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We consider the problem of determining the distribution of means of
random probability measures which are obtained by normalizing increasing
additive processes. A solution is found by resorting to a well-known inversion
formula for characteristic functions due to Gurland. Moreover, expressions
of the posterior distributions of those means, in the presence of exchangeable
observations, are given. Finally, a section is devoted to the illustration of two
examples of statistical relevance.

1. Introduction. This paper concerns a class of random probability measures
that includes the Dirichlet process. The material that is presented here can be
considered of some interest for two main reasons:

1. It represents a natural approach to the problem of defining a random probability
measure.

2. It is possible to determine explicit forms for the distribution of a mean of any
random probability measure yielded by this approach.

With reference to the former, one reasonable way to pass from deterministic
to random real-valued functions defined on R is to consider their increments
on disjoint intervals as independent random variables. Starting from these
considerations, we have defined a random distribution function by resorting to
what is called an increasing additive process. A suitable modification of the
underlying Lévy measure yields an almost surely finite random measure with
independent increments. A systematic account of these random measures is given,
for example, in Kingman (1967, 1993), Morando (1969) and Skorohod (1991).
Kingman designated this random measure with the term completely random
measure. For our purposes we consider the normalized increments of an increasing
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additive process somewhat in the spirit of the work of Kingman (1975). For an
allied contribution, see, for example, Hjort (1990).

An analogous approach, which exploits a different transformation of an
increasing additive process, is due to Doksum (1974). The resulting random
probability measures are very popular in Bayesian literature, and their posterior
distributions admit explicit forms. Among various contributions to this topic it is
worth mentioning, for example, Ferguson (1974), Ferguson and Phadia (1979),
Walker and Muliere (1997) and Walker and Damien (1998). Nonetheless, to our
knowledge no exact distribution for their means, apart from the Dirichlet process,
has been determined.

As for the operational aspect of our proposal, we would like to stress two
points. The availability of an explicit expression for the distribution of means (of
the random probability measure we introduce) makes it possible to provide its
numerical evaluation with any prescribed error of approximation. On the other
hand, if the analytic expression of the exact distribution is not easy to handle,
we can adopt simulation techniques, based on those proposed, for example, in
Damien, Laud and Smith (1995), as an alternative.

Following these guidelines, in Section 2 we present the basic elements of
the theory of processes with positive and independent increments, introduce the
notion of random measure with positive and independent increments and obtain
the corresponding random probability measure by normalization. In Section 3 a
result concerning (almost sure) existence of any mean of a random probability
measure is given and an expression for its distribution is provided. The problem of
finding an expression for the posterior distribution is tackled in Section 4 and two
illustrative examples are developed in Section 5.

2. Preliminaries and basic definitions. Let A be a discrete distribution
function (d.f.) on R with discontinuities at s1 < s2 < · · · < sk of magnitude
α1, . . . , αk . Suppose �1, . . . ,�k are independent random variables having distri-
butions G(α1), . . . ,G(αk), respectively, G(η) being the gamma distribution with
shape parameter η and scale parameter 1, for any η > 0. Then, by defining W0 := 0
and Wj := �1 +· · ·+�j for each j = 1, . . . , k, the Laplace transform of the prob-
ability distribution of Wj coincides with

λ �→ (1 + λ)−A(s) = exp
{
−A(s)

∫ +∞
0

(1 − e−λx)x−1e−x dx

}
,

s ∈ Ij , j = 0, . . . , k,

where I0, I1, . . . , Ik denotes the partition of R determined by the discontinuities
of A. Moreover, the random vector (�1, . . . ,�j )/Wk has the (j − 1)-variate
Dirichlet distribution D(α1, . . . , αj−1,

∑k
i=j αi). In other words, the Dirichlet

distribution is definable as the joint distribution of a set of independent gamma
variables divided by their sum. See, for example, Bilodeau and Brenner (1999).
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Now, consider any nondegenerate d.f. A on R such that limx→+∞ A(x) =
a ∈ (0,+∞). The above construction, which refers to the discrete case, can be
extended to this more general framework as follows. Let {ξt : t ≥ 0} denote a
gamma subordinator, that is, an increasing process with independent increments
such that, for any s < t , ξt − ξs is gamma distributed with shape parameter t − s

