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LIKELIHOOD RATIO OF UNIDENTIFIABLE MODELS AND
MULTILAYER NEURAL NETWORKS

BY KENJI FUKUMIZU

Institute of Statistical Mathematics

This paper discusses the behavior of the maximum likelihood estimator
(MLE), in the case that the true parameter cannot be identified uniquely.
Among many statistical models with unidentifiability, neural network models
are the main concern of this paper. It is known in some models with
unidentifiability that the asymptotics of the likelihood ratio of the MLE has
an unusually larger order. Using the framework of locally conic models put
forth by Dacunha-Castelle and Gassiat as a generalization of Hartigan’s idea,
a useful sufficient condition of such larger orders is derived. This result is
applied to neural network models, and a larger order is proved if the true
function is given by a smaller model. Also, under the condition that the model
has at least two redundant hidden units, a logn lower bound for the likelihood
ratio is derived.

1. Introduction. This paper discusses the asymptotic behavior of the max-
imum likelihood estimator (MLE) under the condition that the true parameter
is unidentifiable. The asymptotics of the MLE is an important problem in es-
timation theory, and the asymptotic normality under some regularity conditions
is well known. However, if the dimensionality of the set of true parameters is
larger than zero, the Fisher information matrix at a true parameter is singular and
the asymptotic normality is no longer satisfied. There are many statistical models
with unidentifiability, such as finite mixture models [Hartigan (1985)], autoregres-
sive moving averages [Veres (1987)], reduced rank regression [Fukumizu (1999)],
change point problems [Csörgő and Horváth (1997)] and hidden Markov models
[Gassiat and Kéribin (2000)]. The behavior of the MLE in such models has not
been clarified completely, and many statistical methods such as model selection
need special considerations.

The main topic of this paper is the asymptotic order of the likelihood ratio (LR)
test statistics of the MLE as the sample size n goes to infinity. It has been reported
that the LR of some unidentifiable models has a larger order than Op(1), which
is the order given by ordinary asymptotic theory. Among many studies, Hartigan
(1985) discussed the normal mixture models with two components under the null
hypothesis of one component, and showed that the LR has a larger order than
Op(1). He conjectured also that the order is log logn, which has been solved
by Bickel and Chernoff (1993) and Liu and Shao (2001). Gassiat and Kéribin
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(2000) discussed a similar mixture model in a hidden Markov setting and showed
divergence of the LR for a two-state model under the null hypothesis of one state.

In this paper, a useful sufficient condition of a larger order of LR will be shown
by using the framework of locally conic models [Dacunha-Castelle and Gassiat
(1997)] in which unidentifiability is regarded as a conic singularity in the statistical
model embedded in the functional space of the probability densities. The sufficient
condition of LR divergence is given by a functional property of the tangent cone
at the singularity.

Another main result is the asymptotic order of the LR for multilayer neural
network models. It is known that multilayer neural networks also have uniden-
tifiability in the parameterization. By analysis of the functional properties of the
tangent cone, divergence of the LR will be shown on condition that the model has
redundant hidden units to realize the true function, and a lower bound of logn will
be derived for the models with at least two redundant hidden units.

2. Divergence of likelihood ratio in locally conic models.

2.1. Preliminaries. A statistical model S = {f (z; θ) | θ ∈ �} is a set of prob-
ability density functions on a measure space (Z,B,µ), which is parameterized
by a differentiable manifold (with boundary) �. We assume that Suppf (z; θ) is
invariant for all θ ∈ �. Given an i.i.d. sample Z1, . . . ,Zn generated by the true
probability density f0(z), we consider the likelihood ratio, defined by

sup
θ∈�

Ln(θ), where Ln(θ) =
n∑

i=1

log
f (Zi; θ)

f0(Zi)
,(1)

in the maximum likelihood framework. The main topic of this paper is the
asymptotic behavior of the LR as the number of samples n goes to infinity.

It is assumed that the true probability density is included in the model S. Let
�0 be the set of true parameters: �0 = {θ ∈ � | f (z; θ0)µ = f0(z)µ}. We do not
assume the uniqueness of θ0, but say that the true parameter is unidentifiable if
�0 is a union of finitely many submanifolds of � and the dimension of at least one
of the submanifolds is larger than zero. There are many important models in which
the true parameter can be unidentifiable. Finite mixture models and multilayer
neural networks are some examples. Suppose, for example, we have a mixture
model with two components f (z;a1, a2, b) = b g(z;a1)+ (1 − b)g(z;a2) and the
true density f0(z) = g(z;a0) for some a0. Then the set of true parameters contains
{(a1, a2, b) | a1 = a2 = a0} ∪ {(a1, a2, b) | b = 0, a2 = a0} ∪ {(a1, a2, b) | b = 1,
a1 = a0}, which is high dimensional. If the true parameter is unidentifiable, the LR
does not follow the usual chi-square asymptotics, which requires uniqueness of the
true parameter in the regularity conditions.
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2.2. Locally conic model and likelihood ratio. If a statistical model is
considered in the functional space of probability density functions, the set of
true parameters corresponds to a single point. This point is a singularity in
the model S if the dimensionality shrinks only at an exceptional parameter
set with measure zero. The local property around the singularity will be better
understood by introducing a convenient parameterization. Following Dacunha-
Castelle and Gassiat (1997), with some modification, a locally conic model is used
for discussing unidentifiability.

We write R≥0 = {β ∈ R | β ≥ 0}. Let A0 be a (d −1)-dimensional differentiable
manifold (with boundary), let � be a submanifold in A0 × R≥0, let S = {f (z; θ) |
θ ∈ �} be a statistical model and let f0(z) be an element in S. The parameter θ ∈ �

is decomposed as θ = (α,β) for α ∈ A0 and β ∈ R≥0. The statistical model S is
called locally conic at f0 if the following conditions are satisfied.

CONDITION 1. The parameter space � includes �0 := A0 × {0}, and the set
of the parameters to give f0 is �0; that is, f (z; (α,β))µ = f0(z)µ ⇐⇒ β = 0.

CONDITION 2. For each α ∈ A0, the set �(α) := {β ∈ R≥0 | (α,β) ∈ �} is a
closed interval with open interior.

