satisfies Condition A1 and
has stationary probability � with probability density πx(θ)f (·;ϕx(θ)) with
respect to µ.

C2. For any θ ∈ �, the random matrices M0(θ) and M1(θ) defined in (1.5) are
invertible P(θ) almost surely and

sup
(x,ξ0)∈D×R

E(θ)
x

∣∣∣∣∣
d∑

x,y=1

πx(θ)f
(
ξ0;ϕx(θ)

)
pxy(θ)ξ1f

(
ξ1;ϕy(θ)|ξ0

)∣∣∣∣∣ < ∞.

REMARK. The ergodicity Condition C1 for Markov chains is quite general
and covers several interesting examples, such as i.i.d. hidden Markov models,
switch Gaussian regression and switch Gaussian autoregression, considered in
Section 6. Condition C2 is a moment condition for the likelihood function and
a technical condition for the parameter space. For instance, the classical mixture
models are excluded, but the log-likelihood function in mixture models is already
in the additive form.

By using representation (1.5), the analysis of the likelihood ratio for hidden
Markov models reduces to that of products of Markov random matrices. In order
to apply the results developed in Section 2, we first need to check that Condition A
holds.

Recall that the state space D = {1, . . . , d} is finite, and {(Xn, ξn), n ≥ 0}
defined in (1.1) and (1.2) is a Markov chain on D × R. Therefore, each
component pxy(θ)f (ξk;ϕy(θ)|ξk−1) in the matrix Mk represents that Xk−1 = x

and Xk = y, and ξk is a Markov chain with transition probability density
f (ξk;ϕy(θ)|ξk−1). Hence, Mk is a Markov random matrix for k = 1, . . . , n, and
{((Xn, ξn),Mn · · ·M0

)
, n ≥ 0} is a product of Markov random matrices. Note that

Condition C1 implies that the w-uniform ergodicity Condition A1 holds for all
θ ∈ �, and C2 implies the moment Condition A2 holds.

In order to check Condition A3 holds, we may assume without loss of
generality that pxy(θ) ≥ γ (θ) > 0 for all x, y ∈ D due to the ergodicity
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condition in C1. Conditioned on the full sequence X, f (ξk;ϕy(θ)|ξk−1) is a
transition probability density and, hence, is positive P (θ) almost surely for any
θ ∈ �. As a result, all entries in M1 are positive P (θ) almost surely; therefore,
{((Xn, ξn),Mn · · ·M0), n ≥ 0} on (D × R) × Gl(d,R) is strongly irreducible for
all θ ∈ �.

It is known that a product of Markov random matrices {((Xn, ξn),Mn · · ·M0),

n ≥ 0} on (D × R) × Gl(d,R) is contracting if for π(θ)f (·, ϕ1(θ))-almost
all (x, s0), there exists a matrix M in the smallest closed semigroup in Gl(d,R)

which contains the support of P (θ)((D × R) × ·|X0 = x, ξ0 = s0), such that
M has a unique largest absolute eigenvalue. [This is an easy generalization of
Corollary IV. 2.2 of Bougerol and Lacroix (1985).] Since the dimension of the
matrix is finite and f (ξ1;ϕy(θ)|ξ0) is a transition probability density for all y ∈ D,
it follows that for all θ ∈ �, there exists ξ1 ∈ R such that f (ξ1;ϕy(θ)|ξ0) > 0 for all
y ∈ D. Therefore, without loss of generality, we may let f (ξ1;ϕy(θ)|ξ0) = 1 and
consider the matrix Pθ = [pxy(θ)]. By Condition C1, there exists n0 > 0 such that
[pxy(θ)]n0 is positive for all θ ∈ �, where [ · ]n0 denotes n0 multiplications of the
matrix; hence, by the Perron–Frobenius theorem for positive matrices, [pxy(θ)]n0

has a unique largest eigenvalue. This implies that {((Xn, ξn),Mn · · ·M0), n ≥ 0}
on (D × R) × Gl(d,R) is contracting for all θ ∈ �.

Now, let ξ0, ξ1, . . . , ξn be a sequence of random variables from the hidden
Markov model {ξn, n ≥ 0}. Here and in the sequel, we always assume the
initial distribution of (X0, ξ0) is the stationary distribution π(θ)f (ξ0;ϕX0(θ)). Let

P(θ) := P(θ)
π be the probability measure of {Wn,n ≥ 0}, induced by the hidden

Markov model, and let E(θ) := E(θ)
π be the expectation under the probability P(θ).

The sequential probability ratio test for testing a simple hypothesis versus a simple
hypothesis is simply based on observation of the first exit of log Sn from an interval
(a, b), for −∞ < a ≤ 0 < b < ∞, where Sn is defined in (1.3). The stopping time,
T , which is the time of first exit, is the sample size required for a decision. If
log Sn exits (a, b) above, that is, if log Sn ≥ b, then the decision is in favor of the
statistical hypothesis H1. Likewise, if logSn exits below, that is, logSn ≤ a, then
the decision is in favor of H0. It turns out that the drift of log Sn is determined
by �′(0). This follows from a large deviations result for products of Markov
random matrices; logSn/n converges in probability to �′(0) (at an exponential
rate). Hence, E(θ0) logSn ∼ n�′(0), where �′(θ) denotes the derivative of �(θ).
Any reasonable sequential test will tend to have logSn exit (a, b) below under
hypothesis H0, and above under hypothesis H1. Thus, we shall characterize the
statistical hypotheses as follows:

H0: �′(0) < 0 (negative drift),(3.1)

H1: �′(0) > 0 (positive drift).(3.2)

LEMMA 2. Let ξ0, ξ1, . . . , ξn be a sequence of random variables from a hidden
Markov model {ξn, n ≥ 0} satisfying Condition C. Assume that �′(0) �= 0; then,
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P(θ0)(T < ∞) = 1, where T is defined in (1.4). In general, if there exist δ > 0
small enough and |θ | < δ such that �′(θ) �= 0, then P(θ)(T < ∞) = 1.

PROOF. Consider only the case of �′(0) < 0. For fixed �′(0) < δ < 0, by
a proof similar to the large deviations result of Theorem 4.3 given by Bougerol
(1988), we have that P(θ0)(log Sn ≥ nδ) vanishes exponentially fast. Based on this
exponential rate of convergence, it follows from the Borel–Cantelli lemma that
the event {logSn ≥ nδ} occurs only finitely often P(θ0) almost surely, and this
implies that {logSn < nδ} occurs infinitely often P(θ0) almost surely; thus, logSn

must eventually cross the threshold a. This proves P(θ0)(T < ∞) = 1. The general
statement holds under (2.5) and the same argument. �

In particular, for the case of θ ∈ R, it is well known that if |θ | < δ,
�(θ) is a lower semicontinuous, strictly convex function with essential domain
� = {θ : |θ | < δ, �(θ) < ∞} being an interval containing the point θ = 0. For
an H0 distribution, we define

θ∗ = sup
|θ |<δ

{θ :�(θ) ≤ 0},(3.3)

and for an H1 distribution, we define

θ∗ = inf|θ |<δ
{θ :�(θ) ≤ 0}.(3.4)

The lower semicontinuity of �(θ) implies that �(θ∗) ≤ 0 (�(θ∗) ≤ 0). Subject
to the drift conditions (3.1) and (3.2), we can have θ∗ = 0 (θ∗ = 0) only if 0 is a
boundary point of �. In particular, if � has a nonempty interior containing θ = 0,
then θ∗ �= 0 (θ∗ �= 0). From (3.1) and (3.2), we have θ∗ > 0 for H0 and θ∗ < 0
for H1. We may have θ∗ = ±δ (θ∗ = ±δ).

For |θ | < δ, define

ra(θ) = E(θ0)[exp(θ(log ST − a))r(WT ; θ)| logST ≤ a]
E(θ0)[r(W0; θ)](3.5)

and

rb(θ) = E(θ1)[exp(θ(logST − b))r(WT ; θ)| logST ≥ b]
E(θ1)0[r(W0; θ)] .(3.6)

The next result is a Chernoff bound for sequential probability ratio tests with
hidden Markov chain data.

