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ASYMPTOTICS FOR LIKELIHOOD RATIO TESTS
UNDER LOSS OF IDENTIFIABILITY

BY XIN LIU1 AND YONGZHAO SHAO2

Rockefeller University and Columbia University

This paper describes the large sample properties of the likelihood
ratio test statistic (LRTS) when the parameters characterizing the true null
distribution are not unique. It is well known that the classical asymptotic
theory for the likelihood ratio test does not apply to such problems and the
LRTS may not have the typical chi-squared type limiting distribution. This
paper establishes a general quadratic approximation of the log-likelihood
ratio function in a Hellinger neighborhood of the true density which is
valid with or without loss of identifiability of the true distribution. Under
suitable conditions, the asymptotic null distribution of the LRTS under loss
of identifiability can be obtained by maximizing the quadratic form. These
results extend the work of Chernoff and Le Cam. In particular, applications
to testing the number of mixture components in finite mixture models are
discussed.

1. Introduction. Many hypothesis testing problems involve a family of
probability distributions {Pθ, θ ∈ �} which is assumed known except for some
parameter θ in the parameter space �. Typically, � is a subset of some finite-
dimensional metric space. We say that there is loss of identifiability in parameters
if Pθ = Pθ ′ for some θ �= θ ′ in �. The problem of loss of identifiability occurs
in diverse areas such as econometrics, reliability theory and survival analysis
[Prakasa Rao (1992)]. It is well known that the classical asymptotic theory for
the likelihood ratio test (LRT) does not apply when there is loss of identifiability
of the true distribution [Lindsay (1995)]. This paper provides a general approach
for deriving the asymptotic null distribution of the likelihood ratio test statistic
(LRTS) in this type of hypothesis testing problem.

For simplicity, we assume the null distribution, denoted by P , is unique. Denote
by �0 the set of true parameters corresponding to P ; that is, �0 ={θ ∈� :Pθ =P }.
A common hypothesis testing problem, with (or without) loss of identifiability, is
to test

H0 :Pθ, θ ∈ �0 against H1 :Pθ , θ ∈ � \ �0.(1.1)
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The LRTS 2λn based on random observations X1, . . . ,Xn can be expressed as

2λn = 2 sup
θ∈�

Ln(θ) ≡ 2 sup
θ∈�

n∑
i=1

log lθ (Xi),

where lθ = dPθ/dP is the likelihood ratio function.
In the classical likelihood theory, the parameter characterizing the true null

distribution is typically assumed to be a unique point θ0 in some open subset �

of �d . The classical regularity conditions ensure the consistency of the maximum
likelihood estimator (MLE) θ̂n and the existence of a quadratic approximation
to Ln(θ) in a Euclidean n−1/2-neighborhood of θ0 [see, e.g., Chernoff (1954)],

2Ln(θ) = 2
√

n(θ − θ0)
T νnS − n(θ − θ0)

T I(θ − θ0) + oP (1),(1.2)

where S(x) = l′θ0
(x) is the score function; I = EP (SST ) is the Fisher information

matrix which is assumed nondegenerate; νnf = n−1/2 ∑n
i=1(f (Xi) − ∫

f dP )

for f ∈ L1(P ). Then the asymptotic normality of the MLE and the asymptotic
null distribution of the LRTS can be obtained by maximizing the above quadratic
form. However, when the parameters representing the true null distribution are
not unique, the classical likelihood theory is no longer applicable and various
difficulties arise in analyzing the asymptotic properties of the LRT. For example,
the MLE θ̂n may not converge to any fixed point in �0 and some directional scores
may be zero, thereby leading to degeneracy of the Fisher information matrix I
and failure of the quadratic expansion (1.2). In general, the limit distribution of
the LRTS may not be the chi-squared type as predicted by the classical theory
and it can be very hard to characterize. Typical hard problems of this kind
include testing the number of components in finite mixture models and testing
the order of a stationary ARMA process [Lindsay (1995) and Dacunha-Castelle
and Gassiat (1999)].

This paper describes the asymptotic properties of the LRTS for (1.1) under
loss of identifiability of the true distribution. Under some general conditions,
the maximum likelihood density estimator is consistent even when there is loss
of identifiability in the true parameters [Redner (1981)]. When the likelihood
ratio is square integrable, the convergence of the ML density estimator can be
measured by its L2 distance to the true density. Denote by D(·, ·) the L2 distance;
that is, D2(θ1, θ2) = EP (lθ1 − lθ2)

2 for θ1, θ2 ∈ �. Then it is natural to expand
Ln(θ) in some L2-neighborhood of the true distribution. Moreover, when the true
parameter is unique and the classical regularity conditions hold, the L2 distance
D(θ) ≡ D(θ, θ0) and the Euclidean distance |θ −θ0| are locally equivalent in some
shrinking neighborhoods of θ0. In particular, when the quadratic expansion in (1.2)
holds for |θ − θ0| = O(n−1/2), it is easy to see that

D2(θ) = (θ − θ0)
T I(θ − θ0) + o(|θ − θ0|2).
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Thus |θ − θ0| = O(n−1/2) implies D(θ) = O(n−1/2) and vice versa. Moreover,
√

n(θ − θ0)
T νnS = √

nνn(lθ − 1) + oP (1).

Define the generalized score function as Sθ = (lθ −1)/D(θ) for θ ∈ �\�0. Then,
when (1.2) holds,

2Ln(θ) = 2
√

nD(θ)νnSθ − nD2(θ) + oP (1).(1.3)

Unlike the expansion in (1.2), (1.3) does not require uniqueness of the true
parameter and holds under loss of identifiability of the true distribution. In
many applications, the empirical process νnSθ converges in distribution to some
Gaussian process. For instance, when {Sθ : θ ∈ � \ �0} is a P -Donsker class,
νnSθ converges uniformly to some zero-mean Gaussian process {WSθ

: θ ∈ �\�0}
with continuous sample paths. Then, using the almost sure representation for weak
convergence, the quadratic form in (1.3) can be formulated as

2Ln(θ) = 2
√

nD(θ)WSθ
− nD2(θ) + oP (1).(1.4)

The supremum of 2Ln(θ) can be obtained by maximizing the quadratic form of√
nD(θ) in (1.4). Under some general regularity conditions, Theorem 3.1 of this

paper asserts that on a suitable probability space

lim
n→∞ 2λn = sup

S∈F
[max(WS,0)]2,(1.5)

where F is the set of the L2 limits (i.e., cluster points) of the generalized score
functions Sθ as D(θ) → 0.

As applications of this general approach, we characterize the asymptotics of the
LRTS for testing the number of components in finite mixture models. Because
of the importance of finite mixture models in applications, there are extensive
investigations on the asymptotic behavior of the LRTS in mixture models [see,
e.g., Titterington, Smith and Makov (1985), McLachlan and Basford (1988)
and Lindsay (1995)]. Recently the asymptotic distribution of this LRTS has
been derived by Dacunha-Castelle and Gassiat (1997, 1999) using “locally conic
parameterization.” Their approach is useful in deriving the index set F in (1.5);
however, it does not lead to optimal assumptions. We characterize the asymptotic
null distributions of the LRTS under some general conditions given in Section 4.

The paper is organized as follows: Section 2 establishes quadratic approxima-
tions to likelihood ratios in a Hellinger neighborhood of the true distribution with-
out requiring square integrability of the likelihood ratios and also provides the
asymptotic null distribution of the LRTS. Section 3 extends the results in Sec-
tion 2 to square integrable likelihood ratios under P -Donsker conditions for the
class of generalized score functions. The LRT of discrete models and hypothesis
testing problems with a composite null hypothesis are also considered. Section 4
characterizes the asymptotic null distribution of the LRTS for testing the number
of components in finite mixture models.
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2. General quadratic approximations using Hellinger distance. In this
section we establish quadratic approximations to likelihood ratios in a Hellinger
neighborhood of the true distribution. Section 2.1 provides the notation used
throughout this paper. Section 2.2 introduces the generalized differentiable in
quadratic mean (GDQM) expansion which is used to obtain a specific quadratic
approximation of the log-likelihood ratio in Section 2.3. The asymptotic null
distribution of the LRTS is derived in Section 2.4.