CONDITION 3. f (z; (α,β)) is differentiable on β (right differentiable at 0)
for each α ∈ A0 and f0µ-a.e. z. For each α ∈ A0 the Fisher information at f0 is 1:∥∥∥∥∂ logf (z;α,0)

∂β

∥∥∥∥
L2(f0µ)

= 1.(2)

Intuitively, a locally conic model S is a union of one-dimensional submodels
Sα = {f (z;α,β) | β ∈ �(α)}. If the dimension of A0 is larger than zero, the
parameter to give f0 is unidentifiable, which is a singularity in the model. The
score function of Sα at the origin,

vα(z) = ∂ log f (z; (α,0))

∂β
,(3)

can be looked at as a unit tangent vector along Sα . The family of score functions
C = {vα | α ∈ A0} generates the tangent cone at the singularity f0. We call the
set C the basis of the tangent cone, which will have a key importance in the
following discussion. An example of a locally conic model is the multilayer neural
network model, which will be shown in Section 3.

Let a model S = {f (z; (α,β)) | (α,β) ∈ �} be locally conic at f0 ∈ S and
let Z1, . . . ,Zn be i.i.d. random variables with law f0µ. Assume that all the
submodels Sα satisfy the following regularity conditions on asymptotic normality.
Conditions 1–3 are slight modifications of Wald’s conditions for consistency
[Wald (1949)] and Condition 4 assures asymptotic efficiency [Cramér (1946)]. For
simplicity, we write each submodel as {g(z;β) | β ∈ V }, omitting the index α,
where V = �(α).
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CONDITIONS ON ASYMPTOTIC NORMALITY (AN).

1. For any β ∈ V , the integral Ef0µ[| logg(z;β)|] is finite.
2. If V = R≥0, the function H(z; t) = supβ≥t logg(z;β) satisfies

limt→∞ Ef0µ[H(z; t)] < ∞ and there exists � such that
∫
� f0(z) dµ > 0 and

limt→∞ H(z; t) = −∞ for all z ∈ �.
3. limρ↓0 Ef0µ[sup|β ′−β|≤ρ log g(z;β ′)] < ∞ for all β ∈ V .
4. The density g(z;β) is three times differentiable on β for all z and

lim
ρ↓0

∫
sup

0≤β≤ρ

∣∣∣∣∂νg(x;β)

∂βν

∣∣∣∣dµ < ∞ (ν = 1,2),

lim
ρ↓0

Ef0µ

[
sup

0≤β≤ρ

∣∣∣∣∂3 logg(z;β)

∂β3

∣∣∣∣] < ∞.

Under the assumptions AN, by applying the standard asymptotic theory to each Sα ,
the LR in the model S can be decomposed into [Dacunha-Castelle and Gassiat
(1997)]

sup
θ∈�

Ln(θ) = sup
α∈A0

Ln(α, β̂α) = sup
α∈A0

{1
2Un(α)2 · 1Un(α)≥0 + op(1)

}
,(4)

where Un(α) is a random variable defined by

Un(α) = 1√
n

n∑
i=1

vα(Zi), vα(z) = ∂

∂β
logf

(
z; (α,0)

)
.(5)

The function vα(z) belongs to the basis of the tangent cone C. While the variable
Un(α) converges in law to the standard normal distribution for each α ∈ A0, we
have to consider Un(α) over all α to see the LR in S.

2.3. Larger order of the likelihood ratio. The LR can have a larger order than
Op(1) if the function class of the tangent cone is “rich” enough. In this subsection,
a useful sufficient condition of such an unusually larger order is derived. We
generalize Hartigan’s (1985) idea on a Gaussian mixture model by applying it
to the general expression of (4) for locally conic models, which is originally used
for deriving the asymptotic distribution of the LR under the assumption of the
uniform convergence of Un to a Gaussian process [Dacunha-Castelle and Gassiat
(1997, 1999)].

Note that the marginal distribution of Un in (4) on finite points v1, . . . , vm

in C always converges to an m-dimensional normal distribution with covariance
EP [vivj ]. Two components of the limit are independent if their covariance is
zero. Suppose we can find an arbitrary number of “almost” uncorrelated random
variables in C. Then the supremum of Un(α) on such variables can take an
arbitrarily large value, since the maximum of m independent samples from the
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standard normal distribution is approximately
√

2 logm for large m. Hartigan
(1985) applied this idea to a normal mixture model with two components,
calculating the covariance explicitly. Generalization of his idea leads us to the
following theorem.

THEOREM 1. Let a statistical model S = {f (z; (α,β))} be locally conic at
f0 ∈ S and let C = {vα(z) = ∂

∂β
f (z; (α,0))} be the basis of the tangent cone.

Assume that for each α ∈ A0 the submodel Sα = {f (z;α,β) | β} satisfies the
conditions AN. If there exists a sequence {vn}∞n=1 in C such that vn → 0 in
probability, then, for arbitrary M > 0, we have

lim
n→∞ Prob

(
sup
(α,β)

Ln(α,β) ≤ M

)
= 0.(6)

REMARK. The regularity condition AN can be replaced by any other
conditions for asymptotic normality, such as Le Cam (1970). The condition AN
uses a classical one by Cramér, which will give an easy extension to derive a lower
bound of the order of the LR in the next section.

