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Since statistical models are simplifications of reality, it is important in
estimation theory to study the behavior of estimators also under distributions
(slightly) different from the proposed model. In testing theory, when dealing
with test statistics where nuisance parameters are estimated, knowledge of
the behavior of the estimators of the nuisance parameters is needed under
alternatives to evaluate the power. In this paper the moderate deviation
behavior of minimum contrast estimators is investigated not only under the
supposed model, but also under distributions close to the model. A particular
example is the (multivariate) maximum likelihood estimator determined
within the proposed model. The set-up is quite general, including also, for
instance, discrete distributions.

The rate of convergence under alternatives is determined both when
comparing the minimum contrast estimator with a “natural” parameter in the
parameter space and when comparing it with the proposed “true” value in the
parameter space. It turns out that under the model the asymptotic optimality
of the maximum likelihood estimator in the local sense continues to hold in
the moderate deviation area.

1. Introduction. Investigating the performance of statistical tests when nui-
sance parameters are involved often requires knowledge of the behavior of estima-
tors of these nuisance parameters not only under the null hypothesis, but also under
alternatives. In many cases the tests are constructed by plugging in estimators of
the nuisance parameters in tests which are developed by assuming that the nuisance
parameters are known. Recently, this program has been performed for data driven
smooth tests for location-scale families; see Inglot and Ledwina (2001a). The latter
research was the starting point for studying moderate deviations of the maximum
likelihood estimator (MLE) under alternatives. The present paper gives a thorough
treatment of this topic, investigating moreover not only MLEs, but more gener-
ally minimum contrast estimators (MCEs) in the framework of Jensen and Wood
(1998). There is considerable interest in the econometric literature in the asymp-
totic behavior of MLEs or related estimators under misspecified models; see, for
example, White (1982, 1994) and Sin and White (1996).
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Data driven tests for the simple goodness of fit problem have been introduced
by Ledwina (1994). Many standard goodness of fit tests, like the Kolmogorov–
Smirnov test and the Cramér–von Mises test have only one direction with the
highest possible asymptotic power and behave therefore more like a parametric
test for a one-dimensional alternative and not like a well-balanced test with the
omnibus property usually attributed to them.

The idea behind the data driven tests can be described as follows. In order
to get high power at a broad spectrum of alternatives a sequence of exponential
families with growing dimension is defined to cover more and more alternatives
(in an orthogonal way, thus adding new alternatives efficiently). Within a given
exponential family the goodness of fit problem reduces to a standard testing
problem, for which the well-known score test can be applied. However, if the
dimension of the exponential family is too large, there is a (strong) power loss
due to adding too much noise. Therefore it is very important to choose the “right”
dimension for the alternative at hand. The appropriate dimension is chosen by
the data, using Schwarz’s selection rule. The combined procedure is called a data
driven test. Simulation results for data driven tests for the simple goodness of
fit problem show that these tests do have a nice omnibus character, giving high
and stable power over broad classes of alternatives. Inglot and Ledwina (1996)
have provided theoretical support for the simulation results, showing asymptotic
optimality for a large set of converging alternatives.

It is argued in Inglot and Ledwina [(1996), page 1985] that to get nontrivial
results the convergence of the alternatives should be (slightly) slower than under
contiguity. Corresponding to this, the involved levels are not fixed, but tend to 0
as the number n of observations tends to infinity. For more information on this so-
called intermediate approach and its relation to the classical Pitman and Bahadur
efficiency, we refer to Kallenberg (1999) and Inglot and Ledwina (2001b).

Basic properties such as the asymptotic null distribution and consistency for
data driven smooth tests for composite goodness of fit hypotheses have been
proved in Inglot, Kallenberg and Ledwina (1997). The simulations presented in
Kallenberg and Ledwina (1997a, b) show that the general construction of data
driven tests leads to powerful tests being competitive with best known solutions
for particular testing problems, like testing normality or exponentiality.

To show asymptotic optimality of data driven smooth tests for composite
goodness of fit hypotheses in the intermediate sense, moderate deviation results
for the estimators of the nuisance parameters under convergent alternatives are
needed. For multivariate location families, such results have been derived under a
restrictive condition in Inglot and Ledwina (2001a). The present paper provides
a general solution of this problem.

For moderate deviation results of MLEs under the proposed model we refer to
Radavichyus (1983). We consider not only the MLE, but also the more general
MCEs and emphasize their behavior under departures of the model. Moderate



854 T. INGLOT AND W. C. M. KALLENBERG

deviation theorems of univariate M-estimators under the proposed model are
presented by Jurečková, Kallenberg and Veraverbeke (1988). Here, we consider
the multivariate case, which is not always a trivial generalization of the univariate
case; for instance, monotonicity arguments cannot be used. Moreover, we do not
restrict consideration to the proposed model.

Large deviation results on MCEs are given in Jensen and Wood (1998), while
Almudevar, Field and Robinson (2000) present approximations for tail areas for
smooth functions of M-estimators. These results do not reflect on the behavior
under sequences of distributions outside the proposed model converging to it,
which is the main topic of the present paper. Moreover, Jensen and Wood
especially are focused on exponential small probabilities, while we concern
ourselves with the moderate deviation area. Although the main subject of this
paper is the moderate deviation behavior under converging distributions, we do
also have some new results under the proposed model, for instance, the asymptotic
optimality of the MLE in the moderate deviation sense. Finally, note that our
basic regularity conditions [see (R1) and (R2′) below] are essentially the same
as Conditions 3.1 and 3.2 of Pfaff (1982) and are weaker and far more easy to
check than (A6) of Jensen and Wood [see the discussion on the conditions and
Example 2.3 in Section 2 and the Remarks 3.6 in Pfaff (1982)].

The need for knowledge of the behavior of the MLE is not restricted to data
driven tests, but is also of interest when dealing with all kinds of other tests,
where nuisance parameters are estimated. Moreover, apart from being needed in
evaluating size and power behavior of statistical tests, the problem itself as an
estimation problem is also of interest.

Suppose we have a statistical model and have determined the MLE within
the model. In general, the model is only a simplification of reality and hence
it is of great importance to study the behavior of the MLE under distributions
(slightly) different from the proposed model, as they can easily be the true
distribution in practice. This robustness aspect is covered by the present results as
the alternatives considered in a testing situation can be seen as slight modifications
from the assumed model in the estimation problem. In this way one can
see how well the MLE behaves under (slight) misspecifications of the model,
for which modifications the MLE deteriorates and by which quantity this is
determined. Because robustness is often a reason to consider another MCE than
the MLE, it is important to investigate the behavior of MCEs under alternatives as
well.

Another way of saying this is as follows. We are interested in estimating
some parameter θ , which equals θ0 if the proposed distribution holds. Suppose
that the true distribution is slightly different from the proposed distribution. The
MCE is in this case close to a parameter value, obtained by a kind of projection
on the parameter set �. In testing theory this parameter value may be seen as
the “least favorable” parameter value w.r.t. the alternative. In estimation theory,
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this parameter value is the “natural” parameter value for comparison with the
MCE; that is, it is the parameter value on which the MCE is concentrating
under the true distribution. Such parameters are often called “pseudo true” values
[cf. Machado (1993)]. This “natural” parameter value (or “projection”) θn is
obtained by equating under the true distribution the expectation of the derivative
of the contrast function at θn to 0. If the direction of the alternative and the
derivative of the contrast function at θ0 are (asymptotically) uncorrelated, the “least
favorable” or “natural” parameter can be taken equal to the original parameter
value θ0.

We return to the application of the results of the present paper to prove
asymptotic optimality of data driven smooth tests for composite goodness-of-fit
tests, using the MLE as estimator of the nuisance parameter. Consider an
alternative, say Pn, converging to some distribution belonging to the composite
null hypothesis, say P0 with nuisance parameter θ0. Denote the power at Pn of the
data driven test by βn. The power at Pn of the Neyman–Pearson most powerful test
of the simple null distribution P0, against (the simple alternative) Pn, is denoted
by β+

n . (Hence, the power at Pn of any test of the composite null hypothesis can
never be larger than β+

n .) In Inglot and Ledwina (2001a) it is shown that β+
n − βn

converges to 0 as n → ∞, provided that the alternative Pn is orthogonal to P0 in
the sense mentioned above.

