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ASYMPTOTICS FOR LIKELIHOOD RATIO TESTS
UNDER LOSS OF IDENTIFIABILITY

BY XIN L1u! AND YONGZHAO SHAO?
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This paper describes the large sample properties of the likelihood
ratio test statistic (LRTS) when the parameters characterizing the true null
distribution are not unique. It is well known that the classical asymptotic
theory for the likelihood ratio test does not apply to such problems and the
LRTS may not have the typical chi-squared type limiting distribution. This
paper establishes a general quadratic approximation of the log-likelihood
ratio function in a Hellinger neighborhood of the true density which is
valid with or without loss of identifiability of the true distribution. Under
suitable conditions, the asymptotic null distribution of the LRTS under loss
of identifiability can be obtained by maximizing the quadratic form. These
results extend the work of Chernoff and Le Cam. In particular, applications
to testing the number of mixture components in finite mixture models are
discussed.

1. Introduction. Many hypothesis testing problems involve a family of
probability distributions {Py, & € ®} which is assumed known except for some
parameter 6 in the parameter space ®. Typically, ® is a subset of some finite-
dimensional metric space. We say that there is loss of identifiability in parameters
if Py = Py for some 6 # 6’ in ©. The problem of loss of identifiability occurs
in diverse areas such as econometrics, reliability theory and survival analysis
[Prakasa Rao (1992)]. It is well known that the classical asymptotic theory for
the likelihood ratio test (LRT) does not apply when there is loss of identifiability
of the true distribution [Lindsay (1995)]. This paper provides a general approach
for deriving the asymptotic null distribution of the likelihood ratio test statistic
(LRTS) in this type of hypothesis testing problem.

For simplicity, we assume the null distribution, denoted by P, is unique. Denote
by ® the set of true parameters corresponding to P;thatis, ®g=1{0 € ©®: Py = P}.
A common hypothesis testing problem, with (or without) loss of identifiability, is
to test

(1.1 Hy: Py, 0 € ®g against Hi: Py, 0 €O\ Q.
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The LRTS 21, based on random observations X1, ..., X, can be expressed as

n
2Ap =2sup L,(0) =2 sup Zloglg(Xi),
0e® 0€®;_1

where lyp = d Py/d P is the likelihood ratio function.

In the classical likelihood theory, the parameter characterizing the true null
distribution is typically assumed to be a unique point 6y in some open subset ®
of M. The classical regularity conditions ensure the consistency of the maximum
likelihood estimator (MLE) 6, and the existence of a quadratic approximation
to L, () in a Euclidean n~!/ 2—neighborhood of Oy [see, e.g., Chernoff (1954)],

(12) 2L, 0) =21 —00)"v,S —n(6 —00) 16 — 6) +op (1),

where S(x) = léo (x) is the score function; I = E p(SST) is the Fisher information
matrix which is assumed nondegenerate; v, f = n—1/2 (X)) — [ fdP)
for f € £'(P). Then the asymptotic normality of the MLE and the asymptotic
null distribution of the LRTS can be obtained by maximizing the above quadratic
form. However, when the parameters representing the true null distribution are
not unique, the classical likelihood theory is no longer applicable and various
difficulties arise in analyzing the asymptotic properties of the LRT. For example,
the MLE 6, may not converge to any fixed point in ®¢ and some directional scores
may be zero, thereby leading to degeneracy of the Fisher information matrix I
and failure of the quadratic expansion (1.2). In general, the limit distribution of
the LRTS may not be the chi-squared type as predicted by the classical theory
and it can be very hard to characterize. Typical hard problems of this kind
include testing the number of components in finite mixture models and testing
the order of a stationary ARMA process [Lindsay (1995) and Dacunha-Castelle
and Gassiat (1999)].

This paper describes the asymptotic properties of the LRTS for (1.1) under
loss of identifiability of the true distribution. Under some general conditions,
the maximum likelihood density estimator is consistent even when there is loss
of identifiability in the true parameters [Redner (1981)]. When the likelihood
ratio is square integrable, the convergence of the ML density estimator can be
measured by its £ distance to the true density. Denote by D(-, -) the £ distance;
that is, D2(01, 02) = Ep(lg, — 192)2 for 61,6, € ©. Then it is natural to expand
L, (0) in some £2-neighborhood of the true distribution. Moreover, when the true
parameter is unique and the classical regularity conditions hold, the .£? distance
D(0) = D(0, 6p) and the Euclidean distance |6 — 6| are locally equivalent in some
shrinking neighborhoods of 6. In particular, when the quadratic expansion in (1.2)
holds for |6 — 6p| = O(n—1/2), it is easy to see that

D*(0) = (0 — 00) 10 — 6p) + 0(10 — 6p|?).
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Thus |6 — 6| = O(n~1/?) implies D(0) = O (n~Y/?) and vice versa. Moreover,
VO —00)Tv,S = Vnv,(lg — 1) + op(1).

Define the generalized score function as Sg = (lg — 1)/ D(0) for 8 € ® \ ©¢. Then,
when (1.2) holds,

(1.3) 2L, (0) = 2/nD(0)v,So —nD?*@®) +op(1).

Unlike the expansion in (1.2), (1.3) does not require uniqueness of the true
parameter and holds under loss of identifiability of the true distribution. In
many applications, the empirical process v, Sy converges in distribution to some
Gaussian process. For instance, when {Sp:0 € ® \ ®¢} is a P-Donsker class,
v, Sp converges uniformly to some zero-mean Gaussian process {Wg, :0 € ©\ ©Op}
with continuous sample paths. Then, using the almost sure representation for weak
convergence, the quadratic form in (1.3) can be formulated as

1.4) 2L, (0) =2/nD(O)Ws, — nD*©) +op(1).

The supremum of 2L,(#) can be obtained by maximizing the quadratic form of
/nD(0) in (1.4). Under some general regularity conditions, Theorem 3.1 of this
paper asserts that on a suitable probability space

(1.5) lim 24, = sup[max(Ws, 0)]%,

oo SeF
where ¥ is the set of the £ limits (i.e., cluster points) of the generalized score
functions Sy as D(6) — 0.

As applications of this general approach, we characterize the asymptotics of the
LRTS for testing the number of components in finite mixture models. Because
of the importance of finite mixture models in applications, there are extensive
investigations on the asymptotic behavior of the LRTS in mixture models [see,
e.g., Titterington, Smith and Makov (1985), McLachlan and Basford (1988)
and Lindsay (1995)]. Recently the asymptotic distribution of this LRTS has
been derived by Dacunha-Castelle and Gassiat (1997, 1999) using “locally conic
parameterization.” Their approach is useful in deriving the index set & in (1.5);
however, it does not lead to optimal assumptions. We characterize the asymptotic
null distributions of the LRTS under some general conditions given in Section 4.