PROOF OF THEOREM 1. Using the bound∣∣Ef0µ[vmvn]
∣∣ ≤

∫
{|vn|≥ε}

|vmvn|f0 dµ +
∫
{|vn|<ε}

|vmvn|f0 dµ

≤
(∫

{|vn|≥ε}
|vm|2f0 dµ

)1/2

+ ε

∫
|vm|f0 dµ,

we have limn→∞ E[vmvn] = 0 for arbitrary m ∈ N. From this fact, for arbitrary
ε > 0 and K ∈ N, there exist v(α1), . . . , v(αK) ∈ C such that |E[v(αi)v(αj )]| < ε

for different i and j . The rest of the proof is exactly the same as the argument in
Hartigan (1985), which is omitted here. �

The sufficient condition of the theorem is very easy to apply. For example,
consider the Gaussian mixture model with two components

f (x;µ,b) = bφ(x;µ) + (1 − b)φ(x; 0),

where φ(x;µ) is the probability density function of the normal distribution with
mean µ and variance 1. We see that for µ �= 0,

f (x;µ,b) = β
exp(µx − µ2/2) − 1

‖ exp(µx − µ2/2) − 1‖L2(φ0)

φ(x; 0) + φ(x; 0),(7)

where β = b‖ exp(µx − µ2/2) − 1‖L2(φ0)
. This gives a locally conic parameteri-

zation at φ(x; 0). It is easy to see that

exp(µx − µ2/2) − 1

‖ exp(µx − µ2/2) − 1‖L2(φ0)
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converges to zero in probability as µ → ∞. This gives another proof of Hartigan
(1985).

3. Likelihood ratio of multilayer perceptrons.

3.1. Unidentifiability in multilayer perceptrons. The multilayer perceptron
model with H hidden units [Rumelhart, Hinton and Williams (1986)] is defined
by a family of functions

ϕ(x; θ) =
H∑

j=1

bj s(ajx + cj ) + d,(8)

where x ∈ X = R, s(t) = tanh(t) and θ = (a1, b1, c1, . . . , aH , bH , cH , d) ∈
R

3H+1.
Learning in neural networks can be regarded as statistical estimation. Through-

out this paper, we assume that the input sample Xi is i.i.d. with law Q = q(x)µR,
where µR is the Lebesgue measure on R and the integral EQ| logq(x)|2 is finite.
Let Y be a subset of R, let (Y,By,µy) be a measure space and let r(y|u) be a con-
ditional probability density function of y ∈ Y given u ∈ R. The statistical model
of a multilayer perceptron MH is defined by

f (z; θ) = r
(
y|ϕ(x; θ)

)
q(x),(9)

where z = (x, y) ∈ X × Y. We assume that the noise model r(y|u) satisfies the
following assumptions.

CONDITIONS ON THE NOISE MODEL (NM1).

1. The conditional density r(y|u) is of class C1 on u for all y ∈ Y.
2. r(y|u1)µy �= r(y|u2)µy for different u1 and u2.
3. The Fisher information G(u) of r(y|u), which is defined by

G(u) =
∫ (

∂ log r(y|u)

∂u

)2

r(y|u)dµy,

is positive, finite and continuous for all u ∈ R.

Popular choices of r(y|u) are the additive Gaussian noise (1/
√

2πσ) ×
exp{−(1/2σ 2)(y − u)2} for continuous y and the logistic model euy/(1 + eu) for
binary output y ∈ Y = {0,1}, which often appears in classification problems.

The true parameter can be unidentifiable in the multilayer perceptron model.
Suppose, for example, we have a multilayer perceptron model with two hidden
units and the true function ϕ0(x) given by a perceptron with only one hidden
unit, say, ϕ0(x) = b0 tanh(a0x). Then, any parameter θ in the high-dimensional
set {θ | a1 = a0, b1 = b0, c1 = b2 = d = 0} ∪ {θ | a1 = a2 = a0, c1 = c2 = d = 0,
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b1 + b2 = b0} realizes the function ϕ0(x). It is known that the true parameter is
unidentifiable if and only if the true function can be realized by a network with a
smaller number of hidden units than the model [Sussmann (1992); Fukumizu and
Amari (2000)].

A locally conic structure can be seen in this unidentifiability of multilayer
perceptrons. Suppose we have the model MH and the true function ϕ0(x), which
is given by a multilayer perceptron with K (0 ≤ K < H ) hidden units,

ϕ0(x) =
K∑

k=1

b0
k s(a0

kx + c0
k) + d0,(10)

with ak �= 0, bk �= 0 (1 ≤ k ≤ K) and (ak, bk) �= ±(ai, bi) (1 ≤ k < i ≤ K).
For later use, we define a submodel of MH as

ψ(x;ω) = ϕ0(x) + β{η s(ξx + ζ ) + δ},(11)

where ω ∈ {ω = (α,β) = ((ξ, η, ζ, δ), β) | η �= 0, ξ �= 0, (ξ, ζ ) �= ±(a0
k , c

0
k) (1 ≤

k ≤ K),β ≥ 0}. We can see that the model {r(y|ψ(x;ω))q(x)} is locally conic at
f0(z) = r(y|ϕ0(x))q(x). In fact, because the functions {1, s(a0

kx +c0
k), s(ξx +ζ ) |

1 ≤ k ≤ K} are linearly independent [see Fukumizu (1996)], β must be zero to
satisfy ψ(x;ω) = ϕ0(x). This shows the condition NM1-1 of the definition. Let
N(α) be the L2(f0µ) norm of a tangent vector ∂

∂β
log f (x, y; (α,0)). It is given

by

N(α)2 =
∫

G(ϕ0(x))

{
∂ψ(x; (α,0))

∂β

}2

q(x) dx,

where

∂ψ(x; (α,0))

∂β
= η s(ξx + ζ ) + δ.(12)

Since this partial derivative is not a constant zero, we have 0 < N(α) < ∞ for
all α. Replacing β by N(α)β , we have locally conic parameterization.

3.2. Divergence of the likelihood ratio in multilayer perceptrons. For applying
Theorem 1 to the multilayer perceptron model, we need additional assumptions
on the noise model r(y|u) to ensure the Conditions AN. These assumptions are
satisfied by many important noise models. It is easy to see that the Gaussian and
logistic models satisfy them.

CONDITIONS ON THE NOISE MODEL (NM2).

1. For any compact set K ⊂ R,

sup
ξ,u∈K

Er(y|ξ )| log r(y|u)| < ∞
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and

lim
ρ↓0

sup
ξ,u∈K

Er(y|ξ )

[
sup

|u′−u|≤ρ

log r(y|u′)
]

< ∞.