and scale parameter 1. The reader is referred to Tsilevich, Vershik and Yor (2001)
for an exhaustive and stimulating treatment of gamma processes. The time change
t = A(x), with x ∈ R, yields a “reparameterized gamma process” {ξA(x) :x ∈ R}
whose increments ξA(x) − ξA(y) are, for any x > y, gamma distributed with scale
parameter still equal to 1 and shape parameter equal to A(x) − A(y). Whence,
combining the definition of the reparameterized gamma process with the above
description of a Dirichlet distribution, we have that the normalized subordinator
x �→ ξA(x)/ξa has the same finite-dimensional distributions as those of a Dirichlet
process with parameter A. At this stage we are in position to describe the main
purpose of the present paper, that is, the generalization of the previous construction
to cases in which gamma processes are replaced by increasing additive processes,
yielding a wide class of priors for Bayesian inference in nonparametric form.

We begin with a short review of some basic facts of the theory of additive
processes employed in this paper. Let {νt : t ≥ 0} be a family of measures on
B((0,+∞)) such that:

1. ν0 ≡ 0,
∫
(0,+∞)(x ∧ 1)νt (dx) < +∞ holds true for any t > 0.

2. νs(B) ≤ νt (B) for s < t and B ∈ B((0,+∞)).
3. νs(B) → νt (B) as s → t in [0,+∞) with B ∈ B((0,+∞)) and B ⊂

{x :x > ε}, for some ε > 0.

According to Theorem 9.8 in Sato (1999), facts 1–3 assure the existence of
a stochastic process {ξt : t ≥ 0} defined on some probability space (�,F ,P )

satisfying:

4. For any choice of n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, the random variables ξt0,

ξt1 − ξt0, . . . , ξtn − ξtn−1 are independent.
5. P {ξ0 = 0} = 1.
6. P {|ξs − ξt | > ε} → 0 as s → t in [0,+∞) for any ε > 0.
7. There exists �0 ∈ F with P (�0) = 1 such that t �→ ξt (ω) is increasing and

right continuous for each ω ∈ �0.
8. E[e−λξt ] = exp[− ∫

[0+∞)(1 − e−λx)νt (dx)] for any λ ≥ 0, where E[ · ] denotes
expectation with respect to P .

9. ξt = ∫
(0,t]×(0,+∞) xJ (ds dx) a.s.-P , where J , defined by J (B) := #{s : (s, ξs −

ξs−) ∈ B} for any B ∈ B((0,+∞)2), #D standing for the cardinality of set D,
is a Poisson random measure with intensity measure ν̃ such that ν̃((0, t]×C) :=
νt (C) for every t ≥ 0 and C ∈ B((0,+∞)).

Any process that satisfies statements 4–9 is said to be an increasing additive
process (IAP).



MEANS OF NORMALIZED RANDOM MEASURES 563

For our purposes, some slight modifications of this definition are useful.
Suppose α is a nonnull finite measure on B(R) with d.f. A and assume that ξα(R)

is strictly positive and finite a.s.-P . This condition can be restated in terms of the
Lévy measure νt , since it is equivalent to

να(R)

(
(0,+∞)

) = +∞.(1)

Indeed, exp(− ∫
(0,+∞)(1 − e−λv)να(R)(dv)) = E[e−λξα(R)] = P {ξα(R) = 0} +

E[e−λξα(R)1(0,+∞)(ξα(R))], where, for any set B , 1B denotes the indicator
function of B and, by the monotone convergence theorem, P {ξα(R) = 0} =
limλ→+∞ exp((− ∫

(0,+∞)(1−e−λv)να(R)(dv))). This entails that P {ξα(R) =0}=0
if and only if limλ→+∞

∫
(0,+∞)(1 − e−λv)να(R)(dv) = +∞. Finally, we again

apply monotone convergence so that P {ξα(R) > 0} = 1 if and only if (1) holds
true.