The paper is organized as follows: Section 2 establishes quadratic approxima-
tions to likelihood ratios in a Hellinger neighborhood of the true distribution with-
out requiring square integrability of the likelihood ratios and also provides the
asymptotic null distribution of the LRTS. Section 3 extends the results in Sec-
tion 2 to square integrable likelihood ratios under P-Donsker conditions for the
class of generalized score functions. The LRT of discrete models and hypothesis
testing problems with a composite null hypothesis are also considered. Section 4
characterizes the asymptotic null distribution of the LRTS for testing the number
of components in finite mixture models.
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2. General quadratic approximations using Hellinger distance. In this
section we establish quadratic approximations to likelihood ratios in a Hellinger
neighborhood of the true distribution. Section 2.1 provides the notation used
throughout this paper. Section 2.2 introduces the generalized differentiable in
quadratic mean (GDQM) expansion which is used to obtain a specific quadratic
approximation of the log-likelihood ratio in Section 2.3. The asymptotic null
distribution of the LRTS is derived in Section 2.4.

2.1. Notation. The notation to be used is listed first for easy reference.
Throughout this paper, vectors and matrices are denoted by boldface letters. We
will use the abbreviation Pf = [ f d P for an integrable function f and a signed

measure P. For f € L2(P), define the L£2(P) norm as Ifll=v P(fz). The map
Q:L2(P) — L2(P) is defined as Q(f) = f/| fl if f # 0. For a k-dimensional

vector X = (x1, ..., X;), define |x| = Vx12+~-~+x,% and the map w: (K - fk
as w(x) = x/|x| (x # 0). The empirical measure P, of random observations
Xi,..., X, is defined as P, =n~! "_18x,, where 8x,(A) = I4(X;) for any
measurable set A. Given a collection # of £!(P) functions, the ¥ -indexed
empirical process vy is given by {v, f = /n(P, — P)f, f € F}. The envelope
function of a class of functions ¥ is defined as F(x) = sup feF | f(x)].

DEFINITION 2.1. A family of random sequences {Y,(g):g €%, n=1,2,...}
is said to be uniformly Op(1) if for every § > 0, there exist constants M > 0
and N (8, M) such that P(supgeg Y, ()| < M)>1—26 for all n > N(§, M).
A family of random sequences {Y,(g):g € $, n =1,2, ...} is said to be uniformly
op(1) if for every § > 0 and e > 0, there exists a constant N (4, ¢) such that
P(supgeg Y, (@) <e)>1—4foralln > N(S,é¢).

We assume that the null distribution, denoted by P, is unique. All results in this
paper are considered under the null hypothesis and all expectations are taken with
respect to the null probability measure P. Suppose that { Pg; 6 € ®} is a family of
probability distributions which is assumed known except for some parameters 0 in
the parameter space ®. Always ® will be a subset of some metric space. Denote
by ®¢ the set of parameters corresponding to P; thatis, @ = {0 € ®: Py = P}.
Suppose X1, ..., X, are i.i.d. random observations from P. We investigate the
asymptotic properties of the LRTS for testing the hypotheses

(2.1) Hy:X;~ Py, 0 €®y against H|:X;~ Py, 0 €O\ O.
Denote by lyp = dPy/d P the Radon—Nikodym derivative and L, (@) the log-

likelihood ratio function:

L,(0) =) log(ls(X,)).

i=1
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Let x V y = max(x, y). The LRT 2, for (2.1) can be written as

2hkn=2supL,(@)=2 sup (L,(0)VO0).
) 0e©\0y

Let H(0) be the P-Hellinger distance between Py and P; that is, H 20) =
P[(JVIy — 1)?] /2. When the likelihood ratios are square integrable, denote
the Pearson type L2 distance by D(6), where D%6) = P(ly — D% In many
applications, the likelihood ratio is a continuous function of #. Without much loss
of generality, we assume that H (¢) and D(#) are bounded continuous functions for
6 € ©. Under fairly general conditions, the maximum likelihood density estimator
is consistent in Hellinger distance. Then for ¢ > 0, as n — oo, with probability
going to 1, we have é,, € O UOg and 2, — 2supycg, (Ln(0) vV 0) — 0, where

O, ={0e®:0<HO) <e}.

The regularity conditions of this paper imply Hellinger consistency of the
ML density estimator, so the asymptotic null distribution of the LRTS is
determined by the local properties of the likelihood functions in a small Hellinger
neighborhood ®, of P for some ¢ > 0. Thus, we can focus on the limiting
distribution of the restricted LRTS lim,,—, o0 2 supgcg, (Ln(0) v 0), for some & > 0.

2.2. Generalized DOM expansion. Let hg = /ls — 1. Le Cam’s DQM
condition [Le Cam (1970)] can be formulated as

(2.2) ho =0 —0)TS +rg,

where 60y is the true parameter, |ry| = o(|0 — 6p]) as 0 — 6y, PS = 0 and
I1=4P(SST) is positive definite. The DQM condition (2.2) holds very generally
and is one of the best known regularity conditions for local asymptotic normality
of the model. However, if ®( contains more than one point, the DQM condition is
no longer feasible. In this case, we use the generalized differentiable in quadratic
mean (GDQM) expansion:

DEFINITION 2.2 (GDQM expansion). A trio (Sg, 0(8), Ryp) is said to satisfy
the GDQM expansion if for some ¢ > 0 and all 6 € ®,, we have PSg = PRy =0,
o(0) >0and

(2.3) ho = o (0)Se — H*(0) + H*(O)Ry.
When the true parameter is unique (denoted by ), the GDQM expansion yields

Le Cam’s DQM expansion by letting Sy = (6 — GO)TS/|9 — 6|, o(0) =16 — O]
and Rg =rg/H 2(0) + 1. The GDQM expansion always exists and is not unique.
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For instance, let

_ sho+ H?(9) _H(®) —0
Sg—ﬁw, 0(9)—7, RQ—O,
or
lp—1 _D®) g
Sp = —D(Q) , o(0)=——, Ry=1 SH2)

Many different choices for the GDQM expansion are equivalent in the sense that,
under suitable conditions, they yield the same limiting distribution of the LRTS.

When the leading term in (2.3), o (), has the same order as the Hellinger
distance H (¢), the GDQM expansion yields a useful quadratic expansion of H (9).
It is for this reason we assume that o (#)/H (#) and H(6)/o(0) are uniformly
bounded on ®; in the following GDQM condition.

DEFINITION 2.3 (GDQM condition). The GDQM expansion (Sg, o (0), Rp)
is said to satisfy the GDQM condition if sup, g, 0 (0)/H (0) < 00, supyce, H(0)/
o(0) < oo and supee@JSé + |Ry|) € L1(P) for some & > 0.

Since H (0) is assumed continuous and bounded, the GDQM condition ensures
that sup, co, 0(0) <oo. Whena trio (Sp, o (0), Ry) satisfies the GDQM condition,
let S, = [o(9)/H(0)]Sg, 0/ (0) = H(H) and Rj = Ry. Then (S, 0’(0), Ry) also
satisfies the GDQM condition. The results of this paper which are valid for
(Sp, 0(0), Ry) also hold for (S, 0’ (6), Ry), and vice versa. For convenience, we
assume o (f) = H (0) in the following sections.

2.3. Quadratic approximations of log-likelihood ratio functions. In this sub-
section, we obtain quadratic approximations of L, (6) v 0 under the GDQM condi-
tion. We first study a quadratic approximation of L, (6) in the neighborhood ®, /;
for ¢ > 0.

