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NONPARAMETRIC COMPARISON OF REGRESSION CURVES:
AN EMPIRICAL PROCESS APPROACH!'

BY NATALIE NEUMEYER AND HOLGER DETTE

Ruhr-Universitdt

We propose a new test for the comparison of two regression curves
that is based on a difference of two marked empirical processes based
on residuals. The large sample behavior of the corresponding statistic is
studied to provide a full nonparametric comparison of regression curves. In
contrast to most procedures suggested in the literature, the new procedure
is applicable in the case of different design points and heteroscedasticity.
Moreover, it is demonstrated that the proposed test detects continuous
alternatives converging to the null at a rate N —1/2 and that, in contrast
to all other available procedures based on marked empirical processes, the
new test allows the optimal choice of bandwidths for curve estimation (e.g.,
N~13 in the case of twice differentiable regression functions). As a by-
product we explain the problems of a related test proposed by Kulasekera
[J. Amer. Statist. Assoc. 90 (1995) 1085-1093] and Kulasekera and Wang
[J. Amer. Statist. Assoc. 92 (1997) 500-511] with respect to accuracy in
the approximation of the level. These difficulties mainly originate from the
comparison with the quantiles of an inappropriate limit distribution.

A simulation study is conducted to investigate the finite sample properties
of a wild bootstrap version of the new test and to compare it with the so
far available procedures. Finally, heteroscedastic data is analyzed in order
to demonstrate the benefits of the new test compared to the so far available
procedures which require homoscedasticity.

1. Introduction. The comparison of two regression curves is a fundamental
problem in applied regression analysis. In many cases of practical interest (after
rescaling the covariable into the unit interval) we end with a sample of N =nj+ny
observations,

(1.1) Yij = fi(Xij) + 0i(Xij)éeij, Jj=1...,n;i=12,

where X;; (j =1,...,n;) are independent observations with positive density ; on
the interval [0, 1] (i = 1, 2) and ¢;; are independent identically distributed random
variables with mean 0 and variance 1. In (1.1) f; and o; denote the regression and
variance functions in the ith sample (i =1, 2). In this paper we are interested in
the problem of testing the equality of the mean functions, that is,

(1.2) Hy: fi=f, versus Hi: f1# fo.
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Much effort has been devoted to this problem in the recent literature [see, e.g.,
Hérdle and Marron (1990), King, Hart and Wehrly (1991), Hall and Hart (1990),
Delgado (1993), Young and Bowman (1995), Bowman and Young (1996), Hall,
Huber and Speckman (1997), Munk and Dette (1998) or Dette and Neumeyer
(2001)]. Most authors concentrate on equal design points and a homoscedastic
error [see, e.g., Hirdle and Marron (1990), Hall and Hart (1990), King, Hart
and Wehrly (1991) and Delgado (1993)]. Kulasekera (1995) and Kulasekera and
Wang (1997) proposed a test for the hypothesis (1.2) which is applicable under the
assumption of different designs in both groups, but requires homoscedasticity in
the individual groups. In principle this test can detect alternatives which converge
to the null at a rate N~'/2 (here N = n; + n» denotes the total sample size),
but in the same papers these authors mention some practical problems with the
performance of their procedure, especially with respect to the accuracy of the
approximation of the nominal level. To our knowledge the problem of testing
the equality of two regression curves in the general heteroscedastic model (1.1)
with unequal design points was first considered by Munk and Dette (1998)
who considered the fixed design case and proposed a consistent test which
can detect alternatives converging to the null at a rate N~'/4 under very mild
conditions for the regression and variance functions (i.e., differentiability is not
required). Recently Dette and Neumeyer (2001) proposed several tests for the
hypothesis (1.2) which are based on kernel smoothing methods and applicable in
the general model (1.1). These methods can detect alternatives converging to the
null at a rate (N+/h)~'/2, where h is a bandwidth (converging to 0) required for
the estimation of nonparametric residuals.

It is the purpose of the present paper to suggest a new test for the equality
of the two regression curves f; and f» which can detect alternatives converging
to the null at a rate N~'/2 and is applicable in the general model (1.2) with
unequal design points and heteroscedastic errors. The test statistic is based on a
difference of two marked empirical processes based on residuals obtained under
the assumption of equal regression curves. We prove weak convergence of the
underlying empirical process to a Gaussian process generalizing recent results on
U -processes of Nolan and Pollard (1987, 1988) to two-sample U -statistics. The
asymptotic null distribution of the test statistic depends on certain features of the
data and the finite sample performance of a wild bootstrap version is investigated
by means of a simulation study and from a theoretical point of view.

We finally note that marked empirical processes have already been applied by
Delgado (1993) and Kulasekera (1995) and Kulasekera and Wang (1997) for test-
ing the equality of two regression functions. However, Delgado’s (1993) approach
sensitively relies on the assumption of equal design points and homoscedastic er-
rors because the marked empirical process is based on the differences of the ob-
servations at the joint design points. The method proposed in this paper uses two
marked empirical processes of the residuals for both samples, where the residuals
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are obtained from a nonparametric estimate of the (under Hy) joint regression func-
tion from the total sample. Moreover, in the case of equal design points the basic
statistic considered here essentially reduces to the test statistic considered by Del-
gado (1993). On the other hand the methods proposed by Kulasekera (1995) and
Kulasekera and Wang (1997) require a homoscedastic error distribution. Moreover,
these authors mention some practical problems because the performance of their
procedure depends sensitively on the chosen smoothing parameters for the estima-
tion of the regression curves and larger noises yield levels substantially different
from the nominal level. As a by-product of this paper we will prove that the prob-
lem with the accuracy of the approximation of the nominal level is partially caused
by a substantial mistake in the proof of Theorems 2.1 and 2.2 in Kulasekera (1995),
because this author ignores the variability caused by the nonparametric estimation
of the regression function in the application of Donsker’s invariance principle. We
present a correct version of Kulasekera’s result in Section 3.

A different method was proposed in a recent paper by Cabus (2000), who
used U -processes for the construction of a test statistic. However, her approach
assumes knowledge of the variance function and design density and is therefore
difficult to implement in practice. In order to avoid this drawback we investigate
a wild bootstrap version of Cabus’ test in Section 4. Finally, it is worthwhile to
mention an important difference between our method and Kulasekera’s (1995)
and Cabus’ (2000) approaches. The method proposed in this paper allows
“optimal” choices of the bandwidth (e.g., N ~!/° in the case of twice differentiable
functions) and therefore avoids undersmoothing of the regression estimate [see,
e.g., assumption 5 in Kulasekera (1995)]. This theoretical advantage is achieved
by the application of a difference of two marked empirical processes, which
basically yields a cancellation of lower order bias terms. As a consequence we
obtain a better approximation of the nominal level from a theoretical point of view,
which is reflected for finite samples in a simulation study presented in Section 4.

The remaining parts of the paper are organized as follows. Section 2 introduces
the marked empirical processes and the corresponding test statistics and gives their
asymptotic behavior. Some comments regarding the test of Kulasekera (1995) and
a clarification of its asymptotic properties are given in Section 3. The finite sample
behavior of a wild bootstrap version of the discussed procedures is studied in
Section 4, which also gives a result regarding the consistency of a wild bootstrap
version of the test proposed in this paper and discusses a data example. In this
example we demonstrate the potential benefits of our approach by reanalyzing
heteroscedastic data which were analyzed previously with testing procedures
assuming homoscedasticity. Finally, all proofs are deferred to Section 5.

2. A marked empirical process and its weak convergence. Recall the
formulation of the general two sample problem (1.1). We assume that the
explanatory variables X;; (j =1,...,n;) are i.i.d. with density r; on the interval
[0, 1] such that r;(x) > ¢ > 0 for all x € [0, 1] (i =1, 2). The regression functions
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f1, f>» and the densities 1, rp are supposed to be d (> 2) times continuously
differentiable; that is,

2.1 ri, fi € C4([0, 17), i=1,2.

Throughout this paper let

X,
22) ’“”—nh ( h’)

denote the density estimator from the ith sample (i = 1, 2) and

r(x — r X + — r X
Fx) = —71(x) N r2(x)
the density estimator from the combined sample Xi1,..., X1,,, X21, ..., X2p,.
For the sake of transparency we assume an equal bandwidth /4 for all estimators
satisfying

(2.3) h—0, Nh* - 0, Nh? = oo,

but we note that all results of this paper can be generalized to the case of different
bandwidths satisfying (2.3). In (2.2) the function K is a symmetric kernel with
compact support of order d > 2; that is,

. = 1’
2.4) / K(uw)u’! du { =0,
#0,

[see Gasser, Miiller and Mammitzsch (1985)]. We assume that there exists a
decomposition of the nonnegative axis of the form

’

0
j<d-1,
d

~. =
[l 1A II

[0,00) = | Jlaj-1.a))

O=ap<a; <--- <ayu_1 < a, = o0) such that for some ¢ € {—1, 1} the function
€K 1is increasing on the interval [as;,az;j41) and decreasing on the interval

[azj+1,a2j42).
A straightforward argument shows that

(2.5) 7(x) £ r(x) :=k1r1(x) + kar2(x)

as N — oo, provided that sizes of the individual samples satisfy

(2.6) ni +0<1) = 1.2
. — =K N K =1, 4,
NN N !
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where «; € (0,1), i = 1,2. The Nadaraya—Watson estimator of the regression
function [see Nadaraya (1964) or Watson (1964)] from the combined sample is
defined by