Because the data driven test has good power properties against a broad class
of alternatives, the restriction to the orthogonal direction is rather unsatisfactory.
For instance, when testing normality, consider an alternative Pn with density of
the form (1 − cn)f (x;a,σ 2) + cng(x) with f (x;a,σ 2) the normal density with
expectation a and variance σ 2 and g(x) some other density. Restriction to an
orthogonal direction means that under g the expectation should be equal to a

and the variance equal to σ 2. Considering only those “pure” alternatives seems
unnecessarily restrictive. On the other hand, for nonorthogonal directions β+

n −βn

does not necessarily converge to 0.
Indeed, it seems more promising to associate with the alternative Pn not simply

its limit P0, but its projection on the composite null hypothesis, say P̃n, having
nuisance parameter θn. In the preceding example this is the normal distribution
with the same expectation and variance as the alternative Pn. Denote by β̃+

n

the power at Pn of the Neyman–Pearson most powerful test of the simple null
distribution P̃n against (the simple alternative) Pn. Again, the power at Pn of
any test of the composite null hypothesis can never be larger than β̃+

n . Therefore,
for proving asymptotic optimality it is certainly enough to show that β̃+

n − βn

converges to 0 as n → ∞ and hence the difference θ̂n − θn is more important
than θ̂n − θ0.

So, the results of the present paper can be used for investigating the extension
of the asymptotic optimality of data driven tests with the MLE to other directions
than the orthogonal ones. Moreover, they are also needed for studying asymptotic
optimality of data driven tests using other MCEs than the MLE. Some adaptive
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tests of fit using MCEs have been recently introduced in Aerts, Claeskens and
Hart (1999).

Apart from the new results holding in some neighborhood of the model, also
some new results within the model are presented. As illustration, consider the
probability that an estimator, say Tn, deviates more than εn from its target θ :
Pθ(‖Tn − θ‖ > εn). Local comparison with εn of the order n−1/2 reduces to the
well-known comparison based on covariance matrices with asymptotic optimality
when the Fisher information bound is attained. A similar bound can be given in the
strict nonlocal case, where εn = ε is fixed [cf. Bahadur, Zabell and Gupta (1980)]
and for the intermediate range, where εn tends to 0, but at a lower rate than n−1/2;
see Kallenberg (1983). We speak of asymptotic optimality when the estimator
attains the lower bound. We show that the well-known asymptotic optimality of the
MLE in the classical local sense continues to hold in the moderate deviation region.
This explains why the MLE behaves so very well in regular families. If the family
is exponentially convex, as for instance in exponential families, the MLE is still
asymptotically optimal in the large deviation sense, but in families which are not
exponentially convex, large deviation optimality fails; see Kester and Kallenberg
(1986). The present moderate deviation results fill the gap between the classical
local optimality results and those concerning the large deviation optimality of the
MLE, thus completing the whole picture.

The paper is organized as follows. In Section 2 assumptions and exponential
bounds are presented. The set-up is quite general. For instance, discrete distrib-
utions are allowed. The exponential bounds are derived under rather weak con-
ditions, being for example satisfied in almost any location-scale family. Under
somewhat stronger conditions uniqueness of the MCE is obtained, apart from a
set of exponentially small probability. The main result on moderate deviations of
the MCE under sequences of distributions converging to the proposed model is
presented in Section 3, giving not only the exact rate of convergence, but also
the rate of the second-order terms. The section starts with a rough sketch of the
approach and a discussion of the “natural” parameter θn, the parameter value θ0

corresponding to the proposed distribution and the notion of the “true” value of the
parameter. Some corollaries describe moderate deviation results for the Euclidean
distance between the MCE and the “natural” parameter θn as well as between the
MCE and the parameter value θ0. The section is closed by showing the asymptotic
optimality of the MLE in the moderate deviation sense within the proposed model.
The proofs are presented in Section 4.

2. Assumptions and exponential bounds. Let X1, . . . ,Xn be i.i.d. r.v.s with
values in a measurable space (X,B) with distribution P , when the proposed
model holds. We write E or Cov when we take the expectation or covariance
under P .
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However, we are in particular interested in (slight) departures from the proposed
model, defined by the probability measure Pn with density w.r.t. P satisfying

dPn

dP
(x) = 1 + cnAn(x), cn → 0,

sup
n

sup
x

|An(x)| < ∞,

∫
An(x) dP (x) = 0,

∫
A2

n(x) dP (x) = 1.(A)

Note that we only require cn → 0 and no further restrictions on cn. The
sequence {cn} may tend to 0 as slowly as one wants. We may also take cn = 0,
thus getting the model distribution P .

The expectation and covariance matrix under Pn are denoted by En and Covn.
For a vector x ∈ R

k its Euclidean norm is denoted by ‖x‖. For a matrix M with
elements mij its norm is defined by |M|∗ = (

∑k
i=1

∑k
j=1 m2

ij )
1/2. A constant

which should be large enough is denoted by C and a constant which should be
small enough is denoted by c. The constants C and c may be different in each case.
When referring to a particular constant, it is mostly clear from the context which
constant is meant and otherwise, which constant is used is explicitly mentioned.

We are interested in estimating a parameter θ belonging to an open parameter
space � ⊂ R

k, k ≥ 1. Let h(x, θ), x ∈ X, θ ∈ �, be a measurable function and let

γ (θ) = γ (θ, x1, . . . , xn) = −
n∑

i=1

h(xi, θ)

be the contrast function. In principle, the MCE is defined by choosing θ to
minimize the contrast function, or, equivalently, to maximize

∑n
i=1 h(xi, θ).

A more precise definition is given just below Theorem 2.1. To facilitate discussion
of the MLE, we prefer the formulation in terms of maximizing

∑n
i=1 h(xi, θ) rather

than minimizing γ (θ, x1, . . . , xn).
An important special case occurs when the proposed model is a parametric

family with densities f (x, θ) w.r.t. some σ -finite measure µ. Taking h(x, θ) =
logf (x, θ), the MCE equals the MLE.

We put the following assumption on the function h:

(B) There exists θ0 ∈ � such that ϕ(θ) = E{h(X1, θ) − h(X1, θ0)} is finite and
attains its unique global maximum at θ0.

When dealing with the MLE in the proposed model, assumption (B) is, as a
rule, fulfilled, which can be seen as follows. Let P belong to a parametric family
with densities f (x, θ) and denote the parameter value corresponding to P by θ0.
Then −ϕ(θ) is the Kullback–Leibler information number of the distribution
corresponding to f (x, θ) w.r.t. P [cf. also (3.9)]. The unique global maximum at θ0
follows from the well-known properties of Kullback–Leibler information numbers
[cf., e.g., Theorem 4.1 in Bahadur (1971)]. Furthermore, in regular families the
Kullback–Leibler information number is finite.
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Following Zacks [(1971), pages 233–235] and Pitman [(1979), Chapter 8], we
shall introduce some useful notation. For θ ∈ � and V ⊂ � an open set write

Zsr(θ,V ) = sup
ϑ∈V

r∑
i=s+1

{h(Xi,ϑ) − h(Xi, θ)},

where r > s ≥ 0. In particular, we write

Zr(θ,V ) = Zr−1r(θ,V ) = sup
ϑ∈V

{h(Xr,ϑ) − h(Xr, θ)}.

Basic regularity assumptions are the following:

(R1) There exist r ≥ 1, T > 0 and a compact set K0 ⊂ � such that θ0 ∈ intK0,
EZ0r(θ0,K

c
0) < 0 and E exp{T Z0r (θ0,K

c
0)} < ∞, where Kc

0 = � \ K0.
(R2′) There exist a compact set K ⊂ � with θ0 ∈ intK and a constant T > 0

such that h(x, θ) is continuous w.r.t. θ ∈ K for almost every (a.e.) x

and for each θ 	= θ0, θ ∈ K , there exists a neighborhood Vθ of θ with
E exp{T Z1(θ0,Vθ)} < ∞.

The first result extends Theorem 5.3.1 of Zacks (1971) and the theorem on
page 65 of Pitman (1979) to {Pn} instead of the fixed distribution P .

THEOREM 2.1. Assume (A), (B), (R1) and (R2′) with K = K0. For ε > 0
denote

Bn = Bn(ε) =
{
(x1, . . . , xn) : sup

‖θ−θ0‖>ε

n∑
i=1

h(xi, θ) <

n∑
i=1

h(xi, θ0)

}
.

Then there exist c,C such that for all n,

Pn

(
(X1, . . . ,Xn) /∈ Bn

) ≤ Ce−cn.

For a.e. (x1, . . . , xn) in the set Bn the contrast function γ (θ) attains its global
minimum at some point(s) θ̃n belonging to {θ :‖θ − θ0‖ ≤ ε}. Hence, for any such
point θ̃n,

Pn(‖θ̃n − θ0‖ > ε) ≤ Ce−cn.