THEOREM 2.1. Assume that (Sp, H(0), Rg) satisfies the GDOM condition
and for all ¢ > 0,

(2.4) sup  |[va(Se)| = Op(1), sup | Pn(Re)| =op(1).
QGGC/ﬁ 96@0/\/5

Then, as n — 00, in probability,

sup |L,(0) — 2/nH (0)v,(Sp) +nH*O)[2 + Po(SH]| — 0.
GEGE/ﬁ

To prove Theorem 2.1, we need the following fact whose proof is omitted.
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LEMMA 2.1. Suppose X1, ..., X, arei.i.d. randomvariables and G(X;) € L4
for some q > 0. Then

max |G(X;)| =op(n'/9).
1<i<n

PROOF OF THEOREM 2.1. We first consider the approximation to P, (hg).

The GDQM expansion yields
0s) nPy(h3) =nH?(0)Py(S3) +2nH3(0) Py[Se(Rg — 1)]
' +nH*0) P,[(1 — Rg)2.

Let G = sup9€®8(S§ + |Rp|) for some small enough ¢ > 0. Then G € L1(P), so
by Lemma 2.1, max;<;<, G(X;) = op(n). Consequently,

(2.6) max sup [Sp(X;)] =opn'’?), max sup |Rg(X;)| =op(n).
l<i<ngeco, l<i<ngeco,

The second and third terms in (2.5) can be bounded as follows:

sup | PalSs(Ry — Dl = Py(G +1) max sup |S(X;)| =op(n'/?),

6eO, <l<”96®
sup Py[(1 — Rg)*1= Py(G+ 1) [max_ sup (IRy(X))| + 1) =o0p(n).
6eO, <l<”96®

Hence, nP,(h2) = nH?*(0)P,(S3) + op(1), where op(1) holds uniformly for
00O, i Similarly, (2.4) and (2.6) yield

max sup |ho(X)| =op(1).
Isizngece,, 5

Note that
nPy(hg) = H(0)v,(Sp) —nH?*(©) +nH*(0) Py (Rp)
= /nH(0)v,(Sp) —nH*(0) + op(1).

Using the Taylor expansion of 2log(1 + x) = 2x — x2(1 + o(1)) for small x, we
have uniformly for 6 € ©_, 7,

2.7

Ly(0) =2 log(1 + ho(X;)) =nPy(2hg — [1 4+ 0p(1)1h3)
i=1

=2J/nH 0)vu(Sp) —nH*©O)[2 + Py (S +0p (D).
This completes the proof of Theorem 2.1. [

It is important to observe that L, () may diverge to —oo for some 6 € O,.
Consequently, it is very difficult to find a general approximation of L, (6) with
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a uniform residual term op(1) on ®,. Since 2A, > 0, it suffices to maximize
L, () Vv 0, which has a general quadratic approximation as shown in the following
Theorem 2.2. By expanding L,(6) Vv 0 locally in a Hellinger neighborhood of
the true distribution, we circumvent the difficulties encountered in the classical
approaches of Chernoff (1954) and Le Cam (1970) and are able to characterize the
asymptotic null distribution of the LRT under loss of identifiability.

THEOREM 2.2. Assume that (Sg, H(0), Ry) satisfies the GDOM condition,
and for some ¢ > 0 and all ¢ > 0,

sup v, Sp| = Op (1), sup | Pu(Rg)| =op(1),
(28) 96@5 . 0€®(r/ﬁ
inf (1 — P,Ry) > 0.
0e®,

Then uniformly for 6 € O,
(29 L,0)v0=(2VnH(O)v,Sy— nH*©6)[2 + Pn(Sg)]) vO+op(1).

PrROOF. It suffices to show that (2.9) holds uniformly for 6 € A; , U Ay,
where

Alp=10€0.:L,(0) >0},
Arp=1{0 € O :2J/nH(O)v, Sy — nH>)[2 + P,(S)] > 0},

because, otherwise, both sides of (2.9) are 0. Applying the inequalitylog(1 4+ x) <x
to the log-likelihood ratio function yields

Ly(0) =2 log(1 + he(X))

i=1
<2nP,(hy)
=2VnH©O)v, Sy — 2nH*(0)(1 — P, Ry).

The inequality above and (2.8) yield sup, . 4 . H 0) = Op(n~1/?).1t can be shown
in a similar fashion that sup,. A, H 0) = Op(n~"?). Thus, for § > 0, we can find

n

constants ¢ > 0 and N (8, M) such that

(2.10) P{ sup  H(O) > cn_l/z} <$8/2,

QGAI’HUAQ’,,
for all n > N (5, M). By Theorem 2.1, given § and c, for any ¢ > 0, we can find
N (8, &, ¢) such that

P{ sup  |L,(0) — {2/nH (0)v, Sp —nH*O)[2 + Pn(Sg)]H > 8}
0€®C/ﬁ
<4/2,

(2.11)
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foralln > N (6, &, ¢). Then (2.10) and (2.11) yield that
P sup Lu®) — (2 H @) S0~ nH*@)12 + Pu(S))| 2 ¢ <5,

OeA,
for all n > max(N (8, €), N(8, &, ¢)). This completes the proof of Theorem 2.2. [J

2.4. Asymptotic null distribution of the LRT. In this section, we derive the
asymptotic null distribution of the LRT based on the quadratic approximation
of the log-likelihood ratio function obtained in the previous section. Direct
maximization of the quadratic form in (2.9) by /n H () yields

(aSo v 002/ (2 + PuS{) & (v v 0)%/2,

where S, which standardizes Sy, is defined as

(2.12) Sy =2Sp/\1+ PS5/2.

Define F as the set of all £2 limits (cluster points) of v, S} as H(0) — 0, that is,
F = {S € L2(P):3{A™} € O,s.t.
(2.13)
. my __ 1: . 2 _ _
lim_H(©0™) = lim_| S /V1+ PS3/2— 5| o}.

Throughout this paper, we assume that, in (2.13) the £ convergence implies
pointwise convergence; that is, there exist £ representations of S and {Sgm}
in (2.13), such that Sj, converges to S pointwise. Furthermore, we assume that
F is complete and admits continuous paths as follows.

DEFINITION 2.4. ¥ is complete if for any sequence {6} € ®, (¢ > 0) with
H(0™) — 0, there exists a subsequence {6} of {§"} such that S}, converges to

some S € F in L£2. F admits continuous paths if for all S € ¥, there exists a path
{60(t,5):0 <t <¢&} C O, such that 6(¢, S) is continuous in ¢, H(6(t, S)) =t and
lim, 0 S5, 5y =S in L.

Define Dz (S;) as the L2 distance between Sy and F; that is, Dg(Sp) =
infgez ||S— S5 ||. The completeness of ¥ immediately yields the following lemma,
whose proof will be omitted.

LEMMA 2.2, If ¥ is complete, then limsupy ) _.o D (Sz) = 0.

According to the GDQM condition, Sg has a square integrable envelope
function on ®,. Then the dominated convergence theorem implies that, when ¥ is
complete, F is also compact and P§ =0 for all § € . Moreover, there exists a
function in ¥, denoted by S, achieving the minimum distance D# (S;); that is,

(2.14) 1S5 = S5l = D (5.
By Lemma 2.2, || S} — §§|| converges to 0 uniformly as H(9) — 0.
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THEOREM 2.3. Assume that

(a) (Sg, H(9), Ry) satisfies the GDOM condition.