2.1. Notation. The notation to be used is listed first for easy reference.
Throughout this paper, vectors and matrices are denoted by boldface letters. We
will use the abbreviation Pf = ∫

f dP for an integrable function f and a signed

measure P . For f ∈ L2(P ), define the L2(P ) norm as ‖f ‖ ≡
√

P (f 2). The map
� :L2(P ) → L2(P ) is defined as �(f ) ≡ f/‖f ‖ if f �= 0. For a k-dimensional

vector x = (x1, . . . , xk), define |x| ≡
√

x2
1 + · · · + x2

k and the map ω :�k → �k

as ω(x) ≡ x/|x| (x �= 0). The empirical measure Pn of random observations
X1, . . . ,Xn is defined as Pn ≡ n−1 ∑n

i=1 δXi
, where δXi

(A) = IA(Xi) for any
measurable set A. Given a collection F of L1(P ) functions, the F -indexed
empirical process νn is given by {νnf ≡ √

n(Pn − P )f, f ∈ F }. The envelope
function of a class of functions F is defined as F(x) ≡ supf ∈F |f (x)|.

DEFINITION 2.1. A family of random sequences {Yn(g) :g ∈ G, n = 1,2, . . .}
is said to be uniformly OP (1) if for every δ > 0, there exist constants M > 0
and N(δ,M) such that P (supg∈G |Yn(g)| ≤ M) ≥ 1 − δ for all n ≥ N(δ,M).
A family of random sequences {Yn(g) :g ∈ G, n = 1,2, . . .} is said to be uniformly
oP (1) if for every δ > 0 and ε > 0, there exists a constant N(δ, ε) such that
P (supg∈G |Yn(g)| < ε) ≥ 1 − δ for all n ≥ N(δ, ε).

We assume that the null distribution, denoted by P , is unique. All results in this
paper are considered under the null hypothesis and all expectations are taken with
respect to the null probability measure P . Suppose that {Pθ ; θ ∈ �} is a family of
probability distributions which is assumed known except for some parameters θ in
the parameter space �. Always � will be a subset of some metric space. Denote
by �0 the set of parameters corresponding to P ; that is, �0 = {θ ∈ � :Pθ = P }.
Suppose X1, . . . ,Xn are i.i.d. random observations from P . We investigate the
asymptotic properties of the LRTS for testing the hypotheses

H0 :Xi ∼ Pθ , θ ∈ �0 against H1 :Xi ∼ Pθ, θ ∈ � \ �0.(2.1)

Denote by lθ = dPθ/dP the Radon–Nikodym derivative and Ln(θ) the log-
likelihood ratio function:

Ln(θ) ≡
n∑

i=1

log(lθ (Xi)).
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Let x ∨ y = max(x, y). The LRT 2λn for (2.1) can be written as

2λn = 2 sup
θ∈�

Ln(θ) = 2 sup
θ∈�\�0

(
Ln(θ) ∨ 0

)
.

Let H(θ) be the P -Hellinger distance between Pθ and P ; that is, H 2(θ) =
P [(√lθ − 1)2]/2. When the likelihood ratios are square integrable, denote
the Pearson type L2 distance by D(θ), where D2(θ) = P (lθ − 1)2. In many
applications, the likelihood ratio is a continuous function of θ . Without much loss
of generality, we assume that H(θ) and D(θ) are bounded continuous functions for
θ ∈ �. Under fairly general conditions, the maximum likelihood density estimator
is consistent in Hellinger distance. Then for ε > 0, as n → ∞, with probability
going to 1, we have θ̂n ∈ �ε ∪ �0 and 2λn − 2 supθ∈�ε

(Ln(θ) ∨ 0) → 0, where

�ε = {θ ∈ � : 0 < H(θ) ≤ ε}.
The regularity conditions of this paper imply Hellinger consistency of the
ML density estimator, so the asymptotic null distribution of the LRTS is
determined by the local properties of the likelihood functions in a small Hellinger
neighborhood �ε of P for some ε > 0. Thus, we can focus on the limiting
distribution of the restricted LRTS limn→∞ 2 supθ∈�ε

(Ln(θ)∨0), for some ε > 0.

2.2. Generalized DQM expansion. Let hθ = √
lθ − 1. Le Cam’s DQM

condition [Le Cam (1970)] can be formulated as

hθ = (θ − θ0)
T S + rθ ,(2.2)

where θ0 is the true parameter, ‖rθ‖ = o(|θ − θ0|) as θ → θ0, P S = 0 and
I = 4P (SST ) is positive definite. The DQM condition (2.2) holds very generally
and is one of the best known regularity conditions for local asymptotic normality
of the model. However, if �0 contains more than one point, the DQM condition is
no longer feasible. In this case, we use the generalized differentiable in quadratic
mean (GDQM) expansion:

DEFINITION 2.2 (GDQM expansion). A trio (Sθ , σ (θ),Rθ ) is said to satisfy
the GDQM expansion if for some ε > 0 and all θ ∈ �ε , we have PSθ = PRθ = 0,
σ(θ) > 0 and

hθ = σ(θ)Sθ − H 2(θ) + H 2(θ)Rθ .(2.3)

When the true parameter is unique (denoted by θ0), the GDQM expansion yields
Le Cam’s DQM expansion by letting Sθ = (θ − θ0)

T S/|θ − θ0|, σ (θ) = |θ − θ0|
and Rθ = rθ/H

2(θ) + 1. The GDQM expansion always exists and is not unique.
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For instance, let

Sθ = √
2
hθ + H 2(θ)

H(θ)
, σ (θ) = H(θ)√

2
, Rθ = 0;

or

Sθ = lθ − 1

D(θ)
, σ (θ) = D(θ)

2
, Rθ = 1 − h2

θ

2H 2(θ)
.

Many different choices for the GDQM expansion are equivalent in the sense that,
under suitable conditions, they yield the same limiting distribution of the LRTS.

When the leading term in (2.3), σ(θ), has the same order as the Hellinger
distance H(θ), the GDQM expansion yields a useful quadratic expansion of H(θ).
It is for this reason we assume that σ(θ)/H(θ) and H(θ)/σ (θ) are uniformly
bounded on �ε in the following GDQM condition.

DEFINITION 2.3 (GDQM condition). The GDQM expansion (Sθ , σ (θ),Rθ )

is said to satisfy the GDQM condition if supθ∈�ε
σ (θ)/H(θ) < ∞, supθ∈�ε

H(θ)/

σ (θ) < ∞ and supθ∈�ε
(S2

θ + |Rθ |) ∈ L1(P ) for some ε > 0.

Since H(θ) is assumed continuous and bounded, the GDQM condition ensures
that supθ∈�ε

σ (θ) < ∞. When a trio (Sθ , σ (θ),Rθ ) satisfies the GDQM condition,
let S′

θ = [σ(θ)/H(θ)]Sθ , σ ′(θ) = H(θ) and R′
θ = Rθ . Then (S′

θ , σ
′(θ),R′

θ ) also
satisfies the GDQM condition. The results of this paper which are valid for
(Sθ , σ (θ),Rθ) also hold for (S′

θ , σ
′(θ),R′

θ ), and vice versa. For convenience, we
assume σ(θ) = H(θ) in the following sections.

2.3. Quadratic approximations of log-likelihood ratio functions. In this sub-
section, we obtain quadratic approximations of Ln(θ)∨0 under the GDQM condi-
tion. We first study a quadratic approximation of Ln(θ) in the neighborhood �c/

√
n

for c > 0.

THEOREM 2.1. Assume that (Sθ ,H(θ),Rθ) satisfies the GDQM condition
and for all c > 0,

sup
θ∈�c/

√
n

|νn(Sθ )| = OP (1), sup
θ∈�c/

√
n

|Pn(Rθ )| = oP (1).(2.4)

Then, as n → ∞, in probability,

sup
θ∈�c/

√
n

∣∣Ln(θ) − 2
√

nH(θ)νn(Sθ) + nH 2(θ)[2 + Pn(S
2
θ )]∣∣ → 0.

To prove Theorem 2.1, we need the following fact whose proof is omitted.
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LEMMA 2.1. Suppose X1, . . . ,Xn are i.i.d. random variables and G(Xi)∈Lq

for some q > 0. Then

max
1≤i≤n

|G(Xi)| = oP (n1/q).

PROOF OF THEOREM 2.1. We first consider the approximation to Pn(h
2
θ ).