LEMMA 3. Let ξ0, ξ1, . . . , ξn be a sequence of random variables from a hidden
Markov model {ξn, n ≥ 0} satisfying Condition C. Let α and β be the type I and
type II error probabilities, respectively. Under H0, for any θ ∈ [0, θ∗] such that
E(θ1)[r(W0; θ)] < ∞,

α ≤ rb(θ)−1e−θb,(3.7)
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and under H1, for any θ ∈ [θ∗,0] such that E(θ0)[r(W0; θ)] < ∞,

β ≤ ra(θ)−1e−θa.(3.8)

PROOF. Consider H0 only. Since P(θ)(T < ∞) = 1, from (2.6) in Theorem 1
we have

1 = E(θ1)[exp(θ logST − T �(θ))r(WT ; θ)]
E(θ1)[r(W0; θ)]

≥ E(θ1)[exp(θ logST − T �(θ))r(WT ; θ)| logST ≥ b]
E(θ1)[r(W0; θ)] α.

Since �(θ) ≤ 0, it follows that −T �(θ) ≥ 0. Hence, from the above inequalities
we obtain 1 ≥ rb(θ)eθbα. �

In many cases, when logSnπ crosses one of the thresholds at time T ,
the difference between logST and the threshold is negligible. That is, either
logST ≈ a or logST ≈ b. These are called Wald’s approximations [see Chapter 3
of Woodroofe (1982)]. Applying Wald’s approximations to (3.5) and (3.6), we
have

ra(θ) ≈ r̂a(θ) = E(θ0)[r(WT ; θ)| logST ≤ a]
E(θ0)[r(W0; θ)](3.9)

and

rb(θ) ≈ r̂b(θ) = E(θ1)[r(WT ; θ)| logST ≥ b]
E(θ1)[r(W0; θ)] .(3.10)

These approximations may be applied to (3.7) or (3.8) to obtain useful error
probability approximations by ignoring the overshoot. However, the overshoot
may play an important factor in some situations. In the case of i.i.d. observations,
with an additional assumption that the drift tends to zero at a certain rate, Siegmund
(1979) derived a corrected Brownian approximation for the error probabilities
in an exponential family by means of conjugate transform and renewal theory.
This method has been extended by Asmussen (1989) and Fuh (1997) for ruin
probabilities in finite state Markov chains. In this section, we will apply the
renewal theorem from Kesten (1973), and Fuh and Lai (2001) to approximate
the overshoot E(θ0)(logST −b) and to obtain more accurate approximations for the
error probabilities and expected sample sizes of the tests. Although Kesten’s result
was developed for products of i.i.d. random matrices under different assumptions,
and Fuh and Lai’s result was developed for w-uniformly ergodic Markov chains
(note that Wn is uniformly ergodic under Hölder continuous norm), it can be
extended to products of Markov random matrices satisfying Condition A without
any difficulty.
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Assume that b > 0; we define the stopping time τb = inf{n : logSn > b} and
define τ+ = τ0 as the first ladder time, and let τn = inf{n ≥ τn−1 : log Sn > b} be
the consecutive descending ladder time. Let

P(θ)
+ = P(θ)

π

{
log Sτ+ ≤ s, τ+ < ∞,Wτ+ ∈ dy

}
(3.11)

denote the transition probability associated with the products of Markov random
matrices based on the ascending ladder point (τ+, logSτ+). Let {Wτn,n ≥ 0} be
the ladder Markov chain defined as in (3.11) associated with {Wn,n ≥ 0}. Under
Condition C and γ > 0, {Wn,n ≥ 0} is aperiodic. An argument similar to Lemma 2
of Guivarch and Raugi (1986) leads to the conclusion that it is irreducible.
Also, Lemma 4 in the Appendix shows that {Wn,n ≥ 0} is w-uniformly ergodic.
Therefore, Theorem 9.1.8 of Meyn and Tweedie (1993) implies that {Wn,n ≥ 0} is
Harris recurrent. And by making use of Theorem 1 of Alsmeyer (2000), we have
that {Wτn,n ≥ 0} is also Harris recurrent. Hence, P(θ)

+ has an invariant measure π+.
It is known that there exists δ > 0 small enough such that 0 �= |θ | < δ, and that

�(θ) is a strictly convex and real analytic function for which �′(θ) = E(θ) logS1.
Therefore,

E(θ) log S1 <, = or > 0 ⇐⇒ θ <, = or > 0.

For any δ > 0 small enough and 0 �= |θ | < δ, there is at most one value θ ′,
necessarily of opposite sign, for which �(θ) = �(θ ′). Assume that such θ ′ exists;
we may let θ0 = min(θ, θ ′) and θ1 = max(θ, θ ′) such that θ0 < 0 < θ1 and
�(θ0) = �(θ1), and let � = θ1 − θ0. Since the normalization of the mean is
zero and the variance is 1, we can also assume without loss of generality that
�′′(0) = σ 2 = 1, where �′′(θ) denotes the second derivative of �(θ) with respect
to θ . Let � = {|θ | < δ : E(θ)(eθ logS1) < ∞} such that � is open and � �= {0}.

The following theorem gives corrected Brownian approximations for error
probability and expected sample size of the SPRT. The proof will be given in the
Appendix.

THEOREM 3. Let ξ0, ξ1, . . . , ξn be a sequence of random variables from
a hidden Markov model {ξn, n ≥ 0} satisfying Condition C. Denote ξ− as
the negative part of ξ . Assume further that there exists ε > 0 such that
infx,ξ P(θ0){log‖S1‖ ≤ −ε|W0 = ((x, ξ), S0π))} > 0. Suppose a → −∞, b → ∞
and θ0 ↑ 0 in such a way that |a|/b → η ∈ (0,∞) and θ0b → −δ ≤ 0; then,

P(θ0){logST > b}
= 1 − exp{�(a + ρ− − c−)}

exp{�(b + ρ+ − c+)} − exp{�(a + ρ− − c−)} + o(�),
(3.12)

where

ρ+ = E(θ0)(logSτ+)2

2E(θ0) log Sτ+
,
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ρ− = E(θ1)(logSτ−)2

2E(θ1) logSτ−
,

c+ = E(θ0)r ′(W0; 0) − E(θ0) logSτ+r ′(Wτ+; 0)

E(θ0) logSτ+
,

c− = E(θ1)r ′(W0; 0) − E(θ1) logSτ−r ′(Wτ−; 0)

E(θ1) logSτ−
,

where τ− is the first descending ladder time and π− is the stationary distribution
of P(θ1){Wτ− ∈ dy, τ− < ∞|W0 = ((x, ξ), S0π)}. Also,

E(θ0)T = θ−1
0 [(a + ρ− − c−) + (b − a + ρ+ − ρ− − c+ + c−)p∗]

+o(�−1),
(3.13)

where p∗ denotes the right-hand side of (3.12).

REMARKS. 1. If �(·) is a function symmetric about zero, then � = 2θ0.
Also, by definition, T is the first boundary crossing time with two barrier linear
boundary (a, b). Therefore, it is easy to see that T tends to ∞ as b approaches ∞
and a approaches −∞.

2. Note that (3.12) and (3.13) are just Wald’s approximations but with b and a

replaced by b + ρ+ − c+ and a + ρ− − c−, where ρ+ (ρ−) is the correction of the
overshoot for discrete time and c+ (c−) reflects the Markovian dependence.

3. Numerical calculation of ρ+ (ρ−) and c+ (c−) involves ladder variables
and Markovian Wiener–Hopf factorization, which will be published in a separate
paper.