~ 1 & (x— X 1
f(x)=WZZK( ; )Yij?(x)

i=1j=1

2.7) - -
_ (m/N)Fi(x) f1(x) + (n2/ N2 (x) fo(x)
B F(x)

and consistently estimates

_ kiri(x) f1(x) + k2r2(x) f2(x)
o r(x)

fx):

’

where

~ 1 & x —X;j 1
ix)=—) K L)Y
S mh§;< e

is the curve estimator from the ith sample (i = 1, 2). Note that under the null
hypothesis of equal regression curves we have f] = f, = f. Fori =1, 2 we define
residuals

n3_; ~ ~ .
(2.8) ejj = T(Yij — FXip))F(Xij)r3—i(Xij),
N ~ -
(2.9 fij= ;(Yij — f(Xij)/7i(Xij),
l
and consider the marked empirical processes
| 1 ni 1 np
(2.10) R}ﬂ(z):NZeUI{XUft}—NZezjl{ijSt},
j=1 j=1
~2) 1 ni 1 np
2.11) RN =2 fiiliXi =th =5 D fojl(Xaj 1},
j=1 j=1

where ¢ € [0, 1] and /{-} denotes the indicator function. The multiplication of the
residuals by the density estimators 7(x)73—_;(x) and 1/7;(x) is motivated by a
cancellation of the lower order bias terms in the marked empirical processes under
the null hypothesis of equal regression curves (see the following Proposition 2.1
and its proof and Theorem 2.2). The form of R 5\%) is attractive because it essentially
reduces for equal design points (i.e., ny =n3, X1; = X2, j =1,...,ny) to the
process considered by Delgado (1993). As pointed out by a referee the residual f;;
is not defined in the case 7;(X;;) = 0, which may occur with positive probability
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if the kernel K also attains negative values. In such cases the residuals f;;
should be multiplied by the factor /{7;(X;;) # 0}. Because the densities satisfy
ri(x) = ¢ > 0, these factors converge uniformly to 1 and the effect of the
multiplication is asymptotically negligible. The following proposition indicates
that the marked empirical processes defined in (2.10) and (2.11) are useful for
testing the hypothesis (1.2) of equal regression curves. The proof is given in
Section 5.

PROPOSITION 2.1. Assume that (2.1), (2.3), (2.4) and (2.6) are satisfied.

(1) Under the null hypothesis of equal regression curves we have
—~ 1 1
() 2d
EIR ()|=0— Oh™)y=o0ol—|, £=1,2.
[y ] (Nh>+ ¢ 0<ﬁ)

(i1) Under the alternative of unequal regression curves we have

R t
E[RV ()] = k12 /0 (1) — H@)r)r ()ra@) dx + 0(hd),

5@ a1 ! d
E[RQ ()] = K1K2/0 (f1@) — o)) dx + O(h).

Note that
t
/0 (f1(x) = f2(0))r(x)ri(x)r2(x)dx =0 Vi e[0,1]

if and only if the hypothesis (1.2) is valid. Consequently, a test for the hypothesis
of equal regression curves could be based on real valued functionals of the
processes (2.10) and (2.11) such as (i =1, 2)

1 - o~
/ (RV)Y* (1) dt, sup |[RW ()]
0 t€l0,1]

The asymptotic distribution of these statistics can be obtained by the continuous
mapping theorem [see, e.g., Pollard (1984)] and the following result which

establishes weak convergence of the processes R %) and R 53) in the Skorokhod
space DI[O0, 1].

THEOREM 2.2. Assume that (2.1), (2.3), (2.4) and (2.6) are satisfied. Then
under the null hypothesis of equal regression curves the marked empirical process

VNR E\}) defined by (2.10) converges weakly to a centered Gaussian process Z
in the space DI0, 1] with covariance function

HW (s, 1)
(2.12)

= [ R omanso + oR@rin @) (mara (0 () dx.
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Similarly, the process ~/N R 53) defined by (2.11) converges weakly to a centered
Gaussian process Z®) in the space D0, 1] with covariance function

1

SNt
(2.13) H@(s,1) = / (o (rara(x) + 0F (krr (X)) —————

0 Kk1r1(x)kara(x)

REMARK 2.3. It is worthwhile to mention that the statement of Theorem 2.2

does not depend on the specific smoothing procedure used in the construction
of the processes. For example, a local polynomial estimator [see Fan (1992) or
Fan and Gijbels (1996)] can be treated similarly but with a substantial increase
of mathematical complexity. Note that local polynomial estimators have various
practical and theoretical advantages such as better boundary behavior and they
require weaker differentiability assumptions on the design densities. We used
the Nadaraya—Watson estimator because for this type of estimator the proof of
the VC-property for certain classes of functions is much simpler compared to
local polynomial estimators [see, e.g., the proof of Lemma 5.3a]. Nevertheless,
Theorem 2.2 remains valid for local linear (or even higher order) polynomial
estimators and we used local linear smoothers in the simulation study and the data
example presented in Section 4.

REMARK 2.4. The tests obtained from the continuous mapping theorem
and Theorem 2.2 are consistent against local alternatives converging to the null
hypothesis at a rate 1/4/N. This follows by a careful inspection of the proof
of Theorem 2.2, which shows that for local alternative;s of the form fi(-) —
L) =A0)/ V'N the marked empirical processes VNR X,)C) (i =1, 2) converge
weakly to Gaussian processes with respective covariance kernels H (-, ) given
in Theorem 2.2 and means

t
wD(@) = ey /0 ACOr (@) (0)ra(x) dx,

t
w®@@) = k1i2 / A(x)dx,
0

respectively. Another approach to obtain tests which achieve nontrivial power
for N~!/2 distant alternatives is based on comparisons of smoothers with fixed
bandwidths. These tests will usually not detect alternatives where the regression
functions differ by an oscillating function. On the other hand one can construct
examples where nonparametric tests based on comparison of local smoothers
perform better than tests based on marked empirical processes [see Dette and
Neumeyer (2001)]. Because the main application of the test is to answer the
question if it is more appropriate to fit the two regression functions by one fit
obtained from the pooled sample or by separately smoothing the two samples,
some care is necessary with the interpretation of the corresponding p-value. In
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practice the statement of the resulting p-value should always be accompanied by
a corresponding fit of the data under the null hypothesis and the alternative. Of
course this remark applies to all goodness-of-fit tests proposed in the literature for
comparing regression curves. The corresponding curve estimators are already used

in the construction of the processes R 5\}) and R 53) and therefore easily available if
a test is based on these processes.

REMARK 2.5. The results can easily be extended to the comparison of
k regression curves in the model
Yij = fl(XU) +Gi(Xij)8ija j=1,....n;,i=1,... k.
For a generalization of the statistic R 5\%), consider the residuals
el =Y = FOX0)F (X0
nit1
ni+n

(i=1,....k—1, jelii+1}, te {1,...,n,~}) where 7@ and 7@ denote
the Nadaraya—Watson and the density estimators from the combined ith and
(i 4+ 1)st samples. If N = Zf-‘zl n; denotes the total sample size, ”ﬁ’ =K + O(%)
[kie,1); i=1,...,k] and

n;
X | ——7 (X0l + r X I~:~)
(ni+nl+ ri(X )l j=iv) Fip1 (X o) Iyj=iy

X0 (@)
R e, I{Xig <t
Ni nl+nz+lz {Xig <1}

1 nj+1
- 1{X; <t i=1,...,k—1,
ni‘f‘ni—i—le 1 z—HE { i+1,¢ |
then it follows that /N R m(t) =+/N (I/Q\ 5\})1 (1), . ﬁ 5\},)(_1 T converges weak-

ly to a (k — 1)-dimensional Gaussian process (Z; (1) e Z,El_) I)T with covariance
structure

Cov(zV (1), 2" () = kij(s A D)
with k,‘j ij,‘ (j <i)and
/0 (07 (X)kig17i1 (X) + 0F (O ()
ﬁri(’c)riﬂ(x)(r(i)(x))zdx, if j =1,
kij(u) = U, Kj—1KjKj+1
— | o) — (v 2
(Kj—l +Kj) (Kj +Kj+1)
x i1 )rjrj@rPwrV-wdx,  ifj=i+1,
0, ifj>i+1,
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where

. K' K.
rOx)=——r(x)+ — s

riy1(x), i=1,...,k.
Ki + Ki+1 Ki + Kit+1

3. Some remarks on related tests. As pointed out in the Introduction, the
application of empirical processes has already been proposed by several authors.
Among many others we refer to An and Bing (1991) and Stute (1997), who
considered the problem of testing for a parametric form of the regression and to the
recent work of Delgado and Gonzélez-Manteiga (2001), who used this approach
in the construction of a test for selecting variables in a nonparametric regression.
In the context of comparing regression curves empirical processes were already
applied by Delgado (1993), Kulasekera (1995) and Kulasekera and Wang (1997)
and recently in an unpublished report by Cabus (2000). Delgado considered equal
design points (i.e., n] = ny; X1; = X»;) and a homoscedastic error distribution
and the process R 53) reduces in this case essentially to the process introduced by
Delgado (1993). Kulasekera (1995) and Kulasekera and Wang (1997) discussed
the case of not necessarily equal design points and homoscedastic (but potentially
different) errors in both samples. In this case these authors proposed a test also
based on a marked empirical process and investigated its finite sample performance
by means of a simulation study. In the same papers Kulasekera (1995) and
Kulasekera and Wang (1997) mention some difficulties with respect to the practical
performance of their procedure. They observed levels substantially different from
the nominal levels in their study and explained these observations by the sensitive
dependency on the bandwidth. We will demonstrate in this section and in the
following section that these deficiencies are on the one hand caused by the use
of incorrect (asymptotic) critical values and on the other hand by a nonnegligible
bias in the calculated residuals for finite samples.