The GDQM expansion yields

nPn(h
2
θ ) = nH 2(θ)Pn(S

2
θ ) + 2nH 3(θ)Pn[Sθ (Rθ − 1)]

+ nH 4(θ)Pn[(1 − Rθ)
2].(2.5)

Let G = supθ∈�ε
(S2

θ + |Rθ |) for some small enough ε > 0. Then G ∈ L1(P ), so
by Lemma 2.1, max1≤i≤n G(Xi) = oP (n). Consequently,

max
1≤i≤n

sup
θ∈�ε

|Sθ (Xi)| = oP (n1/2), max
1≤i≤n

sup
θ∈�ε

|Rθ(Xi)| = oP (n).(2.6)

The second and third terms in (2.5) can be bounded as follows:

sup
θ∈�ε

|Pn[Sθ (Rθ − 1)]| = Pn(G + 1) max
1≤i≤n

sup
θ∈�ε

|Sθ (Xi)| = oP (n1/2),

sup
θ∈�ε

Pn[(1 − Rθ)
2] = Pn(G + 1) max

1≤i≤n
sup
θ∈�ε

(|Rθ(Xi)| + 1
) = oP (n).

Hence, nPn(h
2
θ ) = nH 2(θ)Pn(S

2
θ ) + oP (1), where oP (1) holds uniformly for

θ ∈ �c/
√

n. Similarly, (2.4) and (2.6) yield

max
1≤i≤n

sup
θ∈�c/

√
n

|hθ(Xi)| = oP (1).

Note that

nPn(hθ ) = √
nH(θ)νn(Sθ ) − nH 2(θ) + nH 2(θ)Pn(Rθ )

= √
nH(θ)νn(Sθ ) − nH 2(θ) + oP (1).

(2.7)

Using the Taylor expansion of 2 log(1 + x) = 2x − x2(1 + o(1)) for small x, we
have uniformly for θ ∈ �c/

√
n,

Ln(θ) = 2
n∑

i=1

log
(
1 + hθ(Xi)

) = nPn

(
2hθ − [1 + oP (1)]h2

θ

)
= 2

√
nH(θ)νn(Sθ ) − nH 2(θ)[2 + Pn(S

2
θ )] + oP (1).

This completes the proof of Theorem 2.1. �

It is important to observe that Ln(θ) may diverge to −∞ for some θ ∈ �ε .
Consequently, it is very difficult to find a general approximation of Ln(θ) with
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a uniform residual term oP (1) on �ε . Since 2λn ≥ 0, it suffices to maximize
Ln(θ)∨ 0, which has a general quadratic approximation as shown in the following
Theorem 2.2. By expanding Ln(θ) ∨ 0 locally in a Hellinger neighborhood of
the true distribution, we circumvent the difficulties encountered in the classical
approaches of Chernoff (1954) and Le Cam (1970) and are able to characterize the
asymptotic null distribution of the LRT under loss of identifiability.

THEOREM 2.2. Assume that (Sθ ,H(θ),Rθ ) satisfies the GDQM condition,
and for some ε > 0 and all c > 0,

sup
θ∈�ε

|νnSθ | = OP (1), sup
θ∈�c/

√
n

|Pn(Rθ )| = oP (1),

inf
θ∈�ε

(1 − PnRθ) > 0.
(2.8)

Then uniformly for θ ∈ �ε,

Ln(θ) ∨ 0 = (
2
√

nH(θ)νnSθ − nH 2(θ)[2 + Pn(S
2
θ )]) ∨ 0 + oP (1).(2.9)

PROOF. It suffices to show that (2.9) holds uniformly for θ ∈ A1,n ∪ A2,n,
where

A1,n = {θ ∈ �ε :Ln(θ) > 0},
A2,n = {

θ ∈ �ε : 2
√

nH(θ)νnSθ − nH 2(θ)[2 + Pn(S
2
θ )] > 0

}
,

because, otherwise, both sides of (2.9) are 0. Applying the inequalitylog(1 + x)≤x

to the log-likelihood ratio function yields

Ln(θ) = 2
n∑

i=1

log
(
1 + hθ(Xi)

)
≤ 2nPn(hθ )

= 2
√

nH(θ)νnSθ − 2nH 2(θ)(1 − PnRθ).

The inequality above and (2.8) yield supθ∈A1,n
H(θ) = OP (n−1/2). It can be shown

in a similar fashion that supθ∈A2,n
H(θ) = OP (n−1/2). Thus, for δ > 0, we can find

constants c > 0 and N(δ,M) such that

P

{
sup

θ∈A1,n∪A2,n

H(θ) > cn−1/2
}

< δ/2,(2.10)

for all n ≥ N(δ,M). By Theorem 2.1, given δ and c, for any ε > 0, we can find
N(δ, ε, c) such that

P

{
sup

θ∈�c/
√

n

∣∣Ln(θ) − {
2
√

nH(θ)νnSθ − nH 2(θ)[2 + Pn(S
2
θ )]}∣∣ ≥ ε

}
≤ δ/2,

(2.11)
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for all n ≥ N(δ, ε, c). Then (2.10) and (2.11) yield that

P

{
sup
θ∈An

∣∣Ln(θ) − {
2
√

nH(θ)νnSθ − nH 2(θ)[2 + Pn(S
2
θ )]}∣∣ ≥ ε

}
≤ δ,

for all n ≥ max(N(δ, ε),N(δ, ε, c)). This completes the proof of Theorem 2.2. �

2.4. Asymptotic null distribution of the LRT. In this section, we derive the
asymptotic null distribution of the LRT based on the quadratic approximation
of the log-likelihood ratio function obtained in the previous section. Direct
maximization of the quadratic form in (2.9) by

√
nH(θ) yields

(νnSθ ∨ 0)2/(2 + PnS
2
θ ) ≈ (νnS

∗
θ ∨ 0)2/2,

where S∗
θ , which standardizes Sθ , is defined as

S∗
θ = Sθ

/√
1 + PS2

θ /2 .(2.12)

Define F as the set of all L2 limits (cluster points) of νnS
∗
θ as H(θ) → 0, that is,

F =
{
S ∈ L2(P ) : ∃ {θm} ∈ �ε s.t.

lim
m→∞H(θm) = lim

m→∞
∥∥Sθm

/√
1 + PS2

θm/2 − S
∥∥ = 0

}
.

(2.13)

Throughout this paper, we assume that, in (2.13) the L2 convergence implies
pointwise convergence; that is, there exist L2 representations of S and {S∗

θm}
in (2.13), such that S∗

θm converges to S pointwise. Furthermore, we assume that
F is complete and admits continuous paths as follows.

DEFINITION 2.4. F is complete if for any sequence {θm} ∈ �ε (ε > 0) with
H(θm) → 0, there exists a subsequence {θmk } of {θm} such that S∗

θmk converges to
some S ∈ F in L2. F admits continuous paths if for all S ∈ F , there exists a path
{θ(t, S) : 0 < t ≤ ε} ⊂ �ε such that θ(t, S) is continuous in t , H(θ(t, S)) = t and
limt→0 S∗

θ(t,S) = S in L2.

Define DF (S∗
θ ) as the L2 distance between S∗

θ and F ; that is, DF (S∗
θ ) =

infS∈F ‖S−S∗
θ ‖. The completeness of F immediately yields the following lemma,

whose proof will be omitted.

LEMMA 2.2. If F is complete, then lim supH(θ)→0 DF (S∗
θ ) = 0.

According to the GDQM condition, Sθ has a square integrable envelope
function on �ε . Then the dominated convergence theorem implies that, when F is
complete, F is also compact and PS = 0 for all S ∈ F . Moreover, there exists a
function in F , denoted by S̃∗

θ , achieving the minimum distance DF (S∗
θ ); that is,∥∥S∗

θ − S̃∗
θ

∥∥ = DF (S∗
θ ).(2.14)

By Lemma 2.2, ‖S∗
θ − S̃∗

θ ‖ converges to 0 uniformly as H(θ) → 0.
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THEOREM 2.3. Assume that

(a) (Sθ ,H(θ),Rθ ) satisfies the GDQM condition.
(b) Equations (2.8) in Theorem 2.2 hold.
(c) F in (2.13) is complete and admits continuous paths.
(d) On the same probability space as the empirical process νn, there exists a

centered Gaussian process {WS :S ∈ F } with uniformly continuous sample paths;
that is, in probability

lim sup
‖S1−S2‖→0

∣∣WS1 − WS2

∣∣ = 0;

and covariance kernel

P (WS1WS2) = P (S1S2) ∀S1, S2 ∈ F ,

such that, for all c > 0, the following two conditions hold:

sup
θ∈�c/

√
n

∣∣νnS
∗
θ − WS̃∗

θ

∣∣ = oP (1), sup
θ∈�c/

√
n

|PnS
2
θ − PS2

θ | = oP (1).(2.15)

Under the assumptions (a)–(d), the LRTS for (2.1) satisfies

lim
n→∞ 2λn = sup

S∈F
(WS ∨ 0)2.