2. The density r(y|u) is three times differentiable on u for all y ∈ Y and for any
compact set K ⊂ R, there exists ρ > 0 such that

sup
ξ∈K

∫
sup

|ξ ′−ξ |≤ρ

∣∣∣∣∂νr(y|ξ ′)
∂νu

∣∣∣∣dy < ∞ (ν = 1,2)

and

sup
ξ∈K

Er(y|ξ )

[
sup

|ξ ′−ξ |≤ρ

∣∣∣∣∂3 log r(y|ξ ′)
∂3u

∣∣∣∣] < ∞.

THEOREM 2. Assume that the model is the multilayer perceptron with
H hidden units MH and the true function is given by a network with K hidden
units for K < H . Under the assumptions NM1 and NM2 on the noise model
r(y|u), we have, for arbitrary M > 0,

lim
n→∞ Prob

(
sup
θ

Ln(θ) ≤ M

)
= 0.(13)

REMARK. This theorem means that the LR is strictly larger than Op(1).

PROOF OF THEOREM 2. Let σ(x; ξ,h) be a bounded, monotone decreasing
function defined by

σ(x; ξ,h) = 1

2

{
1 + s

(
−1

2
ξ(x − h)

)}
= 1

1 + exp{ξ(x − h)}(14)

and let {g(z; t, c, β)} be a submodel of (11), given by

g(z; t, c, β) = r

(
y
∣∣∣ϕ0(x) + β

1√
B(t, c)

σ

(
x; c2, t + 1

c

))
q(x),(15)

where B(t, c) = ∫
G(ϕ0(x))σ (x; c2, t + 1

c
)2 dQ(x) and β ∈ [0,1]. The basis of the

tangent cone C consists of the functions

v(x, y; t, c) = 1√
B(t, c)

∂ log r(y|ϕ0(x))

∂u
σ

(
x; c2, t + 1

c

)
.(16)

From the boundedness of ϕ0(x) and σ(x; ξ,h), it is straightforward to see that
NM1 and NM2 imply the asymptotic normality AN.

Fix A > 0 such that G(ϕ0(x)) ≥ A for all x ∈ R. Let FQ(t) be the distribution
function of the input probability Q and let t0 = inf{t ∈ R | FQ(t) > 0} ∈
R ∪ {−∞}. From the fact that limc→∞ σ(x; c2, t + 1

c
) = χ(−∞,t](x), we have,
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for given t , B(t, c) ≥ A
4 FQ(t) for sufficiently large c. For any t > t0 and δ > 0,

we have σ(x; c2, t + 1
c
) ≤ FQ(t) for all x ≥ t + δ and sufficiently large c.

Then we can choose sequences tn ↓ t0, δn ↓ 0 and sufficiently large cn such
that |v(x, y; tn, cn)| ≤ 2√

A
| ∂ log r(y|ϕ0(x))

∂u
|√FQ(tn) holds for all x ≥ tn + δn and y.

Because FQ(tn) → 0, we have v(x, y; tn, cn) → 0 almost everywhere. �

3.3. Asymptotic order of the likelihood ratio in multilayer perceptrons. We
will derive a log n lower bound for the LR in the case K ≤ H − 2. To show
this bound, we will use nγ (γ > 0) “almost independent” variables in the
basis of the tangent cone, as described below. However, unlike Theorem 1,
approximation by the multidimensional Gaussian distribution is not obvious,
because the dimensionality goes to infinity along with n. Sazonov’s (1968) result
and Lemma 1 in the Appendix are used to solve this problem.

Let W = {w(x; ξ,h, t) | ξ, t ∈ R, h > 0} be a family of functions given by

w(x; ξ,h, t) = 1√
A(ξ,h, t)

1

2

{
s
(
ξ(x − t + h)

) − s
(
ξ(x − t − h)

)}
,(17)

where A(ξ,h, t) = EQ[G(ϕ0(x))1
4 {s(ξ(x − t + h)) − s(ξ(x − t − h))}2] is a

normalization constant. Note that limξ→∞ 1
2 {s(ξ(x − t +h))− s(ξ(x − t −h))} =

χ[t−h,t+h] for any t and h. Using an argument similar to Section 3.1, we can easily
prove that the function family

ψ(x; ξ,h, t, β) = ϕ0(x) + βw(x; ξ,h, t)

defines a locally conic submodel of MH . The basis of the tangent cone includes
an arbitrary number of almost independent functions for any family of disjoint
intervals.

First, a general result will be shown under the condition that the regressor class
can approximate χI (x) for any interval I ⊂ R. For the theorem, we need further
assumptions on the noise model r(y|u). In listing them, we do not avoid overlap
with the former assumptions for simplicity. It is not difficult to verify the following
assumptions for the Gaussian model and the logistic model.

CONDITIONS ON THE NOISE MODEL (NM3).

1. For any compact set K ⊂ R, there exists a nonnegative function τ (s) on
[0,∞) such that for some positive numbers Ai, δi (i = 1,2) and T0,

τ (s) ≥ A1s
δ1 (0 ≤ ∀ s ≤ T0) and τ (s) ≥ A2s

δ2 (∀ s > T0)

hold, and a lower bound of the KL divergence is given by

Er(y|ξ )

[
log

r(y|ξ)

r(y|u)

]
≥ τ (|u − ξ |)

for all ξ ∈ K and u ∈ R.
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2. There exist a continuous function �2(ξ) and ν > 0 such that

Er(y|ξ )

[
sup

|u|≤R

∣∣∣∣∂ log r(y|u)

∂u

∣∣∣∣2] ≤ �2(ξ)Rν for all R ≥ 1.

3. For any compact set K ⊂ R,

sup
u∈K

Er(y|u)

[| log r(y|u)|2] < ∞, sup
u∈K

Er(y|u)

[∣∣∣∣∂ log r(y|u)

∂u

∣∣∣∣3]
< ∞

and

sup
ξ,u∈K

Er(y|ξ )

[∣∣∣∣∂2 log r(y|u)

∂u2

∣∣∣∣2]
< ∞.

4. For any compact set K ⊂ R,

lim
ρ↓0

sup
ξ∈K

Er(y|ξ )

[
sup

|ξ ′−ξ |≤ρ

∣∣∣∣∂3 log r(y|ξ ′)
∂u3

∣∣∣∣2]
< ∞.