To be precise, consider the model (1.1) in the case of a fixed design X;; =1t;;
(j=1,...,n;;i =1,2) satisfying a Sacks and Ylvisaker (1970) condition,

fij J : :
3.0 / rdi="2: =1, n,i=1,2:
0 n;

let ]‘: denote the Nadaraya—Watson estimator from the ith sample (i = 1,2) and
define residuals by

&1 = Y1 — f(t), i=1,...,ni,

exj =Y — fi(t2)), j=1,...,na.
The corresponding partial sums are given by

[nit] ~
eij .
3.2) wi(t) = , O<t<l1l;i=1,2,
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and the following result specifies the asymptotic distribution of these marked
empirical processes. For the appropriate asymptotic statement we require a
different bandwidth condition,

(3.3) h— 0, Nh* 0, Nh? = co.

THEOREM 3.1. If the assumptions (2.1), (2.4), (2.6), (3.1) and (3.3) are
satisfied, then under the null hypothesis of equal regression curves the marked
empirical process |11 defined in (3.2) converges weakly to a centered Gaussian
process with covariance function

ri(x) dx.
ka1 (x)

where R(t) = fé ri(x)dx denotes the cumulative distribution function corre-
sponding to the design density ry.

Similarly, the process > converges weakly to a centered Gaussian process with
covariance function m1(s, t).

R (sAn) 5 5
(3.4) mia(s, 1) =/0 (o (X)k2r2(x) + 05 (XK1 (X))

Note that Kulasekera (1995) considered a homoscedastic error and claimed
in his proof of Theorem 2.1 [Kulasekera (1995)] weak convergence of w; to a
centered Gaussian process with covariance function m; (s, t) = aiZ - (s A t), which
is usually different from m; 3_; (s, ¢). For this reason some care is necessary if
the test of Kulasekera is applied. We finally remark that Kulasekera (1995) and
Kulasekera and Wang (1997) discussed several related tests and similar comments
apply to these procedures.

In the case of a random design, the processes (3.2) have to be modified because
in this case the observations are not necessarily ordered. A minor modification
given by

1 ¢ —~
AP (X o< | =
ﬁ;(Yz] f3—l(Xl]))I{Xl] <t} i=1,2,
could be considered, which yields a slightly simpler covariance structure of the
Gaussian process.

35 W=

THEOREM 3.2. If the assumptions (2.1), (2.4), (2.6) and (3.3) are satisfied,
then under the null hypothesis of equal regression curves the marked empirical
process XE\}) defined by (3.5) converges weakly to a centered Gaussian process
with covariance function mi3(R((s), R1(t)) where myy is defined in (3.4)
and Ry denotes the distribution function of Xi;. Similarly, the process )»53)
converges weakly to a centered Gaussian process with covariance function
m21(R2(s), Ra(t)), where R; is the distribution function of X3 .
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REMARK 3.3. Note that in contrast to the new tests presented in Section 2,
Kulasekera’s (1995) method requires a regression estimate with bandwidth &
satisfying Nh?? — 0 and the “optimal” choices for the bandwidth (e.g., N~!/° in
the case of twice differentiable functions) cannot be used for this test [see, e.g.,
assumption 4; in Kulasekera (1995)]. A consequence of this undersmoothing
of the regression estimate is a substantially less precise approximation of the
nominal level for nonconstant regression functions if optimal bandwidths for curve
estimation are used in these procedures. This loss of accuracy can also be observed
for the corresponding bootstrap procedures (see our simulation study in Section 4).

A rather different method for the problem of comparing regression curves was
recently proposed by Cabus (2000), who considered the U -process

ny na

1 X1 — Xp;
(3.6) Uni=——33 (Vi - Yzj)K<¥)1{XU <1, Xy <1).
ninxh P h

Note that this approach is similar to a method introduced by Zheng (1996) in the
context of testing for the functional form of a regression. Cabus (2000) proved
weak convergence of the process v/ NUy to a centered Gaussian process with
covariance function

SNt

L (02 mara o) + o2 orir (0)r (ora () dx

K1k2 JO
and assumed knowledge of the variance function and design density for the
construction of a test of equality of the regression functions. Using similar
arguments as given in Section 5, the consistency of a wild bootstrap version of
this test can be established. However, this procedure has the same problems with
respect to its finite sample performance as mentioned for Kulasekera’s approach
(see Remark 3.3 and the simulation study in Section 4). It requires undersmoothing
which results in a substantial loss in the approximation of the nominal level if the
regression functions are not constant and optimal bandwidths for curve estimation
are used (see the simulation study in the following section).

4. Wild bootstrap and finite sample properties. Throughout this section we
will study the finite sample properties of a test based on the Kolmogorov—Smirnov
distance

4.1) KW= sup |[RY 0|, i=1,2,
t€l0,1]

which rejects the hypothesis of equal regression curves for large values of K;\i).

In principle, critical values can be obtained from Theorem 2.2 and the continuous
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mapping theorem. However, it is well known [see, e.g., Hjellvik and Tj@stheim
(1995), Hall and Hart (1990)] that in similar problems of specification testing
the rate of convergence of the distribution of the test statistic is usually rather
slow. Additionally the asymptotic distributions of the Gaussian processes obtained
in Theorems 2.2, 3.1 and 3.2 usually depend on certain features of the data
generating process and cannot be directly implemented in practice. For this reason
we propose in this section the application of a resampling procedure based on the
wild bootstrap [see, e.g., Wu (1986)] and prove its consistency (see Theorem 4.1).
The finite sample properties of the resulting tests are then investigated by means
of a simulation study. To be precise, let fg(x) denote the Nadaraya—Watson
estimator of the regression function from the total sample defined in (2.7) using
the bandwidth g > 0, where this dependency has now been made explicit in our
notation. Define nonparametric residuals by

(4.2) =Y — fo(Xip),  j=1,...mi=1,2,

and bootstrap residuals by

(4.3) & =% Vij,

where Vii, Vig, ..., Vig,, Vai, ..., Vou, are bounded i.i.d. zero mean random

variables that are independent from the total sample

(4.4) yNZZ{Xl‘j,Y,‘jU:l,Z, j=1,...,n,~}.
We obtain the bootstrap sample

4.5) Yi’; = fo(Xij) + sfj

and the corresponding marked empirical processes

S 1 2 ng —~
Ry ()= 20 3 (=D = i (Xep)

=1 j=1
(4.6) N3
x 7, (X)) N P30 (Xgj)1{ X <t},
S LGRS o ~ N 1
@47 Ry (t)=— (DY) — fr (Xej)) —=—=—1I{Xy; <1},

where throughout this section the index * means that the process has been
calculated from the bootstrap sample (4.5). Note that we use the bandwidth A
for the calculation of the test statistic (which is indicated by the extra index in
f}j‘ and 7;,) and a bandwidth g for the calculation of the residuals. Let K](\',)*
(i =1, 2) denote the statistic in (4.1) obtained from the bootstrap sample. Then the

hypothesis of equal regression curves is rejected if K 1(6) > k;(’l) _» Where k;,(lf —u
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denotes the critical value obtained from the bootstrap distribution, that is,
PKN =k o | Yw) =, i=1,2

The consistency of this procedure follows from the continuous mapping theorem
and the following result, which establishes asymptotic equivalence (in the sense of
weak convergence) of the processes v N R X,) and vV/NR 5\’,)* in probability condi-
tionally on the sample Y .

THEOREM 4.1. If the assumptions of Theorem 2.2 and the bandwidth
conditions

g—0, Ngh—oo, Ng¥'=o0(),
4.8)
2d+1 2d

& g——>0

— = 0,
h2dlog* N h

are satisfied, then the bootstrapped marked empirical process N R X,)* converges
under the null hypothesis of equal regression curves weakly to the centered
Gaussian process Z9 (i = 1,2) of Theorem 2.2 in probability conditionally on
the sample Y .

For the sake of comparison we will also discuss the bootstrap version of the
tests based on the approaches proposed by Kulasekera (1995) and Cabus (2000).
More precisely, we use the generalization of Kulasekera’s approach to the random
design case and reject the hypothesis of equal regression curves for large values of
the statistic

1 2
(4.9) LN=max< sup A3 ()], sup |x§\,)(t)|>,
t€[0,1] tel0,1]

where the processes AS)C) and )\53)(-) have been defined in (3.5). Similarly, we

consider the statistic

(4.10) Cy = sup |[Uy@)I,

tel0,1]
where Uy is the process introduced by Cabus (2000) and defined by (3.6). The
wild bootstrap version of these tests is essentially the same as explained in the
previous paragraph.

In our investigation of the finite sample performance of these procedures
we considered a uniform density for the explanatory variables Xj; and X»;
(i.e., r1 = rp = 1), homoscedastic errors in both samples given by alz(t) =0.5,
0’22(t) = 0.25 and the sample sizes (n1,n2) = (25,25), (25,50), (25,100),
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(50,25), (50,50), (50,100). For the regression functions we considered the
following scenario:

O fHx) = L) =1,
(i) f1(x) = f2(x) =exp(x),
(1)  f1(x) = fa(x) =sin(2wx),
iv) fix)=1; falx)=1+x,
(4.11) (V) filx) =exp(x); fa(x) =exp(x) +x,
(vi)  fi(x) =sinrx); fo(x) =sin(Rmrx) + x,
(vii)  fikx)=1;  fa(x) =1+ sin27x),
(vii)  fi(x) =exp(x);  f2(x) =exp(x) + sin(27x),
(x) fi(x) =sinxx); fo(x) =2sin(2wx),

where the first three cases correspond to the null hypothesis of equal regression
curves. For the estimation of the regression functions from the total and individual
samples we used a local linear estimator [see Fan and Gijbels (1996)] with the
Epanechnikov kernel,

K@) =31 - x5 ().