4. Asymptotic optimality of SPRT. Let {ξn, n ≥ 0} be the hidden Markov
model with transition kernel (1.1) and satisfying Condition C. Consider the
problem of testing the simple hypothesis sequentially to see whether Q :=
Qπ := P

(θ0)
π or P := Pπ := P

(θ1)
π is the transition kernel of {ξn, n ≥ 0}. Let

Sn be the likelihood ratio based on ξ0, ξ1, . . . , ξn as defined in (1.3). The SPRT
stops sampling at stage T := inf{n : log Sn ≤ a or log Sn ≥ b}, for a ≤ 0 < b,
and accepts the null hypothesis that Q (or the alternative hypothesis that P) is the
actual density according as logST ≤ a (or logST ≥ b). The type I and type II error
probabilities of the test are

α = Q{logST ≥ b}, β = P{logST ≤ a}.(4.1)

Let J(α,β) denote the class of tests (N, δ) whose type I and type II error
probabilities are bounded above by α and β , respectively, where N denotes the
stopping rule and δ the terminal decision rule of a test. For the case where ξn = Xn

are i.i.d. random variables, Wald and Wolfowitz (1948) showed that the SPRT
is optimal in the sense that it minimizes both

∫
N dP and

∫
N dQ in all tests
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(N, δ) ∈ J(α,β). When {ξn, n ≥ 0} is a hidden Markov model, we will show
that the SPRT is asymptotically optimal, in the sense of asymptotically attains
[with at most a O(1) discrepancy] the infima of

∫
N dPν and

∫
N dQν over all

(N, δ) ∈ J(α,β), as b → ∞ and a → −∞.
Now, let π denote the stationary distribution of {Xn,n ≥ 0} under P, and let

π ′ denote the stationary distribution of {Xn,n ≥ 0} under Q. Define the Kullback–
Leibler information numbers

K(P,Q) = EP

[
log

‖M1M0π‖
‖M ′

1M
′
0π

′‖
]
, K(Q,P) = EQ

[
log

‖M ′
1M

′
0π

′‖
‖M1M0π‖

]
,(4.2)

where EP (EQ) refers to the expectation for the induced products of Markov
random matrices under probability P (Q).

Note that the above defined Kullback–Leibler information number (4.2) is based
on representation (1.5) and the ergodic theorem for products of random matrices
in Proposition 1(v). Without this, Juang and Rabiner (1985) used the large sample
average Kullback–Leibler divergence per observation between pn(ξ0, . . . , ξn; θ)

and qn(ξ0, . . . , ξn; θ ′) in a numerical study on the effects of starting values and
the observation sequence length on maximum likelihood estimates for hidden
Markov models. [See also (14) in Leroux (1992) and (2.3) in Liu and Narayan
(1994).] With this abstract definition of K(P,Q) and K(Q,P) in (4.2), we can
apply Theorem 2 of Wald’s equation for products of Markov random matrices to
have the following theorem.

THEOREM 4. Let ξ0, ξ1, . . . , ξn be a sequence of random variables from a hid-
den Markov chain {ξn, n ≥ 0} satisfying Condition C. Assume that K(P,Q) > 0,
K(Q,P) > 0 and supx{

∫
(logS1)

2 dP+∫
(logS1)

2 dQ} < ∞. Then, as b → ∞ and
a → −∞,∫

T dP = inf
(N,δ)∈J(α,β)

∫
N dP + O(1) = (1 − β)b/K(P,Q) + O(1),

∫
T dQ = inf

(N,δ)∈J(α,β)

∫
N dQ + O(1) = (1 − α)|a|/K(Q,P) + O(1).

REMARK. Under the additional assumption of |a|/b → η > 0, by Lemma 3,
we have that βb ≤ ea/2 for b sufficiently large. This implies that βb = o(1) and,
consequently, the statement in Theorem 4 becomes

∫
T dP = b/K(P,Q) + O(1)

and
∫

T dQ = |a|/K(Q,P) + O(1).

PROOF OF THEOREM 4. We shall only consider the assertion concerning∫
N dP and

∫
T dP as the other assertion can be proved similarly. Define τb =

inf{n ≥ 1 : logSn > b} for b > 0 and τa = inf{n ≥ 1 : logSn < a} for a < 0. Since
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T = min(τb, τa), under the assumption of supx{
∫
(log S1)

2 dP + ∫
(logS1)

2 dQ}
< ∞, it is easy to see that EP(T ) < ∞. Hence, we can apply Theorem 2 to
conclude that

K(P,Q)EP(T ) + O(1)

= EP logST π ≤ bP{logST ≥ b} + EP(logSτb
− b),

(4.3)

noting that log Sτb
≥ b > 0. An argument similar to Lemma 3 of Fuh (1997) results

in EP(log Sτb
− b) = O(1); therefore, (4.3) implies that

K(P,Q)EP(T ) ≤ bP{logST ≥ b} + O(1) = b(1 − β) + O(1).(4.4)

It follows from Theorem 1 that

α = Q{logST ≥ b} =
∫
{logST π≥b}

e− logST dP

= e−bEP
{
e−(logSτb

−b)I (τb < τa)
} = e−b+O(1),

(4.5)

in view of the tightness of logSτb
− b which follows from the Markov renewal

theory for ladder variables referred to Kesten (1974) and Alsmeyer (1994). Hence,
log α = −b+O(1) and, similarly, it can be shown that logβ = a+O(1), implying
that max(α,β) → 0.

The same argument involving Wald’s likelihood ratio identity, like that in the
proof of Theorem 2.39 of Siegmund (1985), can be used to show that for any
(N, δ) ∈ J(α,β),

EP logSN ≥ (1 − β) log
(
(1 − β)/α

) + β log
(
β/(1 − α)

)
.(4.6)

Applying Theorem 2 to the left-hand side of (4.6) yields

inf
(N,δ)∈J(α,β), EPN<∞K(P,Q)EPN ≥ (1 − β) logα−1 + O(1).(4.7)

Since logα−1 = b + O(1) by (4.5), combining (4.4) with (4.7) proves the first
assertion of the theorem. �

5. CUSUM procedures. The cumulative sum (CUSUM)-type procedure is
one of the most popular change point detection algorithms used to detect a possible
change from a given process to another given process. It was proposed by Page
(1954) in setting that θn are θ0 so that the sample statistics ξj are independent
and identically distributed (i.i.d.) with common density fθ0 when the process is
in control, and that there is at most one change point ω after which θn are θ1
so that ξj are again i.i.d. with common density fθ1 . Lorden (1971) showed that
subject to the “average run length” (ARL) constraint, the CUSUM procedure
asymptotically minimizes the “worst case” detection delay defined in (5.1) below.
Instead of studying the optimal detection problem via sequential testing theory,
Moustakides (1986) formulated the worst case detection delay problem subject to
an ARL constraint as an optimal solution to the optimal stopping problem. Ritov
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(1990) later gave a simpler proof. For change point detection in complex dynamic
systems beyond the i.i.d. setting, Bansal and Papantoni-Kazakos (1986) extended
Lorden’s asymptotic theory to the case where ξj are stationary ergodic sequences,
under the condition that {ξj , j < ω} (before the change point) and {ξj , j ≥ ω}
(after the change point) are independent, and proved the asymptotic optimality of
the CUSUM algorithm. Further extensions to general stochastic sequences ξn were
obtained by Lai (1995, 1998). Moreover, using a change-of-measure argument,
Lai (1998) also established the asymptotic optimality of the CUSUM rule under
several alternative performance criteria. Finally, we mention that Yakir (1994)
studied Bayesian optimal detection for a finite state Markov chain.

It is known that Lorden’s method relates the CUSUM procedure to certain
one-sided sequential probability ratio tests which are optimal for testing simple
hypotheses. Based on the representation (1.5) of the likelihood ratio, the renewal
property of the stopping rule and Wald’s equation for products of Markov random
matrices, we generalize Lorden’s asymptotic theory to that of hidden Markov
models. Our method relates the CUSUM procedure to certain one-sided sequential
probability ratio tests in hidden Markov models, which have been shown in
Section 4 to be asymptotically optimal for testing simple hypotheses.