PROOF. Since (Sθ ,H(θ),Rθ ) satisfies the GDQM condition and (2.8) holds,
Theorem 2.2 yields (2.9). From (2.10) and (2.15),

sup
{θ : Ln(θ)>0}

νnS
∗
θ ∨ 0 ≤ sup

S∈F
WS ∨ 0 + oP (1).

Then by Theorem 2.2,

2λn = sup
{θ : Ln(θ)>0}

(
4
√

nH(θ)νnSθ − 2nH 2(θ)[2 + Pn(S
2
θ )]) ∨ 0 + oP (1)

= sup
{θ : Ln(θ)>0}

[
2
√

2nH(θ)
√

2 + PS2
θ νnS

∗
θ

− 2nH 2(θ)(2 + PS2
θ )

] ∨ 0 + oP (1)

≤ sup
{θ : Ln(θ)>0}

(νnS
∗
θ ∨ 0)2 + oP (1)

≤ sup
S∈F

(WS ∨ 0)2 + oP (1).

(2.16)

Thus to prove the theorem, it suffices to show that 2λn ≥ supS∈F (WS ∨ 0)2 +
oP (1), which is equivalent to showing that for δ > 0, there exists a constant N(δ)

such that

P

(
2λn ≥ sup

S∈F
(WS ∨ 0)2 − δ

)
≥ 1 − δ,(2.17)
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for all n ≥ N(δ). From previous discussions, F is compact and WS has uniformly
continuous sample paths on (F ,‖ · ‖). Hence we can assume that for some small
η > 0,

P

(
sup

‖S1−S2‖≤η

∣∣WS1 − WS2

∣∣ ≥ δ/2
)

≤ δ/2.

Note that supS∈F |WS| = OP (1) and WS → (WS ∨ 0)2 is a continuous map.
Without loss of generality, we can assume

P

(
sup

‖S1−S2‖≤η

∣∣(WS1 ∨ 0)2 − (WS2 ∨ 0)2∣∣ ≥ δ/2
)

≤ δ/2.(2.18)

Since F is compact, there exists an η-net {S1, . . . , Sk} on F . Denote by Si(S) the
closest point in the η-net to S ∈ F . Note that ‖S − Si(S)‖ ≤ η. Therefore, to prove
(2.17), it suffices to show that, for δ > 0, there exists a constant N(δ) such that for
all n ≥ N(δ),

P

(
2λn ≥ max

1≤i≤k

(
WSi

∨ 0
)2 − δ/2

)
≥ 1 − δ/2.(2.19)

Clearly, (2.19) holds if we can prove that for all S ∈ F ,

2λn ≥ (WS ∨ 0)2 + oP (1).

Without loss of generality, we assume WS > 0. According to the assumptions,
S has a continuous path in θε, denoted by {θ(t, S)}. Then limt→0 ‖S∗

θ(t,S) −S‖ = 0
and H(θ(t, S)) = t . With probability going to 1, the equation

t
√

2n
(
2 + PS2

θ(t,S)

) = WS(2.20)

has a solution with θ(t, S) ∈ �ε. To prove this, define g(t) = t
√

2n(2 + PS2
θ(t,S)).

Note that PS2
θ is bounded. Then g(0) = 0 < WS and g(ε) > 2ε

√
2n > WS

with probability going to 1. Since g(t) is continuous, (2.20) has a solution with
probability going to 1. Denote the solution by tn and θ(tn, S) by θn. Note that
limn→∞ H(θn) = 0, so limn→∞ ‖S∗

θn −S‖ = 0. The triangle inequality then yields
limn→∞ ‖S̃∗

θn − S‖ = 0. Since the Gaussian process {WS :S ∈ F } has uniformly
continuous sample paths,

WS̃∗
θn

− WS = oP (1).

Note that H(θn) = OP (n−1/2). Then (2.15) yields

νnS
∗
θn = WS̃∗

θn
+ oP (1) = WS + oP (1).
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Plugging the equation H(θn)
√

2n(2 + PS2
θn) = WS into (2.16),

2λn ≥
(
2
[
H(θn)

√
2n(2 + PS2

θn)
]
νnS

∗
θn − 2nH 2(θn)(2 + PS2

θn)
)

∨ 0 + oP (1)

= 2WSνnS
∗
θn − W 2

S + oP (1)

= W 2
S + oP (1).

Note that WS > 0. This completes the proof of Theorem 2.3. �

The GDQM expansion used by the above theorems assumes that σ(θ) = H(θ).
For the general GDQM expansion (Sθ , σ (θ),Rθ ), one can simply replace Sθ by
[σ(θ)/H(θ)]Sθ and obtain similar results. The general form of standardized score
function in Theorem 2.3, S∗

θ , is then

S∗
θ = σ(θ)Sθ

/√
H 2(θ) + σ 2(θ)P (S2

θ )/2.(2.21)

F and S̃∗
θ can be redefined in an analogous fashion to (2.13) and (2.14),

respectively. We state the following theorem without proof.

THEOREM 2.4. Assume that (Sθ , σ (θ),Rθ ) satisfies the GDQM condition and
that assumption (2.8) in Theorem 2.2 holds. Then uniformly for θ ∈ �ε ,

Ln(θ) ∨ 0 = (
2
√

nσ(θ)νnSθ − n[2H 2(θ) + σ 2(θ)Pn(S
2
θ )]) ∨ 0 + oP (1).

Moreover, under the assumptions (a)–(d) in Theorem 2.3, the LRTS for (2.1)
satisfies

lim
n→∞ 2λn = sup

S∈F
(WS ∨ 0)2.

3. LRT with square integrable likelihood ratios. For square integrable
likelihood ratios, it is more convenient to use the Pearson type L2 distance D(θ)

instead of the Hellinger distance H(θ). We call Sθ = (lθ −1)/D(θ) the generalized
score function. Then PSθ = 0 and PS2

θ = 1. One choice of the GDQM expansion
for square integrable likelihood ratios is Sθ = (lθ − 1)/D(θ), σ = D(θ)/2 and
R(θ) = 1 − h2

θ /[2H 2(θ)]. The standardized score function in (2.21) becomes

S∗
θ =

[
D(θ)

/√
4H 2(θ) + D2(θ)/2

]
Sθ .

Under suitable conditions, we can prove that D(θ)/

√
4H 2(θ) + D2(θ)/2 → 1

as D(θ) → 0. Thus, S∗
θ and Sθ are equivalent in the sense that they yield the

same L2 limit. Then F can be formulated as the set of limits of generalized score
functions:

F =
{
S ∈ L2 : ∃ {θm} ∈ �ε, s.t.

lim
m→∞D(θm) = 0, lim

m→∞‖(lθm − 1)/D(θm) − S‖ = 0
}
.

(3.1)
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3.1. Quadratic approximation and asymptotic null distribution. In this sub-
section, we extend the asymptotic results obtained in Section 2 to square integrable
likelihood ratios. First we present a lemma on the local equivalence between H(θ)

and D(θ) as D(θ) → 0.

LEMMA 3.1. If the generalized score function, Sθ = (lθ − 1)/D(θ), has a
square integrable envelope function on �ε for some ε > 0, then

lim
D(θ)→0

8H 2(θ)/D2(θ) = lim
H(θ)→0

8H 2(θ)/D2(θ) = 1.

PROOF. Let G = supθ∈�ε
|Sθ |. Then G ∈ L2(P ). It is straightforward to

verify that

D−2(θ)
∣∣8H 2(θ) − D2(θ)

∣∣ = D−2(θ)
∣∣P (

(
√

lθ + 3)(
√

lθ − 1)3)∣∣
≤ 3P

(
(G + 1)2|√lθ − 1|(√lθ + 1)−1).

When D(θ) → 0 or H(θ) → 0,
√

lθ → 1 in probability. Since (G+1)2|√lθ − 1|×
(
√

lθ +1)−1 is dominated by (G+1)2, the dominated convergence theorem yields
Lemma 3.1. �

To apply Theorem 2.3, one needs to verify the conditions for the convergence
of νnS

∗
θ and PnS

2
θ in a n−1/2-Hellinger neighborhood of the true distribution.

For square integrable likelihood ratios, these conditions are directly implied
by the P -Donsker class and Glivenko–Cantelli class conditions. Next we give
their definitions. For further details, see van der Vaart and Wellner (1996) and
Dudley (1999).