THEOREM 3. Let r(y|u) be a conditional density function of y ∈ Y given
u ∈ R, which satisfies the conditions NM1, NM2 and NM3, let ϕ0(x) be a bounded
function on R and let f0(z) = r(y|ϕ0(x))q(x) be a density function with respect to
the measure µ = µR ×µy , where z = (x, y). For a closed interval I , a nonnegative
value M(I) is defined by

M(I) =
∥∥∥∥∂ log r(y|ϕ0(x))

∂u
χI (x)

∥∥∥∥2

L2(f0µ)

=
∫
I
G(ϕ0(x))q(x) dx,(18)

and a function uI (z) is defined by

uI (z) = 1√
M(I)

∂ log r(y|ϕ0(x))

∂u
χI (x)(19)

for I with M(I) > 0. Suppose W = {w(x;α) | α ∈ A0} is a family of functions
with the following conditions: the function

v(z;α) = ∂ log r(y|ϕ0(x))

∂u
w(x;α)(20)

satisfies ‖v(z;α)‖L2(f0µ) = 1 for all α ∈ A0, and there exist a, b > 0 such that for
any ε > 0 and closed interval I with M(I) > 0, we can find w(x;α) ∈ W which
satisfies (i) 0 < w(x;α) ≤ a√

M(I)
for all x ∈ R, (ii) w(x;α) ≥ b√

M(I)
for all x ∈ I

and (iii) ‖v(z;α) − uI (z)‖L2(f0µ) < ε.
Then, for the locally conic model f (z;α,β) = r(y|ϕ0(x) + βw(x;α))q(x)

(α ∈ A0 and β ∈ R), there exists δ > 0 such that, given an i.i.d. sample from f0µ,
we have

lim inf
n→∞ Prob

(supα,β Ln(α,β)

logn
≥ δ

)
> 0.(21)
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REMARK. This theorem asserts that the order of the LR is at least logn. The
model {f (z;α,β)} is regarded as a locally conic model by using f (z;α+, β) =
r(y|ϕ0(x)+βw(x;α+)) and f (z;α−, β) = r(y|ϕ0(x)−βw(x;α−)) for β ∈ R≥0.
For simplicity, we take negative β into consideration.

Theorem 3 can be applied to multilayer perceptrons for K ≤ H − 2.

COROLLARY 1. Suppose that the model is the multilayer perceptron with H

hidden units MH and that the true function is given by a network with K hidden
units for K ≤ H − 2. Then, under the conditions NM1, NM2 and NM3, there
exists δ > 0 such that

lim inf
n→∞ Prob

(
supθ Ln(θ)

logn
≥ δ

)
> 0.(22)

PROOF OF THEOREM 3. From NM1-3 and the boundedness of ϕ0(x), we
have 0 < M(R) < ∞. Fix K > 0 such that the M([−K,K]) = M(R)

2 . For an
arbitrary m ∈ N, we can obtain a partition {I [m]

k | k = 1, . . . ,m} of [−K,K] such
that I

[m]
k ’s are closed intervals with disjoint interiors and M(I

[m]
k ) = M(R)

2m
for

all k. For each k (1 ≤ k ≤ m), a unit score function u
[m]
k (z) is defined by

u
[m]
k (z) = ∂

∂β
log r

(
y
∣∣∣ϕ0(x) + β

1√
M(I

[m]
k )

χIk
(x)

)∣∣∣∣∣
β=0

=
√

2m

M(R)

∂ log r(y|ϕ0(x))

∂u
χ

I
[m]
k

(x).

Note that the functions u
[m]
k (z) are uncorrelated under the probability f0µ.

Let H3(x) be a function defined by H3(x) = Er(y|ϕ0(x))| ∂ log r(y|ϕ0(x))
∂u

|3. By
NM1-3 and NM3-3, there exists B > 0 such that H3(x) ≤ BG(ϕ0(x)) for all
x ∈ [−K,K]. Then we obtain

Ef0µ

∣∣u [m]
k (z)

∣∣3 = 1

M(I
[m]
k )3/2

∫
H3(x)χ

I
[m]
k

(x)q(x) dx ≤
√

2B√
M(R)

√
m.(23)

Let Pn and Qm be the probabilities of the m-dimensional random vector
( 1√

n

∑n
i=1 u

[m]
1 (Zi), . . . ,

1√
n

∑n
i=1 u [m]

m (Zi)) and the m-dimensional normal distri-
bution N(0, Im), respectively. Let D denote the family of all the convex measur-
able sets on R

m. A Berry–Esseen-type inequality [Sazonov (1968)] gives

sup
�∈D

|Pn(�) − Qm(�)| ≤ Lm4
√

n

∑
1≤k≤m

Ef0µ

∣∣u [m]
k (Z)

∣∣3,(24)
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where L is a universal constant. From (23) and (24), choosing � = [−ν
√

logm,
ν
√

logm]m, we have for all n and m,∣∣∣∣∣Prob

(
max

1≤k≤m

∣∣∣∣∣ 1√
n

n∑
i=1

u
[m]
k (Zi)

∣∣∣∣∣ > ν
√

log m

)
− Prob

(
Vm > ν

√
log m

)∣∣∣∣∣
≤ C′ m11/2

√
n

,

where Vm is the maximum of the absolute values of m i.i.d. samples from N(0,1),
and C′ is a constant independent of n and m. If we choose 0 < ν <

√
2 and

m = [nγ ] for 0 < γ < 1
11 , where [x] is the largest integer that is not larger than x,

the extreme value theory, for arbitrary ε > 0, tells us that

lim
n→∞ Prob

(
max

1≤k≤m

∣∣∣∣∣ 1√
n

n∑
i=1

u
[m]
k (Zi)

∣∣∣∣∣
2

> ν2γ logn

)
> 1 − ε.(25)

By the assumptions on W , for any ε, δ > 0, m ∈ N and k (1 ≤ k ≤ m), there
exists w

[m]
k ∈ W such that (i) 0 < w

[m]
k (x) ≤ ã

√
m, (ii) w

[m]
k (x) ≥ b̃

√
m on I

[m]
k

and (iii) Ef0µ|v [m]
k (z) − u

[m]
k (z)|2 < εδ2/m, where v

[m]
k (z) is a function defined

by (20) for w
[m]
k (x), and ã, b̃ are positive constants independent of ε, δ, m and k.