Let ξ0, ξ1, . . . , ξω−1 be the observations from the hidden Markov model
{ξn, n ≥ 0} with unknown parameter θ0, and let ξω, ξω+1, . . . be the observations
from the hidden Markov model {ξn, n ≥ 0} with unknown parameter θ1. We
shall use P(ω) to denote such a probability measure (with change time ω) and
use P0 to denote the case ω = ∞ (no change point). Recall that P(ω) and P0
denote the probabilities for the induced products of Markov random matrices
{((Xn, ξn),Mn · · ·M0), n ≥ 0}. Let Snπ be defined as (1.3) for all θ0, θ1 ∈ �.
Define the CUSUM scheme

τ := inf
{
n : max

1≤k≤n
(logSn − log Sk) ≥ cγ

}
,(5.1)

where cγ is chosen such that E0τ = γ . Here and in the sequel, we define
inf ∅ = ∞. When ω is finite, we are concerned with the conditional expected delay
E(ω)[(τ − ω + 1)+|ξ0, ξ1, . . . , ξω−1], whose supreme over {ω, ξ0, ξ1, . . . , ξω−1}
represents the worst case delay. More precisely, we want to show that the CUSUM
scheme τ minimizes asymptotically as γ → ∞:

Ē1N = sup
ω≥1

esssupE(ω)[(N − ω + 1)+|ξ0, ξ1, . . . , ξω−1
]

(5.2)

over all schemes N with E0N ≥ γ .
Now let ξ0, ξ1, . . . , ξω−1 be the observations from the hidden Markov model

{ξn, n ≥ 0} with probability P and ξω, ξω+1, . . . be the observations from the
hidden Markov model {ξn, n ≥ 0} with probability Q. Let K be the maximum
likelihood estimate of the time ω. Following the idea of Lorden (1971) and
its extension by Bansal and Papantoni-Kazakos (1986), the likelihood ratio
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CUSUM scheme (5.1) corresponds to stopping when a one-sided SPRT with
log-boundary cγ based on ξK, ξK+1, . . . shows significant evidence against
the null hypothesis H0: P(θ) = P. Since the initial distribution of (X0, ξ0) is
the stationary distribution πxf (·;ϕx(θ)), it follows that ξ0, ξ1, . . . , ξn forms a
stationary sequence, and that the CUSUM scheme (5.1) can be expressed as

τ := min
k≥1

{Tk + k − 1},(5.3)

where Tk is the stopping time of the one-sided SPRT applied to ξk, ξk+1, . . . .

By using the asymptotic representation of the expected sample sizes in
Theorem 4 and Wald’s equation for products of Markov random matrices in
Theorem 2, we obtain the following theorem which establishes the asymptotic
lower bound (K(P,Q)−1 + o(1)) logγ of Ē1N under the ARL constraint
E0N ≥ γ .

THEOREM 5. Let ξ0, ξ1, . . . , ξn be a sequence of random variables from a
hidden Markov model {ξn, n ≥ 0} satisfying Condition C. Then, as γ → ∞,

inf{Ē1N : E0N ≥ γ } ≥ (
K(P,Q)−1 + o(1)

)
log γ.(5.4)

PROOF. Let K1 = K(P,Q). It suffices to show that for any given 0 < ε < 1,
there is a C(ε) < ∞ such that for all stopping times N ,

K1Ē1N ≥ (1 − ε) log E0N − C(ε).(5.5)

We fix ε and define stopping times T0 = 0 < T1 < T2 < · · · as follows: Tj+1(j =
0,1, . . .) is the smallest n (or ∞ if there is no n) such that n > Tj and

pn(ξ0, ξ1, . . . , ξn; θ1) ≤ εpn(ξ0, ξ1, . . . , ξn; θ0).(5.6)

By an argument similar to the estimation of the error probabilities of the SPRT
in Lemma 3 in Section 3, we have P1(T1 < ∞) ≤ ε, and the same argument is
easily modified to yield that if P1(Drk) > 0, then Pk+1(Tr < ∞|Drk) ≤ ε, where
Drk = {Tr−1 = k < N}, which depends only on ξ0, ξ1, . . . , ξk , and where Pk refers
to the probability based on the observations ξk, ξk+1, . . . .

Consider all Drk for which P0(Drk) > 0 and, hence, Pk+1(Drk) > 0; since
ξ0, ξ1, . . . , ξn is a stationary sequence, Pk+1 gives the same distribution of
ξ0, ξ1, . . . , ξk as does P0. On the subset Drk , N and Tr determine the following
sequential test based on ξk+1, ξk+2, . . . : stop at min(N,Tr) and

decide Pk+1 is true if N ≤ Tr ;
decide P0 is true if N > Tr.

The number of observations taken is min(N,Tr) − k, whose (conditional)
expectation under Pk+1(·|Drk) is at most Ē1N . (Drk belongs to the σ -algebra
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of events determined by ξ0, ξ1, . . . , ξk). Applying Theorem 4 and (4.5) with α =
P0(N ≤ Tr |Drk) and 1 − β = Pk+1(N ≤ Tr |Drk), there exists a finite constant C:

K1Ē1N = Pk+1(N ≤ Tr |Drk)| log P0(N ≤ Tr |Drk)| + C

≥ (1 − ε)| log P0(N ≤ Tr |Drk)| + C,
(5.7)

where the latter inequality of (5.7) follows from Pk+1(N ≤ Tr |Drk) ≥ Pk+1(Tr =
∞|Drk) ≥ 1 − ε.

Let R be the smallest r ≥ 1 (or ∞ if there is no r) such that Tr > N. If
P0(R ≥ r) > 0, then P0(R < r + 1|R ≥ r) is well defined and equals P0(N ≤ Tr |
Tr−1 < N), which is an average (over k) of the probabilities P0(N ≤ Tr |Tr−1 =
k < N) satisfying (5.7). Therefore, P0(R ≥ r) > 0 implies that

K1Ē1N ≥ (1 − ε)| log P0(R < r + 1|R ≥ r)| + C.(5.8)

Since {(WTj
, Tj ), n ≥ 0} is a Markov chain, simple calculation shows that a lower

bound of the form

P0(R < r + 1|R ≥ r) ≥ q for r = 1,2, . . . , such that P0(R ≥ r) > 0

implies that P0(R ≥ r +1) ≤ (1−q)r for r = 1,2, . . . and, hence, that E0R ≤ q−1.

Thus, (5.8) yields

K1Ē1N ≥ (1 − ε) log E0R + C.(5.9)

When P0 is true, we let ρ
(ε)
1 = ρ

(ε)
+ = inf{n : logSnπ ≤ ε} be the first descending

ladder time, and let ρ
(ε)
n = inf{n ≥ ρ

(ε)
n−1 : log Snπ ≤ ε} be the consecutive

descending ladder time. Let {Wρ(ε)
n

, n ≥ 0} be the ladder Markov chain defined as
in (3.11) associated with {Wn,n ≥ 0}. Then, {Tj } is a Markov random walk defined
on {Wρ(ε)

n
, n ≥ 0}, distributed like T1, as can be verified from (5.6). Note that

{Wn,n ≥ 0} is aperiodic. An argument similar to Lemma 2 of Guivarch and Raugi
(1986) leads to the conclusion that it is irreducible. Also, Lemma 4 in the Appendix
shows that {Wn,n ≥ 0} is w-uniformly ergodic. Therefore, Theorem 9.1.8 of Meyn
and Tweedie (1993) implies that {Wn,n ≥ 0} is Harris recurrent. By making use of
Theorem 1 in Alsmeyer (2000), we have that {Wρ(ε)

n
, n ≥ 0} is also Harris recurrent.

Next, we consider the Poisson equation

(I − P)� = T1 − E0T1.(5.10)

From (5.9), we have E0R < ∞. By Theorem 14.0.1 and Theorem 17.4.2 of Meyn
and Tweedie (1993), (5.10) has a bounded solution. Therefore, Wald’s equation
still holds for {Wρ(ε)

n
, n ≥ 0} by Theorem 4 in Fuh and Zhang (2000); that is, we

have E0TR = E0R · E0T1 + C1, for some constant C1. Hence,

log E0N ≤ log E0TR = log E0R + B(ε),(5.11)

where B(ε) = log E0T1 + C′, which is finite for all ε and does not depend on N .
Relation (5.5) follows from (5.9) and (5.11), and the proof is complete. �
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Based on (5.3) and the upper bound for the one-sided SPRT P0(T1 < ∞) ≤ γ −1,
the following theorem yields that E0τ ≥ γ .