The proof of Theorem 2.1 is given in Section 4. If the contrast function attains
its global minimum on � at a unique point, this point is the MCE. If there are
more such points, we choose one of them to be the MCE. It does not matter which
is chosen. For instance, we may take from the set of solutions the one with smallest
coordinates. If there is no point in � where the contrast function attains its global
minimum on �, the MCE is defined as 0. The MCE θ̂n(X1, . . . ,Xn) defined in this
way is denoted by θ̂ .

In principle there are no problems with multiple roots. A more delicate choice
can be made by taking the one closest to a preliminary estimator, if such an
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estimator is available [cf. Kester and Kallenberg (1986)]. For more discussion on
this point see Small, Wang and Yang (2000).

It is also shown in the proof of Theorem 2.1 that if we remove (R1) in
Theorem 2.1 and consider the set

BKn = BKn(ε) =
{
(x1, . . . , xn) : sup

‖θ−θ0‖>ε,θ∈K

n∑
i=1

h(xi, θ) <

n∑
i=1

h(xi, θ0)

}
,

we get an analogous statement for BKn:

Pn

(
(X1, . . . ,Xn) /∈ BKn

) ≤ Ce−cn.

Theorem 2.1 gives the existence of the MCE outside a set of exponentially small
probability. If we assume more regularity conditions on h(x, θ), then also unique-
ness of the MCE can be obtained (apart from a set of exponentially small proba-
bility). To this end we replace (R2′) by the stronger (R2) and add (R3) and (R4).

Let K ⊂ � be a compact and convex set such that θ0 ∈ intK . As far as θ occurs
in the assumptions, it is supposed that θ ∈ K .

(R2) ∂
∂θ

h(x, θ) exists for a.e. x and is continuous in θ . Moreover, there exist an
(w.r.t. P ) integrable function H(x) and a constant T > 0 (independent of θ ),
such that

exp
[
T {h(x, θ) − h(x, θ0)}]∣∣∣∣ ∂

∂θr

h(x, θ)

∣∣∣∣ ≤ H(x), r = 1, . . . , k.(2.1)

(R3) ∂2

∂θ ∂θT h(x, θ) exists for a.e. x, is continuous in θ and the matrices

I = Cov
(

∂

∂θ
h(X1, θ0)

)
= E

[
∂

∂θ
h(X1, θ0)

][
∂

∂θT
h(X1, θ0)

]
,

J = E
∂2

∂θ ∂θT
h(X1, θ0)

are finite and nonsingular. Moreover, there exist dK > 0 and a measurable
function G(x) such that for d ∈ (0, dK) we have θ0 + u ∈ K for all u with
‖u‖ ≤ dK and

sup
‖u‖≤d

∣∣∣∣ ∂2

∂θ ∂θT
h(x, θ0 + u) − ∂2

∂θ ∂θT
h(x, θ0)

∣∣∣∣∗ ≤ CdG(x).(2.2)

(R4) There exists δ > 0 such that

E exp
{
δ

∥∥∥∥ ∂

∂θ
h(X1, θ0)

∥∥∥∥}
≤ C,

E exp
{
δ

∣∣∣∣ ∂2

∂θ ∂θT
h(X1, θ0)

∣∣∣∣∗
}

≤ C, E exp{δG(X1)} ≤ C.
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REMARK 2.2. Conditions (R2)–(R4) are essentially versions of the classical
Cramér regularity conditions.

Condition (R2) ensures that we may interchange the order of integration and
differentiation, leading to results like (using that ϕ attains its maximum at θ0)

E
∂

∂θ
h(X1, θ0) = 0.

It is shown in Section 4 that condition (R2) easily implies (R2′). Conditions
like (R2) frequently appear in the literature [see, e.g., (A5) of Jensen and Wood
(1998)]. However, their condition (A5) seems to be more restrictive than our
condition (R2); see Example 2.3. Condition (R3) corresponds to (A1) and (A2)
of Jensen and Wood (1998) and (R4) to (A3) of that paper.

The following example illustrates in the particular case of the MLE in location-
scale families the meaning of our assumptions (R1), (R2′) and (R2).

EXAMPLE 2.3. Consider a location-scale family,

f (x, θ) = σ−1f0

(
x − a

σ

)
, θ = (a, σ ) ∈ R × (0,∞),

with f0(x) a continuous positive density on R. Put h(x, θ) = log f (x, θ), thus
dealing with the MLE θ̂ of θ . Using the inequalities in the first part of the proof
of Theorem III on page 71 in Pitman (1979) it can be seen that if |x|2f0(x) is
bounded, then for any compact K0 ⊂ �,

E exp
{
T Z02(θ0,K

c
0)

}
≤ C

∫ ∫
|x − y|−2T {f (x, θ0)f (y, θ0)}1−T dx dy,

which is finite if T ∈ [0, 1
2 ). From the last part of the proof of Theorem III

on pages 72 and 73 in Pitman (1979) it follows that if |x|2+ηf0(x) is bounded
for some η > 0 then there exists a compact set K0 ⊂ � such that θ0 ∈ intK0
and EZ02(θ,Kc

0) < 0. So, (R1) is satisfied if |x|2+ηf0(x) is bounded on R for
some η > 0. To get (R2′) it is enough to assume that f0 is bounded and that∫

f
1−η
0 (x) dx < ∞ for some η > 0 while (R2) (with T = 1) reduces to∣∣∣∣ ∂

∂θr

f (x, θ)

∣∣∣∣ ≤ H(x) with
∫

H(x)dx < ∞, r = 1,2, θ ∈ K.

A sufficient condition is that f0 is continuously differentiable and that
|x|2+η|f ′

0(x)| and |x|1+ηf0(x) are bounded.
In particular, put f0(x) = exp{x − ex}. Then (R1) and (R2) are easily satisfied

and, assuming (A), Theorem 2.1 holds, but (A5) of Jensen and Wood (1998)
does not hold. To see this, observe that for h0(x) = log f0(x) = x − ex we
get QL(x) = C(|x| + 1)e|x| and E exp{δQL(X1)} = ∞ for every δ > 0. Note,
however, that in this irregular example our condition (R4) is also not satisfied.
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Write

�n(θ;x1, . . . , xn) = 1

n

n∑
i=1

∂

∂θ
h(xi, θ)

and define the following sets:

B1n =
{
(x1, . . . , xn) :

∣∣∣∣ ∂

∂θT
�n(θ0;x1, . . . , xn) − J

∣∣∣∣∗ ≤ 1

4|J−1|∗
}
,

B2n =
{
(x1, . . . , xn) :

1

n

n∑
i=1

G(xi) ≤ EG + 1
}
.

LEMMA 2.4. Assume (A) and (R2)–(R4). Then we have

Pn

(
(X1, . . . ,Xn) /∈ B1n

) ≤ Ce−cn,

Pn

(
(X1, . . . ,Xn) /∈ B2n

) ≤ Ce−cn.

The proof of Lemma 2.4 is given in Section 4. The next lemma shows that under
(R2)–(R4) essentially the contrast function is minimized at a uniquely determined
point.

LEMMA 2.5. Assume (R2)–(R4) and let 0 < δ < min{dK, 1
4|J−1|∗C(EG+1)

}
with C from (2.2). For a.e. (x1, . . . , xn) ∈ B1n ∩ B2n ∩ BKn(δ), there exists
θ∗ = θ∗

n (x1, . . . , xn) with ‖θ∗ − θ0‖ ≤ δ and �n(θ
∗;x1, . . . , xn) = 0. Moreover,

θ∗ is the only solution of �n(θ;x1, . . . , xn) = 0 in the set {θ :‖θ − θ0‖ ≤ δ}.

The proof of Lemma 2.5 is presented in Section 4. As a corollary we get an
exponential bound for the MCE.

THEOREM 2.6. Assume (A), (B) and (R1)–(R4) with K = K0. Let 0 < δ <

min{dK, 1
4|J−1|∗C(EG+1)

} with C from (2.2). Then (except for a P -null set) on the

set B1n ∩ B2n ∩ Bn(δ) the contrast function attains its global minimum in � at a
uniquely determined point θ̂ which satisfies ‖θ̂ − θ0‖ ≤ δ. Consequently,

Pn(‖θ̂ − θ0‖ > δ) ≤ Ce−cn.

3. Moderate deviation theorem. In this section we show that the assump-
tions, which we have posed in the previous section, do not give only exponential
bounds, but are also sufficient to obtain sharp moderate deviation results for the
MCE under Pn. We start with a sketch of the main ideas.