Then, noting the fact that

max
1≤k≤m

∣∣∣∣∣
n∑

i=1

v
[m]
k (Zi)

∣∣∣∣∣ ≤ max
1≤k≤m

∣∣∣∣∣
n∑

i=1

(
v

[m]
k (Zi)−u

[m]
k (Zi)

)∣∣∣∣∣+ max
i≤k≤m

∣∣∣∣∣
n∑

i=1

u
[m]
k (Zi)

∣∣∣∣∣,
we obtain from Chebyshev’s inequality that

Prob

(∣∣∣∣∣ max
1≤k≤m

∣∣∣∣∣ 1√
n

n∑
i=1

u
[m]
k (Zi)

∣∣∣∣∣ − max
i≤k≤m

∣∣∣∣∣ 1√
n

n∑
i=1

v
[m]
k (Zi)

∣∣∣∣∣
∣∣∣∣∣ ≥ δ

)

≤ Prob

(
1 ≤ ∃k ≤ m,

∣∣∣∣∣ 1√
n

n∑
i=1

(
u

[m]
k (Zi) − v

[m]
k (Zi)

)∣∣∣∣∣ ≥ δ

)

≤ m
Ef0µ|u [m]

k (z) − v
[m]
k (z)|2

δ2
< ε.

(26)

Combining (25) and (26), we have a series {w [m]
k } and γ ′ > 0 such that

lim
n→∞ Prob

(
max

1≤k≤m

∣∣∣∣∣ 1√
n

n∑
i=1

v
[m]
k (Zi)

∣∣∣∣∣
2

> γ ′ log n

)
> 1 − 2ε.(27)

From NM1-3, there exist c, d > 0 such that c
m

≤ Q(I
[m]
k ) ≤ d

m
holds for all

m and k (1 ≤ k ≤ m). Then, by the choice of {w [m]
k }, Lemma 1 in the Appendix
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asserts that there exists γ1 > 0 such that for all 0 < γ < γ1 and m = [nγ ] we obtain
the asymptotic expansion of the LR,

max
1≤k≤m

sup
|β|≤1

n∑
i=1

log
f

[m]
k (Zi;β)

f0(Zi)

=
{

max
1≤k≤m

1

2

(
1√
n

n∑
i=1

v
[m]
k (Zi)

)2}(
1 + op(1)

)
,

(28)

where f
[m]

k (z;β) = r(y|ϕ0(x) + βw
[m]
k (x))q(x). Noting that the range of β can

be restricted to obtain the lower bound, the proof is completed by combining
(27) and (28). �

PROOF OF COROLLARY 1. We show that the function class W = {w(x; ξ,

h, t) | ξ,h, t ∈ R} defined by (17) satisfies the assumption of Theorem 3.
Let σ(x; ξ,h, t) = s(ξ(x − t + h)) − s(ξ(x − t − h)) and I = [t − c, t + c].
By NM1-3, M(I) is positive. We can easily find sequences hn ↘ c and ξn → ∞
such that (A) σ(x; ξn,hn, t) ≤ 2 for all x ∈ R, (B) σ(x; ξn,hn, t) ≥ 1

2 for
all x ∈ I and (C) |σ(x; ξn,hn, t) − χI (x)| → 0 for all x ∈ R. From (A),
(C) and the boundedness of G(ϕ0(x)), ∂ log r(y|ϕ0(x))

∂u
σ (x; ξn,hn, t) converges to

∂ log r(y|ϕ0(x))
∂u

χI (x) in L2(f0µ). This gives the assumption (iii). Also, we have
1
2M(I) ≤ A(ξn,hn, t) ≤ 2M(I) for sufficiently large n. Combining this with (A)
and (B), we obtain (i) and (ii) by taking a = 2

√
2 and b = 1

2
√

2
. �

The order logn was formerly obtained by Hagiwara, Kuno and Usui (2000).
However, they considered only the least square loss function and used its special
property. The approach in this paper extends their results and can be applied to
various noise models, including binary output models.

As shown in the above discussions, the behavior of the LR deeply depends on
the functional property of the tangent cone C. If the multilayer perceptron model
has only one redundant hidden unit, the behavior can be totally different. In fact,
Hayasaka, Toda, Usui and Hagiwara (1996) showed that if the network model has
one hidden unit of the step function and the true function is constant zero, then the
LR under Gaussian noise has the order of log log n, which is essentially the same
as the result of a change point problem [Csörgő and Horváth (1997)].

4. Conclusion. Under the assumption that the true parameter is unidentifi-
able, the larger asymptotic order of likelihood ratio test statistics has been investi-
gated. I have shown a useful sufficient condition of an unusually larger order of the
LR, using the framework of locally conic models [Dacunha-Castelle and Gassiat
(1997)]. This result has been applied to neural network models to show the diver-
gence of the LR in redundant cases. Also, a logn lower bound for the likelihood
ratio has been obtained under the assumption that there are at least two redundant
hidden units to realize the true function.
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APPENDIX

Lemmas used for the proof of Theorem 3.

LEMMA 1. Let ϕ0(x) be a bounded function on R, let Y be a subset
of R, let {r(y|ξ) | ξ ∈ R} be a family of probability density functions on a
measure space (Y,By,µy), which satisfies NM1, NM2 and NM3, let Q =
q(x)µR be a probability on R with EQ| log q(x)|2 < ∞ and let f0(z)µ =
r(y|ϕ0(x))q(x)µRµy . For fixed positive constants a, b, c, d and a compact
interval D, function classes Wm (m ∈ N) are defined by Wm = {w ∈ L2(f0µ) |
‖w‖L2(f0µ) = 1, 0 < w(x) ≤ a