THEOREM 6. Let ξ0, ξ1, . . . , ξn be a sequence of random variables from a
hidden Markov model {ξn, n ≥ 0} satisfying Condition C. Let N be an extended
stopping variable with respect to ξ0, ξ1, ξ2, . . . such that P0(N < ∞) ≤ α. For k =
1,2, . . . , let Nk denote the stopping time obtained by applying N to ξk, ξk+1, . . .

and define N∗ = mink≥1{Nk + k − 1}. Then, N∗ is a stopping time, and

E0N
∗ ≥ 1/α.(5.12)

PROOF. For k = 1,2, . . . , define ηk = 1 if Nk < ∞ and ηk = 0 if Nk = ∞. By
the ergodic property of ξ1, ξ2, . . . in Proposition 1(v), we have

lim
n→∞n−1

n∑
k=1

ηk = E0η1 = P0(N1 < ∞) ≤ α a.s. (P0).(5.13)

Note that the last inequality in (5.13) is due to the stationarity of ξ0, ξ1, ξ2, . . . .

Assume that E0N
∗ < ∞ [otherwise, we have (5.12)]. Let N∗

0 = 0 and define
N∗

1 < N∗
2 < · · · recursively as follows. If N∗

m−1 = n, then for each r = 1,2, . . . ,

apply N to ξn+r , ξn+r+1, . . . and let N∗
m be the first time stopping occurs for

some r . Then N∗
1 = N∗ and N∗

1 ,N∗
2 − N∗

1 ,N∗
3 − N∗

2 , . . . forms a Markov chain.
Clearly, for m = 0,1, . . . , there exists r such that ηNm∗+r = 1, and this causes the
stop at N∗

m+1. Therefore, ηNm∗+1 + · · · + ηN∗
m+1

≥ 1. Hence, η1 + · · · + ηNm∗ ≥ m

for m = 0,1, . . . , so that

η1 + · · · + ηNm∗
Nm∗

≥ m

Nm∗
.(5.14)

The last paragraph in the proof of Theorem 5 shows that {Wn,n ≥ 0} is Harris
recurrent. The strong law of large numbers for Harris chains [cf. Theorem 17.0.1
of Meyn and Tweedie (1993)] implies that as m → ∞, the right-hand side of (5.14)
approaches (E0N

∗)−1 and the left-hand side tends to a limit ≤ α by (5.13), thus
proving (5.12). �

The proof of the upper bound of Ē1N
∗ in Theorem 2 of Lorden (1971) depends

heavily on the independence structure and is difficult to generalize to dependent
data. The extension of Lorden’s method and the results obtained by Bansal
and Papantoni-Kazakos (1986) for the case of stationary ergodic sequences ξj

involve a strong assumption that requires independence between {ξj , j < ω} and
{ξj , j ≥ ω}. Instead of using the independence assumption employed in previous
studies, we apply the uniform strong law of large numbers to the induced Markov
chains {Wn,n ≥ 0} to get the following theorem.
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THEOREM 7. Let ξ0, ξ1, . . . , ξn be a sequence of random variables from a
hidden Markov model {ξn, n ≥ 0} satisfying Condition C. Let N∗ be defined as in
Theorem 6. Then, as γ → ∞,

Ē1N
∗ ≤ (K(P,Q)−1 + o(1)) logγ.(5.15)

PROOF. Let K1 = K(P,Q). To prove (5.15), it suffices to show that for any
0 < δ < 1, as γ → ∞,

sup
ω≥1

esssupE(ω){(N − ω + 1)+|Fω−1}
≤ (

1 + o(1)
)
(1 − δ)−1K−1

1 log γ,
(5.16)

where Fω−1 is the σ -algebra generated by {ω, ξ1, . . . , ξω}. For c ∼ log γ ,
let nc be the largest integer ≤ (1 − δ)−1K−1

1 c. The last paragraph in the proof
of Theorem 5 shows that {Wn,n ≥ 0} is a Harris recurrent Markov chain. By the
strong law of large numbers for the additive component of Wn [cf. Theorem 17.0.1
of Meyn and Tweedie (1993)], we have with probability 1, P1{logSnπ ≤
(K1 − δ)n|W0 = ((x, ξ), S0π)} → 0 as n → ∞. Along with this Condition C2
implies that supx,ξ P1{logSn ≤ (K1 − δ)n|W0 = ((x, ξ), S0π)} → 0 as n → ∞.
Hence,

lim
n→∞ sup

t≥ω≥1
esssupP(ω)

{
n−1

t+n∑
j=t

σ (Wj−1,Wj ) < (K1 − δ)|ξ0, ξ1, . . . , ξt−1

}

= 0,

(5.17)

and this implies that

sup
t≥ω≥1

esssupP(ω)

{ ∑
t≤j≤t+nc−1

σ(Wj−1,Wj) < c|ξ0, ξ1, . . . , ξt−1

}
≤ δ(5.18)

for all large c. Hence, it follows that, for all sufficiently large c, for any ω ≥ 1 and
k ≥ 1,

esssupP(ω){N − ω + 1 > knc|Fω−1}

≤ esssupP(ω)

{
ω+lnc−1∑

j=ω+(l−1)nc

σ (Wj−1,Wj ) < c for all 1 ≤ l ≤ k|Fω−1

}

≤ δk.

(5.19)

Applying (5.19) and conditioning on ξ0, ξ1, . . . , ξω+(l−1)nc−1 for l = k,
k − 1, . . . ,1 in succession, we have, for all sufficiently large c,

sup
ω≥1

esssupE(ω)
{
n−1

c (N − ω + 1)+|Fω−1
} ≤

∞∑
k=0

δk = (1 − δ)−1.(5.20)

Since nc ∼ (1 − δ)−1K−1
1 log γ , (5.20) implies (5.15). �
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Theorem 7 establishes that the CUSUM procedure attains the asymptotic lower
bound for detection delay in (5.4). Along with Theorems 5 and 6, we have proved
the asymptotic optimality of the CUSUM procedure under the ARL constraint.

6. Examples and applications. Several interesting examples which are
widely used in speech recognition, digital communications, bioinformatics and
economics can be formalized as the hidden Markov model (1.1) and (1.2). In this
section, we will demonstrate the application of our results to models of i.i.d. hidden
Markov models, switch Gaussian regression and switch Gaussian autoregression.
Note that finite state space models can also be formulated in this framework.

EXAMPLE 1 (i.i.d. hidden Markov models). When ξn defined in (1.1) are
conditionally independent given the full sequences X, the hidden Markov model
was considered by Leroux (1992), Bickel and Ritov (1996), Fuh (1998) and Bickel,
Ritov and Rydén (1998). It is also called the mixture model with Markovian
regimes.

We first consider a simple case that {Xn,n ≥ 0} is a two-state ergodic Markov
chain and conditional on Xn, ξn have normal densities with means and variances
µ1 = 2, µ2 = 0, σ 2

1 = σ 2
2 = 1. The requirement of pxy(θ) > 0 for all x, y = 1,2

and for all θ ∈ � is a sufficient condition of C1. Simple calculation leads to the
conclusion that the moment condition in C2 reduces to Ee2ξ1 < ∞. The inverse
matrix condition of the random matrix in C2 indicates that it is not an independent
mixture. When pxy(θ) are known, positive for x, y = 1,2 and p11(θ) �= p21(θ),
the second mean µ2 is 0, σ 2

1 = σ 2
2 = 1 and µ1 is the only unknown parameter,

Conditions C1 and C2 are satisfied.
In general, we consider a finite state ergodic Markov chain {Xn,n ≥ 0}

with transition probability matrix P (θ). The parameter θ is chosen such that
the determinant of P (θ) is not zero. For each fixed x ∈ D, let f (·;ϕx(θ))

be a Lebesgue density on R, and assume further that f is continuous and
positive with limξ→±∞ f (ξ ;ϕx(θ)) = 0 and

∫ ∞
−∞ f α(ξ ;ϕx(θ)) dξ < ∞ for some

α < 1. Suppose the identifiability holds; a simple argument suffices to show that
Conditions C1 and C2 hold.