(b) Equations (2.8) in Theorem 2.2 hold.

(¢) ¥ in (2.13) is complete and admits continuous paths.

(d) On the same probability space as the empirical process vy, there exists a
centered Gaussian process {Ws : S € £} with uniformly continuous sample paths;
that is, in probability

limsup |Wg, — Ws,| =0;
|S1—S2[1—0

and covariance kernel
P(Wg, Ws,) = P(S152) VS, $efF,
such that, for all ¢ > 0, the following two conditions hold:
(2.15)  sup |, S5 — Wz = 0p(1), sup | P,S3 — PS2|=op(l).
0€0,, 5 ¢ €0, /i
Under the assumptions (a)—(d), the LRTS for (2.1) satisfies

lim 2Xx, = sup (Wg Vv 0)2.
n—oo Se?«

PROOF. Since (Sg, H(0), Ry) satisfies the GDQM condition and (2.8) holds,
Theorem 2.2 yields (2.9). From (2.10) and (2.15),

sup v S; VO < sup WgvO0+op(l).
{0: Ln(8)>0} SeF

Then by Theorem 2.2,

2= sup  (4/nHO),Sy —2nH*O)[2 + Py (S)]) VO +op(l)
{60:L,(0)>0}

= sup [2v2nH()\/2+ PS3v,S}
{6: L,(6)>0}
(2.16) —2nH?*0)2 + PSH] V0 +op(l)
< sup (v,,S;\/O)2+0p(1)
{6: L,(6)>0}
< sup(Ws v 0)2 +op(1).
SeF
Thus to prove the theorem, it suffices to show that 24, > supg. ¢+ (Ws Vv 0)? +
op (1), which is equivalent to showing that for § > 0, there exists a constant N (§)
such that

(2.17) P(Z)m > sup(Ws v 0)% — 5) >1-36,

SeF



LRT FOR NONIDENTIFIABLE MODELS 817

for all n > N (§). From previous discussions, £ is compact and Wy has uniformly
continuous sample paths on (¥, || - ||). Hence we can assume that for some small
n >0,

P( sup |WS1 — W52| 25/2) <§/2.
1S1—S201<n

Note that supg.# |Ws| = Op(1) and Wg — (Wg Vv 0)? is a continuous map.
Without loss of generality, we can assume

(2.18) P( sup  |(Ws, v 0)? — (Ws, v 0)?| > 5/2) <35/2.
1S1—=S211<n
Since ¥ is compact, there exists an n-net {Sy, ..., Sx} on F. Denote by S;(s) the

closest point in the n-net to § € ¥ . Note that ||S — S;(s) || < n. Therefore, to prove
(2.17), it suffices to show that, for § > 0, there exists a constant N (&) such that for
alln > N (),

(2.19) P<2x,, > max (Ws, v 0)* — 5/2) >1-5/2.

1<i<k
Clearly, (2.19) holds if we can prove that for all § € ¥,
24, = (Ws V02 +0p(1).

Without loss of generality, we assume Wg > 0. According to the assumptions,
S has a continuous path in 6., denoted by {6 (¢, S)}. Then lim;_,¢ ||S;(I’S) —SI=0
and H (6(¢, S)) =t. With probability going to 1, the equation

(2.20) 1202+ P, 5)) = Ws

has a solution with 6(z, S) € ®,. To prove this, define g(¢) = t\/2n(2 + PSg(t’S)).

Note that PSg is bounded. Then g(0) = 0 < Wy and g(g) > 2ev/2n > Wy
with probability going to 1. Since g(#) is continuous, (2.20) has a solution with
probability going to 1. Denote the solution by #, and 6(z,, S) by 6”. Note that
lim, oo H(0") =0, 50 lim,,_, « || S — S|| = 0. The triangle inequality then yields
lim,, oo |I§§n — S| = 0. Since the Gaussian process {Wg:S € ¥} has uniformly
continuous sample paths,

Wg:, = Ws=op(1).
Note that H (") = Op(n~'/?). Then (2.15) yields

V Sgn = Wse + op(1)=Wgs+op(1).
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Plugging the equation H (6"),/2n(2 + PSg,,) = Wy into (2.16),
20 = (2[HOV2n 2+ PS3) |ou S = 20 HXOM) 2+ PS3)) v 0+ 0p (1)
= 2Wsv, Sin — WE +o0p(1)
= W35 +op(l).
Note that Wg > 0. This completes the proof of Theorem 2.3. [J

The GDQM expansion used by the above theorems assumes that o (6) = H(6).
For the general GDQM expansion (Sg, 0(0), Rg), one can simply replace Sp by
[o(6)/H(0)]Sp and obtain similar results. The general form of standardized score
function in Theorem 2.3, Sy, is then

2.21) S; =0(0)Ss/\ H20) +02(0) P(53)/2.

F and §; can be redefined in an analogous fashion to (2.13) and (2.14),
respectively. We state the following theorem without proof.

THEOREM 2.4. Assume that (Sg, 0 (0), Rg) satisfies the GDQM condition and
that assumption (2.8) in Theorem 2.2 holds. Then uniformly for 6 € O,

Ln(0) vV 0= (2/no (0)v,Se —n[2H?*() + a2(0) P, (SH]) v 0+ 0p(1).
Moreover, under the assumptions (a)—(d) in Theorem 2.3, the LRTS for (2.1)
satisfies

lim 2, = sup (Ws Vv 0)2.
n—oo SeF

3. LRT with square integrable likelihood ratios. For square integrable
likelihood ratios, it is more convenient to use the Pearson type £2 distance D(6)
instead of the Hellinger distance H (0). We call Sp = (Ip — 1)/ D(0) the generalized
score function. Then PS¢ =0 and PSg = 1. One choice of the GDQM expansion
for square integrable likelihood ratios is Sgp = (lgp — 1)/D(0), 0 = D(8)/2 and
RO)=1-— hg /I12H 2(0)]. The standardized score function in (2.21) becomes

Si =|D©)/V4H? ) + D*(0)/2]S).

Under suitable conditions, we can prove that D(9)/ \/ 4H2() + D%(0)/2 — 1
as D(#) — 0. Thus, S; and Sp are equivalent in the sense that they yield the
same £ limit. Then # can be formulated as the set of limits of generalized score
functions:

F = {Se L2:3{0") € O, s.t.
(3.1)
lim D@®™)=0, lim |(lgn —1)/D®O™) — S| =o}.
m—0Q0 m—0o0
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3.1. Quadratic approximation and asymptotic null distribution. In this sub-
section, we extend the asymptotic results obtained in Section 2 to square integrable
likelihood ratios. First we present a lemma on the local equivalence between H ()
and D(0) as D(0) — 0.