DEFINITION 3.1. A family of measurable functions G ∈ L1(P ) forms a
Glivenko–Cantelli class, written as G ∈ GC(P ), if in probability supg∈G |Png −
Pg| → 0 as n → ∞.

DEFINITION 3.2. A family of measurable functions G ∈ L2(P ) forms a
P -Donsker class, if, on some suitable probability space, there exists a version ν̃n

of the empirical process νn and a centered Gaussian process {Wg, g ∈ G} with
covariance kernel

cov
(
Wg1,Wg2

) = Pg1g2 − Pg1Pg2 for g1, g2 ∈ G

such that in probability,

sup
g∈G

|ν̃n(g) − Wg| → 0,

as n tends to infinity, where the Gaussian process {Wg,g ∈ G} has contin-
uous sample paths with respect to the L2 distance e(·, ·) on G : e(g1, g2) =
P (g1 − g2)

2 − (Pg1 − Pg2)
2.
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Since there exists a probability space holding both the Gaussian process
{WS :S ∈ F } and the empirical process νn, we simply denote by P their common
probability measure. Next we present the main theorem of this section.

THEOREM 3.1. Assume, for some ε > 0, Fε = {Sθ = (lθ − 1)/D(θ) :
θ ∈ �ε} forms a P -Donsker class with a square integrable envelope function. Then
uniformly for θ ∈ �ε ,

2Ln(θ) ∨ 0 = (
2
√

nD(θ)νnSθ − nD2(θ)
) ∨ 0 + oP (1).(3.2)

Moreover, assume the set F in (3.1) is complete and admits continuous paths.
Then on some probability space, there exists a centered Gaussian process
{WS :S ∈ F }, equipped with the same probability measure P as νn, with
continuous sample paths and covariance kernel, P (WS1WS2) = PS1S2, for
S1, S2 ∈ F . The LRTS for (2.1) satisfies

lim
n→∞ 2λn = sup

S∈F
(WS ∨ 0)2.

PROOF. First we prove that the GDQM condition is satisfied for the expansion
Sθ = (lθ − 1)/D(θ), σ (θ) = D(θ)/2, and Rθ = 1 − h2

θ /[2H 2(θ)]. Then we
obtain (3.2) by verifying condition (2.8) of Theorem 2.2.

By Lemma 3.1, it is clear that there exists a constant c ∈ (0,1) such that
c ≤ D(θ)/H(θ) ≤ 1/c for θ ∈ �ε . Denote the envelope function of Sθ on �ε

by G. Then

S2
θ + |Rθ | ≤ S2

θ + (lθ − 1)2

2H 2(θ)
+ 1

≤ S2
θ + D2(θ)

2H 2(θ)
S2

θ + 1 ≤ 1 + 2c2

2c2
G2 + 1 ∈ L1(P ).

Thus (Sθ , σ (θ),Rθ) satisfies the GDQM condition. The P -Donsker class condi-
tion implies supθ∈�ε

|νnSθ | = OP (1). To prove (3.2), by Theorem 2.2, it suffices
to show that

sup
θ∈�c/

√
n

|Pn(Rθ )| = oP (1) and inf
θ∈�ε

(1 − PnRθ) > 0.

The proof for supθ∈�c/
√

n
|Pn(Rθ )| = oP (1) is presented first. By Lemma 3.1 and

the LLN,

1 − PnRθ = D2(θ)

2H 2(θ)
Pn

(
(lθ − 1)2

D2(θ)

1

(
√

lθ + 1)2

)
(3.3)

= Pn

(
4S2

θ

(
√

lθ + 1)2

)
+ oP (1)

= Pn(S
2
θ ) + Pn

(
S2

θ (1 − lθ )
(
√

lθ + 3)

(
√

lθ + 1)3

)
+ oP (1).(3.4)
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By Lemma 2.10.14 in van der Vaart and Wellner (1996), {S2
θ : θ ∈ �ε} forms

a Glivenko–Gantelli class. Hence supθ∈�ε
|Pn(S

2
θ ) − 1| = oP (1). Note that

supθ∈�c/
√

n
D(θ) = O(n−1/2) and max1≤i≤n G(Xi) = oP (n1/2). Thus

max
1≤i≤n

sup
θ∈�c/

√
n

|lθ (Xi) − 1| ≤ max
1≤i≤n

G(Xi) sup
θ∈�c/

√
n

D(θ) = oP (1).

Then (3.4) yields

sup
θ∈�c/

√
n

|PnRθ | ≤ oP (1) + oP (1) sup
θ∈�c/

√
n

Pn

(
G2 (

√
lθ + 3)

(
√

lθ + 1)3

)
= oP (1).

Next we verify that infθ∈�ε(1 − PnRθ) > 0. By (3.3), for k > 0,

1 − Pn(Rθ) ≥ c2

2
Pn

(
S2

θ

lθ + 1

)
≥ 1

4c2(k + 1)
Pn

(
1{lθ≤k}S2

θ

)
≥ 1

4c2(k + 1)

[
Pn(S

2
θ ) − Pn

(
1{lθ>k}S2

θ

)]
.

It is clear that almost surely,

lim
k→∞ sup

θ∈�ε

Pn

(
1{|lθ |>k}S2

θ

) ≤ lim
k→∞Pn

(
1{(G+1)>k/c}G2) = 0.

We can choose k so large that in probability supθ∈�ε
Pn(1{|lθ |>k}S2

θ ) < 1/4. By
the definition of Glivenko–Cantelli class, infθ∈�ε Pn(S

2
θ ) > 1/2 with probability

going to 1. Thus infθ∈�ε(1 −PnRθ) > 1/[16c2(k + 1)] > 0 with probability going
to 1. Applying Theorem 2.4 yields that uniformly for θ ∈ �ε ,

2Ln(θ) ∨ 0 = (
2
√

nD(θ)νnSθ − 2n[H 2(θ) + D2(θ)Pn(Sθ
2)/2]) ∨ 0 + oP (1)

= (
2
√

nD(θ)νnSθ − nD2(θ)
) ∨ 0 + oP (1).

In the last equation we used the fact that 8H 2(θ)/D2(θ) = 1 + oP (1), because
Theorem 2.2 ensures that sup{θ : Ln(θ)≥0} H(θ) = OP (n−1/2).

Lemma 3.1 ensures that S∗
θ and Sθ have the same L2 limits as D(θ) tends

to 0. Therefore, the definitions of F in (2.13) and (3.1) are equivalent. Because
F is complete, it is clear that the closure of Fε satisfies F̄ε = Fε ∪ F and F is
a closed set. Theorem 2.10.2 in van der Vaart and Wellner (1996) yields that F̄ε is a
P -Donsker class. Hence, on the same probability space as the empirical process νn,
there exists a centered Gaussian process {WS :S ∈ F̄ε} as defined in Definition 3.2
with continuous sample paths and covariance kernel,

P (WS1WS2) = PS1S2 ∀S1, S2 ∈ F̄ε.

Finally, we will verify (2.15) and thereby obtain the asymptotic null distribution
of the LRTS by Theorem 2.3. Note that {S2

θ ; θ ∈ �ε} ∈ GC(P ). It directly yields
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supθ∈�ε
|PnS

2
θ − PS2

θ | = oP (1) in (2.15). Next we consider νnS
∗
θ . Note that

S∗
θ /Sθ converges to 1 as H(θ) tends to 0. We have supθ∈�c/

√
n
‖Sθ − S∗

θ ‖ = o(1)

and supθ∈�c/
√

n
|νnSθ − νnS

∗
θ | = oP (1). By Lemma 2.2 and (2.14), there is a

function S̃∗
θ such that ‖S∗

θ − S̃∗
θ ‖ = o(1) as H(θ) tends to 0. Then the triangle

inequality and the uniform continuity of the Gaussian process {WS :S ∈ F̄ε} yield
that

sup
θ∈�c/

√
n

∥∥Sθ − S̃∗
θ

∥∥ = oP (1) and sup
θ∈�c/

√
n

∣∣WSθ
− WS̃∗

θ

∣∣ = oP (1).

The Donsker class condition ensures supθ∈�c/
√

n
|νnSθ − WSθ

| = oP (1). The
triangle inequality then gives

sup
θ∈�c/

√
n

∣∣νnS
∗
θ − WS̃∗

θ

∣∣ = oP (1),

thus (2.15). By Theorem 2.3, we complete the proof of Theorem 3.1. �

The P -Donsker class condition for {Sθ ; θ ∈ �ε} in Theorem 3.1 can be verified
using the empirical process techniques discussed in van der Vaart and Wellner
(1996). For instance, in the next section, we show that the generalized score
functions in discrete models form a P -Donsker class. The following lemma is
helpful when Sθ is Lipschitz in θ .