All bandwidths for the estimation from the combined and individual samples were
chosen data adaptively. We investigated two selection rules. The first method is a
plug-in method [see Gasser, Kneip and Kohler (1991)] leading to bandwidths with
the optimal rate # = ¢ N~ !/>. For the consideration of a second (simpler) method,
we performed simulations for the simple rule of thumb,

~2 ~2.1/5 ~2\ 1/5
hz{w}/, hi:(‘i')/, =12
(n1 +n2)? ni

where 81'2 denotes the estimator of Rice (1984) for the integrated variance function
fol oiz(t)ri (t)dt for the ith sample (i = 1, 2). The bandwidths in the bootstrap
steps were chosen slightly larger, that is, g = /6 (although this is not necessary
for the asymptotic theory). The results for both selection procedures are not
distinguishable and only the first case will be displayed.

The random variables V;; used in the generation of the bootstrap sample are
1.i.d. random variables with masses (\/5 + 1)/2\/3 and (\/3— 1)/2\/3 at the points
(1 —+/5)/2 and (1 + +/5)/2 (note that this distribution satisfies E[V;;]=0;
E [Vl%] =F [Vi;] = 1). The corresponding results are listed in Tables 1 and 2 for the

statistics K 1(\,1), K 1(\,2), respectively, which show the relative proportion of rejections
based on 1,000 simulation runs, where the number of bootstrap replications
was chosen as B = 200. We observe a sufficiently accurate approximation of
the nominal level in nearly all cases. A comparison of the tests based on
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TABLE 1
Rejection probabilities of a wild bootstrap version of the test based on K 1(\/1) [see (4.1)] for various
sample sizes and the regression functions specified in (4.11). The errors are homoscedastic and
have variances 012 =0.5, 022 =0.25

ny: 25 50 100
ny o: 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

25 (i) 0023 0046 0.109 0.018 0.039 0.098 0.026 0.060 0.112
@)  0.029 0052 0.106 0.028 0.058 0.112 0.037 0.061 0.121
(i)  0.019 0.039 0100 0.022 0.052 0.115 0.031 0.054 0.097

@iv) 0449 0568 0.686 0557 0.665 0.781 0596 0.703  0.898
(v) 0484 0607 0716 0567 0676 0.777 0.584 0.701  0.808
(vi) 0346 0462 0601 0425 0549 0.655 0512 0.645 0.749

(vii) 0214 0322 0477 0260 0404 0554 0294 0408  0.558
(viii)  0.197 0316 0456 0260 0403 0565 0277 0416  0.578
(ix) 0.108 0.184 0312 0230 0325 0458 0296 0435 0.586

50 (i 0023 0052 0114 0.021 0.044 0.098 0.031 0.042 0.111
(i)  0.027 0.049 0.094 0.029 0.050 0.107 0.021 0.047 0.096
(i)  0.027 0.047 0.096 0.025 0.046 0.089 0.029 0.053 0.096

@iv) 0622 0.748 0.838 0.799 0.878 0923 0865 0917 0954
(v) 0615 0741 0836 0802 0861 0919 0.888 0.939 0971
(viy 0535 0661 0759 0.734 0.717 0.883 0.827 0.881  0.932

(vii) 0226 0357 0535 0439 0579 0737 0583  0.728  0.881
(viii)  0.199 0329 0534 0452 0379 0745 049  0.719  0.855
(ix) 0.112 0204 0358 0314 0465 0.617 0508 0.667  0.830

K](Vl) and K](\%) shows that the application of the marked empirical process R 53)
usually yields an improvement with respect to the power of approximately 5-10%
(see Tables 1 and 2) and in most cases also a better approximation of the nominal
level. Tables 3 and 4 show a few of the corresponding results for the wild
bootstrap tests based on the statistics Ly and Cy. The results of the first three
rows demonstrate that these procedures yield a less accurate approximation of the
nominal level, except in the case (i), where the regression functions are assumed
to be constant. In all other cases the level is underestimated. The reason for
these problems (as mentioned in Remark 3.3) is that in general the corresponding
partial sum processes for Kulasekera’s (1995) and Cabus’ (2000) tests have only
a stochastic expansion of order 44 under the null hypothesis of equal regression
curves (except in the case, where f; = f> is constant). This nonnegligible bias
also appears if critical values are obtained by the wild bootstrap. The processes
R E\}) and R 53) are based on a difference of two marked empirical processes and
this difference operation produces a stochastic expansion of order 42 under the
null hypothesis (see Proposition 2.1 and its proof’). This theoretical advantage is
partially supported by our simulation study. The wild bootstrap tests based on
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TABLE 2
Rejection probabilities of a wild bootstrap version of the test based on K 1(\%) [see (4.1)] for various
sample sizes and the regression functions specified in (4.11). The errors are homoscedastic and
have variances 012 =0.5, 022 =0.25

ny: 25 50 100
ny a: 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

25 (i 0027 0057 0119 0.024 0.052 0.109 0.028 0.055 0.107
@) 0032 0061 0110 0.030 0.058 0.114 0.023 0.053 0.108
(i)  0.031 0.052 0.105 0.033 0.059 0.103 0.025 0.054 0.108

@iv) 0599 0724 0804 0.681 0.783 0.873 0.719  0.806  0.895
(v) 0.644 0752 0.838 0.709 0.800 0.881 0.707 0.810 0.885
(vip 0523 0634 0745 0599 0.699 0.794 0.633 0.749  0.837

(vii)  0.111 0223 0421 0.067 0.177 0359  0.098 0207 0.375
(viii)  0.112  0.226 0409 0.111 0201 0372  0.128  0.239  0.404
(ix) 0067 0.160 0322 0.081 0.132 0.261 0.090 0.143 0279

50 i 0029 0052 0093 0035 0.052 0.117 0.033 0.059 0.113
@) 0023 0047 0112 0.034 0.051 0.107 0.031 0.056 0.109
(i)  0.022 0.048 0.091 0.023 0.049 0.097 0.028 0.053  0.097

Giv) 0761 0.845 0915 0919 0950 0982 0953 0974 0.990
(v) 0726 0814 0.883 0911 0948 0975 0958 0979 0.992
(vip 0723 0815 0877 0877 0932 0966 0946 0976  0.988

(vii) 0.176 0308 0525 0391 0574 0777 0490 0.651  0.802
(viii)  0.137 0291 0505 0.438 0.619 0810 0457 0.629 0.803
(ix) 0117 0265 0476 0317 0513 0.692 0321 0480 0.677

TABLE 3
Rejection probabilities of a wild bootstrap version of the test based on Ly [see (4.9)] for various
sample sizes and the regression functions specified in (4.11). The errors are homoscedastic and
have variances 012 =0.5, 022 =0.25

ny: 25 50 100
mo e 25% 5%  10% 25% 5% 10% 25% 5%  10%

25 (i 0.029 0.054 0.097 0.028 0057 0.114 0.036 0.058 0.110
(G) 0.015 0.032 0.076 0.013 0.035 0.083 0.019 0.038 0.085

(iii)  0.010 0.036 0.080 0.019 0.038 0.076 0.021 0.043 0.082

Giv) 0593 0715 0793 0.670 0.770 0.863  0.654 0.766  0.862

(vii)  0.090 0.152 0302 0.033 0.134 0269 0.089 0.181 0.327

50 (i 0.024 0.052 0101 0.024 0056 0.117 0.035 0.068 0.107
(i) 0.019 0.037 0.084 0.017 0.041 0.087 0.021 0.041 0.081

(iii))  0.014 0.029 0.081 0.021 0.039 0.079 0.019 0.038 0.086

@Giv) 0779 0872 0923 0912 0949 0976 0941 0967 0.982

(vii) 0123 0234 0399 0350 0539 0.692 0401 0.615 0.731
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TABLE 4
Rejection probabilities of a wild bootstrap version of the test based on Cy [see (4.10)] for various
sample sizes and the regression functions specified in (4.11). The errors are homoscedastic and

have variances 012 =0.5, 022 =0.25

ny: 25 50 100

ny o: 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

25 (i) 0.032 0.054 0.106 0.025 0048 0.113 0.032 0.064 0.120
(i)  0.014 0.038 0.081 0.019 0.037 0079 0.022 0.046  0.091

(i) 0015 0.034 0.082 0.021 0.039 0.08  0.021 0.048  0.093

(iv) 059 0.791 0804 0.627 0.739 0.863 0.626  0.744  0.821

(vii)  0.081 0.152 0321 0.046 0.124 0289 0.076  0.144  0.268

50 (i 0026 0056 0.107 0.023 0045 0.103 0.031 0.059 0.101
(3) 0.019 0.038 0.084 0.020 0.041 0.091 0.022 0.043 0.091

(i)  0.018 0.042 0.088 0.022 0.043 0.086 0.021  0.041  0.089

Gv) 0781 0.860 0919 0886 0925 0963 0909 0955 0976

(viip  0.145 0.217 0424 0312 0497 0712 0401 0589  0.721

K](\}) and Kj(\,z) yield a sufficiently accurate approximation of the nominal level
in all considered cases, while for small sample sizes, Ly and Cy yield only a
comparable approximation of the level for constant regression functions. (Even for
linear regression functions the error is substantial; these results are not displayed.)
For these reasons only the cases (iv) and (vii) are displayed in Tables 3 and 4 as
illustration for the performance of these tests under alternatives. Here we observe
in the case 1 = fi(x) = f>(x) — x a similar behavior as for the statistics Kj(\,l)

and K 1(\,2) while in the situation 1 = f1(x) = f>(x) — sin(2w x) of an oscillating
alternative the tests based on Ly and Cy have less power. In all other cases ( f1, f>
not constant) the loss of power when applying the wild bootstrap tests based on Ly
and Cy is of similar order. This loss of power can be partially explained by the fact
that the tests of Kulasekera (1995) and Cabus (2000) underestimate the nominal
level. Based on our (limited) numerical experience, the wild bootstrap version of
the test based on K ](\%) should be preferred to the procedure based on K 1(\,1) and to
Kulasekera’s (1995) and Cabus’ (2000) tests because it approximates the nominal
level most accurately. We finally mention that (based on a further numerical study)
these differences are relatively stable with respect to different selection rules of the
bandwidth.