LEMMA 3.1. If the generalized score function, So = (lg — 1)/D(6), has a
square integrable envelope function on ® for some € > 0, then

lim 8H?*©)/D*©®)= lim 8H?*©®)/D*®)=1.
D(@6)—0 H@®)—0

PROOF. Let G = supycq, |S9l- Then G € L2(P). Tt is straightforward to
verify that

D7(0)|8H*(0) — D*(0)| = D*O)|P((VIg +3)(VIs — 1)Y)]

<3P((G+ 1)Vl —1|(Ilg + D7),

When D () — 0or H(0) — 0, /I — 1 in probability. Since (G +1)?|/Is — 1| x
W1y + 1)~! is dominated by (G + 1)2, the dominated convergence theorem yields
Lemma 3.1. 0O

To apply Theorem 2.3, one needs to verify the conditions for the convergence
of v,S; and PnSg in a n~!/2-Hellinger neighborhood of the true distribution.
For square integrable likelihood ratios, these conditions are directly implied
by the P-Donsker class and Glivenko—Cantelli class conditions. Next we give
their definitions. For further details, see van der Vaart and Wellner (1996) and
Dudley (1999).

DEFINITION 3.1. A family of measurable functions § € £!(P) forms a
Glivenko—Cantelli class, written as § € GC(P), if in probability SUPgeg |P,g —
Pg|—0asn— oo.

DEFINITION 3.2. A family of measurable functions § € £?(P) forms a
P-Donsker class, if, on some suitable probability space, there exists a version vy,
of the empirical process v, and a centered Gaussian process {W,, g € 4} with
covariance kernel

cov(We,, Wy,) = Pgig2 — Pg1Pgy  forgi,g2€§
such that in probability,

sup [V, (g) — Wg| — 0,

g<§
as n tends to infinity, where the Gaussian process {W,, g € §} has contin-
uous sample paths with respect to the £ distance e(-,-) on G:e(g1, g2) =
P(g1— 2% = (Pg1 — Pg2)”.
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Since there exists a probability space holding both the Gaussian process
{Wgs:S € F} and the empirical process v,, we simply denote by P their common
probability measure. Next we present the main theorem of this section.

THEOREM 3.1. Assume, for some ¢ > 0, F, = {Sg = (ly — 1)/D(9):
0 € ©.} forms a P-Donsker class with a square integrable envelope function. Then
uniformly for 6 € O,

(3.2) 2L,(0) V0= (24/nDO)v, Sy —nD*(0)) v 0+ op(l).

Moreover, assume the set ¥ in (3.1) is complete and admits continuous paths.
Then on some probability space, there exists a centered Gaussian process
{Ws:S§ e F}, equipped with the same probability measure P as v,, with
continuous sample paths and covariance kernel, P(Wg,Ws,) = PS1S>, for
S1, 8 € F. The LRTS for (2.1) satisfies

. _ 2
nll)ngo 20, = ;E}E(WS v 0)~.

PROOF. First we prove that the GDQM condition is satisfied for the expansion
So = (g — 1)/D(0), a(8) = D(©)/2, and Ry = 1 — h}/[2H?*(6)]. Then we
obtain (3.2) by verifying condition (2.8) of Theorem 2.2.

By Lemma 3.1, it is clear that there exists a constant ¢ € (0, 1) such that
c <D@)/H@®) < 1/c for 8 € O,. Denote the envelope function of Sy on ®,
by G. Then

(g — 1)?
S§+|R9|555+T2(0)+1
D?(9) 1+ 2c2
< S2 $24+1< G*+1eLl(pP).
=0t omey T =T O )

Thus (Sy, 0(0), Ry) satisfies the GDQM condition. The P-Donsker class condi-
tion implies supyc@, [vaSo| = Op(1). To prove (3.2), by Theorem 2.2, it suffices
to show that

sup |Py(Rg)|=o0p(1) and inf (1 — P,Rp) > 0.
066)(,/\/; 06@8

The proof for SUPpeo,, |P,(Rg)| = op(1) is presented first. By Lemma 3.1 and
the LLN,

(3.3) 1—P,Rg =

D2(0) ((19—1)2 1 )

2H2(0) D%(0) (VI +1)2
_ 483
_P,,<(\/E+1)2>+OP(1)
A 20 Wl +3)
(3.4) = P,(S;) + Pn<S9(1 19)(\/5_’_ 1)3) +op(1).
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By Lemma 2.10.14 in van der Vaart and Wellner (1996), {Sg :0 € ©,} forms
a Glivenko-Gantelli class. Hence supyg, IPn(Sg) — 1| = op(1). Note that
supge@v/ﬁ D)= 0m1/?) and maxi<j<, G(X;) = op(n'/?). Thus

1rilax sup |lp(X;) — 1| < max G(X;) sup D()=op(l).
Sisngeo,, i l<i<n 0€0,, i

Then (3.4) yields

lg +3
sup |P,Rg| <op(l) +op(l) sup Pn<G2 Wio +3) ) op(1).
0cO,, 0c0,, Wi+ 1)3

Next we verify that infyce, (1 — P,Rg) > 0. By (3.3), for k > 0,

c2 2

S 1
1—P,(R 0 >> P (1 P
(Ro) = 2 (19—1—1 T 4c2(k+ 1) "( {lg<k} 9)

1
Zm[}) (Se) ( le>k}50)]

It is clear that almost surely,

lim up o (Ljty =41 S7) < lim Py (LiG+1)=k/)G7) =0

k>0 gc@ k—o00
We can choose k so large that in probability supyce, Pn(ll{ug|>k}5§) < 1/4. By
the definition of Glivenko—Cantelli class, infgce, Pn(Sg) > 1/2 with probability

going to 1. Thus infpce, (1 — P, Rg) > 1/[16¢%(k + 1)] > 0 with probability going
to 1. Applying Theorem 2.4 yields that uniformly for 6 € ®,,

2L,(0) Vv 0= (24/nD(0)v,Sy — 2n[H*(0) + D*(0) P4(Sp>)/2]) v 0+ 0p(1)
= (24/nD(0)v, Sy —nD*(0)) VO +op(1).

In the last equation we used the fact that 8H 2(9) / D?(®) =1+ op(1), because
Theorem 2.2 ensures that SUPgg - 1,,(0)>0) H(@®)=0pn=1?%.

Lemma 3.1 ensures that S and Sy have the same L2 limits as D(0) tends
to 0. Therefore, the definitions of ¥ in (2.13) and (3.1) are equivalent. Because
F is complete, it is clear that the closure of ¥, satisfies Fe=F.UF and F is
a closed set. Theorem 2.10.2 in van der Vaart and Wellner (1996) yields that F.isa
P-Donsker class. Hence, on the same probability space as the empirical process v,
there exists a centered Gaussian process {Ws : S € ;} as defined in Definition 3.2
with continuous sample paths and covariance kernel,

P(Ws,Ws,)=PS1S2  VSi, 8 €.

Finally, we will verify (2.15) and thereby obtain the asymptotic null distribution
of the LRTS by Theorem 2.3. Note that {Sg; 0 € O} € GC(P). It directly yields
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SUPyco, |P,,S§ — PS§| = op(l) in (2.15). Next we consider v,S;. Note that
S5 /Se converges to 1 as H(6) tends to 0. We have SUPgee,, 1So — Sgll =o(1)

and supge@c/ﬁ [viSe — v S;| = op(1). By Lemma 2.2 and (2.14), there is a

function §; such that || — §§|I =o0(1) as H(0) tends to 0. Then the triangle
inequality and the uniform continuity of the Gaussian process {Wg: S € ¥} yield
that

sup [ Sp — Si| =op(1) and  sup [Ws, — Wsz| = op (D).
QGGC/ﬁ 9€®zr/ﬁ

The Donsker class condition ensures SUPpeo,, v, Se — Ws,| = op(1). The
triangle inequality then gives

sup  |v, Sy — W§g| =op(1),
QGGC/ﬁ

thus (2.15). By Theorem 2.3, we complete the proof of Theorem 3.1. [

The P-Donsker class condition for {Sg; 6 € ®,.} in Theorem 3.1 can be verified
using the empirical process techniques discussed in van der Vaart and Wellner
(1996). For instance, in the next section, we show that the generalized score
functions in discrete models form a P-Donsker class. The following lemma is
helpful when Sy is Lipschitz in 6.