In this framework there exists a set �1 ∈ F with P (�1) = 1 such that t �→ ξt (ω)

is continuous from the left at α(R) for any ω ∈ �1. Hence, in accordance with the
notation introduced in the first paragraph of this section, x �→ ξA(x)(ω) turns out
to be a bounded d.f. on R for any ω in �1 and

x �→ F̃ (x) = F̃ (x,ω) =
{

ξA(x)(ω)/ξα(R)(ω), if ω ∈ �1,

E
[
F̃ (x)1�1

]
, if ω /∈ �1,

is a random probability d.f. on R. By random measure with independent
increments (RMI) we mean the random measure ξ̃ on (R, B(R)) associated
with ξA( · ). Consistently, the random probability measure ϕ̃ associated with F̃ ,
that is,

ϕ̃(B) =
∫

R
1B dF̃ , B ∈ B(R),(2)

is said to be a normalized RMI. A natural representation of F̃ can be given using

ξA(x) =
∫
(−∞,x]×(0,+∞)

vJα(ds dv),(3)

which is a straightforward consequence of the right continuity of A, with
Jα(ds dv) := J (G−1

α (ds) dv) on B(R× (0,+∞)) and Gα(x) := inf{z :A(z) ≥ x}
for x ∈ (0, α(R)). Moreover, if ν̃α(ds dv) := ν̃(G−1

α (ds) dv), we obtain

E[ξA(x)] =
∫
(−∞,x]×(0,+∞)

vν̃α(ds dv).

Kingman (1975) was the first to undertake the approach we are describing. He
addressed the problem of computing the expected value of a specific function of
the random vector (ϕ̃1, . . . , ϕ̃N ) defined by ϕ̃j = ξ̃ (Ij )/ξ̃ (R), where I1, . . . , IN is
a partition of R. For more recent papers that draw inspiration from Kingman’s
contribution and that are somehow connected to the present paper, refer to, for
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example, Perman (1993) and Pitman (1996). The former deals with ranked random
discrete distributions derived from subordinators and provides the joint distribution
of the n largest atoms, whereas the latter discusses the generalization of the
usual Dirichlet updating rule which applies to a two-parameter family of random
measures that includes both the normalized gamma and stable subordinators as
special cases.

3. Distributional results for means of normalized RMI. If ξ̃ and ϕ̃ are the
same as in the previous section, then the integral ϕ̃|f | = ϕ̃(|f |,ω) := ∫

R |f |dϕ̃ is
well defined for each ω in �. In particular, using (3), we have

ξ̃ (C) =
∫
C×(0,+∞)

vJα(dx dv), C ∈ B(R),

ξ̃ |f | = ξ̃ (|f |,ω) :=
∫

R+
x
(
ξ̃ ◦ |f |−1)

(dx) =
∫

R+×(0,+∞)
xvJα

(|f |−1(dx) dv
)
.

The last integral is finite a.s.-P when, for example, the support of α is finite.
This plays a role in proving the following proposition, which specifies a criterion
that is dependent only on the properties of the measure ν̃α to determine whether
ξ̃ |f | is finite. Details about its proof are given in the Appendix.

PROPOSITION 1. For any normalized RMI ϕ̃ and any measurable function
f : R → R, the following conditions are equivalent:

(i) P {ϕ̃|f | < +∞} = P {ξ̃ |f | < +∞} = 1.
(ii)

∫
R×(0,+∞)[1 − exp(−λy|f (x)|)]ν̃α(dx dy) < +∞ holds for every λ > 0.

(iii)
∫
R×(0,+∞)[1 − cos(yt|f (x)|)]ν̃α(dx dy) < +∞ and∫
R×(0,+∞) | sin(yt|f (x)|)|ν̃α(dx dy) < +∞ hold for every t ∈ R.

Proposition 1 represents a generalization of a well-known statement, concerning
only Dirichlet random probability measures, studied by Feigin and Tweedie (1989)
and Cifarelli and Regazzini (1990, 1996).

Approaching the problem of the determination of the probability distribution
of ϕ̃(f ), we assume that the conditions of Proposition 1 hold. Since

P {ϕ̃(f ) ≤ σ } = P
{
ξ̃ (f − σ) ≤ 0

}
holds true for any σ ∈ R, then by the Gurland inversion formula for characteristic
functions, we get

1

2

[
P {ϕ̃(f ) ≤ σ } + P {ϕ̃(f ) < σ }]

(4)

= 1

2
− 1

π
lim
ε↓0

T ↑+∞

∫ T

ε

1

t
ImE

[
exp

(
it ξ̃ (f − σ)

)]
dt,
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where Im z stands for the imaginary part of z ∈ C [cf. Gurland (1948)]. The final
part of the proof of Proposition 1 can be used, with slight modifications, to prove
the relationships

γf (t) := E
[
exp

(
it ξ̃ (f )

)]
= exp

[∫
R×(0,+∞)

(eitvf (x) − 1)ν̃α(dx dv)

]

= exp
[∫

R×(0,+∞)
(eitvx − 1)ν̃α

(
f −1(dx) dv

)]
.