LEMMA 3.2. Assume that G = {gθ ; θ ∈ �} ⊂ L1(P ). If � is a compact set
in �d and for any θ1, θ2 ∈ �, there exists a function G ∈ L2(P ) such that∣∣gθ1(x) − gθ2(x)

∣∣ ≤ |θ1 − θ2|G(x),

then G is a P -Donsker class and {g2
θ ; θ ∈ �} ∈ GC(P ).

PROOF. Theorem 2.7.11 in van der Vaart and Wellner (1996) implies G is
a P -Donsker class. By Lemma 6.3.5 and Theorem 6.1.7 in Dudley (1999),
{g2

θ ; θ ∈ �} ∈ GC(P ). �

To obtain the limiting distribution of the LRTS, one needs to derive the index
set F , then find the distribution of the supremum of the Gaussian process WS on F
[see, e.g., Azaïs, Cierco-Ayrolles and Croquette (1999) and Azaïs and Wschebor
(2000)]. This can also be done using simulations. Since the covariance kernel of
{WS; S ∈ F } is known, the Gaussian process can be simulated via standard Monte
Carlo methods. Then we obtain the asymptotic null distribution of the LRTS by
maximizing the simulated (WS ∨ 0)2 over F . In the following, we demonstrate
how to derive F in the admixture models. The admixture models have also been
studied by many researchers [see, e.g., Dacunha-Castelle and Gassiat (1997) and
Lemdani and Pons (1999)].
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EXAMPLE 3.1 (Admixture models). The hypothesis testing problem in
admixture models is to test

H0 :f0 against H1 :pfφ + (1 − p)f0, 0 < p ≤ 1, φ ∈ �,(3.5)

where f0 and fφ are density functions, f0 is known. Denote �0 = {φ ∈ � :‖fφ −
f0‖ = 0} and θ = (φ,p). Then, the L2 distance is D(θ) = p‖fφ/f0 − 1‖ and the
generalized score function is

Sθ = (fφ/f0 − 1)/‖fφ/f0 − 1‖,
for φ ∈ � \ �0. Since the generalized score function does not depend on p, we
denote it by Sφ . Recall that �(f ) is defined as �(f ) = f/‖f ‖ for f ∈ L2(P )

(f �= 0). There are two types of limits of the generalized score functions,
depending on whether ‖fφm − f0‖ converges to zero:

F1 = {
�(fφ/f0 − 1) :φ ∈ � \ �0

}
,

F2 =
{
S : ∃ {φm} ∈ � \ �0, s.t.

lim
m→∞‖fφm − f0‖ = 0, lim

m→∞‖�(fφm − f0) − S‖ = 0
}
.

Thus F = F1 ∪ F2. It is clear that F2 is a subset of the closure of F1. Therefore,
F = F̄1. Under the conditions of Theorem 3.1, the Gaussian process {WS; S ∈ F }
has uniformly continuous sample paths. We have

lim
n→∞ 2λn = sup

S∈F̄1

(WS ∨ 0)2 = sup
S∈F1

(WS ∨ 0)2.

3.2. Discrete models and composite null hypothesis. In this subsection, we
first present a theorem for testing hypotheses of discrete models. We prove that the
Donsker class condition is automatically satisfied by discrete models and obtain an
explicit representation of the Gaussian process in Theorem 3.1. Then we consider
hypothesis testing problems with composite null hypotheses.

When the distribution function is discrete, without loss of generality, we may
assume that the sample space is X = {1, . . . , k}. An observation on X can be
written as a vector X = (X(1), . . . ,X(k)) with a multinomial distribution with
probabilities: fθ = (fθ (i))

k
i=1, where fθ (i) = Pθ(X(i) = 1). Denote the true null

distribution by f = fθ0 and assume that f (i) > 0 for 1 ≤ i ≤ k. Note that a vector x
on X can be also regarded as a function. Define the L2 norm ‖ · ‖ on X as
‖x‖2 = ∑k

i=1 f (i)x(i)2. For any θ ∈ � \ �0, define the generalized score vector
as Sθ = (fθ /f − 1)/‖fθ /f − 1‖ and the set of limits of Sθ as F, that is,

F =
{

S :∃ {θm} ∈ � \ �0 s.t. lim
m→∞‖fθm − f‖ = 0, lim

m→∞‖Sθm − S‖ = 0
}
.(3.6)

The following theorem gives the asymptotic null distribution of the LRT for
discrete models.
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THEOREM 3.2. Assume that the distributions in (2.1) are discrete, and
F in (3.6) is complete and admits continuous paths. The LRTS for (2.1) satisfies

lim
n→∞ 2λn = sup

S∈F
(ST W ∨ 0)2,

where W ∼ N(0,diag(f ) − ffT ) and f is the true null probability vector.

PROOF. First we verify the P -Donsker condition for discrete models. It
suffices to show that the empirical process of the generalized score function,
νnSθ , converges uniformly to some Gaussian process. Based on our notation, the
generalized score function Sθ can be expressed as

Sθ (X) =
(

k∏
i=1

[fθ (i)/f (i)]X(i) − 1

)/
‖fθ /f − 1‖ = ST

θ X.

Consider i.i.d. random observations X1, . . . ,Xn from the true distribution f.
Denote n = (n(1), . . . , n(k)), where n(i) = #{j :Xj(i) = 1, 1 ≤ j ≤ n}, for
1 ≤ i ≤ k, and let Wn = n − nf. Note that ST

θ f = 0, we have νnSθ = ST
θ Wn.

By the central limit theorem, Wn converges to a Gaussian random vector W ∼
N(0,diag(f ) − ffT). Without loss of generality, we assume Wn converges to W
almost surely [see, e.g., Dudley (1999)]. Note that ‖Wn − W‖ = oP (1) and
‖Sθ‖ = 1. Thus νnSθ converges to ST

θ W uniformly for θ ∈ � \ �0. This verifies
the P -Donsker class condition in Theorem 3.1. For discrete models, it is obvious
that the L2 convergence of Sθ is equivalent to the pointwise convergence.
By Theorem 3.1, the proof is completed. �

In many hypothesis testing problems, the null hypothesis is composite:

H0 :fθ, θ ∈ �1, against H1 :fθ , θ ∈ �2 \ �1,(3.7)

where fθ is a density function, �1 and �2 are subsets of �d . Without loss of
generality, we assume �1 ⊂ �2. Denote the true null distribution by f0. For
i = 1,2, let

�i0 = {θ ∈ �i :fθ = f0},
�iε = {θ ∈ �i : 0 < D(θ) ≤ ε} and λin = sup

θ∈�iε

Ln(θ) ∨ 0.

Then the LRTS for (3.7) can be written as 2λ∗
n = 2λ2n − 2λ1n. Denote by Fi the

limits of generalized score functions on �i as D(θ) → 0; that is,

Fi =
{
S : ∃ {θm} ∈ �iε \ �i0, s.t.

lim
m→∞‖fθm − f0‖ = 0, lim

m→∞‖�(fθm/f0 − 1) − S‖ = 0
}
.

(3.8)
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We assume that, for any S ∈ F2, it can be decomposed as the linear combination
of its projection S‖ in F1 and a function S⊥ in F2 orthogonal to F1; that is,

S = aS‖ + bS⊥,(3.9)

where P (S⊥T ) = 0 for all T ∈ F1, a, b ≥ 0. Denote by F ⊥ the set of the
decomposed functions of F2 orthogonal to F1. Under suitable conditions,
the LRTS for (3.7) converges in distribution to supS∈F ⊥(WS ∨ 0)2. That is the
following theorem.

THEOREM 3.3. For the test in (3.7), we assume that for i = 1,2, Fiε =
{Sθ : θ ∈ �iε} is a P -Donsker class with square integrable envelope function for
some ε > 0, and Fi defined in (3.8) is complete and admits continuous paths,
and F2 is convex. We also assume that each S ∈ F2 has the decomposition (3.9).
Then on a suitable probability space, there exists a centered Gaussian process
{WS :S ∈ F ⊥}, equipped with the same probability measure as νn, with continuous
sample paths and covariance kernel,

P (WS1WS2) = PS1S2 for S1, S2 ∈ F ⊥,

such that the LRTS for (3.7) satisfies

lim
n→∞ 2λ∗

n = supS∈F ⊥(WS ∨ 0)2.