LEMMA 3.2. Assume that § = {ge; 6 € ®) C L' (P). If ® is a compact set
in W9 and for any 01, 6> € O, there exists a function G € LZ(P) such that

|80, (x) — 86, (x)| < 161 — 62|G (),
then G is a P-Donsker class and {gg; 0 €®le GC(P).

PROOF. Theorem 2.7.11 in van der Vaart and Wellner (1996) implies § is
a P-Donsker class. By Lemma 6.3.5 and Theorem 6.1.7 in Dudley (1999),
{g2:0€@®)eGC(P). O

To obtain the limiting distribution of the LRTS, one needs to derive the index
set & , then find the distribution of the supremum of the Gaussian process Wg on &
[see, e.g., Azais, Cierco-Ayrolles and Croquette (1999) and Azais and Wschebor
(2000)]. This can also be done using simulations. Since the covariance kernel of
{Wgs; S € £} is known, the Gaussian process can be simulated via standard Monte
Carlo methods. Then we obtain the asymptotic null distribution of the LRTS by
maximizing the simulated (Ws v 0)? over ¥ . In the following, we demonstrate
how to derive # in the admixture models. The admixture models have also been
studied by many researchers [see, e.g., Dacunha-Castelle and Gassiat (1997) and
Lemdani and Pons (1999)].
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EXAMPLE 3.1 (Admixture models). The hypothesis testing problem in
admixture models is to test

3.5 Hy: fo against Hy:pfs+ (1 —p)fo, O<p=<1, ¢ €,

where f and f; are density functions, fq is known. Denote ®¢ = {¢p € : || f —
foll =0} and 6 = (¢, p). Then, the £2 distance is D(0) = pll fo/fo — 1| and the
generalized score function is

So = (fo/fo— D/ fs/fo— 11l

for ¢ € &\ Pp. Since the generalized score function does not depend on p, we
denote it by Sy. Recall that Q(f) is defined as Q(f) = f/|l f| for f € L2(P)
(f # 0). There are two types of limits of the generalized score functions,
depending on whether || fym — foll converges to zero:

Fi={Qfs/fo—1:¢ € P\ Do},

$2={S:3{¢m}ec1>\c1>o, s.t.

i for = foll =0, lim_ 12 — fo) = 51| =0},

Thus £ = ¥, U ¥3. It is clear that 5, is a subset of the closure of #;. Therefore,
F = #1. Under the conditions of Theorem 3.1, the Gaussian process {Wg; S € ¥}
has uniformly continuous sample paths. We have

lim 2x, = sup (Ws v 0)> = sup (Wg v 0)%.
n—o0 Sef]-:1 SeF

3.2. Discrete models and composite null hypothesis. In this subsection, we
first present a theorem for testing hypotheses of discrete models. We prove that the
Donsker class condition is automatically satisfied by discrete models and obtain an
explicit representation of the Gaussian process in Theorem 3.1. Then we consider
hypothesis testing problems with composite null hypotheses.

When the distribution function is discrete, without loss of generality, we may
assume that the sample space is X = {1, ..., k}. An observation on X can be
written as a vector X = (X (1), ..., X(k)) with a multinomial distribution with
probabilities: fy = (fo (i))i‘(:p where fp(i) = Ps(X (i) = 1). Denote the true null
distribution by f = fy, and assume that f (i) > 0 for I <i < k. Note that a vector x
on X can be also regarded as a function. Define the «£? norm | -| on X as
Ix||? = Zle f(i)x(i)z. For any 6 € ® \ ®, define the generalized score vector
as Sg = (fy /f— 1)/|/fe /f — 1] and the set of limits of Sy as F, that is,

(3.6) F= {s:a{e }€©\Ogst. lim [lfgn — ] =0, lim [[Son — S| :0}.

The following theorem gives the asymptotic null distribution of the LRT for
discrete models.
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THEOREM 3.2. Assume that the distributions in (2.1) are discrete, and
F in (3.6) is complete and admits continuous paths. The LRTS for (2.1) satisfies

. _ T 2
nll)ngo 2h, = zlelg(s Wv0)~,

where W ~ N (0, diag(f) — ff7) and £ is the true null probability vector.

PRrROOF. First we verify the P-Donsker condition for discrete models. It
suffices to show that the empirical process of the generalized score function,
v, Sp, converges uniformly to some Gaussian process. Based on our notation, the
generalized score function Sg can be expressed as

k
So(X) = (H[fem/f(i)]’“” - 1) [ /£= 11 =S{X.
i=1

Consider i.i.d. random observations Xi, ..., X,, from the true distribution f.
Denote n = (n(1),...,n(k)), where n(i) =#{j:X;(i) = 1,1 < j < n}, for
1 <i <k, and let W,, = n — nf. Note that SeTf: 0, we have v,Sp = SGTW,,.
By the central limit theorem, W,, converges to a Gaussian random vector W ~
N (0, diag(f) — ff7). Without loss of generality, we assume W,, converges to W
almost surely [see, e.g., Dudley (1999)]. Note that |W, — W| = op(1) and
ISg|l = 1. Thus v, Sp converges to SeT W uniformly for 8 € ® \ ®¢. This verifies
the P-Donsker class condition in Theorem 3.1. For discrete models, it is obvious
that the £? convergence of Sy is equivalent to the pointwise convergence.
By Theorem 3.1, the proof is completed. [J

In many hypothesis testing problems, the null hypothesis is composite:

(3.7) Hy: fp, 0 € ®1, against Hj: fp, 0 € O\ Oy,

where fp is a density function, ®; and ®, are subsets of R4, Without loss of
generality, we assume ®; C ®,. Denote the true null distribution by fy. For
i=1,2,1et

O =1{0 € O;: fog = fo},

B, ={0e€B;:0<D@)<e} and Arjy; = sup L,(6)VO.
96@,‘5

Then the LRTS for (3.7) can be written as 2A} = 215, — 211,. Denote by ¥; the
limits of generalized score functions on ®; as D(8) — 0; that is,

Fi = {S: 3{6"} € O;¢ \ O, s.t.
(3.8)

Tim || fm — foll =0, lim_[I2(fon/fo— 1) — S| =0}.
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We assume that, for any S € %3, it can be decomposed as the linear combination
of its projection § I'in #, and a function S+ in % orthogonal to ¥7; that is,

(3.9) S=as!+bSt,

where P(STT) =0 for all T € #|, a,b > 0. Denote by F1 the set of the
decomposed functions of ¥, orthogonal to #7. Under suitable conditions,
the LRTS for (3.7) converges in distribution to supgc#1(Ws v 0)2. That is the
following theorem.