As a consequence, we can confine ourselves to studying the probability d.f. F

of
∫

xϕ̃(dx).

PROPOSITION 2. Letting F be the probability d.f. of
∫

xϕ̃(dx) with ϕ̃ defined
as in (2), we have

1

2
[F(σ ) + F(σ − 0)]

= 1

2
− 1

π
lim

T ↑+∞

∫ T

0

1

t
exp

{∫
R×(0,+∞)

[
cos

(
tv(x − σ)

) − 1
]
ν̃α(dx dv)

}

× sin
(∫

R×(0,+∞)
sin

(
tv(x − σ)

)
ν̃α(dx dv)

)
dt

for every σ ∈ R.

The proof of Proposition 2 is provided in the Appendix.

4. Some results about the posterior distribution. This section provides
some results concerning the posterior distribution of means of a normalized RMI
in view of Bayesian applications. We restrict our attention to exchangeable obser-
vations. Assume that the probability space (�,F ,P ), introduced in Section 2 to
define the stochastic process {ξt : t ≥ 0}, also supports a sequence X = (Xn)n≥1 of
random variables that are conditionally i.i.d., given the random probability mea-
sure ϕ̃ defined as in (2). Hence, we have that P (X1 ∈ A1, . . . ,Xn ∈ An|ϕ̃) =
ϕ̃(A1) · · · ϕ̃(An) a.s. for every A1, . . . ,An and n ≥ 1. Let F( · ;f ) denote the prob-
ability d.f. of ϕ̃(f ), where f is any real-valued function satisfying the conditions
in Proposition 1. Set X(n) = (X1, . . . ,Xn) for every n ≥ 1 and define FX(n)( · ;f )

to be a posterior d.f. for ϕ̃(f ) given X(n). Extend the definition of FX(n) to n = 0
by putting FX(0) = F.

We begin by discussing the case in which α has finite support, supp(α) =
{s1, . . . , sN }, and (a, b) is an interval containing all the f (sj )’s. The tool we use to
determine FX(n) for n ≥ 1 is the moment generating function of

∑N
j=1 ϕ̃(sj )tj . In

particular, if x(n) = (x1, . . . , xn) is a sample including nir > 0 terms equal to sir ,
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for r = 1, . . . , k, with
∑

r nir = n, we have

gx(n)(λ; t1, . . . , tN ) :=
∫
(a,b)

e−λσ dFx(n)(σ ; t1, . . . , tN )

= C(x(n))

∫ k∏
r=1

ϕ(sir )
nir exp

(
−λ

N∑
j=1

tj ϕ(sj )

)
Q(dϕ),

where Q is the probability distribution of ϕ̃ and C(x(n))−1 = ∫ ∏k
r=1 ϕ(sir )

nir ×
Q(dϕ). Observe that combination of Theorems 16.8 and 18.4 in Billingsley (1995)
gives

gx(n)(λ; t1, . . . , tN ) = (−1)nC(x(n))

× ∂n

∂t
ni1
i1

· · · ∂t
nik

ik

∫
(a,b)

e−λσ In−1
a+ F(σ ; t1, . . . , tN) dσ,

where In
a+h(σ ) = ∫ σ

a ((σ −u)n−1/(n−1)!)h(u) du is the Liouville–Weyl fractional
integral for n ≥ 1 and I 0

a+ represents the identity operator [see, e.g., Oldham and
Spanier (1974)]. It is worth stressing that the evaluation of the posterior distribution
of ϕ̃(f ), given X(n), can be based on the expression of its prior distribution. In
particular, this is true when one assumes the validity of interchanging the derivative
with the integral according to the following condition:

(H) There exists a Lebesgue null set N ⊂ R such that for every σ ∈ N c ∩ (a, b),
k ≥ 1, n ≥ 1, i1, . . . , ik in {1, . . . ,N}, (t1, . . . , tN ) ∈ (a, b)N and for any
sample x(n) as above ∂nIn−1

a+ F(σ ; t1, . . . , tN)/∂t
ni1
i1

· · · ∂t
nik

ik
exists and

∂n

∂t
ni1
i1

· · · ∂t
nik

ik

∫ b

a
e−λσ In−1

a+ F(σ ; t1, . . . , tN) dσ

=
∫ b

a
e−λσ ∂n

∂t
ni1
i1

· · · ∂t
nik

ik

I n−1
a+ F(σ ; t1, . . . , tN) dσ

holds true for every λ ∈ R.