Except for a set with exponentially small probability the MCE is the unique
solution of the equation �n(θ;x1, . . . , xn) = 0 existing in each small enough
neighborhood of θ0. Essentially we deal with this solution and apply a Taylor
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expansion around a point θn (converging to θ0 and determined later on) of the
following form:

0 = 1

n

n∑
i=1

∂

∂θ
h(Xi, θ̂) ≈ 1

n

n∑
i=1

∂

∂θ
h(Xi, θn) − J (θ̂ − θn),

implying

θ̂ − θn ≈ J−1 1

n

n∑
i=1

∂

∂θ
h(Xi, θn).(3.1)

By the law of large numbers it is seen that under Pn the MCE is close to that point
θn ∈ � for which

En

∂

∂θ
h(X1, θn) = 0.(3.2)

In principle, we can make a Taylor expansion around θ0, but

lim
n→∞En

∂

∂θ
h(X1, θ0) 	= 0 unless lim

n→∞E

(
An(X1)

∂

∂θ
h(X1, θ0)

)
= 0.

Therefore, the natural point in the parameter space � to compare with the MCE
is the point θn defined by (3.2). The probability measure corresponding to the
point θn may be seen as a kind of projection of the probability measure Pn on the
probability measures, parameterized by �. By rewriting

E

(
An(X1)

∂

∂θ
h(X1, θ0)

)
as c−1

n Cov
(

∂

∂θ
h(X1, θ0),

dPn(X1)

dP (X1)

)
,

it is seen that the proposed model parameter θ0 can be taken as the projection
if the score function ∂

∂θ
h(X1, θ0) and the direction of the alternative dPn(X1)

dP (X1)
are

uncorrelated or “orthogonal.”
As the MCE is concentrating on the projection θn, the more the direction of

the alternative and the score function at θ0 are correlated, the larger the distance
between the MCE and θ0.

In the statistical literature often the term “true” value of the parameter appears.
For example, in Jensen and Wood [(1998), page 674] the “true” value of the
parameter is defined as the limit of the estimator. Within the proposed model
the parameter has a clear meaning. However, outside the model it is less clear
what the parameter is. Especially in testing theory, the definition of the nuisance
parameter under alternatives is not obvious.

For instance, suppose that we want to test normality. The null hypothesis
contains as nuisance parameters the mean and the variance. However, instead of
the mean we may also call it the median or the mode. Considering alternatives
like mixtures of a normal distribution with a Laplace distribution, what are
the “true” values of the nuisance parameters? More generally, when testing the
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null hypothesis {f (x, θ), θ ∈ �} and investigating the power at the alternative
sequence (1 − cn)f (x, θ0) + cng(x), how does one define the “true” value of the
nuisance parameter at these alternatives? The most appropriate candidate when
using MCEs seems to be θn as defined in (3.2). Indeed, it turns out that the natural
nuisance parameter to compare with the MCE is this θn; see also the discussion
in the introduction on asymptotic optimality of data driven tests. Therefore, we
concentrate in our theorems on the difference between the MCE and the “true”
value θn. Nevertheless, we also present some results on the deviation between the
MCE and θ0.

The moderate deviation results are obtained by exploiting (3.1) and application
of moderate deviation results for row sums of triangular arrays of rowwise i.i.d.
random vectors.

After this rough sketch of the approach, we become more precise, and first we
present a lemma concerning the existence of the projection θn and its behavior.

LEMMA 3.1. Assume (A), (B), (R2), (R3) and EG < ∞. For n sufficiently
large and δ > 0 small enough there exists a uniquely determined point θn ∈
{θ :‖θ − θ0‖ ≤ δ} for which

En

∂

∂θ
h(X1, θn) = 0.

Moreover,

θn = θ0 − cnJ
−1E

(
An(X1)

∂

∂θ
h(X1, θ0)

)
+ O(c2

n).(3.3)

The proof of Lemma 3.1 is given in Section 4.
Let

In = Covn

(
∂

∂θ
h(X1, θn)

)
and Jn = En

∂2

∂θ ∂θT
h(X1, θ0).

The main result is as follows.

THEOREM 3.2. Assume (A), (B) and (R1)–(R4) with K = K0. Let {zn} be a
sequence satisfying zn → ∞ and n−1/2zn → 0. Then

Pn

(
n1/2‖I−1/2J (θ̂ − θn)‖ ≥ zn

)
= exp

{
−z2

n

2
+ O(cnz

2
n) + O

(
z3
n√
n

)
+ O(log zn)

}
.

(3.4)

In particular,

lim
n→∞ z−2

n log
{
Pn

(
n1/2‖I−1/2J (θ̂ − θn)‖ ≥ zn

)} = −1
2 .(3.5)

Moreover, I, J may be replaced by In, Jn, respectively, in (3.4) and (3.5).
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The proof of Theorem 3.2 is given in Section 4.
Moderate and large deviation results concerning the Euclidean distance of the

MCE to θn can be inferred from Theorem 3.2. This leads to the following corollary,
which is proved in Section 4.

COROLLARY 3.3. Assume (A), (B) and (R1)–(R4) with K = K0. Let {zn} be
a sequence satisfying zn → ∞ and n−1/2zn → 0. Then

Pn(n
1/2‖θ̂ − θn‖ ≥ zn) = exp

{
−λ1z

2
n

2
+ O(cnz

2
n) + O

(
z3
n√
n

)
+ O(log zn)

}
,

where λ1 is the smallest eigenvalue of JI−1J . In particular,

lim
n→∞ z−2

n log
{
Pn(n

1/2‖θ̂ − θn‖ ≥ zn)
} = −1

2λ1.

Although θn is the natural parameter to compare with the MCE, we also present
moderate deviation results on the Euclidean distance between the MCE and θ0.

The proofs of Theorem 3.4 and Corollary 3.5 use the same types of argument as
those applied in the proofs of Theorem 3.2 and Corollary 3.3. Therefore, we omit
them here and refer to Inglot and Kallenberg (2001) for the complete proof.

THEOREM 3.4. Assume (A), (B) and (R1)–(R4) with K = K0. Let {zn} be a
sequence satisfying zn → ∞ and n−1/2zn → 0. Denote

�n = n1/2cn

zn

I−1/2E

(
An(X1)

∂

∂θ
h(X1, θ0)

)
and suppose �n → � as n → ∞ with ‖�‖ ∈ [0,1). Then we have

Pn

(
n1/2‖I−1/2J (θ̂ − θ0)‖ ≥ zn

)
= exp

{
−(1 − ‖�|)2z2

n

2
+ O(‖�n − �‖z2

n)

+ O(cnz
2
n) + O

(
z3
n√
n

)
+ O(log zn)

}
.

(3.6)

In particular,

lim
n→∞ z−2

n log
{
Pn

(
n1/2‖I−1/2J (θ̂ − θ0)‖ ≥ zn

)} = −1
2 (1 − ‖�‖)2.(3.7)

Moreover, I, J may be replaced by In, Jn, respectively, in (3.6) and (3.7).

COROLLARY 3.5. Assume (A), (B) and (R1)–(R4) with K = K0. Let {zn} be
a sequence satisfying zn → ∞ and n−1/2zn → 0.

If for �n defined in Theorem 3.4,

lim
n→∞�n = � with 0 ≤ ‖J−1I 1/2�‖ < 1,
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then

Pn

(
n1/2‖θ̂− θ0‖ ≥ zn

)
= exp

{
−r2z2

n

2
+ O(‖�n − �‖z2

n)

+O(cnz
2
n) + O

(
z3
n√
n

)
+ O(log zn)

}(3.8)

and

lim
n→∞z−2

n log
{
Pn(n

1/2‖θ̂ − θ0‖ ≥ zn)
} = −r2

2
,

where

r = inf
{‖I−1/2Ju − �‖ :‖u‖ ≥ 1

}
.

If

lim inf
n→∞ ‖J−1I 1/2�n‖ ≥ 1

then

lim
n→∞z−2

n log
{
Pn(n

1/2‖θ̂ − θ0‖ ≥ zn)
} = 0.

The above moderate deviation results can be immediately applied to the case of
MLEs.