When ξn is equal to xn in (1.1), this reduces to the classical example of Markov
chains. Sadowsky (1989) investigated Wald’s likelihood ratio identity and Wald’s
equation for uniformly recurrent Markov chains, in the sense that there exist
c2 > c1 > 0, n ≥ 1 and a probability measure µ∗ on D such that

c1µ
∗(A) ≤ P {Xn ∈ A|X0 = x} ≤ c2µ

∗(A)(6.1)

for all measurable subsets A ∈ D and all x ∈ D. He also assumed the exponential
moment condition and the boundedness of r ′(·; 0) which appears in (2.7). Fuh and
Lai (1998) generalized the result of Wald’s equation to uniformly ergodic (w = 1)
Markov chains, and dropped the exponential moment condition assumption as well
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as the assumption of boundedness of r ′(·; 0). By using an argument similar to
that in Theorems 2 and 4, we generalize the results of Wald’s equation and the
asymptotic optimality of the SPRT to an irreducible w-uniformly ergodic Markov
chain. Note that the Kullback–Leibler information number (4.2) in this case is
K(θ ′, θ) = ∫

x∈D dπx(θ
′)

∫
y∈D pxy(θ ′) logpxy(θ ′)/pxy(θ).

Consider the following example which involves change in the mean value θ of
a stable autoregressive sequence:

xn =
p∑

k=1

akxn−k + vk +
(

1 −
p∑

k=1

ak

)
θ,(6.2)

where a1, . . . , ap are autoregressive coefficients and vk is a Gaussian sequence
with zero mean and variance σ 2. By Theorem 16.5.1 of Meyn and Tweedie (1993),
xn defined in (6.2) is a w-uniformly ergodic Markov chain with w(x) = x2.
And Example 1 of Fuh and Lai (2001) shows that the ladder Markov chain is
still w-uniformly ergodic. The existence of exponential moments for the normal
distribution (with mean zero and finite variance σ 2) implies that the moment
Condition C2 holds. This example can be generalized to the case of random
coefficient autoregression as on page 404 of Meyn and Tweedie (1993).

EXAMPLE 2 (Gaussian regression). Let Xn be an ergodic Markov chain with
finite state space D = {1,2, . . . , d}. Given that Xn = x, let

ξn =
p−1∑
k=1

ak
xrk + σxvn,(6.3)

where rk ∈ R, for k = 1,2, . . . , p − 1, are deterministic values, vn is a normal
random variable with zero mean and unit variance and ax = (a1

x, . . . , a
p−1
x , σx)

are the unknown parameters. In this case, the likelihood ratio for ξn given Xn = x

is

f (ξn|ax, σx)

f (ξn|a′
x, σ

′
x)

=
(

σ ′
x

σx

)
exp

{
− 1

2σ 2
x

(
ξn −

p−1∑
k=1

ak
xrk

)2

+ 1

2σ ′2
x

(
ξn −

p−1∑
k=1

a′k
xrk

)2}
.

Suppose that the transition probabilities pxy(θ) are known and the determinant of
the matrix [pxy(θ)] is not zero for θ ∈ �. Assume further that −∞ < ak < ∞,
and that there exists a constant c such that 0 < c < σk, for k = 1, . . . , d . Let
θ0 be the true parameter in some closure of � which does not contain σk = 0
for k = 1, . . . , d . Since Xn is a finite state ergodic Markov chain and ξn are
conditionally independent normal random variables given the full sequence X,
Conditions C1 and C2 hold by straightforward calculations.
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One application of this model, when combined with the hidden Markov models,
is in detection of signals from a finite-state additive Gaussian channel, where each
state is characterized by a different noise level [Merhav (1991)]. A useful special
case is a channel with two states, one state with small σ 2

x and another state with
large σ 2

x . The transition probabilities, associated with the hidden Markov model in
this case, are closely related to the amount of time the channel spends in each state.
Theorems 5–7 lead to the conclusion that the CUSUM procedure is asymptotically
optimal, provided there exists a constant c such that 0 < c < σk for k = 1,2, . . . , d .

This model is also useful for capturing occasional but recurrent regime shifts
in empirical macroeconomics and dynamic econometrics. Goldfeld and Quandt
(1973) studied a model for a housing market in disequilibrium, in which the
demand and supply functions were specified as switching regressions as in (6.3).
The reader is referred to that paper for details.

EXAMPLE 3 (Gaussian autoregression). We start with a simple scalar valued
fourth-order autoregression around one of two constants µ1 or µ2:

ξn − µxn = ϕ1(ξn−1 − µxn−1) + ϕ2(ξn−2 − µxn−2)

+ϕ3(ξn−3 − µxn−3) + ϕ4(ξn−4 − µxn−4) + εn,
(6.4)

where εn ∼ N(0, σ 2), xn is a two-state ergodic Markov chain and θ = (ϕ1, ϕ2, ϕ3,

ϕ4,µ1,µ2, σ
2) are the unknown parameters. This model has been studied by

Hamilton (1989) in an attempt to analyze the behavior of U.S. real GNP. We may
assume that only one parameter is of interest and treat the other parameters as
nuisance parameters. In this case, the likelihood ratio for ξn given Xn = xn, n ≥ 0,
is

f (ξn|xn; θ)

f (ξn|xn; θ ′)
=

(
σ ′

σ

)
exp

{
−

[
(ξn − µxn) − 1

2σ 2

4∑
k=1

ϕk(ξn−k − µxn−k
)

]2

+
[
(ξn − µ′

xn
) − 1

2σ ′2
4∑

k=1

ϕ′
k(ξn−k − µ′

xn−k
)

]2}
.

(6.5)

Assume that all the roots of 1 − ∑4
k=1 ϕkz

k = 0 are outside the unit circle, and
that there exists a constant c > 0 such that σ 2 > c. Suppose the identifiability
condition holds. Assume that for all θ ∈ �, pxy(θ) > 0 for all x, y ∈ {1,2}, and
p11(θ) �= p21(θ). Then, {(Xn, ξn), n ≥ 0} is a w-uniformly ergodic Markov chain
with w(x) = x2. And Example 1 of Fuh and Lai (2001) shows that the ladder
Markov chain is still w-uniformly ergodic. This implies that Condition C1 holds.
The assumption of εn ∼ N(0, σ 2) also implies that Condition C2 is satisfied in
model (6.4). Although the random variables ξn depend on ξn−1 and Xn only in
Theorems 3 to 7, the results can be extended to dependence on ξn−4, . . . , ξn−1 and
Xn−4, . . . ,Xn−1,Xn without any difficulty. Therefore, the SPRT for testing simple
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hypothesis vs. simple hypothesis in model (6.4) is asymptotically optimal, and the
CUSUM algorithm for change point detection is also asymptotically optimal.

Engel and Hamilton (1990) considered another switching autoregression model
in which both mean vectors and variance-covariance matrices are functions of
states:

ξn|xn ∼ N(µxn,�xn) for xn = 1,2,(6.6)

where θ = (µ1,µ2,�1,�2) are unknown parameters. In this case the likelihood
ratio for ξn given Xn = xn, n ≥ 0 is

f (ξn|xn; θ)

f (ξn|xn; θ ′)
=

( |�′
xn

|1/2

|�xn |1/2

)
exp

{−(ξn − µxn)
t�−1

xn
(ξn − µxn)

2

+ (ξn − µ′
xn

)t�′−1
xn

(ξn − µ′
xn

)

2

}
,

(6.7)

where |�x | denotes the determinant of �x . Assume that there exists a constant c

such that 0 < c < |�x | for each x = 1,2. Suppose the identifiability condition
holds and that µ1,µ2 are in R; the ergodicity assumption for the Markov
chain {Xn,n ≥ 0}, and the normal assumption for ξn given Xn = xn gives that
Conditions C1 and C2 hold.

In general, let ξ1, . . . , ξn be a sample from the model

ξn =
p−1∑
k=1

ak
xn

ξn−k + σxnvn,(6.8)

where vn is a normal random variable with zero mean and unit variance, and
ax = (a1

x, . . . , a
p−1
x , σx) are unknown parameters. In this case, the likelihood ratio

for ξn given Xn = xn, n ≥ 0, is

f (ξn|axn)

f (ξn|a′
xn

)
=

(
σ ′

xn

σxn

)
exp

{
− 1

2σ 2
xn

(
ξn −

p−1∑
k=1

ak
xn

ξn−k

)2

+ 1

2σ ′2
xn

(
ξn −

p−1∑
k=1

a′k
xn

ξn−k

)2}
.