THEOREM 3.3. For the test in (3.7), we assume that for i = 1,2, F;, =
{Sp:0 € ®;.} is a P-Donsker class with square integrable envelope function for
some ¢ > 0, and ¥F; defined in (3.8) is complete and admits continuous paths,
and F, is convex. We also assume that each S € ¥ has the decomposition (3.9).
Then on a suitable probability space, there exists a centered Gaussian process
(Ws:S € FLY, equipped with the same probability measure as vy, with continuous
sample paths and covariance kernel,

P(Ws,Ws,) = PSSy forS;, S, e FL,
such that the LRTS for (3.7) satisfies
lim 230 = supge g1 (Ws v 0)°.

PROOF. By Theorem 3.1, there exists a centered, uniformly continuous
Gaussian process {Wg: S € 5.} such that

lim 21* = sup (Wg v 0)> — sup (Ws v 0)2.
n—oo Mg SeF

For any § € %5, in (3.9) we have a?+ b%* = 1. Then,

(3.10) Ws =aWg +bWsi </ (Wgi v 0)2+ (Wgi v 0)2.

Since %3 is convex, for any S| € ¥, $3 € FLand 0 < p <1, we have §, =
pS1+ V1= p2Sy € F. Let p= (Ws, v 0)/V(Ws, v 0)% + (Ws, v 0)2. Then,
(3.11) (Ws, v 0)* = (Ws, v 0)* + (Ws, v 0)°.

Combining (3.10) and (3.11) proves the theorem. [

4. Applications to finite mixture models. In this section we study the LRT
for testing the number of components in finite mixture models. According to
Theorem 3.1, essentially one needs to verify the P-Donsker class condition for
{Sp; 0 € ®,} and to derive F . Note that the most widely used mixture models are
those from the exponential families which have square integrable likelihood ratios
and other nice analytic properties. For these models the Donsker class condition
can be directly verified using Lemma 3.2 and other techniques in van der Vaart and
Wellner (1996). In this section, we assume that the P-Donsker class condition is
satisfied and focus on deriving the index set ¥ .
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4.1. General set-up in deriving . We first present a set-up for deriving  in
general hypothesis testing problems. When there are difficulties obtaining all limits
of the generalized score functions directly, the following lemma shows that & can
be determined by a class of functions equivalent to generalized score functions.
We say that a family of functions {gy:6 € ®} satisfies gg = o(1) uniformly as
D(0) — 0 if there exists a square integrable function G such that

limsup [Igs/ G|l = 0.
D(©)—0

LEMMA 4.1. If Sg — Ty = o(1) uniformly as D(@) — 0, then F in (3.1) can
be formulated as

?:{Seﬁza{em}e@g, st lim D©®™) =0, lim ||T9m—S||=O}.
m-—00 m—00

The proof of Lemma 4.1 is straightforward and will be omitted.

By Lemma 4.1, ¥ can be derived using functions equivalent to the generalized
score functions. One way to find the equivalent functions is to use Taylor
expansions of the likelihood ratios. In many applications, including mixture
models, there exists a reparameterization 6 = (¢, ¥) € ® ® W such that the
equation D(0) = 0 is equivalent to the condition that ¢ = ¢ for all € W,
where ® and W are subsets of ¢ and R¥, respectively. Then the first-order Taylor
expansion at ¢ = ¢ is

al
(@.1) L) =1+<¢—¢0>T% +0(16 — ¢o).

al .
If (¢ — )T % is not degenerate, by Lemma 4.1, ¥ can be formulated as the

L2 limits of Q((¢ — ¢o)T al(g’%) as |¢ — ¢o| — 0. Without loss of generality, we
assume ¢y is an interior point of . Then the limits of (¢ — ¢o)/[¢ — ¢o| form the
unit ball in 3¢, Note that ¥ is closed, so F = %, where

4.2) %:{Q(ﬂngizw):“%:l,ﬂeﬂtd,weW}.
From (4.2), the LRTS converges to the supremum of the square of a Gaussian
process indexed by the closure of the convex cone of directional score functions,
which gives the results of Lindsay (1995) and Dacunha-Castelle and Gassiat (1997,
1999) for mixture models. The local conic parameterization approach of Dacunha-
Castelle and Gassiat is very useful in identifying ¥ . However, (4.2) fails when
the directional score functions are linearly correlated; that is, there exist 8 € R

al
(B #£0) and ¢ € ® such that S T% = 0. In general, the closure of the convex
cone of the directional score functions is only a subset of #. To obtain ¥, one

may need to expand the likelihood ratios by Taylor expansion to a higher order or
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use other approximations. For instance, when (4.1) fails, the Taylor expansion of
the likelihood ratio function to the second order may still hold; that is,

al
l(¢,¢,) —1=(¢— (Z)O)T%

+w¢fiﬁm¢mwmw»
In the next section, we show how to derive the explicit form of ¥ for mixture
models under (4.3).

4.3)

4.2. Finite mixture models. Suppose {fy:o € A} is a family of density
functions with A € :%¢ a compact, convex set. For two known integers [ < m,
testing a mixture model with / components against a mixture with m components
can be expressed as testing

l

m
(4.4) Ho: ) poifuy against Hi: ) pjfa;.
i=1 j=1

where 0 < po;, p; <1, api,aj € A; Y'_| poi = Yilipp =15 poisao (i =
1,...,1) are assumed known and p;, aj (j = 1,..., m) are unknown parameters.
Without loss of generality, we assume that pg; > 0, «p;’s are interior points
of A and their values are different from each other. The likelihood ratio function

for (4.4) is
m l
la’P: (Zija,)/(ZPOifaOi)
j=1 i=1

We assume that the likelihood function is identifiable in the following sense:

) m
(A1) lap=1 < > poiday = Pjda;-
i=1 =1

In the following, we find a reparameterization of 6 based on assumption (A1)
and then obtain the Taylor expansion in (4.3). When Iy p = 1, there exists a
vector t = (ti)ﬁzo such that 0 =1y <) < --- < <m and, up to permutations,
(a,p) can be presented as oy 41 = -+ = o = Qoj, Z;§=ti_1+1 Pj = Poi
i=1,...,0; and «a; ¢ {ao1,...,aq}, pj =0 for j =1 + 1,...,m. Define
s=(s)l_j,u=(u;)_ andq= (qj)ljle, where

: i
si= Y, pj— DPoi: ui =i — 81poi/ pol, 61j=Pj/ > i
j=tii+1 J=tizitl
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fori=1,...,1, j=ti_1+1,...,t. Note that u; = 0. Define the reparameteriza-
tion 0 = (¢, ¥¢) by
1,
¢t ((Olj)J 1»(31), 1a(pj j= ;l+1) '/’tz((Qj);:l’(aJ');n:t[—H)'
Then ¢0t = (0L, ++-r AQLs--->000, ..., 0,0,...,0,0,...,0). Let la = fa/
—— S —

1 =11 -1 m—t

(3, poi fag) — 1. Then

[ t; m
19—1=SZ(Si+P0i) Z gjla; + Z Pila;-

i=1 j=ti_1+1 j=ti+1

Define the ¢-derivatives of the likelihood ratio function at ¢y by
I =8ly, /0c; and [ = 8%ly, /8%a;.