PROOF. By Theorem 3.1, there exists a centered, uniformly continuous
Gaussian process {WS :S ∈ F̄2ε} such that

lim
n→∞ 2λ∗

n = sup
S∈F2

(WS ∨ 0)2 − sup
S∈F1

(WS ∨ 0)2.

For any S ∈ F2, in (3.9) we have a2 + b2 = 1. Then,

WS = aWS‖ + bWS⊥ ≤
√

(WS‖ ∨ 0)2 + (WS⊥ ∨ 0)2.(3.10)

Since F2 is convex, for any S1 ∈ F1, S2 ∈ F ⊥ and 0 ≤ p ≤ 1, we have Sp =
pS1 +

√
1 − p2S2 ∈ F2. Let p̂ = (WS1 ∨ 0)/

√
(WS1 ∨ 0)2 + (WS2 ∨ 0)2. Then,(

WSp̂
∨ 0

)2 = (
WS1 ∨ 0

)2 + (
WS2 ∨ 0

)2
.(3.11)

Combining (3.10) and (3.11) proves the theorem. �

4. Applications to finite mixture models. In this section we study the LRT
for testing the number of components in finite mixture models. According to
Theorem 3.1, essentially one needs to verify the P -Donsker class condition for
{Sθ ; θ ∈ �ε} and to derive F . Note that the most widely used mixture models are
those from the exponential families which have square integrable likelihood ratios
and other nice analytic properties. For these models the Donsker class condition
can be directly verified using Lemma 3.2 and other techniques in van der Vaart and
Wellner (1996). In this section, we assume that the P -Donsker class condition is
satisfied and focus on deriving the index set F .
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4.1. General set-up in deriving F . We first present a set-up for deriving F in
general hypothesis testing problems. When there are difficulties obtaining all limits
of the generalized score functions directly, the following lemma shows that F can
be determined by a class of functions equivalent to generalized score functions.
We say that a family of functions {gθ : θ ∈ �} satisfies gθ = o(1) uniformly as
D(θ) → 0 if there exists a square integrable function G such that

lim sup
D(θ)→0

‖gθ/G‖ = 0.

LEMMA 4.1. If Sθ − Tθ = o(1) uniformly as D(θ) → 0, then F in (3.1) can
be formulated as

F =
{
S ∈ L2 : ∃ {θm} ∈ �ε, s.t. lim

m→∞D(θm) = 0, lim
m→∞‖Tθm − S‖ = 0

}
.

The proof of Lemma 4.1 is straightforward and will be omitted.
By Lemma 4.1, F can be derived using functions equivalent to the generalized

score functions. One way to find the equivalent functions is to use Taylor
expansions of the likelihood ratios. In many applications, including mixture
models, there exists a reparameterization θ = (φ,ψ) ∈ � ⊗ � such that the
equation D(θ) = 0 is equivalent to the condition that φ = φ0 for all ψ ∈ � ,
where � and � are subsets of �d and �k , respectively. Then the first-order Taylor
expansion at φ = φ0 is

l(φ,ψ) = 1 + (φ − φ0)
T ∂l(φ0,ψ)

∂φ
+ o(|φ − φ0|).(4.1)

If (φ − φ0)
T ∂l(φ0,ψ)

∂φ
is not degenerate, by Lemma 4.1, F can be formulated as the

L2 limits of �((φ − φ0)
T ∂l(φ0,ψ)

∂φ
) as |φ − φ0| → 0. Without loss of generality, we

assume φ0 is an interior point of �. Then the limits of (φ − φ0)/|φ − φ0| form the
unit ball in �d . Note that F is closed, so F = F̄0, where

F0 =
{
�

(
βT ∂l(φ0,ψ)

∂φ

)
: |β| = 1, β ∈ �d, ψ ∈ �

}
.(4.2)

From (4.2), the LRTS converges to the supremum of the square of a Gaussian
process indexed by the closure of the convex cone of directional score functions,
which gives the results of Lindsay (1995) and Dacunha-Castelle and Gassiat (1997,
1999) for mixture models. The local conic parameterization approach of Dacunha-
Castelle and Gassiat is very useful in identifying F . However, (4.2) fails when
the directional score functions are linearly correlated; that is, there exist β ∈ �d

(β �= 0) and φ ∈ � such that βT ∂l(φ0,ψ)

∂φ
= 0. In general, the closure of the convex

cone of the directional score functions is only a subset of F . To obtain F , one
may need to expand the likelihood ratios by Taylor expansion to a higher order or
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use other approximations. For instance, when (4.1) fails, the Taylor expansion of
the likelihood ratio function to the second order may still hold; that is,

l(φ,ψ) − 1 = (φ − φ0)
T

∂l(φ0,ψ)

∂φ

+ 1

2
(φ − φ0)

T ∂2l(φ0,ψ)

∂2φ
(φ − φ0) + o(D(θ)).

(4.3)

In the next section, we show how to derive the explicit form of F for mixture
models under (4.3).

4.2. Finite mixture models. Suppose {fα :α ∈ A} is a family of density
functions with A ⊂ �d a compact, convex set. For two known integers l < m,
testing a mixture model with l components against a mixture with m components
can be expressed as testing

H0 :
l∑

i=1

p0ifα0i
against H1 :

m∑
j=1

pjfαj
,(4.4)

where 0 ≤ p0i, pj ≤ 1, α0i , αj ∈ A;
∑l

i=1 p0i = ∑m
j=1 pj = 1; p0i, α0i (i =

1, . . . , l) are assumed known and pj , αj (j = 1, . . . ,m) are unknown parameters.
Without loss of generality, we assume that p0i > 0, α0i ’s are interior points
of A and their values are different from each other. The likelihood ratio function
for (4.4) is

lα,p =
(

m∑
j=1

pjfαj

)/(
l∑

i=1

p0ifα0i

)
.

We assume that the likelihood function is identifiable in the following sense:

lα,p = 1 ⇐⇒
l∑

i=1

p0iδα0i
=

m∑
j=1

pjδαj
.(A1)

In the following, we find a reparameterization of θ based on assumption (A1)
and then obtain the Taylor expansion in (4.3). When lα,p = 1, there exists a
vector t = (ti)

l
i=0 such that 0 = t0 < t1 < · · · < tl ≤ m and, up to permutations,

(α,p) can be presented as αti−1+1 = · · · = αti = α0i ,
∑ti

j=ti−1+1 pj = p0i ,
i = 1, . . . , l; and αj /∈ {α01, . . . , α0l}, pj = 0 for j = tl + 1, . . . ,m. Define

s = (si)
l
i=1, u = (ui)

l
i=1 and q = (qj )

tl
j=1, where

si =
ti∑

j=ti−1+1

pj − p0i , ui = si − slp0i/p0l , qj = pj

/ ti∑
j=ti−1+1

pj ,
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for i = 1, . . . , l, j = ti−1 + 1, . . . , ti . Note that ul = 0. Define the reparameteriza-
tion θ = (φt,ψ t) by

φt = (
(αj )

tl
j=1, (si)

l−1
i=1, (pj )

m
j=tl+1

)
, ψ t = (

(qj )
tl
j=1, (αj )

m
j=tl+1

)
.

Then φ0t = (α01, . . . , α01︸ ︷︷ ︸
t1

, . . . , α0l , . . . , α0l︸ ︷︷ ︸
tl−tl−1

,0, . . . ,0︸ ︷︷ ︸
l−1

,0, . . . ,0︸ ︷︷ ︸
m−tl

). Let lα = fα/

(
∑l

i=1 p0ifα0i
) − 1. Then

lθ − 1 = s

l∑
i=1

(si + p0i )

ti∑
j=ti−1+1

qj lαj
+

m∑
j=tl+1

pj lαj
.

Define the φt-derivatives of the likelihood ratio function at φ0t by

l′i = ∂lα0i
/∂αi and l′′i = ∂2lα0i

/∂2αi.