EXAMPLE 4.2. We conclude this section by illustrating the advantage of
our procedure with a data example involving heteroscedasticity. To this end we
reanalyze data measuring the concentration of sulfate in the rain of North Carolina,
which was obtained as a part of the National Atmospheric Deposition Program.
This data was investigated by Hall and Hart (1990), who compared the sulfate
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TABLE 5
Semiannual variance estimates of the rainfall data discussed by Hall and Hart (1990)

Variance estimate

Period 1 2 3 4 5 6 7 8 9 10

Coweeta 0279 0.205 0385 0.223 0276 0.629 0361 0.182 0.407 0.613

Lewiston 0.929 0584 0.614 0.769 0.551 1.088 0.549 0.551 0.573 0.459

concentration as a function of time in the two towns, Coweeta and Lewiston. The
data available for the analysis were weekly observations of the concentration of
sulfate in the rain over a five-year period 1979-1983 [see Figure 1 in Hall and Hart
(1990)]. A residual analysis gave no indication that the error terms were correlated
over time. Because there were several weeks for which data was not available, Hall
and Hart (1990) only used the weeks with no missing data (189 weeks). There were
215 weeks of data in Lewiston and 220 weeks of data in Coweeta and consequently
these authors do not use 13% of the data [note that Kulasekera (1995) pointed
out that Hall and Hart’s (1990) test does not work with sufficient accuracy for
different design points and therefore there is no way to include the unused data
in the analysis with this test]. The test of Hall and Hart (1990) clearly rejects the
hypothesis of equal regression curves which is also obvious from Figure 1 in the
same reference. The same figure indicates that the two curves could only differ by
a simple shift and it is easy to see that a test for this hypothesis can be obtained by
applying Hall and Hart’s (1990) procedure to the data

Y;i —Yi..

Hall and Hart (1990) obtained for this procedure a p-value of 0.097 and argued
that this provides some evidence that the curves differ by more than a simple shift.
We would like to point out here that some care is necessary with this argument
because the test of Hall and Hart (1990) requires homoscedasticity, which is rarely
available in seasonal data. In order to investigate the question of heteroscedasticity,
we estimated the integrated variance functions

faf(z)dz, i=12,

for the two locations semiannually using Rice’s (1984) estimator. The correspond-
ing estimates are shown for the two towns, Coweeta and Lewiston, in Table 5 and
clearly indicate a heteroscedastic structure in the data.

For this reason we investigate whether the conclusion that the two curves
differ by more than a shift is obtained by the application of a (inappropriate)
procedure requiring homoscedastic errors to heteroscedastic data (or even by
neglecting 13% of the data). To this end we applied the bootstrap test based
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on Kj(\,z) (which works under heteroscedasticity and for unequal design points)
to the rainfall data considered by Hall and Hart (1990). The resulting p-value
obtained from B = 1,000 bootstrap replications is 0.405. We obtained nearly the
same p-value if we only used the 189 weeks, where data was available at both
locations. Consequently we conclude that there is in fact some evidence from the
data that the two curves differ only by a simple shift as suggested in Figure 1
of Hall and Hart (1990). The different conclusion obtained by these authors is
probably caused by ignoring heteroscedasticity in the data.

5. Proofs. For the sake of brevity we restrict ourselves to a consideration of
the process R( ) defined in (2.10). The proofs for the process R( ) are similar and

therefore omltted

5.1. Proof of Proposition 2.1. The expectation of the residuals in (2.8) is
obtained as

Ele;j I1{X;j <t}]
= E[E [(Yij?(Xij) — FXi)F(Xi)))

n3_j .

X — N r3— z(XzJ)I{th_t}‘Xllv---aXaniH

I S Xox — Xij
N—ZZ [ (%)(ﬁ(xij)_fﬁ(xﬁk))l{xu_t}

I Xij — X3 v
XWE:K(T)}
i 1_1
_ K3 (n )// ( )ﬁ(x) fi)ri(x)ri(y)

x / (x - Z)rg_i(z) dzdxdy

L z”3 1/ / ( )f,(x) S3=iM)ri()rs—i(y)

1 ! /x—z
XE A K(T)rg_i(z)dzdxdy

+o(5;)
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and a Taylor expansion and a tedious calculation yield, under the hypothesis of
equal regression curves,

E[RY ()]
=ik [ ’ [ 1 %K(xhl)[f(x) — FOIF)
X [rl(x)% /01 K(x ; Z)rz(z) dz

1 ! — 1
—rz(x)z/(; K(xh Z)rl(z)dz}dydx+0<ﬁ>

_ o2 L)
— 0(h )+0<Nh .

Similarly, we obtain under the alternative,

t
Eleij I{X;; <t} =k3_; /0 (fi(x) = f3—i(X))ri (x)r3_; (x) dx + O (h?)
and the definition of R 5\}) yields

o~ t
E[RY @] = w13 [ (fi) = o)n@rdeo dx

t
— i [ (a0 = A0 ) dx + O(h),
which establishes the assertion of the lemma for the process R §V”.

5.2. Proof of Theorem 2.2. We begin with an auxiliary result, which shows
that the 73_; (X;;) weights in the residuals ¢;; can be replaced by r3_; (X;;) without
changing the asymptotic properties of the test statistic. The proof follows by
similar arguments as given in Lemma 5.3 and is left to the reader.

LEMMA 5.0. Define
&ij = (Yij — F(Xi))F(Xij)z—ira—i(Xij)
and
— 1 1 1 np
Ry(t)=—= eijl{X <t} ——= > &yl{Xp; <t}.
N “ N “
Jj=1 j=1
If the assumptions of Theorem 2.2 are satisfied, then

sup |§§\})(t) —Ry®)| =0,

)
te[0,1] <«/N ’

where the process R\%)(t) is defined in (2.10).
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Recalling the definition of the residuals ¢;;,
&ij = (01 (Xip)ei 7 (Xij) + f(Xip)F(Xij) — F(Xip)F(Xij))k3—irs—i(Xij)
= (Gi(Xij)Sij?(Xij)
5.1)
Nh Z Z K( 2o )(f(XlJ) f(XZk))

{=1k=1

Z Z ( )O'e(sz)sek>K3—ir3—i(Xij),
Z 1 k=1
and observing f; = f> under Hy we obtain by a straightforward calculation the
decomposition
(5.2) Ry (1) = Ry (1) 4+ Sn (1) + Wy (1) + Vi (D),

where the processes Ry, Sy, Wy and Vi are defined by

2 ng
(53) Ry(®):=) “T“ Y (=D op(Xepegr (Xep)rs—e(Xe)) 1 {Xej <1},

=1 j=1

2 —X
Sy = 3 (D Z o (Xi)es) Z K( “‘)

L,i=1

5.4
X 13— (Xe) IH{ X ex <1},
2 n; X
Wyt = 3 (-t 1’]‘52522 (P2 o = roxin)
2,i=1 j=lk=1
(5.5
x r3—¢(Xej)I{X¢ <1},
2
V() =Y (1) ks Zo,<x,,>e,,(r<x,,> r(Xij))
i=1 1
(5.6) J

x r3—i(Xij)I{X;j <t}.

The assertion of Theorem 2.2 now follows from the next lemma and the following
two auxiliary results, which will be proved below.

LEMMA 5.1. If the assumptions of Theorem 2.2 are satisfied, the process
Tn(t) = VNR N (t) converges weakly to a centered Gaussian process in the space
DI0, 1] with covariance function given by (2.12).
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PROOF. With the notation

(5.7) Aij () = oy (Xi [(= D Nes—irs—i (Xij ) r (X)) T{Xij < 1}]
(i =1, 2), we decompose the process Ty as follows:
2 1 n;
Ty (1) =VNRy(t) = Z — Z &ijAjj ().
i=1 \/szl

For the covariance we obtain, by a straightforward calculation,

1 U
Cov(Tn (1), Ty (s)) = E[ﬁ Yot (X1j)ei;j A0 AL(s)
j=1

1 &
+ 5 ZJZZ(ij)E%jAZj(l‘)AZj(S)}
=1

1
— 12 /0 22y < Iy <s)ri(y)dy

1
i /0 2Py < {y <s}ra(y) dy

+o(1)
=H(s,t)+o(l).