Suppose f (x, θ), x ∈ X, θ ∈ �, is a family of probability densities on X with
respect to some σ -finite measure µ, where � ⊂ R

k, k ≥ 1, is an open set. Assume∫ [
f 1/2(x, θ) − f 1/2(x,ϑ)

]2
dµ(x) > 0

for every θ 	= ϑ . Let θ0 ∈ �. Let P denote the probability measure corresponding
to f (x, θ0) and h(x, θ) = logf (x, θ). Assume (A) and (R1)–(R4). Then all results
of Section 2 and Section 3 hold true. We need not assume (B); see also the
comments just below assumption (B). [Note that ϕ(θ) is by (R2)–(R4) finite at
least in some neighborhood of θ0.] Assume, in addition to (R2) and (R3), that

| ∂2

∂θr ∂θs
f (x, θ)|, r, s = 1, . . . , k, θ ∈ K , are bounded by H(x)f (x, θ0) with H(x)

as in (R2). Then J = −I and in the theorems and corollaries we may write I 1/2

instead of I−1/2J, I−1/2 instead of J−1I 1/2 and I instead of JI−1J .
Let us also note that Inglot and Ledwina (2001a) have made the first attempt to

get results like the ones above. More precisely, they obtained (cf. Theorem 4.7
in their paper) a weaker version of (3.8) for MLEs under �n = 0 and some
strengthening of (R1).

Now, define the Kullback–Leibler information number by

K(θ, θ0) = Eθ log
{

f (X1, θ)

f (X1, θ0)

}
.(3.9)
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By (R2)–(R4) and Taylor’s formula, it is easily checked that

K(θ, θ0) = 1
2 (θ − θ0)

T I (θ − θ0) + o(‖θ − θ0‖2) as θ → θ0.

Noting that conditions 1, 2 and 3 of Kallenberg (1983) are easily verified,
an estimator Un may be called first-order asymptotically optimal [cf. (2.16) on
page 502 of Kallenberg (1983)] if

− log P (n1/2 ‖Un − θ0‖ > zn)
1
2λ1z2

n

→ 1.(3.10)

By taking cn = 0, it is seen from either Corollary 3.3 (θn = θ0 in this case) or
Corollary 3.5 (�n = � = 0 in this case) that the MLE satisfies (3.10).

COROLLARY 3.6. Assume (A) and (R1)–(R4) with K = K0. The MLE in
the model {f (x, θ) : θ ∈ �} is first-order asymptotically optimal in the moderate
deviation sense.

Corollary 3.6 can be seen as an extension of the well-known asymptotic
optimality of the MLE in the local sense. It states that this optimality continues
to hold in the moderate deviation region.

Since for � 	= 0,

inf
{‖I 1/2(u − �)‖2 :‖u‖ ≥ 1

}
< inf

{‖I 1/2u‖2 :‖u‖ ≥ 1
} = λ1,

the optimal rate λ1 within the model is under Pn obtained by the MLE only if
� = 0. In particular, the rate of the MLE continues to hold under Pn if

lim
n→∞E

{
An(X1)

∂

∂θ
log f (X1, θ0)

}
= 0.

4. Proofs. In this section we present all proofs of the theorems and corollaries
of Section 2 and 3. Before proving Theorem 2.1 we need an auxiliary lemma.

LEMMA 4.1. For every r ≥ 1 and n ≥ r(r + 1) there exist α,β ∈ N∪{0} such
that n = αr + β(r + 1) and α ≥ n

2r
− r+1

2 and β > n
2r+2 − r

2 .

PROOF. Let n = ir + j with 0 ≤ j ≤ r − 1. Then, by the assumption
n ≥ r(r + 1), it follows that i ≥ r + 1. So, n = (i − j)r + j (r + 1) and a
representation n = αr + β(r + 1) exists. Let α0 be the smallest α ∈ N ∪ {0}
for which n = α0r + β0(r + 1) and let L0 be the smallest integer for which
α1 = α0 + L0(r + 1) ≥ n

2r
− r+1

2 . Then a simple calculation shows that n =
α1r + β1(r + 1) and β1 = β0 − L0r > n

2r+2 − r
2 . This proves the lemma. �
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PROOF OF THEOREM 2.1. Clearly one has

sup
ϑ∈Kc

0

r+1∑
i=1

{h(xi,ϑ) − h(xi, θ0)} ≤ 1

r

r+1∑
i=1

sup
ϑ∈Kc

0

r+1∑
j=1,j 	=i

{h(xj ,ϑ) − h(xj , θ0)}(4.1)

and hence

EZ0 r+1(θ0,K
c
0) ≤ r + 1

r
EZ0r(θ0,K

c
0),

implying by (R1) that EZ0 r+1(θ0,K
c
0) < 0.

We shall prove that (R1) also implies E exp{tZ0r+1(θ0,K
c
0)} < ∞ for

0 ≤ t ≤ T r/(r + 1). Indeed, by (4.1) and the inequality between the geometric
and arithmetic means, we have

exp
{
tZ0 r+1(θ0,K

c
0)

}
≤

(
r+1∏
i=1

exp

{
t (r + 1)

r
sup

ϑ∈Kc
0

r+1∑
j=1,j 	=i

{h(xj ,ϑ) − h(xj , θ0)}
})1/(r+1)

≤ 1

r + 1

r+1∑
i=1

exp

{
t (r + 1)

r
sup

ϑ∈Kc
0

r+1∑
j=1,j 	=i

{h(xj ,ϑ) − h(xj , θ0)}
}

and therefore, as 0 ≤ t (r + 1)/r ≤ T ,

E exp{tZ0 r+1(θ0,K
c
0)} ≤ E exp

{
t (r + 1)

r
Z0r (θ0,K

c
0)

}
< ∞.

Let αn = α and βn = β be as in Lemma 4.1. Then

sup
ϑ∈Kc

0

n∑
i=1

h(xi,ϑ) ≤
αn∑

s=1

sup
ϑ∈Kc

0

sr∑
i=1+(s−1)r

h(xi, ϑ)

+
βn∑
t=1

sup
ϑ∈Kc

0

αnr+t (r+1)∑
i=1+αnr+(t−1)(r+1)

h(xi, ϑ).

Consequently,{
sup

ϑ∈Kc
0

n∑
i=1

h(Xi,ϑ) ≥
n∑

i=1

h(Xi, θ0)

}

⊂
{

αn∑
s=1

Z(s−1)r sr (θ0,K
c
0) ≥ 0

}

∪
{ βn∑

t=1

Zαnr+(t−1)(r+1) αnr+t (r+1)(θ0,K
c
0) ≥ 0

}
.
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Write Mr(t) = E exp{tZ0r (θ0,K
c
0)}, t ∈ [0, T ]. Since EZ0r(θ0,K

c
0) < 0 by (R1),

we infer that mr = inf0≤t≤T Mr(t) < 1. Now for t ∈ [0, T ],

Pn

(
αn∑

s=1

Z(s−1)rsr (θ0,K
c
0) ≥ 0

)

≤ [
En exp{tZ0r (θ0,K

c
0)}]αn ≤ {(1 + Ccn)Mr(t)}αn.

(4.2)

Take n so large that (1 + Ccn)mr ≤ 1
2(1 + mr) < 1. Then applying (4.2) for the

point t at which Mr attains the value mr , we get

Pn

(
αn∑
s=1

Z(s−1)rsr (θ0,K
c
0) ≥ 0

)

≤ exp
{
−αn log

(
2

1 + mr

)}
≤ exp

{
r + 1

2
log

(
2

1 + mr

)}
exp

{
− n

2r
log

(
2

1 + mr

)}
= Ce−cn.

Repeating the same argument for Mr+1(t), t ∈ [0, T r/(r + 1)], and analogously
defined mr+1 and combining both estimates we obtain

Pn

(
sup

ϑ∈Kc
0

n∑
i=1

h(Xi,ϑ) ≥
n∑

i=1

h(Xi, θ0)

)
≤ Ce−cn.

Recall that we have denoted

BK0n(ε) =
{
(x1, . . . , xn) : sup

‖θ−θ0‖>ε,θ∈K0

n∑
i=1

h(xi, θ) <

n∑
i=1

h(xi, θ0)

}
.

Using (R2′) and the Heine–Borel theorem, arguing as in the proof of Theo-
rem 5.3.1 of Zacks (1971) and noting that by (B) we have EZ1(θ0,Vθ ) < 0 for
a sufficiently small neighborhood Vθ , it is seen that for some c,C,

Pn

(
(X1, . . . ,Xn) /∈ BK0n

) ≤ Ce−cn.

The rest of the proof follows from the relation

{(X1, . . . ,Xn) /∈ Bn(ε)}

⊂ {
(X1, . . . ,Xn) /∈ BK0n(ε)

} ∪
{

sup
ϑ∈Kc

0

n∑
i=1

h(Xi,ϑ) ≥
n∑

i=1

h(Xi, θ0)

}
.