We then make the second general assumption that the likelihood ratio has the
following Taylor expansion:

l(φt,ψt) = 1 + (φt − φ0t)
T l′φ0t ,ψt

+ 0.5(φt − φ0t)
T l′′

φ0t ,ψ t

(φt − φ0t) + o
(
D(φt,ψt)

)
,

(A2)

where

(φt − φ0t)
T l′φ0t ,ψt

=
l∑

i=1

p0i

(
ti∑

j=ti−1+1

qjαj − α0i

)T

l′i

+
l−1∑
i=1

uilα0i
+

m∑
i=tl+1

pilαi
,

(φt − φ0t)
T l′′φ0t ,ψt

(φt − φ0t) =
l∑

i=1

[
2si

(
ti∑

j=ti−1+1

qjαj − α0i

)T

l′i

+ p0i

ti∑
j=ti−1+1

qj (αj − α0i)
T l′′i (αj − α0i )

]
.

Our third general assumption is that

(φt − φ0t)
T l′φ0t ,ψt

+ 0.5(φt − φ0t)
T l′′φ0t ,ψt

(φt − φ0t) = 0

⇐⇒ φt = φ0t.
(A3)

Assumptions (A1)–(A3) allow us to obtain the explicit form of F and show that it
is complete and admits continuous paths in the following theorem.
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THEOREM 4.1. In the hypothesis testing problem (4.4), assume that (A1)–
(A3) hold. Then F = ⋃

t Ft with

Ft =
{
�

(
l∑

i=1

λT
itl

′
i +

l−1∑
i=1

λ(i+l)tlα0i

+
m−tl∑
i=1

λ(i+2l−1)tlα(i+tl )t
+ δ

l∑
i=1

ti∑
j=ti−1+1

γ T
j t l

′′
i γj t

)
:

λ1t, . . . λlt ∈ �d∗, λ(l+1)t, . . . , λ(2l−1)t ∈ �,(4.5)

λ(2l)t, . . . , λ(m+2l−tl )t ∈ �+;γ1, . . . , γtl ∈ �d;

αtl+1, . . . , αm ∈ A \ {α01, . . . , α0l}; |λt| + δ|γ t| = 1

}
,

where in (4.5) δ = 1, if there exists a vector q such that qj ≥ 0,
∑ti

j=ti−1
qj = 1

and
∑ti

j=ti−1

√
qjγj = 0, for i = 1, . . . , l; and 0 otherwise; the union runs over all

possible t with 0 = t0 < t1 < · · · < tl = m. Moreover, F is complete and admits
continuous paths.

PROOF. To further simplify notation, let

γ =
([

(p0i + si)

(
ti∑

j=ti−1+1

qjαj − α0i

)]l

i=1

, (ui)
l−1
i=1, (pi)

m
i=tl+1

)
;

λ = ([√qj (αj − α0i)]tij=ti−1+1

)l
i=1; η = |λ|2/(2|γ | + |λ|2);

L′ = diag
(
l′1, . . . , l′l , lα01, . . . , lα0(l−1)

, . . . , lαtl+1, lαm

);
L′′ = diag(l′1, . . . , l′1︸ ︷︷ ︸

t1

, l′2, . . . , l′2︸ ︷︷ ︸
t2−t1

, . . . , l′l , . . . , l′l︸ ︷︷ ︸
tl−tl−1

).

Recall that ω(x) = x/|x|, for x �= 0. The Taylor expansion in (A2) can be expressed
as

lθ − 1 = γ T L′ + 0.5λT L′′λ + o(D(θ))

= |γ | + 0.5|λ|2[(1 − η)ω(γ )T L′ + ηω(λ)T L′′ω(λ) + o(1)
]
.

(4.6)

By definition, for S ∈ F , there exists a sequence {θr} ∈ � \ �0 such that
D(θr) tends to zero and �(lθr − 1) converges to S in L2 as r → 0. For any
function g(θ) bounded in � \ �0, we can choose a suitable subsequence {θrk }
of {θr} such that g(θrk ) converges. Without loss of generality, we may assume
that (ηr ,ω(γ r ),ω(λr),qr ) converges to (η,γ ,λ,q) as r → 0. Assumption (A3)
ensures that ‖(1 − η)γ T L′ + ηλT L′′λ)‖ > 0. Thus �((1 − ηr)ω(γ r )T L′ +
ηrω(λr)T L′′ω(λr )) converges to S = �((1 − η)γ T L′ + ηλT L′′λ).
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Now we can show that S can be written in the form of (4.5). When η = 1, note
that γ r → 0. We have γ r/|λr | → 0 and

(p0i + sr
i )

ti∑
j=ti−1+1

√
qr
jω(γ r )j = γ r

i /|λr |,

for i = 1, . . . , l. Since p0i > 0 and sr
i converges to 0, we have

∑ti
j=ti−1+1

√
qj ×

γ j = 0. Simple linear transformations of the parameters allow �((1 − η)γ T L′ +
ηλT L′′λ) to be expressed as (4.5). When η = 0, (4.5) is obvious. Therefore, F is
a subset of

⋃
t Ft.

Next we prove F = ⋃
t Ft by showing that for any S ∈ Ft, there exists a con-

tinuous path θr such that S is the pointwise and L2 limit of Sθr as r tends to 0.
Here we consider the case η = 1 only. The proof of the case η = 0 is similar
and not presented here. By definition of Ft, S can be defined in (4.5) by pa-
rameters ((λi)

2l+m−tl−1
i=1 , (γi)

tl
i=1, (qi)

tl
i=1, (αi)

m
i=tl

), where
∑ti

j=ti−1+1
√

qjγj = 0,∑ti
j=ti−1+1 qj = 1. For simplicity, we express it as S = �((1−η)γ T L′ +ηλT L′′λ)

where η = |γ |2/(2|λ| + |γ |2) > 0. Define a sequence {θr} for small r as follows:
αr

i = αi, pr
i = r4λi−tl+2l−1 for i = tl + 1, . . . ,m; ri = r4λl+i for i = 1, . . . , l − 1;

and

qr
j =


r2, if qj = 0,

qj

(
1 − r2

tl∑
j=ti−1+1

δ0(qj )

)
, if qj �= 0,

αr
j − α0i =


rγj , if qj = 0,

r2γj/
√

qj − r3
tl∑

j=ti−1+1

δ0(qj )γj + r4λi/p0i, if qj �= 0,

for i = 1, . . . ,m, j = ti−1 + 1, . . . , ti , where δ0(x) = 0 if x = 0; and 1, otherwise.
(γ r ,λr , ηr ) is defined by θr as above.

ti∑
j=ti−1+1

qr
j (αr

j − α0i )

= r3
∑
qj =0

γj

+ r2
ti∑

j=ti−1+1

qj

(
1 − r2

∑
δ0(qj )

)(
γj/

√
qj − r

∑
qj =0

γj + r2λi/p0i

)

= r2γi

ti∑
j=ti−1+1

√
qjγi + r3

(
1 −

ti∑
j=ti−1+1

qj

) ∑
qj =0

γj t
4γi
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+ r4

(
γi

/
p0i

ti∑
j=ti−1+1

qi −
ti∑

j=ti−1+1

δ0(qj )

ti∑
j=ti−1+1

√
qjγi

)
+ o(r4)

= r4γi/p0i + o(r4),

where we have used the equations
∑ti

j=ti−1+1
√

qjγi = 0 and
∑ti

j=ti−1+1 qi = 1.

Clearly λr = r2λ + o(r2). Then (r−4γ r , r−2λr) → (γ ,λ) as r tends to 0.
Equation (4.6) yields

lθ r − 1 = r4[(1 − η)λT L′ + ηγ T L′′γ + o(1)
]
.

Note that lθ is a continuous function in θ . Therefore {θr} is a continuous path
for S such that Sθr → S in L2 as r → 0 and D(θr) is a continuous function of r .
Similarly, we can show that F is complete and the L2 convergence of F implies
pointwise convergence. We omit the details. �

Testing homogeneity in mixture models is a frequently met problem in
applications. The homogeneity test corresponds to l = 1 in (4.4). For simplicity,
let α0 = α01, l′ = l′1 and l′′ = l′′1 . The vector t in Theorem 4.1 is then reduced to
a scalar parameter t where 1 ≤ t ≤ m. We give the following corollary without
proof.

COROLLARY 4.1. In the hypothesis testing problem (4.4), assume that l = 1
and that assumptions (A1)–(A3) hold. Then F = ⋃

1≤t≤m Ft , where

Ft =
{

�

(
λT

1 l′ +
m−t∑
i=1

λi+1lαi+t
+

t∑
i=1

γ T
i l′′γi

)
:

λ1 ∈ �d, λ2, . . . λm−t+1 ∈ �+;γ1, . . . , γt ∈ �d and

Rank (γ ) < t;α1+t , . . . , αm ∈ A \ α0; |λ| + |γ | = 1

}
.
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