The central limit theorem for triangular arrays proves convergence of the finite
dimensional distributions of Ty. Weak convergence now follows if

E[(Ty(w) — Ty())*(Tn (v) — Ty )] < C(w — u)?

forall0<u<v<w<l1

(5.8)

can be established [see Billingsley (1968), page 128, or Shorack and Wellner
(1986), pages 45-51]. To this end we note that for two independent samples of
i.i.d. bivariate centered random vectors (¢, Bi)i=1,...n, and (¥;, 8;)i=1,... n,, the
inequality

.....

<nm E[a}f?]+3n}E[}1E[BY]
(5.9)
+ naE[y2821 4 3n3E[yF1E[83] + nina E[a? | E[87]

+ mina E[y21E[B2] + 4niny Elen B 1 E 1 61]

holds, which follows by similar arguments as stated in the proof of Theorem 13.1
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in Billingsley (1968). We now apply (5.9) for the random variables

a; = &1 (A1 (w) — A (v)), Bi = ¢€1i(A1i(v) — Aqi(w)),

(5.10)
v =2 (Agj(w) — A2 (v)), §j=e2j(A2j(v) — Agj(u)).

A straightforward calculation yields
2 b 2
Eloi] =/ o (x)(kar2(X)r(x)I{v < x <w})7ri(x)dx

0
= v af(x)x%r%(x)rz(x)rl(x) dx
<O0M)(w—v)

and similar arguments show that the terms E [,312], E [ylz], E[(Sf], Elo181],

Elyié1), E [a%,Blz] and E [ylzéf] are of the same order. Now, a combination of these
results with (5.10) and (5.9) yields

E[(Ty(w) — Ty (0))*(Ty (v) — Ty ())’]
1 ni ny 2 n ny 2
ool o) (B 50)]
i=1 j=1 i=1 j=1
= 0()(w —u)?,

which establishes (5.8) and completes the proof of Lemma 5.1. [J

LEMMA 5.2. If the assumptions of Theorem 2.2 are satisfied, we have for the
processes Sy defined by (5.4),

1
5.11 S = — .
S0 sup 15wl =057 )

LEMMA 5.3. If the assumptions of Theorem 2.2 are satisfied we have for the
processes Vy and Wy defined by (5.6) and (5.5),

1
(5.12) sup |V (0] =op(ﬁ),

te[0,1]

1
5.13 Wy ()| = — ).
5.1 s (Wuol =0y ()



COMPARISON OF REGRESSION CURVES 903

In order to prove Lemmas 5.2 and 5.3 we need some basic terminology from
recent U-process theory. For more details we refer to Nolan and Pollard (1987,
1988) or Pollard (1984). Let # denote a class of real valued (measurable) functions
defined on a set S with envelope F. The covering number Ny(e, Q, F, F) of ¥
(with respect to the probability measure Q) is defined as the smallest cardinality
for a subclass * of F such that

min Q|f — f*|P <P Q(FP) forall f € F

freF*

and
t
a0, Q,?,F)=f log M>(x, Q. F, F)dx
0

is called the covering integral. The class ¥ 1is called Euclidean, if there exist
constants A and V such that
N (e, Q,}“,F)fAs_V whenever 0 < QF < 0.
The class ¥ is called VC-class if its class of graphs
D={Gs|feF}
with
Gr={(,)|0=<t=f(s)or f(s) <t <0}

forms a polynomial class (or VC-class); that is, there exists a polynomial p(-) such
that

#DNF|DeD)< p#F)

for every fixed finite subset F' of S. We finally note that VC-classes are Euclidean
[see Pollard (1984), Lemma I125] and that sums of Euclidean classes are Euclidean
[see Nolan and Pollard (1987), Corollary 17].

5.3. Proof of Lemma 5.3. We will restrict ourselves to the process Vy
considered in (5.12); the remaining case (5.13) is very similar and left to the reader.
Recalling the definition of Vy in (5.6) we obtain the decomposition,

1
G149 o) =V O+ VPO - v o - v + op<ﬁ),

where

1 K2 o X1 — Xk
v =2 3 Zcrl(XU)su(K(fi) - hr1<xl,~>)
N hj:lk:l h
(5.15)
X ra(X1)I{X1; <t},
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X1i—X
V(Z)(t) N2h Z 261(X1J)81J< (%) — hrz(le)>

j=1k=1
(5.16)
xr(X1j)I{X; <t},
R Xy — X
o= ZZGz(ij)Ezj( (”T”‘)—hrmxzp)
j=1k=1
(5.17)
x ri(X2j)[{X2; <t},
& & Xy — X
V(4)(t) N2h Z ZGQ(XQJ)82J< (%) —hrz(Xzﬂ)
j=1k=1
(5.18)

xri(Xoj)[{X2; <t};
the remainder in (5.14) is obtained replacing ; by n; /N and vanishes uniformly

with respect to ¢ € [0, 1]. The assertion of Lemma 5.3 now follows by showing
that all terms in (5.14) are of order o P(ﬁ) uniformly with respect to ¢ € [0, 1].

LEMMA 5.3a. If the assumptions of Theorem 2.2 are satisfied we have for the
statistics V}S/l) and V1£,4) defined by (5.15) and (5.18),

(1) 1
sup |V (t)|=o0 (—),
te[O,l]‘ v =0y VN

sup [V (1) =0 (L)
TR T "\VN

PROOF. Both terms are treated exactly in the same way and we only consi-
der V]f,l) which can be written as

X1 —X
v = NZhZ 3 m(Xl])sl]( (%)—hruxu))

j=1 k=1,k#j
xr(X1j)I{X; <t}

N2h 201(X1])81](K(0) hri(X1)ra (X1 )I{X1; <t}

(5.19) = Iy(t) + Iji,”(t),
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where the last line defines the processes Iy and / 1(\,1 ). For the last named term we
obtain, by a straightforward calculation,

(5.20) sup |10 ()| = (i) —0 (L)
' t€[0,1] Nh PNVNT

where we have used the assumptions for the bandwidth stated in (2.3). The
treatment of the remaining term I in (5.19) is more complicated and requires
some basic results from the treatment of U -processes [see, e.g., Nolan and Pollard
(1987)]. To be precise, observe that

3/2
(5.21) VNIy— i Un (@) =0p(1)
uniformly with respect to ¢ € [0, 1], where U,, is a U-process defined by
ny np
(5.22) Uni () i= ———s Z Y 0L E))
i=1 j=1
i#]

with & = (Xy;, €1;) and symmetric kernel

X1 — X1
(i, &) = Kkoer; <K<%> —hrl(le)>

x o (X1j)ra(X1;)1{X1; <t}

X1 — X
+ K261 K B — hri(Xy;)

x o1(X1)r2(X1i) I{X1; <t}

Following Nolan and Pollard (1988), we introduce the notation ¢(x) =
Elp(é1,82)152 = x] and obtain a Hoeffding decomposition for the process Uy, ;
that is,

(5.23)

- 2 &
(5.24) Uni@) = Un @+ ;w(&),
where
(5.25) P(x,y) =@x,y) —@1(x) —@1(y)
(note that E[¢(&1, &)] = 0). Finally, consider a class of functions
(5.26) F ={en:|tel0,1], h >0},

where ¢, ;:[0,1] x R x [0, 1] x R — R is defined by

X1 —y
Yni(x,y) = szz(K< W

) - hm(xl))al GG I < 1)
(5.27)

+K2y2 <K<x1 ; y1) —hry (yl))Ul or2(ypI{y1 <t}.
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It can be shown by a tedious calculation and similar arguments as in Nolan and
Pollard [(1987), Lemma 16] and Pollard [(1984), Examples 1126, II38] that the
class ¥ and the induced class

(5.28) PF ={p1|p1(x) = Elp¢1,6) 62 =x],p € F

are Euclidean. Note that the proof of this property requires the special assumption
on the kernel K stated in the paragraph following (2.4) [see Pollard (1984),
Example 1138 and Problem 1128, who considered the case of a decreasing kernel
function on [0, co), which is a special case of the situation considered here]. It
therefore follows that for y > 0 the covering integral satisfies

Iy, 0®Q0,F,F)<ary —bi(ylogy —y),
J(y,Q,PF,PF) <ayy —by(ylogy —y)
(for given constants ay, by, az, by) and consequently the assumptions of Theorem 5

in Nolan and Pollard (1988) are fulfilled. Now the second part in the proof of this
theorem shows

1
(5.29) sup Uy, (§)] = op(ﬁ).

peF

The assertion of the first part in Lemma 5.3a now follows from (5.29), (5.24),
(5.21), (5.19) and (5.20) if the estimate

(5.30) sup
t€l0,1]

=0p(1)

1 1
ﬁ; 5 Pt (&)

can be established, where

X—Xll‘

P1,6,0(E1) = 1(&;) = K2€1; (/ K( )m(X)dx - hr1(X1i))

(5.31)
x o1 (X1p)r2(X1)1{Xy; <t}.