We then make the second general assumption that the likelihood ratio has the
following Taylor expansion:

ligoyo =1+ (b — b0 1, 4,

(A2) .
+0.5(¢¢ — &) l¢0t’¢t(¢t — o) +o(D (¢, Y)),
where
1 t; T
(B¢ — Do) Ly, g, = ZPOi( > gjo;— Otol') I
i=1 j=ti—1+1
+Zu l(x(), + Z Pz o
i=f+1
1 1 T
(B¢ — Do) 1,y @ —bo) =D [2&‘ ( > gjej— “Oi) I
= j=ti—1+1

1
+ poi Z Qj(aj_OlOi)Tl,{/(aj_(XOi):|-
J=ti—1+1

Our third general assumption is that
(B¢ — D00 Ly, g, T 05 — bop) 1, 4, (B¢ — bop) =0

= O=dy

Assumptions (A1)—(A3) allow us to obtain the explicit form of # and show that it
is complete and admits continuous paths in the following theorem.

(A3)
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THEOREM 4.1. In the hypothesis testing problem (4.4), assume that (Al)—
(A3) hold. Then ¥ = J; F1 with

-1
Ft= { ( Z)\Tl/ + Z)‘(i-i‘l)tloloi
i=1
m—ty
+ Z )\'(l-‘er l)tla(lthl)[ +9 Z Z y]tl//yjt>

i=1j=ti_1+1
“4.5) Mg, .- At € Sﬁd*, Al+Dts -2 A=t €N,

At s Amt2t—ipt ERT 1Ly € N,
g1y s 0y € A\ {01, ..., aor}; At + 8|yl = 1},

where in (4.5) § = 1, if there exists a vector q such that q; > 0, ZJ 4= 1
and Z] —_,V4j7i=0 forl =1,...,1; and 0 otherwise; the union runs over all

possible t with 0 =ty < t; <--- < t; = m. Moreover, ¥ is complete and admits
continuous paths.

PROOF. To further simplify notation, let

ti l
=<[(po,-+s,-)< > qjaj—oeol-)} L wiZh (P ,,H),
j=ti—1+1 i=1

A= (Vg e —aodlis, o)is n=IP/QIyI+ AP

I q: / / .

L’ = diag( el lagys ooy Daggpys - o o oy L )3
A . / / / / / /
L :dlag(ll,...,1,12,...,lz,...,ll,...,ll).
—_— — — —_——

I h—n =11

Recall that w (x) = x/|x]|, for x # 0. The Taylor expansion in (A2) can be expressed
as

lp —1=yTL/ +0.50"L"Xx + o(D(9))
=y| +05A[(1 = Mo@) L + noM)TL"0A) +o(1)].

By definition, for § € &, there exists a sequence {#"} € ® \ ©¢g such that
D(0") tends to zero and Q2(lygr — 1) converges to S in £ as r — 0. For any
function g(f) bounded in ® \ ®p, we can choose a suitable subsequence {6"*}
of {#"} such that g(6’%) converges. Without loss of generality, we may assume
that (0", ("), w(X"), q") converges to (1, ¥, X, q) as r — 0. Assumption (A3)
ensures that ||(1 — n)yTL’ + yATL”0)|| > 0. Thus Q((1 — N (y")TL +
" oA)TL w(A")) converges to S = Q((1 — )y L/ +nATL"1).

(4.6)
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Now we can show that S can be written in the form of (4.5). When n = 1, note
that p” — 0. We have y”/|A"| — 0 and

1
(poi +5)) D Ja5eow";=v /I,
J=ti—1+1
fori =1,...,1. Since pp; > 0 and s; converges to 0, we have Zl;:li_lﬂ /qj x
y j = 0. Simple linear transformations of the parameters allow €2((1 — Ny L +
nXTL”X) to be expressed as (4.5). When n =0, (4.5) is obvious. Therefore, ¥ is
a subset of | J; F¢.

Next we prove ¥ = [ J; Ft by showing that for any S € ¥, there exists a con-
tinuous path 6" such that S is the pointwise and £ limit of Sy as r tends to 0.
Here we consider the case n = 1 only. The proof of the case n = 0 is similar
and not presented here. By definition of #¢, S can be defined in (4.5) by pa-

I+m—1;— i
rameters ((Ai)iz:tm =1 (J/i)?:l, (qz')?:l, (ai)iz,,), where le:zi_wl JV4;vi =0,
Z;?:tHH q; = 1. For simplicity, we expressitas § = Q((1 —n)y L' +nATL"})
where 1 = |y |2/(2|A| + |y |?) > 0. Define a sequence {#"} for small r as follows:

af =o;, p! =r4ki_,1+21_1 fori=t;4+1,....m;ri=r*xqifori=1,...,1—1;
and
r2, ifg; =0,
q’. = u
J qj<1 —r? Z 50(611‘)), ifq; #0,
J=ti—1+1
rvi, iqu =0,
a —ag = i
i T .
! rPyi/Ja = Y. Solg)yi+rhi/poi.  ifq; #0,
J=ti—1+1
fori=1,...,m, j=ti_1+1,...,t,where §p(x) =0 if x =0; and 1, otherwise.

(y", A", n") is defined by 6" as above.

1
Y. )@ —ao)

j=ti—1+1

q;=0
143
+r7 > g1 —”ZZ(SO(CIj»(Vj/«/‘Ij —r ) +r2)\i/p0i>
j=tici+1 q;=0
ti 14
=r’vi Y. Javi +r3(1— > %) Y yittyi
Jj=ti-1+1 Jj=ti_1+1 q;=0
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t; t; ti
+r4(%‘/1?0i Sooai— ) dolgp) Y. \/q_j)’i>+0(r4)

J=ti—1+1 J=ti—1+1 J=ti—1+1
4 4
= 1Y/ poi +o(r),
. ti - ti —
where we have used the equations >, .y /g;yi=0and 37 . ,gi=1

Clearly A" = r?A + o(r?). Then (r_4y’,r_zlr) — (y,A) as r tends to O.
Equation (4.6) yields

lor — 1=r*[(1 = ATL +ny Ly +o(D)].

Note that /p is a continuous function in 6. Therefore {0"} is a continuous path
for S such that Sgr — S in £2 as r — 0 and D(#") is a continuous function of .
Similarly, we can show that F is complete and the £? convergence of # implies
pointwise convergence. We omit the details. [

Testing homogeneity in mixture models is a frequently met problem in
applications. The homogeneity test corresponds to [ = 1 in (4.4). For simplicity,
let g = g1, I’ =1} and [” =}. The vector t in Theorem 4.1 is then reduced to
a scalar parameter + where 1 <t < m. We give the following corollary without
proof.

COROLLARY 4.1. In the hypothesis testing problem (4.4), assume that [ = 1
and that assumptions (A1)~(A3) hold. Then ¥ = J|<; <y F1, where

m—t t
Fr = { Q()\fl/ + Z )‘i+llai+z + ZyiTlNy,‘> :
i=1 i=1
Al eﬁﬁd,kz,...km_,+1 ent: Vi eoos Vi e R and

Rank (p) <t; 144, ..., 00m € A\ o; ||+ Y| = 1}.
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