Assume that all the roots of 1 −∑p
k=1 ak

xz
k = 0 are outside the unit circle, and that

there exists a constant c with 0 < c < σ 2
x for x = 1, . . . , d . The same argument as

that in (6.4) and (6.5) shows that Conditions C1 and C2 hold for model (6.8).
The formulation (6.8) also includes a generalization of Engle’s ARCH model

[Engle (1982)] to allow for occasional discrete shifts in the ARCH parameters.
As another example of (6.8), we can generalize a vector autoregression so as
to allow the constant terms, the autoregressive coefficients and the innovation
variance-covariance matrix to be functions of the state xn. This model also has
many applications in speech recognition [Rabiner and Juang (1993)] where the
only essential difference in this example is the dependence of each state.
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APPENDIX

We will use the same notation as that in Section 2 unless otherwise mentioned.
Recall that {(Xn, ξn), n ≥ 0} defined in (1.1) and (1.2) is a Markov chain on a

state space D × R, where D = {1, . . . , d} is a finite set. In the proof of Lemma 4,
for simplicity, we assume the state space of the Markov chain {Xn,n ≥ 0} is R

and consider the case where the associated transition probability has transition
probability density with respect to the Lebesgue measure on R. Without this
constraint, the result is still correct, and the proof based on Markovian iterated
random functions will be published in a separate paper.

LEMMA 4. Let {Xn,n ≥ 0} be the Markov chain defined in Section 2 and
satisfying Condition A. Then, the induced Markov chain Wn on D×P (Rd) defined
in (2.1) is v-uniformly ergodic for some v :D × P (Rd) → [1,∞).

PROOF. We first want to show that the Markov chain {(Xn,Sk · ū), n ≥ 0},
satisfies Doeblin’s condition if Xn takes values on the whole real line R. By
means of the Iwasawa decomposition of Gl(d,R) [cf. Lemma 6.1.1 of Bougerol
and Lacroix (1985)], we have that any matrix M in Gl(d,R) can be written as
M = s(M)k(M), where k(M) is orthogonal and S(M) is lower triangular with
positive diagonal entries. Let S be the set of s(M), and let K be the set of k(M)

for all M ∈ Gl(d,R).
The existence of the transition probability density of the Markov chain {Xn,

n ≥ 0} with respect to the Lebesgue measure implies that Mk has a density p(u)

with respect to the Haar measure mG on Gl(d,R), for each k = 1, . . . , n. Let mS

be the measure on S, and let mK be the measure on K . Let µ′ be the stationary
measure of (Xk,Mk) on R × Gl(d,R). For any ε > 0, there is a measure µ̃ on
R × Gl(d,R), dµ̃(R × M)/dmG = p̃(M) such that p̃(M) ≤ c, var(µ′, µ̃) < ε/2
and the support of µ̃(R × ·) is contained in some compact set � of Gl(d,R).
Without loss of generality, we can assume that K�K = �.

It is well known [cf. page 407 in Helgason (1962)] that under suitable norming
of mG and mS , mG(dM) = mG(d(sk)) = mS(ds)mK(dk). Then, we have

P{(x, ū),R × B} = µ′{(R,M) :M · ū ∈ B}
=

∫
B

p(M · ū) dmG ≤
∫
B

p̃(M · ū) dmG + ε/2

=
∫
B

∫
S∩C

p̃(sk · ū) dmS dmK + ε/2

≤ cmS(S ∩ C)mK(B) + ε/2.

Since � is compact, mS(S ∩ C) < ∞. This implies that the desired Doeblin
condition holds if Xn takes values on the whole real line R. Note that {Xn,n ≥ 0}
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is w-uniformly ergodic by Condition A1. Define v :D × P (Rd) → [1,∞) by
v(x, ū) = w(x). Then, Wn is v-uniformly ergodic and we complete the proof. �

PROOF OF LEMMA 1. Let h1 be the identity function in H(α). By the
Markovian property of Wn, we have

Eν

(
G

(θ)
n+1|Fn

) = eθ log‖Snu‖−(n+1)�(θ)EWn

{
r(W1; θ)eθσ(W1,W0)

}
= eθ log‖Snu‖−(n+1)�(θ)(T(θ)Q(θ)h1

)
(Wn)

[by (2.3) and Q(θ)h1 = r(·; θ)]

= eθ log‖Snu‖−n�(θ)(λ(θ))−1{λ(θ)Q(θ)h1(Wn)} [by (2.4)]

= eθ log‖Snu‖−n�(θ)r(Wn; θ) = G(θ)
n . �

PROOF OF THEOREM 1. Let αn be the Borel measurable function defined in
the paragraph before Theorem 1. By using the twisting formula (2.5),

P(θ)
(x,ū)

{
B ∩ {N = n}}

= E(θ)
(x,ū)[αn(M0,M1, . . . ,Mn)]

= E(x,ū)

[
exp

(
θ log ‖Snu‖ − n�(θ)

) r(Wn; θ)

r((x, ū); θ)
αn(M0,M1, . . . ,Mn)

]
.

Let IB∩{N=n} denote the indicator random variable of the event B ∩ {N = n}. For
any F∞-measurable random variable Z ≥ 0, we have

E[ZIB∩{N=n}] = E
[
ZE[IB∩{N=n}|F∞]] = E[Zαn(M0,M1, . . . ,Mn)].

Thus, from the above display, we have

P(θ)
(x,ū)

{
B ∩ {N = n}} = E(x,ū)

[
exp

(
θ log ‖Snu‖ − n�(θ)

) r(Wn; θ)

r((x, ū); θ)
IB∩{N=n}

]

and, hence,

P(θ)
(x,ū)

{
B ∩ {N < n}}

=
∞∑

n=0

P(θ)
(x,ū)

{
B ∩ {N = n}}

=
∞∑

n=0

E(x,ū)

[
exp

(
θ log ‖Snu‖ − n�(θ)

) r(Wn; θ)

r((x, ū); θ)
IB∩{N=n}

]

= E(x,ū)

[
exp

(
θ log‖SNu‖ − N�(θ)

) r(WN ; θ)

r((x, ū); θ)
IB∩{N<∞}

]
. �
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PROOF OF THEOREM 2. We will prove (2.8) first. Since r(·; θ) is an
eigenfunction of λ(θ) with respect to the operator T(θ), we have

T(θ)r((x, ū); θ) = λ(θ)r((x, ū); θ),

which implies that

E(x,ū)

{
eθ log ‖S1u‖r(W1; θ)

} = λ(θ)r((x, ū); θ).

By one-term Taylor expansion of λ(θ) and r((x, ū); θ) with respect to θ around 0,
we have λ(θ) ∼= 1 + γ θ + o(θ) and r((x, ū); θ) ∼= 1 + r ′((x, ū); 0) + o(θ).
Therefore,

E(x,ū)

{(
1 + log‖S1u‖θ + o(θ)

)(
1 + r ′(W1; 0)θ + o(θ)

)}
= (

1 + γ θ + o(θ)
)(

1 + r ′((x, ū); 0)θ + o(θ)
)

�⇒ E(x,ū) log ‖S1u‖ + E(x,ū)r
′(W1; 0) = γ + r ′((x, ū); 0)

�⇒ (I − T)r ′((x, ū); 0) = E(x,ū) log‖S1u‖ − γ.

Next, we want to show that

sup
(x,ū)

r ′((x, ū); 0) < ∞.(A.1)

By Lemma 4, the Markov chain {(Xn,Sn · ū), n ≥ 0} on D × P (Rd) is
w-uniformly ergodic, and an argument similar to Lemma 2 of Guivarch and Raugi
(1986) leads to the conclusion that it is irreducible. Hence, the drift criterion of
Theorem 17.4.2 of Meyn and Tweedie (1993) implies that there exists K > 0 such
that

r ′((x, ū); 0) ≤ K(E(x,ū) log ‖S1u‖ + 1).

Since E(x,ū) log‖S1u‖ < B for all x ∈ D and ū ∈ P (Rd) by Condition A2, we
have (A.1).

For the proof of (2.7), let T (n) = min(N,n). By Lemma 1 and Doob’s optional
stopping theorem, for all sufficiently small |θ |,

E(x,ū)

{
eθ log‖ST (n)u‖−�(θ)T (n)r(WT (n); θ)

} = r((x, ū); θ).