√
m for all x ∈ R, and there exists a closed interval

I ⊂ D such that c
m

≤ Q(I) ≤ d
m

and w(x) ≥ b
√

m on I }. Given γ > 0, let
mn = [nγ ] for n ∈ N and let Gγ be a family of sequences {{w(n)

k }n∈N,1≤k≤mn |
w

(n)
k ∈ Wmn}. Suppose we have i.i.d. random variables (X1, Y1), . . . , (Xn,Yn)

with the law f0µ. Then there exists γ0 > 0 such that for any 0 < γ ≤ γ0 and
{w(n)

k } ∈ Gγ , we obtain, as n goes to infinity,

max
1≤k≤mn

sup
|β|≤1

n∑
i=1

log
r(Yi|ϕ0(Xi) + βw

(n)
k (Xi))

r(Yi|ϕ0(Xi))

=
{

max
1≤k≤mn

1

2

(
1√
n

n∑
i=1

u
(n)
k (Xi, Yi)

)2}(
1 + op(1)

)
,

(29)

where u
(n)
k (x, y) is a tangent vector given by

u
(n)
k (x, y) = ∂ log r(y|ϕ0(x) + βw

(n)
k (x))

∂β

∣∣∣∣
β=0

= ∂ log r(y|ϕ0(x))

∂ξ
w

(n)
k (x).

First, we will establish the uniform consistency of the MLE for β .

LEMMA 2. Let r(y|ξ), q(x), ϕ0(x), f0, and Wm be the same as in Lemma 1.
For m ∈ N, define Hm = {{wk}mk=1 | wk ∈ Wm}. Let β̂

[m]
k (�) be the maximum

likelihood estimator of the model {r(y|ϕ0(x) + βw
[m]
k (x))q(x) | β ∈ [−1,1]} for

� = {w[m]
k }mk=1 ∈ Hm, given the i.i.d. sample (X1, Y1), . . . , (Xn,Yn) with the law

f0(z)µ. Then there exist A,λ, ν > 0 such that

Prob
(

max
1≤k≤m

∣∣β̂ [m]
k (�)

∣∣≥ ε

)
≤ A

mλ

nεν
(30)

holds for all 0 < ε < 1, n,m ∈ N and � ∈ Hm.

PROOF. The proof is divided into three parts. In the first two parts, we
discuss only one w(x) ∈ Wm and write f [m](z;β) = r(y|ϕ0(x) + βw(x))q(x)
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for simplicity. We define g [m](z;β;ρ) for β ∈ [−1,1] and ρ > 0 by

g [m](z;β,ρ) = sup
|β ′−β|≤ρ

log f [m](z;β ′).(31)

A constant M is fixed so that |ϕ0(x)| ≤ M for all x ∈ R.
(a) Bounds of Ef0µ[g [m](z;β,ρ)]. We will show that there exist B , C,γ,η > 0

such that, for arbitrary δ > 0 and β ∈ [−1,1], the inequalities

Ef0µ

[
g [m](z;β,ρ)

] ≤ Ef0µ

[
log f [m](z;β)

] + δ(32)

and

Ef0µ

∣∣g [m](z;β,ρ)
∣∣2 ≤ Cmγ + 2δ2(33)

hold for ρ ≤ Bδm−η .
From NM3-2, we can find τ > 0, �(y) and �2(ξ) such that∣∣ log f [m](z;β) − logf [m](z;β ′)

∣∣ ≤ �(y)w(x)|β − β ′|(34)

and Er(y|ξ )[|�(y)|2] ≤ �2(ξ)(M + a
√

m)τ hold for β ∈ [−1,1]. Using � =
EQ[�2(ϕ0(x))] < ∞, (34) shows that

Ef0µ

[
g [m](z;β,ρ)

] ≤ Ef0µ

[
logf [m](z;β)

] + ρa

√
�m(M + a

√
m)τ ,

which implies (32) by choosing ρ ≤ Bδm−(τ/4+1/2) for some B . The second
assertion is also easily obtained from (34) and NM3-3.

(b) Lower bound of KL divergence. We show that there exist D > 0, ξ > 0 and
ζ ∈ R such that the bound

sup
ε≤|β|≤1

Ef0µ

[
logf [m](z;β)

] ≤ Ef0µ[log f0(z)] − Dmζεξ(35)

holds for arbitrary 0 < ε < 1 and m ∈ N.
From NM3-1, for all x ∈ I and β with |β| ≥ ε, we have

Er(y|ϕ0(x))

[
log r

(
y|ϕ0(x) + βw(x)

) − log r
(
y|ϕ0(x)

)] ≤ −Fεξ
√

mσ

for some ξ, σ,F > 0. By integrating this on x with the probability Q,

Ef0µ

[
logf [m](z;β) − log f0(z)

] ≤ −Fεξmσ/2 c

m

is obtained, which gives the assertion.
(c) Uniform consistency. We write f

[m]
k (z;β) = r(y|ϕ0(x) + βw

[m]
k (x))q(x).

By fact (b), we have Ef0µ[log f
[m]
k (z;β)] − Ef0µ[logf0(z)] ≤ −4δm for all β

with ε ≤ |β| ≤ 1 and m ∈ N, where δm = 1
4Dmζεξ . From fact (a), we have

Ef0µ[g [m](z;β,ρm)] ≤ Ef0µ[log f (z;β)] + δm for all β ∈ [−1,1] and ρm =
Bδmm−η . Let Nm ∈ N be given by Nm = [1/ρm]+2. Note that there exist G, t > 0
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such that Nm ≤ Gmtε−ξ . Dividing the set [−1,−ε] ∪ [ε,1] into Nm intervals
Jj = [βj − ρm,βj + ρm] (1 ≤ j ≤ Nm) with disjoint interiors, we have

Ef0µ

[
g [m](z;βj,ρm)

] ≤ Ef0µ[log f0(z)] − 3δm(36)

for all j . Then, by Chebyshev’s inequality, we have

Prob

(
∃k,∃β ∈ [−1,−ε] ∪ [ε,1], 1

n

n∑
i=1

log f
[m]
k (Zi;β) ≥ 1

n

n∑
i=1

logf0(Zi)

)

≤ mNm Prob

(
1

n

n∑
i=1

g [m](Zi;βj ,ρm) >
1

n

n∑
i=1

logf0(Zi)

)

≤ mNm Prob

(
1

n

n∑
i=1

g [m](Zi;βj ,ρm) − Ef0µ

[
g [m](Z;βj,ρm)

]
> δm

)
(37)

+ mNm Prob

(
1

n

n∑
i=1

logf0(Zi) − Ef0µ[log f0(Zi)] < −δm

)

≤ Gmt+1ε−ξ

{
V [g [m](z;βj,ρm)]

nδ2
m

+ V [log f0(Z)]
nδ2

m

}
.