This completes the proof of Theorem 2.1. �
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PROOF THAT (R2) IMPLIES (R2′ ). Write for ϑ, θ ∈ K , some ξ between θ0
and ϑ and T given in (R2),

exp
[
T {h(x,ϑ) − h(x, θ0)}]
= 1 + T exp

[
T {h(x, ξ) − h(x, θ0)}] ∂

∂θT
h(x, ξ)(ϑ − θ0).

Hence, using (2.1,) we get

sup
ϑ∈Vθ

exp
[
T {h(x,ϑ) − h(x, θ0)}] ≤ 1 + T k1/2H(x) sup

ϑ∈Vθ

‖ϑ − θ0‖,

which immediately proves that E exp{T Z1(θ0,Vθ)} < ∞ for any Vθ ⊂ K . �

PROOF OF LEMMA 2.4. We present a proof of the second statement. The
first statement can be proved in the same way. (Note that for a matrix M with
elements mij the statement |M|∗ > δ implies |mij | > δ

k
for some i, j and hence

the proof can be given for each component separately.) In view of (R4), Taylor
expansion yields

E
[
exp

{
η
(
G(X1) − EG − 1

)}] = 1 − η + O(η2) as η → 0.

Hence, there exists η > 0 such that

E
[
exp

{
η
(
G(X1) − EG − 1

)}]
< 1 − 1

2η.

The dominated convergence theorem ensures that

lim
n→∞En

[
exp

{
η
(
G(X1) − EG − 1

)}] = E
[
exp

{
η
(
G(X1) − EG − 1

)}]
.

Therefore, for all n ≥ n1 we have

En

[
exp

{
η
(
G(X1) − EG − 1

)}]
< 1 − 1

4η.

By the Markov inequality we get

Pn

(
1

n

n∑
i=1

G(Xi) > EG + 1

)

= Pn

(
n∑

i=1

G(Xi) > n(EG + 1)

)

= Pn

(
exp

[
η

n∑
i=1

{G(Xi) − EG − 1}
]

> 1

)

≤ (
En exp[η{G(X1) − EG − 1}])n ≤

(
1 − 1

4
η

)n

for all n ≥ n1 and the result easily follows. �
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PROOF OF LEMMA 2.5. By the definition of δ and assumption (R3) we
have {θ :‖θ − θ0‖ ≤ δ} ⊂ int(K). For a.e. (x1, . . . , xn) ∈ B1n ∩B2n ∩ BKn(δ) the
contrast function has a (local) minimum, which is attained at a point in the set
{θ :‖θ − θ0‖ ≤ δ}. Therefore, for a.e. (x1, . . . , xn) ∈ BKn(δ) the existence of a
solution of �n(θ;x1, . . . , xn) = 0 in the set {θ :‖θ − θ0‖ ≤ δ} follows.

That for a.e. (x1, . . . , xn) ∈ B1n ∩ B2n ∩ BKn(δ) there is only one solution of
�n(θ;x1, . . . , xn) = 0 in the set {θ :‖θ −θ0‖ ≤ δ} follows from the fact that, for a.e.
(x1, . . . , xn), �n(θ;x1, . . . , xn) is one-to-one on the set {θ :‖θ −θ0‖ ≤ δ}. The latter
is seen from the following inequalities. Let ‖θ − θ0‖ ≤ δ and ‖θ + ϑ − θ0‖ ≤ δ.
Then, if ϑ 	= 0, by (R3) for a.e. (x1, . . . , xn) ∈ B1n ∩ B2n ∩ BKn(δ),

‖�n(θ + ϑ;x1, . . . , xn) − �n(θ;x1, . . . , xn)‖
≥ ‖Jϑ‖ −

∥∥∥∥�n(θ + ϑ;x1, . . . , xn) − �n(θ;x1, . . . , xn)

−
(

∂

∂θT
�n(θ0;x1, . . . , xn)

)
ϑ

∥∥∥∥
−

∥∥∥∥(
∂

∂θT
�n(θ0;x1, . . . , xn) − J

)
ϑ

∥∥∥∥
≥ ‖ϑ‖

|J−1|∗ − C(EG + 1)δ‖ϑ‖ − ‖ϑ‖
4|J−1|∗ ≥ ‖ϑ‖

2|J−1|∗ > 0. �

PROOF OF LEMMA 3.1. Denote

ϕn(θ) = En[h(X1, θ) − h(X1, θ0)].
By (B) and the uniform boundedness of An(x) it follows that ϕn(θ) is well

defined on �. Using (R2), (R3) and a Taylor expansion we have for θ,ϑ ∈ D =
{θ : ‖θ − θ0‖ < dK} ∩ � and some ξ between θ and ϑ ,

h(x,ϑ) − h(x, θ) = ∂

∂θT
h(x, θ)(ϑ − θ) + 1

2
(ϑ − θ)T

∂2

∂θ ∂θT
h(x, θ)(ϑ − θ)

+ 1

2
(ϑ − θ)T

[
∂2

∂θ ∂θT
h(x, ξ) − ∂2

∂θ ∂θT
h(x, θ)

]
(ϑ − θ).

By (2.2) and the integrability of G (under P as well as Pn), it follows that all terms
in the above expansion are integrable with respect to Pn. Hence

|ϕn(ϑ) − ϕn(θ)| ≤ (1 + Ccn)

∥∥∥∥E ∂

∂θ
h(X1, θ)

∥∥∥∥‖ϑ − θ‖

+ (1 + Ccn)

∣∣∣∣E ∂

∂θ ∂θT
h(X1, θ)

∣∣∣∣∗ ‖ϑ − θ‖2

+ CEG(X1)‖ϑ − θ‖3,

which proves the continuity of ϕn (and ϕ) in D.
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Similarly, taking ϑ = θ + εei, ε 	= 0, ei = (0, . . . ,0,1,0, . . . ,0) ∈ R
k the ith

unit vector, we get∣∣∣∣ϕn(ϑ) − ϕn(θ)

ε
− En

∂

∂θi

h(X1, θ)

∣∣∣∣
≤ 1

2
|ε|(1 + Ccn)E

∂2

∂θ2
i

h(X1, θ) + C|ε|2EG(X1),

which, in turn, proves the differentiability of ϕn on D with the derivative ∂ϕn

∂θ
(θ) =

En
∂
∂θ

h(X1, θ) = gn(θ), say.
Let 0 < δ < dK and V = {θ :‖θ − θ0‖ < δ,ϕ(θ) > −ε}, where ε > 0 is small

enough that clV ⊂ {θ :‖θ − θ0‖ < δ}. Then on {θ :‖θ − θ0‖ < δ} \ V ,

ϕn(θ) = ϕ(θ) + cnEAn(X1){h(X1, θ) − h(X1, θ0)} < −ε

2

for n sufficiently large. As ϕn(θ0) = 0 it follows that for n sufficiently large ϕn

attains its global maximum in clV at some point θn ∈ V [in which ϕn(θn) ≥ 0]
and consequently ∂ϕn

∂θ
(θn) = En

∂
∂θ

h(X1, θn) = 0. This proves the existence.
Now, let 0 < δ < min{dK, 1

4|J−1|∗ C supn EnG
} with C from (2.2) and recall that

gn(θ) = En
∂
∂θ

h(X1, θ).
That there is only one solution of gn(θ) = 0 in the set {θ :‖θ − θ0‖ ≤ δ} follows

from the fact that gn(θ) is one-to-one on the set {θ :‖θ − θ0‖ ≤ δ}. The latter is
seen from the following inequalities. Let ‖θ −θ0‖ ≤ δ and ‖θ +ϑ −θ0‖ ≤ δ. Then,
if ϑ 	= 0,

‖gn(θ + ϑ) − gn(θ)‖
≥ ‖Jϑ‖ −

∥∥∥∥gn(θ + ϑ) − gn(θ) −
(

∂

∂θT
gn(θ0)

)
ϑ

∥∥∥∥
−

∥∥∥∥(
∂

∂θT
gn(θ0) − J

)
ϑ

∥∥∥∥
≥ ‖ϑ‖

|J−1|∗ − C(EnG)δ‖ϑ‖ − ‖ϑ‖
4|J−1|∗ ≥ ‖ϑ‖

2|J−1|∗ > 0.

Since, for ϑ → 0,

En

∂

∂θ
h(X1, θ0 + ϑ)

=
∫ {

∂

∂θ
h(x, θ0 + ϑ)

}
{1 + cnAn(x)}dP (x)

=
∫ {

∂

∂θ
h(x, θ0)

}
{1 + cnAn(x)}dP (x)
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+
∫ (

∂2

∂θ ∂θT
h(x, θ0)

)
ϑ{1 + cnAn(x)}dP (x) + O(|ϑ‖2)

= cnE

{
An(X1)

∂

∂θ
h(X1, θ0)

}
+ Jϑ + O(cn‖ϑ‖ + ‖ϑ‖2),

it follows that

θn = θ0 − cnJ
−1E

{
An(X1)

∂

∂θ
h(X1, θ0)

}
+ O(c2

n).