To this end we make the dependence of the bandwidth from the sample size explicit
by writing & = hj,, and introduce the notation,

(5.32) Fur = {@1an,, |1 €10, 11},

We use similar arguments as given in the proof of Theorem 37 in Pollard
[(1984), page 34]. To be precise, define

1 [ od+1
2d+1
anl ’ 8}11 = Chnl ’

- 4/n1h,%‘ll
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where c is a constant chosen such that

t _ 2
P@F 11, :fo of(z)</1<<xh Z)rl(x)dx—hnlrl(z)> K2r2(@)r(2) dz

t 2
= hf“ /0 olz(z) (/ K u)(r1(z + hnu) —r1(z)) du) KZZVZZ(Z)H (z)dz

<hp h¥e.
Let F; denote the envelope of the class P ¥ defined by (5.28) (note that £,, C PF
for all n; € N) and assume without loss of generality 0 < k; < PF| < k. By the
strong law of large numbers, we have

k
IP’(|P,HF1 — PF||> 71) gy}

where P,, is the distribution with equal masses at the points &1, ..., &,,. Therefore
it is sufficient to prove the assertion (5.30) on the set {|P,, F — PFy| < %1} for
which %1 < Py, F1 < %1 + k. The following calculations are restricted to this
set without mentioning this explicitly. Let P, denote the symmetrization of P,
[see Pollard (1984), page 15]; then we obtain for ¢,, = 88,2“05,,1 (e >0),

k
IP’( sup | Py, (@)| > 8ey, (51 +k2)>

YEF,

k
(5.33) < 4]P>< sup | P2 (¢)] > 26, (% + k2>>

PEFn,

§4IP< sup |P,f1 (@)| > ananlF1>.
peFy,

Conditioning on § = (&1, ..., &,,), it therefore follows that

]P’( sup |P; (9| >28n1P,,1F1‘5§)

PEFn,

] 17’1182 (P Fl)z
< mln{ZNl(snl, Py, Fay, Fl)“P(‘EmZ;—;g2>’ 1}’
Jimés;

where the maximum runs over all m = Ni(gy,, Py, Fu,, F1) functions of the

approximating class {gi,..., gn}. Integrating, observing that P, F; > %1 and
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that P ¥ is Euclidean yields

]P’( sup |P; ()| > 28,,1Pn1F1)

<p€f,,1

(5.34)

_ lkfaz ni
< 2A8nlv exp(—g 831 ) —i—]P’( sup Pnl(goz) > 8,2“)
ni (Pefli:n]

with positive constants A and V. The first term can be treated similarly as in
Pollard [(1984), page 34] and converges to 0. The treatment of the second term
is different because ¢ € F,, does not necessarily imply |¢| < 1. We obtain for the

expectation
— Xui ?
(/ ( - )rl(X)dx_hnlrl(Xli)>
ny

x o (X135 (X11)

E| sup Pu (@ >\ <lg
YEF,

_ 2d+2

and Markov’s inequality yields (using the definition of §,,,)

(5.35) IP( sup Py, () > 82 ) O(hy,).
9EFn,

A combination of (5.33)—(5.35) finally gives

1
]P’( 5 sup |Pn1(go)|>8>—>0 if n; — oo,
8}11 ny Q9€fn;

which establishes the remaining estimate (5.30) [note that 8,% oy = O (hyp,//n1)].
O

LEMMA 5.3b. If the assumptions of Theorem 2.2 are satisfied, we have for
the statistics ng,z) and V1£,3) defined by (5.16) and (5.17),

sup V20l =0 (i)
t€l0,1] N P \/ﬁ ’

3) !
sup |[Vy ()| =o0 (—)
t€l0,1] N P \/ﬁ

PROOF. The proof essentially follows the arguments given in the proof of
Lemma 5.3a and we will restrict ourselves to indicating the main difference, which
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is a derivation of an analogue of the estimate (5.29). Because V]E,Z) and V]E,3)
are U-processes formed from two samples, the results derived in the proof of
Theorem 5 of Nolan and Pollard (1988) are not directly applicable. For this reason
we indicate the derivation of an analogous result for two sample U -processes.

The application of this result to the two sample U -processes obtained from Vlg,z)

and V]£,3) completes the proof of Lemma 5.3b and follows by exactly the same
arguments as given in the proof of Lemma 5.3a.

To be precise, let P, Q denote distributions on the spaces X and ¥ and consider
a class of real valued measurable functions ¥ defined on X x Y such that
(P ® Q)(p) =0 for all ¢ € F. Assume that there exists an envelope F of ¥
such that (P ® Q)(F) < oco. Let Xq,..., Xy, ~ P and Yy,..., Y2, ~ Q denote
independent samples and oy, ..., 0, and 711, ..., 7, denote independent samples
(also independent of the X; and Y;) such that

Po;=1)=P(o; =—1)=1/2,
Pm=1)=P(m=-1)=1/2
Introducing the notation
& =1{oi = 1} Xo; + I{o; = —1} X021,
g = I{o; =1} Xpi—1 + I{o; = —1} X2,
(j=Htj=1}Y2;+ I{zr; =—1}Y2j_y,
(== 1Y+ I{rj = — 1}V,

we obtain again independent samples &1,...,&,,&(,...,&, ~ P and ¢1,..., {m,

Lfsen b~ Q.

For a function ¢ € ¥ consider the two-sample U -statistic,

(5.36) Sam(@) =Y > 9. L)),

i=1j=1

and its standardized version,

(5.37) Unm () :=

Let

_|_
VZ ™ S ().

p1(x) = Elp&1, 2161 = x],
©2(y) = Elp&1, ¢D1g1 =yl

and define the kernel

(5.38) P, y) =0, y) —e1(x) — e2(y);
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then it follows that the statistic Uy, (¢) is degenerate [note that E[¢(&;, ;)] =0
by the definiton of ¥ ]. Defining

Tm(@) =YY [0GEi L) +9&EL 0D+ 0@ ) +9E. )]

i=1j=1
n m
(5.39) =YY o(Xai, Vo)) + 9(Xi, Yaj—1)
i=1j=1
+ ¢(X2i-1, Y2;) + (X2i-1, Y2-1)

and P, and Q,, as the empirical distributions based on &1, ...,&, and ¢y, ..., {m,
respectively, it can be shown by similar arguments as in Nolan and Pollard (1988)
that the conditions

(5.40) sup E[(1, Tym, F, F)?] < o0,
(5.41) 4(1,P® Q,F,F) <0,
(5.42) sup E[4(1, Py, OF , QF)*] < o0,
(5.43) supE[(1, Qm, PF, PF)*] < 00,

imply the estimate

1
E Unm D =0|—= s
| sup U @1 | = 0( 75)

which gives

1
(5.44) SUp [Upn (@) = op(ﬁ).

peF

In the specific situation of ng,z) or V]£,3) the assumptions (5.40)—(5.43) now follow,
because the classes ¥, PF and QF are Euclidean (see the first part in the proof
of Lemma 5.3a). [

5.4. Proofof Lemma5.2. Recalling the definition of Sy in (5.4) and observing
the equality

2 n;
K3—f — 1 [t Xii —x
> Flf% ZGi(Xij)EijE/O K( ]h )r3—z(x)Kzre(X)dx =0,
j=1

Li=1
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it follows that Sy is a linear combination of four terms of the form

ng

263k Xoi — Xii
: "Zezi( 3 K(Z’T"’)m-uxkpl{xkjsz}

=i

t Xoi—x
_/0[(< - )rk(x)r3_k(X)dX>Ue(X€i),

which can either be represented as a degenerate one-sample U -process (£ =k = 1
and £ = k = 2) or a degenerate two-sample U-process ({ =1, k=2 and £ =2,
k = 1). It now follows either by the arguments in the proof of Theorem 5 in Nolan
and Pollard (1988) or by its generalization in (5.40)—(5.44) that the corresponding
terms vanish at a rate O p(ﬁ) if the underlying class of indexing functions is
Euclidean. For example, in the case £ = k = 1 the symmetric kernel is given by

Xy — X1;
@&, &)) =K281i<K(%>r2(X1j)I{XU <t}

_ /(;tK(Xlih_x>r1(x)r2(x)dx)01(xli)

X1 — X
+r2e1j| K — (X)) I{Xy; <t}

t Xy —
—/0 K( ”h x)’”l(x)rZ(x)dx)Gl(le)’

where & = (Xy;, €1;) and the degenerate one-sample U -process is given by

1
Unim @) =— 3 9(E.6)).
Li#j
Note that ¢1(x) = E[@(&1, £2)|& = x] = 0 which implies ¢ = ¢ and PF = {0},
which is obviously Euclidean. A cumbersome calculation shows that ¥ is also

Euclidean and the arguments in the proof of Theorem 5 in Nolan and Pollard
(1988) yield

lsup‘U(l’l)((p)‘le (i):(, (L)
n o O @N=300\§ ) =\ 75 )

The other three cases are treated exactly in the same way, establishing the
assertion of Lemma 5.2.

5.5. Proof of Theorems 3.2 and 3.3. The proof follows essentially the steps
given for the proof of Theorem 2.2 and therefore we restrict ourselves to the



912 N. NEUMEYER AND H. DETTE

calculation of the asymptotic covariance structure of the process defined by (3.2).
A straightforward calculation yields

lnis|Alnit]  np 2
1 i — t2]> <t1i —tze>01 (1)
Cov 1), s))=——+— K
o) = s X Y ( ;

=1 j=1 ry (i)
nys] Lnit] na
1 ti — b tik — B
o 2 2 2K ()
i=1 k=1 j=1
03 (t2))

— 1
ra(t1i)ra(tik) +otl)

1 [RUGAD pLopl iy x—z
=zl L))
12()
X — ———r1(x)r(y)rni)dxdydz
2()6)
L 1 RO RS x—y z—y
A A G I C

o3 (M1 (X)r2(y)ri(z)
r2(x)ri(z)

dydxdz

+o(l),
=mi2(s, 1) +o(1),

where m 1, is defined by (3.4).

5.6. Proof of Theorem 4.1. The proof essentially follows the proof of Theo-
rem 2.2 and we will only sketch the main arguments. For the sake of simplicity we

restrict ourselves to the process R %)* (the remaining case is treated exactly in the
same way) and obtain

(5.45) sup |[R*(1) — RY* ()] = o,,(
tel0,1]

1
where

. 1 2 ny B N R
Ry (0= 30 3D NG = i Xep)F(Xe))
=1 j=1
(5.46) !