Taking derivatives with respect to θ on both sides yields

E(x,ū)

{(
log‖ST (n)u‖ − �′(θ)T (n)

)
eθ log‖ST (n)u‖−�(θ)T (n)r(WT (n); θ)

+ eθ log‖ST (n)u‖−�(θ)T (n)r ′(WT (n); θ)
} = r ′((x, ū); θ).

(A.2)

From (A.1), we can interchange the expectation and differentiation by the dom-
inated convergence theorem since T (n) ≤ n and sup|θ |≤δ,x∈D,ū∈P(Rd){|�(θ)| +
|�′(θ)| + |r((x, ū); θ)| + |r ′((x, ū); θ)| + E(x,ū) log‖S1u‖} < ∞ for sufficiently
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small δ > 0. Setting θ = 0 in (A.2) and noting that γ = �′(0), we obtain by inte-
grating with respect to ν that

Eν

{(
log‖ST (n)u‖ − �′(0)T (n)

) + r ′(WT (n); 0)
} = Eνr

′(W0; 0).

Note that EνT (n) → EνN , and that Eνr
′(WT (n); 0) → Eνr

′(WN ; 0) as
n → ∞ by the dominated convergence theorem. By the monotone conver-
gence theorem, we have Eν(

∑T (n)
j=1 σ(Wj−1,Wj)

+) → Eν(
∑N

j=1 σ(Wj−1,Wj )
+)

and Eν(
∑T (n)

j=1 σ(Wj−1,Wj)
−) → Eν(

∑N
j=1 σ(Wj−1,Wj)

−) as n → ∞.

Hence, applying the preceding argument separately to
∑T (n)

j=1 σ(Wj−1,Wj)
+ and∑T (n)

j=1 σ(Wj−1,Wj)
− gives the desired conclusion. �

The next lemma provides a renewal theorem for conditional Markov random
walks. Let τ− = inf{n ≥ 0; logSn < 0}, and N = Nb = inf{n ≥ 1 : logSn /∈ (0, b)}
for 0 < b < ∞. Under the assumption of µ ≤ 0, by using an argument similar
to (3.11), we can define

P− = Pπ

{
log Sτ− ≤ s, τ− < ∞,Wτ− ∈ dy

}
,

and denote π− as its stationary distribution.

LEMMA 5. Let ξ0, ξ1, . . . , ξn be a sequence of random variables from a
hidden Markov model {ξn, n ≥ 0} satisfying Condition C. Denote ξ− as the
negative part of ξ . Assume further there exists ε > 0 such that infx,ξ P{logS1 ≤
−ε|W0 = ((x, ξ), S0π)} > 0. Furthermore, we assume µ ≤ 0, Em| logS1| > 0. If
Eπ− log S2

τ−− < ∞, then on [log Sn > b] as b → ∞,

E(x,ū)[logSτ− | logSN ] → Eπ− logS2
τ−

2Eπ− logSτ−
.

PROOF. Since P(x,ū)(N < ∞) = 1, let Zn = log SN+n for n ≥ 1 . Put Vn =∑n
j=1 Zj and let

β = β(1) = β1 = inf{n :Vn < 0}, βn = β(1) + · · · + β(n),

where β(2), β(3), . . . are copies of β1. Since {(Xn, ξn), n ≥ 0} is a stationary
sequence, (β,Vβ) and (τ−, Sτ−) have the same distribution.

Define Nv = inf{n ≥ 1;Vβn < − logSN } on [log SN > b]. Then 0 > log SN +
Vβγ = logSN + ∑βγ

j=1 log SN+j , and log Sk ≥ 0 for k ≤ N + βγ . Hence logSτ− =
logSN + Vβγ , and by Theorem 2, E(x,ū)Vβγ = EmNvE(x,ū)Vβ + k((x, ū)), where
k((x, ū)) = E(x,ū)(r

′(WN ; 0)− r ′(WN+βγ ; 0)), which approaches 0 as b → ∞. On
{logSN > b},

E(x,ū)(logSτ− | log SNπ) = E(x,ū)(logSN + Vβr | log SN)

= logSN + E(x,ū)NvE(x,ū)Vβ + k((x, ū)).
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By using Theorem 2.4 of Fuh and Lai (2001) along with Theorem 2 of Stone
(1965) for the renewal function, we have as b → ∞,

E(x,ū)Nv − logSN

Eπ−|Vβ | → Eπ−V 2
β

2E2
π−Vβ

.

Hence, as b → ∞,

E(x,ū)(log Sτ− | log SN)

= log SN + E(x,ū)NvE(x,ū)Vβ + k((x, ū))

= −E(x,ū)|Vβ |
(

E(x,ū)Nv − log SN

E(x,ū)|Vβ |
)

+ k((x, ū))

→ −Eπ−|Vβ |
( Eπ−V 2

β

2E2
π−Vβ

)
= Eπ− logS2

τ−
2Eπ− logSτ−

. �

PROOF OF THEOREM 3. An essential part here is the verification of the
uniform integrability condition for the zero drift Markov random walk, induced
by the products of Markov random matrices. This can be done by a proof similar
to Theorem 5 of Fuh and Lai (1998). Since

P(θ0)
(x,ū){log ST ≥ b} = P(θ0)

(x,ū){τ < ∞} −
∫
{log ST ≤a}

P(θ0)
(x,ū){τ < ∞ | log ST }dP(θ0)

(x,ū),

we can approximate the first term via Theorem 2 of Fuh (1997). For the second

term, since θ1 > 0 and �′(θ1) = Eπ(θ1) logS1 > 0, we have P(θ0)
(x,ū){τ < ∞} = 1,

and∫
{log ST ≤a}

P(θ0)
(x,ū){τ < ∞ | log ST }dP(θ0)

(x,ū)

=
∫
{logST ≤a}

r(Wτ ; θ0)

r(W0; θ0)

r(W0; θ1)

r(Wτ ; θ1)
E(θ1)

(x,ū)

[
e−(θ1−θ0) logSτ | log ST

]
dP(θ1)

(x,ū).

Since r((x, ū); θ0)/r((x, ū); θ1) → 1 as � → 0, therefore there exists a positive
constant K such that 0 < r((x, ū); θ0)/r((x, ū); θ1) ≤ K for |θ1 −θ0| small enough
and for all (x, ū) ∈ D × P (Rd). Hence it is easy to check that g((x, ū), t) =
exp(−(θ1 − θ0)t)

r((x,ū);θ0)
r((x,ū);θ1)

is directly Riemann integrable. Therefore by the
Markov renewal theorem in Theorem 2.4 of Fuh and Lai (2001), Theorem 2 of
Fuh (1997) and a similar argument to that in Siegmund (1979), we have∫

{logST ≤a}
P(θ0)

(x,ū){τ < ∞ | log ST }dP(θ0)
(x,ū)

= exp[−�(b + ρ+ − c1)]P(θ1)
(x,ū){logST ≤ a} + o(�).
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On the other hand,

P(θ1)
(x,ū){logST ≤ a}

= P(θ1)
(x,ū){τ ∗ < ∞} −

∫
{logST π≥b}

P(θ1)
(x,ū){τ ∗ < ∞ | log ST }dP(θ1)

(x,ū),

where τ ∗ = inf{n : logSn < a}. By Taylor expansion for P(θ1)
(x,ū){τ ∗ < ∞ | logST }

on the set {logST ≥ b}, we have

P(θ1)
(x,ū){τ ∗ < ∞ | logST }

= e�aE(θ0)
(x,ū)

[
1 + �(log Sτ∗ − a)

−�
(
r ′(W0; 0) − r ′(Wτ∗; 0)

) + o(�) | log ST

]
.

By Lemma 5, we have∫
{logST ≥b}

P(θ1)
(x,ū){τ ∗ < ∞ | logST }dP(θ1)

(x,ū)

= exp[�(a + ρ− − c−)]P(θ0)
(x,ū){logST ≥ b} + o(�).

Hence, there are two relations for P(θ0)
(x,ū){logST ≥ b} and P(θ1)

(x,ū){log ST ≤ a}.
Solve the equations and take expectation under stationary distribution to prove
the theorem. �
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