This gives (3.3) and the proof is complete. �

Next we state and prove two auxiliary lemmas which will be used in the proof
of Theorem 3.2, our main theorem. Define

Yni = I−1/2
n

∂

∂θ
h(Xi, θn).

LEMMA 4.2. Assume (A), (B) and (R2)–(R4). Let {zn} be a sequence
satisfying zn → ∞ and n−1/2zn → 0. Then

Pn

(∥∥∥∥∥n−1/2
n∑

i=1

Yni

∥∥∥∥∥ ≥ zn

)
= exp

{
−z2

n

2
+ O

(
z3
n√
n

)
+ O(log zn)

}
.

PROOF. By definition of θn we have that EnYni = 0 and that Covn(Yni) equals
the identity matrix. Moreover, we have [cf. (4.7), below]

‖Yn1‖ ≤ ∣∣I−1/2
n

∣∣∗∥∥∥∥ ∂

∂θ
h(X1, θn)

∥∥∥∥,
lim

n→∞
∣∣I−1/2

n

∣∣∗ = ∣∣I−1/2∣∣∗, f (x, θ0){1 + cnAn(x)} ≤ Cf (x, θ0)

and by (R3),∥∥∥∥ ∂

∂θ
h(X1, θn)

∥∥∥∥ ≤
∥∥∥∥ ∂

∂θ
h(X1, θ0)

∥∥∥∥ +
∥∥∥∥ ∂2

∂θ ∂θT
h(X1, θ0)(θn − θ0)

∥∥∥∥
+ C‖θn − θ0‖2G(X1)

≤
∥∥∥∥ ∂

∂θ
h(X1, θ0)

∥∥∥∥ +
∣∣∣∣ ∂2

∂θ ∂θT
h(X1, θ0)

∣∣∣∣∗ ‖θn − θ0‖

+ C ‖θn − θ0‖2 G(X1).

Hence by (R4), there exists η > 0 and a constant C such that for all n,

En exp(η‖Yn1‖) ≤ C.
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Therefore, for all y ∈ R
k , we get

∣∣En(y
T Yn1)

j
∣∣ ≤ ‖y‖jEn‖Yn1‖j = ‖y‖j η−j j !En

(‖ηYn1‖j

j !
)

≤ ‖y‖j η−j j !En exp(η‖Yn1‖).
Applying Theorem 4.9 of Inglot and Ledwina (2001a) [cf. also Prokhorov (1973)
and Theorem 3.1 of Yurinskii (1976)], we get

Pn

(∥∥∥∥∥n−1/2
n∑

i=1

Yni

∥∥∥∥∥ ≥ zn

)
≤ exp

{
−z2

n

2
+ O

(
z3
n√
n

)
+ O(log zn)

}
.

Let Wni be the first component of Yni . Then we have EnWni = 0, EnW
2
ni = 1 and∣∣∣∣∣n−1/2

n∑
i=1

Wni

∣∣∣∣∣ ≤
∥∥∥∥∥n−1/2

n∑
i=1

Yni

∥∥∥∥∥
and hence,

Pn

(∥∥∥∥∥n−1/2
n∑

i=1

Yni

∥∥∥∥∥ ≥ zn

)
≥ Pn

(∣∣∣∣∣n−1/2
n∑

i=1

Wni

∣∣∣∣∣ ≥ zn

)
.(4.3)

Application of Corollary 2.22 in Book (1976) [cf. also Lemma 4.1(ii) in Jurečková,
Kallenberg and Veraverbeke (1988)] yields

Pn

(∣∣∣∣∣n−1/2
n∑

i=1

Wni

∣∣∣∣∣ ≥ zn

)
= exp

{
−z2

n

2
+ O

(
z3
n√
n

)
+ O(log zn)

}
.(4.4)

The lemma follows from a combination of (4.3) and (4.4). �

LEMMA 4.3. Assume (A), (B) and (R2)–(R4). Then for yn > 0,

Pn

(∣∣∣∣∣1

n

n∑
i=1

∂2

∂θ ∂θT
h(Xi, θ0) − Jn

∣∣∣∣∣∗ ≥ yn

)
≤ 2 exp

{
−ny2

nδ2
0

8C0
(1 + cyn)

−1
}
,

where as previously,

Jn = En

∂2

∂θ ∂θT
h(X1, θ0),

and C0, δ0 are the constants appearing in (R4),

E exp
{
δ0

∥∥∥∥ ∂2

∂θ ∂θT
h(X1, θ0)

∥∥∥∥}
≤ C0.(4.5)
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The proof of Lemma 4.3 is simply an application of Theorem 3.1 of
Yurinskii (1976) [cf. Lemma 5.5 in Inglot and Ledwina (2001a)], so we omit the
details. Note that by (A), (R2) and (R3),

|Jn − J |∗ ≤ Ccn.

PROOF OF THEOREM 3.2. Let δ0 and C0 be the constants in (R4); see (4.5).
W.l.o.g. assume δ0 < min{dK, 1

4|J−1|∗C(EG+1)
} with C from (2.2). Take yn =

(8C0)
1/2n−1/2δ−1

0 zn and define

B̃1n =
{
(x1, . . . , xn) :

∣∣∣∣ ∂

∂θT
�n(θ0;x1, . . . , xn) − Jn

∣∣∣∣∗ ≤ yn

}
.

Then for n sufficiently large B̃1n ⊂ B1n and by Lemma 4.3,

Pn

(
(X1, . . . ,Xn) /∈ B̃1n

)
≤ 2 exp

{
−z2

n

(
1 + c

zn√
n

)−1}
= 2 exp

{−z2
n

(
1 + o(1)

)}
.

(4.6)

By (R3) and Taylor expansion we have with some ξ between θ0 and θn,

In = En

(
∂

∂θ
h(X1, θ0) + ∂2

∂θ ∂θT
h(X1, ξ)(θn − θ0)

)

×
(

∂

∂θ
h(X1, θ0) + ∂2

∂θ ∂θT
h(X1, ξ)(θn − θ0)

)T

.

Hence, using (A), (2.2) and (R4), we get

|In − I |∗ ≤ Ccn(4.7)

and consequently,∣∣I 1/2
n − I 1/2∣∣∗ ≤ Ccn,

∣∣I−1/2
n Jn − I−1/2J

∣∣∗ ≤ Ccn.(4.8)

Now restrict attention to {(X1, . . . ,Xn) ∈ Bn(δ0) ∩ B̃1n ∩ B2n}. By (R2)–(R4)
and Taylor expansion of �n around θn we obtain with some ξ between θ̂ and θn,

0 = I−1/2
n �n(θ̂ ;X1, . . . ,Xn)

= 1

n

n∑
i=1

Yni + I−1/2
n Jn(θ̂ − θn)

+ I−1/2
n

(
∂

∂θT
�n(ξ ;X1, . . . ,Xn) − ∂

∂θT
�n(θ0;X1, . . . ,Xn)

)
(θ̂ − θn)

+ I−1/2
n

(
∂

∂θT
�n(θ0;X1, . . . ,Xn) − Jn

)
(θ̂ − θn).

(4.9)
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Since ‖ξ − θ0‖ ≤ ‖θn − θ0‖ + ‖θ̂ − θn‖, we have, using (R3) and (4.7),∥∥∥∥I−1/2
n

(
∂

∂θT
�n(ξ ;X1, . . . ,Xn) − ∂

∂θT
�n(θ0;X1, . . . ,Xn)

)
(θ̂ − θn)

∥∥∥∥
≤ C‖θn − θ0‖

∥∥I 1/2
n (θ̂ − θn)

∥∥ + C
∥∥I 1/2

n (θ̂ − θn)
∥∥2

.