X I{X¢j <t}z—grz—e(Xej)
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and R S)* is defined in (4.6). This shows that it is sufficient to prove the corre-

sponding statement for the process 1:’1(\})*, for which we obtain the decomposition

(5.47) R\V*(1) = R (6) + S5 (1) + Wi (1) + Vi),

where the processes on the right-hand side are defined by

ni
K2
Ry (1) =D elyr(Xipr(XipIX; <1}

j=1
(5.48)
— 5 Y e (N (XopI{Xy <1}
j=1
2 l ¢ ij — Xk
Sy(® :—Z > ”(Nh Y (=D gZK( )
i=1 1
(5.49) J
X r3—g(Xe) H{X ek < t}),
2 —1 & XE] Xik -~ -~
Wm=ZeDN%ZZ( Wmmﬁmw
2,i=1 j=1k=1
(5.50)
X r3—¢(X¢)I{Xe; <1},
2
%m:Zew%u Z%mmﬂrmm
i=1 1
(5.51) J

x r3—i (X)) I{X;; < t}.

We will prove at the end of this section the following result.

LEMMA 5.4. If the assumptions of Theorem 2.2 and (4.8) are satisfied we
have for all § > 0,

(5.52) ]P’<VN sup |Vf\‘,(t)| >4 yN) =o0p(1),
te[0,1]

(5.53) IP(VN sup |Sy(@®)| >3 yN) =o0p(1),
t€l0,1]

(5.54) ]P’(VN sup |Wj(,(t)| >4 yN) =op(1).
tel0,1]
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Observing Lemma 5.4 it follows that the processes
Ty :=~'NR}

and vV/NR §v”* are (conditionally on Y ) asymptotically equivalent in probability;
that is,

(5.55) IP( sup [VNR* (1) — TN(t)|>8‘yN)_op(l)

te[0,1]

The following lemma shows that T in (5.55) can be replaced by

(556) TN() _Z ZAIJ()Vljgl]7
where the quantities A;; are defined in (5.7).

LEMMA 5.5. If the assumptions of Theorem 2.2 and (4.8) are satisfied we
have

(5.57) IP’( sup T (1) — T4 (1)] > 5\%\,) =0,(1).

The assertion of Theorem 4.1 now follows from (5.57) and (5.55) which
demonstrate that it is sufficient to consider the asymptotic behavior of the
process T](,(-) defined in (5.56). But this process can be treated with the conditional
multiplier theorem in Section 2.9 of van der Vaart and Wellner (1996), which
establishes that conditionally on Yy the process Ty converges to the same
Gaussian process Z(!) in probability as the process Ty discussed in the proof of
Theorem 2.2. The proof of Theorem 4.1 is now concluded, giving some more
details for the proof of the auxiliary results in Lemmas 5.4 and 5.5.

PROOF OF LEMMA 5.4. For a proof of (5.52) we show

(5.58) Zy :=~N sup Vi) =o0p,(1).
t€l0,1]

The assertion is then obvious from Markov’s inequality; that is,
1 1
P(P(Zy > 81Yn) > &) < EE[]P)(ZN >8|Yn)] = E]P’(ZN >38)=o(1).

To this end we note that 81’.;- = V;i&ij = Vijeijoi(Xij) + Vij (f (Xij) — ﬂ(Xij)) and
obtain the decomposition

(5.59) Vi = v 4 vi®,
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where
V;\x;(l)(t) Z( l)l 1K3 lZ‘/ljgljal(XlJ)(rh(XlJ)_r(XlJ))
1
(5.60) =
X r3—i (Xi)) I{X;j <t},
*(2) i— 1"3 —i
()= Z( 1) Z Vii (F(Xi)) = Fo(Xi)) (Fn(Xij) — r(Xij))
1
(5.61) ”

x r3_i (X;) I{X;; <t}.

The term in (5.60) can be treated by the same arguments given in the proof of
Lemma 5.3 for the term Vjy(-) (note that the only difference is the additional
factor V;;), which gives

(5.62) VN sup [Vall ()] =0, (1).
te[0,1]

For the second term we use Cauchy’s inequality and obtain

£ s[lépl]]V;(z)(t)q OW) =S5 By BN () = Fo(Xip)]

i=1j=1

x E[(Frn(X1) —r(X1 )]

1 1
=05 m) = (%)
N./gh VN
which yields in combination with (5.62) the assertion (5.58) and completes the
proof of the first part of Lemma 5.4.

For a proof of the estimate (5.53) recall the definition of Sy, in (5.49) and
observe

Sy =Sy + 532,

where

2

syl = Z Z Vijéijoi(Xij)

i= 1

- X
Z( 1t Z K( Zk>1{XU< <thez—gr3—e(Xek),
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2 ni
S;,(Z)(l‘) ::Z Z ij f(Xl]) fg(le))
i:l j=1

Z( 1)ZZK< >I{Xek<f}/<3 er3—e(Xek)-

The first term can be treated as in the proof of Lemma 5.2, which yields

(5.63) VN sup [S5V (1) = 0,(1).

t€l0,1]
The second term is estimated as follows:
1 2
(5.64) sup |S*(2)(t)| Z ZqullﬂXU) FeXipl{uy) + UL,
i= 1 j=1
where

K3—¢ 1 & Xij — Xk
Uz(vei)j =—— Ssup |—= Z K<UT>’”3—Z(XZI<)I{X€I¢ <t}
1

h ieon|N (2
ro(Xij—z
_ /0 K( L )Kgr((z)rg_g(z)dz

(£ =1,2). The terms U 1(\,61)1 (i,£ =1,2) can be treated by Theorem 37 in Pollard
(1984). More precisely, for the first term we note

1 ni - X t _
—ZK(X ; ”‘)rz<xlk)l{xlkst}— [ K(x Z)i’l(z)rz(z)dz

sup
1,x€[0,1]| 11 = h
= sup |Py¢ — Pyl
PEFn,
where P,, denotes the empirical distribution of the first sample X1, ..., X1,, and
X—Yy
Fy =\ Ohay x| Phay 0 (V) = K === )2 {y =1}, x,1 €[0. 1]
nj

(note that we made the dependency of the bandwidth on the sample size explicit,
that is, h = hy,,). Now ¥, is a subset of a VC-class and the arguments used in
Theorem 37 of Pollard (1984) yield for the sequences

2
(xnl :\/gnp 8}1] :C'hm

the estimate

1 1 1
U'Elj) = ho sup [Py, — Pyl = _OP(8 O‘nl) zop(vgnl ).

ny QEFy, "1
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By a similar argument for the terms U ](vzl)j, (5.64) simplifies to
2 SIS 1
sup 155201 < 0p (V) 3~ S IVifll £ (Xep) — FalXip)| =0 (—)
te[OF)l] N p( nl);N; il i ¢ (Xi)| "\ N

where the last estimate follows from Markov’s inequality. A combination of this
estimate with (5.63) gives \/NsuPze[o,l] [Sy ()| = 0,(1) and the assertion (5.53)
follows again from Markov’s inequality. [J

PROOF OF LEMMA 5.5. Defining (i =1, 2)
(5.65) Aij (1) = (=) " esir (Xij)rs—i (X)) I{Xij <t}

and recalling the definition of 7, in (5.56) we obtain

Ty (1) — TN<z>—Z ZAUU)VU(f(XU) fo(Xi))

2 n;
Z ZAU(r)VU(f(XU) Fo(Xip))——— ( )
i=1 = ij
x (r(Xij) —7o(Xij))
7o (Xij)

Z f Z By Vi (FXip) = FoXip)) s
(5.66) = AN(t) + By (1)

[note that A;; (t) = A (t)o;(X;;), by the definition of A;; in (5.7)]. The first term
is estimated as follows:

sup |AN<z>|<Z Z sup

tel0,1] J 17€[0,1]

X |r(Xij) —Tg(Xij)|

1
= Op(ng) = Op(l),

where we used Cauchy’s inequality and the fact that A; j(+) is uniformly bounded.
Now Markov’s inequality yields, conditionally on the sample Yy,

1 -
Al](t)‘m‘f(xij) — fe(Xij)

(5.67) sup |An(5)| =0, (1).
tel0,1]
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The second term By (¢) in (5.66) consists of expressions of the form

By (t) = lnlA t)—K X1:) — f(X
() mf}Z”; 11<) ( ; )(f( ) — FX10)

Vljr(le)
(5.68)

— X1k
A K X
nlfzz 1](t) ( P )81k01( 1%)

j=lk=1

x Vi ,
Vi)

which are all treated similarly. We obtain

(5.69) By(t) =L () + L(1),
where
AT X1j— Xk
1 (t) = X)X <t K(i)
1(1) \/_]ZII;KZQ( 1{Xy; <t}— P
x (f(X1j) — f(X1))Vij,
. 1 on X1 — Xk
ht)i=—— 33 kar (X)X <1} K(i)slkomxlk)vl ;.
1\/_J 1k=1 8

The processes /1(-) and I»(-) are treated as in the proof of Lemma 5.3a, writ-
ing I,(t) as a one-sample U-process éUN((p) indexed by a Euclidean class of
functions which gives

(5.70) sup [1e(t)| =o0,(1), L=1,2.
t€l0,1]

This implies

sup |By(t)| =o0p(1),

t€l0,1]
and the assertion of Lemma 5.5 follows from (5.66), (5.67) and Markov’s
inequality. [J
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