From (33), (37) and NM3-3, there exist A,λ > 0 so that

Prob
(∃k, β̂

[m]
k ∈ [−1,−ε] ∪ [ε,1]) ≤ A

mλ

nε3ξ
,

which proves Lemma 2. �

PROOF OF LEMMA 1. From Lemma 2, the MLE β̂
(n)
k of the model

f
(n)
k (z;β) = r(y|ϕ0(x) + βw

(n)
k (x))q(x) satisfies the likelihood equation

n∑
i=1

∂ logf
(n)
k (Zi; β̂

(n)
k )

∂β
= 0

for all 1 ≤ k ≤ mn, with a probability converging to 1. By the standard argument
of Taylor expansion, we obtain

n∑
i=1

log
f

(n)
k (Zi; β̂

(n)
k )

f0(Zi)
=

( 1√
n

∑n
i=1

∂ logf
(n)
k (Zi ;0)

∂β

)2

− 1
n

∑n
i=1

∂2 logf
(n)
k (Zi;0)

∂β2

{
S(k)

n − 1

2
T (k)

n

}
,(38)

where S
(k)
n and T

(k)
n are defined by

S(k)
n =

1
n

∑n
i=1

∂2 logf
(n)
k (Zi;0)

∂β2

1
n

∑n
i=1

∂2 logf
(n)
k (Zi;β∗

k )

∂β2
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and

T (k)
n =

1
n

∑n
i=1

∂2 log f
(n)
k (Zi;0)

∂β2
1
n

∑n
i=1

∂2 log f
(n)
k (Zi;β∗∗

k )

∂β2( 1
n

∑n
i=1

∂2 log f
(n)
k (Zi ;β∗

k )

∂β2

)2
,

with β∗
k and β∗∗

k between 0 and β̂
(n)
k . The proof of Lemma 1 is completed if we

show, for arbitrary ε > 0,

Prob

(
max

1≤k≤mn

∣∣∣∣∣1

n

n∑
i=1

∂2 logf
(n)
k (Zi; β̃k)

∂β2 + 1

∣∣∣∣∣ ≥ ε

)
→ 0 (n → ∞)(39)

with β̃k = 0, β∗
k or β∗∗

k .
By Taylor expansion, we have

1

n

n∑
i=1

∂2 logf
(n)
k (Zi; β̃k)

∂β2 = 1

n

n∑
i=1

∂2 logf
(n)
k (Zi; 0)

∂β2 + 1

n

n∑
i=1

∂3 logf
(n)
k (Zi;η)

∂β3 β̃k,

where η is between 0 and β̃k. Using
∂2 logf

(n)
k (z;0)

∂β2 = ∂2 log r(y;ϕ0(x))

∂u2 (w
(n)
k (x))2 and

NM3-3, we have B > 0 such that the bound

Ef0µ

[∣∣∣∣∣1

n

n∑
i=1

∂2 logf
(n)
k (Zi; 0)

∂β2 + 1

∣∣∣∣∣
2]

≤ 2 + 2Bm2
n

n

holds for all n ∈ N. Then, by Chebyshev’s inequality, for 0 < γ < 1
3 and

mn = [nγ ], we obtain

Prob

(
max

1≤k≤mn

∣∣∣∣∣1

n

n∑
i=1

∂2 logf
(n)
k (Zi; 0)

∂β2 + 1

∣∣∣∣∣ >
ε

2

)
≤ 2mn

2 + 2Bm2
n

nε
→ 0.(40)

Take d > 2. From NM3-4, there exists C > 0 such that

Er(y|ϕ0(x))

[
sup

|β|≤m−d
n

∣∣∣∣∂3 log r(y|ϕ0(x) + βw
(n)
k (x))

∂u3

∣∣∣∣2
]

≤ C

holds for all x ∈ R and sufficiently large n. If we define

M
(n)
k (z) = sup

|β|≤m−d
n

∣∣∣∣∂3 log f
(n)
k (z;β)

∂β3

∣∣∣∣,
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we have

Prob

(
1 ≤ ∃k ≤ mn,

∣∣∣∣∣1

n

n∑
i=1

∂3 logf
(n)
k (Zi;η)

∂β3 β̃k

∣∣∣∣∣ ≥ ε

2

)

≤ Prob
(

max
1≤k≤mn

|β̂k| ≥ 1

md
n

)
+ Prob

(
max

1≤k≤mn

∣∣∣∣∣1

n

n∑
i=1

∂3 log f
(n)
k (Zi;η)

∂β3

∣∣∣∣∣ ≥ ε

2
md

n

)

≤ Prob
(

max
1≤k≤mn

|β̂k| ≥ 1

md
n

)
+ mn Prob

(
1

n

n∑
i=1

M
(n)
k (Zi) ≥ ε

2
md

n

)
.

(41)

Since Ef0µ[(M(n)
k (z))2] ≤ C(a

√
m)6 from NM3-4, by Chebyshev’s inequality,

the second term is not greater than 4mnE[M(n)
k (z)2]ε−2m−2d

n ≤ 4Ca6m4−2d
n ε−2,

which converges to zero for d > 2. From Lemma 2, there exist A,λ, ν > 0 such
that the first term of (41) is bounded by Amλ+dν

n /n. This converges to zero for
sufficiently small γ with γ (λ + dν) < 1 and mn = [nγ ]. Thus, for such γ and mn,
we obtain

Prob

(
1 ≤ ∃k ≤ mn,

∣∣∣∣∣1

n

n∑
i=1

∂3 logf
(n)
k (Zi;η)

∂β3
β̃k

∣∣∣∣∣ ≥ ε

2

)
→ 0(42)

as n → ∞. Equations (40) and (42) show (39) and complete the proof. �
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