(4.10)

By the definition of B̃1n and (4.7), we get∥∥∥∥I−1/2
n

(
∂

∂θT
�n(θ0;X1, . . . ,Xn) − Jn

)
(θ̂ − θn)

∥∥∥∥
≤ Cyn

∥∥I 1/2
n (θ̂ − θn)

∥∥.(4.11)

Combining (4.9)–(4.11), we arrive at∥∥∥∥∥I−1/2
n Jn(θ̂ − θn) + 1

n

n∑
i=1

Yni

∥∥∥∥∥
≤ C1(yn + cn)

∥∥I 1/2
n (θ̂ − θn)

∥∥ + C2
∥∥I 1/2

n (θ̂ − θn)
∥∥2

≤ C1(yn + cn)
∥∥I−1/2

n Jn(θ̂ − θn)
∥∥ + C2

∥∥I−1/2
n Jn(θ̂ − θn)

∥∥2

(4.12)

for some constants C1 and C2. This implies two inequalities,∥∥∥∥∥1

n

n∑
i=1

Yni

∥∥∥∥∥ ≥ (1 − C1yn − C1cn)
∥∥I−1/2

n Jn(θ̂ − θn)
∥∥

− C2
∥∥I−1/2

n Jn(θ̂ − θn)
∥∥2

,∥∥∥∥∥1

n

n∑
i=1

Yni

∥∥∥∥∥ ≤ (1 + C1yn + C1cn)
∥∥I−1/2

n Jn(θ̂ − θn)
∥∥

+ C2
∥∥I−1/2

n Jn(θ̂ − θn)
∥∥2

,

(4.13)

which, in turn give the following inclusions, holding for sufficiently large n,{
znn

−1/2 ≤ ‖I−1/2
n Jn(θ̂ − θn)‖ ≤ (4C2)

−1}
⊂

{∥∥∥∥∥1

n

n∑
i=1

Yni

∥∥∥∥∥ ≥ (1 − C1yn − C1cn)znn
−1/2 − C2z

2
nn

−1

}
,

{‖I−1/2
n Jn(θ̂ − θn)‖ ≥ znn

−1/2}
⊃

{∥∥∥∥∥1

n

n∑
i=1

Yni

∥∥∥∥∥ ≥ (1 + C1yn + C1cn)znn
−1/2 + C2z

2
nn

−1

}
.

(4.14)
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Applying Lemma 4.2, Theorem 2.6 and the definition of yn we obtain

Pn

(
(X1, . . . ,Xn) ∈ Bn(δ0) ∩ B̃1n ∩ B2n, n

1/2‖I−1/2
n Jn(θ̂ − θn)‖ ≥ zn

)
≤ Pn

(∥∥∥∥∥n−1/2
n∑

i=1

Yni

∥∥∥∥∥ ≥ (1 − Ccn − Cznn
−1/2)zn

)
+ Ce−cn(4.15)

≤ exp
{
−z2

n

2
+ O(cnz

2
n) + O

(
z3
n√
n

)
+ O(log zn)

}
and similarly,

Pn

(
(X1, . . . ,Xn) ∈ Bn(δ0) ∩ B̃1n ∩ B2n, n

1/2‖I−1/2
n Jn(θ̂ − θn)‖ ≥ zn

)
≥ Pn

(∥∥∥∥∥n−1/2
n∑

i=1

Yni

∥∥∥∥∥ ≥ (1 + Ccn + Cznn
−1/2)zn

)

− Pn

(
(X1, . . . ,Xn) /∈ Bn(δ0) ∩ B̃1n ∩ B2n

)
(4.16)

≥ exp
{
−z2

n

2
+ O(cnz

2
n) + O

(
z3
n√
n

)
+ O(log zn)

}
− Pn

(
(X1, . . . ,Xn) /∈ Bn(δ0) ∩ B̃1n ∩ B2n

)
.

In view of Theorem 2.1, Lemma 2.4 and (4.6), we have

Pn

(
(X1, . . . ,Xn) /∈ Bn(δ0) ∩ B̃1n ∩ B2n

)
≤ Ce−cn + 2 exp

{−z2
n

(
1 + o(1)

)}
and (3.4) follows with I

−1/2
n Jn instead of I−1/2J . In view of (4.8), we have for all

x ∈ R
k ,

‖I−1/2
n Jnx‖ ≤ ‖I−1/2Jx‖ + ∥∥(I−1/2

n Jn − I−1/2J )x
∥∥

≤ ‖I−1/2Jx‖ + ∣∣I−1/2
n Jn − I−1/2J

∣∣∗‖x‖
≤ ‖I−1/2Jx‖ + Ccn‖x‖
≤ ‖I−1/2Jx‖ + Ccn‖I−1/2Jx‖
= (1 + Ccn)‖I−1/2Jx‖

and similarly,

‖I−1/2
n Jnx‖ ≥ (1 − Ccn)‖I−1/2Jx‖.

The replacement of I
−1/2
n Jn by I−1/2J in (3.4) now immediately follows.

Noting that (3.5) is an immediate consequence of (3.4) completes the proof of
Theorem 3.2. �
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PROOF OF COROLLARY 3.3. Since∥∥I−1/2J (θ̂ − θn)
∥∥ ≥ λ

1/2
1 ‖θ̂ − θn‖,

where λ1 is the smallest eigenvalue of JI−1J , Theorem 3.2 implies

Pn

(
n1/2‖θ̂ − θn‖ ≥ zn

)
≤ Pn

(
n1/2‖I−1/2J (θ̂ − θn)‖ ≥ λ

1/2
1 zn

)
(4.17)

= exp
{
−λ1z

2
n

2
+ O(cnz

2
n) + O

(
z3
n√
n

)
+ O(log zn)

}
.

Similarly as in the proof of Theorem 3.2 [cf. (4.9)–(4.16)] it is seen that

Pn

(
(X1, . . . ,Xn) ∈ Bn(δ0) ∩ B̃1n ∩ B2n, n

1/2‖θ̂ − θn‖ ≥ zn

)
≥ Pn

(∥∥∥∥∥n−1/2
n∑

i=1

J−1
n I 1/2

n Yni

∥∥∥∥∥ ≥ (1 + Ccn + Cznn
−1/2)zn

)
(4.18)

− Pn

(
(X1, . . . ,Xn) /∈ Bn(δ0) ∩ B̃1n ∩ B2n

)
.

Let �n be the eigenvector of I
1/2
n J−2

n I
1/2
n with ‖�n‖ = 1 corresponding to λ∗

n1,

where λ∗
n1 is the largest eigenvalue of I

1/2
n J−2

n I
1/2
n . Then, noting that λ∗

n1 = λ−1
n1

with λn1 the smallest eigenvalue of JnI
−1
n Jn, we have

n−1/2

∥∥∥∥∥
n∑

i=1

J−1
n I 1/2

n Yni

∥∥∥∥∥ ≥ λ
−1/2
n1

∣∣∣∣∣n−1/2
n∑

i=1

�T
n Yni

∣∣∣∣∣.(4.19)

Since in view of (4.8), for any x 	= 0∣∣∣∣xT JnI
−1
n Jnx

‖x‖2 − xT J I−1Jx

‖x‖2

∣∣∣∣ ≤ Ccn

and

λn1 = inf
x

xT JnI
−1
n Jnx

‖x‖2 , λ1 = inf
x

xT J I−1Jx

‖x‖2 ,

it follows that

|λn1 − λ1| ≤ Ccn.

Application of Corollary 2.22 in Book (1976) [cf. also Lemma 4.1(ii) in Jurečková,
Kallenberg and Veraverbeke (1988)] yields in combination with (4.18) and (4.19),

Pn

(
(X1, . . . ,Xn) ∈ Bn(δ0) ∩ B̃1n ∩ B2n, n

1/2‖θ̂ − θn‖ ≥ zn

)
≥ Pn

(∣∣∣∣∣n−1/2
n∑

i=1

�T
n Yni

∣∣∣∣∣ ≥ λ
1/2
n1 (1 + Ccn + Cznn

−1/2)zn

)
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− Pn

(
(X1, . . . ,Xn) /∈ Bn(δ0) ∩ B̃1n ∩ B2n

)
≥ exp

{
−λn1z

2
n

2
+ O(cnz

2
n) + O

(
z3
n√
n

)
+ O(log zn)

}
− Pn

(
(X1, . . . ,Xn) /∈ Bn(δ0) ∩ B̃1n ∩ B2n

)
= exp

{
−λ1z

2
n

2
+ O(cnz

2
n) + O

(
z3
n√
n

)
+ O(log zn)

}
− Pn

(
(X1, . . . ,Xn) /∈ Bn(δ0) ∩ B̃1n ∩ B2n

)
.

Noting that

Pn

(
(X1, . . . ,Xn) /∈ Bn(δ0) ∩ B̃1n ∩ B2n

) ≤ Ce−cn + 2 exp
{−z2

n

(
1 + o(1)

)}
,

we obtain

Pn

(
n1/2‖θ̂ − θn‖ ≥ zn

) ≥ exp
{
−λ1z

2
n

2
+ O(cnz

2
n) + O

(
z3
n√
n

)
+ O(log zn)

}
,

which in combination with (4.17) proves the corollary. �
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