In fact, if (H) is in force,

gx(n)(λ; t1, . . . , tN )

= (−1)nC(x(n))

∫ b

a
e−λσ ∂n

∂t
ni1
i1

· · · ∂t
nik

ik

I n−1
a+ F(σ ; t1, . . . , tN) dσ

and we obtain:
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PROPOSITION 3. Let the support of α be {s1, . . . , sN} and suppose condition
(H) is met. Then

(−1)nC(x(n))
∂n

∂t
ni1
i1

· · · ∂t
nik

ik

I n−1
a+ F(σ ; t1, . . . , tN )

∣∣∣∣
(t1,...,tN )=(f (s1),...,f (sN ))

is a posterior probability density function (with respect to the Lebesgue measure
on R) of ϕ̃(f ), given X(n) = x(n).

We move on to the case in which the support of α is arbitrary. Here we confine
ourselves to writing the posterior probability d.f. of ϕ̃(f ), given X(n), as a limit,
in the sense of weak convergence, of a suitable sequence of posterior probability
d.f.’s determined according to Proposition 3, employing techniques similar to those
introduced in Regazzini and Sazonov (2001). Suppose that f meets the conditions
in Proposition 1. Let µ(n) be the marginal distribution of X(n) and introduce a
partition Pm := {Am,i : i = 1, . . . , km + 2} of R that has the following properties:

1. Pm+1 is a refinement of Pm.
2. B(R) is generated by

⋃
m≥1 σ(Pm), where σ(Pm) denotes the σ -algebra

generated by Pm, m ≥ 1.
3. εm := 2 max1≤i≤km diam(Am,i) ↓ 0 (as m → +∞).
4.

⋃km

i=1 Am,i = [−Rm,Rm], Am,km+1 = (Rm,+∞) and Am,km+2 = (−∞,−Rm),
with Rm > 0 for any m ≥ 1.

A simple example of such a sequence of partitions corresponds to fixing
Am,1, . . . ,Am,km as the dyadic intervals of rank m that partition [−Rm,Rm], with
Rm = m. The sequence (Pm)m≥1 plays a key role in defining a discretization of
ϕ̃ we need to approximate Fx(n) . This discretization requires selecting points am,i

in Am,i and, whenever the r th element, Xr , in the sample lies in Am,i , it is as
if we have observed am,i . In other words, the original sample X(n) is replaced
by ζ

(n)
m := (ζm,1, . . . , ζm,n), where ζm,r = ∑km+2

i=1 am,i1Am,i
(Xr), r = 1, . . . , n,

with am,km+1 = Rm and am,km+2 = −Rm. Define ϕ̃m := ∑km

j=1 ϕ̃(Am,j )δam,j
+

ϕ̃(Am,km+1)δRm + ϕ̃(Am,km+2)δ−Rm , where, as usual, δx denotes the point mass
at x, and set F∗

m,x(n)(σ ;f ) := P (ϕ̃1,m ≤ σ |ζ (n)
m )(x(n)), where ϕ̃1,m = ϕ̃m(f ). We

are now in a position to state the following approximation result.

PROPOSITION 4. There exists a µ(n)-null set N such that for each x(n) ∈ N c,

lim
m→+∞ F∗

m,x(n)(σ ;f ) = Fx(n)(σ ;f )

is valid for every σ belonging to the set of continuity points of Fx(n) .

Proposition 4, the proof of which is provided in the Appendix, is interesting
because of the concrete availability of F∗

m,x(n) , which can be determined by means
of the procedures described above and related to Proposition 3.
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5. Two illustrative examples. Here we focus our attention on two examples
of Lévy measures and illustrate how the results given in the previous sections can
be applied to determine distributions of means of random probability measures
which are useful, for instance, in a Bayesian nonparametric setting. First we
introduce and study a generalization of the Dirichlet process. The second example
is related to the so-called γ -stable subordinator and was originally employed in
this framework by Kingman (1975).

5.1. A generalization of the Dirichlet process. Let, for any t ≥ 0,

νt (dv) = t
(1 − e−γ v)

(1 − e−v)

e−v

v
dv, γ > 0.

Clearly, the family of measures {νt : t ≥ 0} satisfies properties 1–3 in Section 2,
and the corresponding IAP {ξt : t ≥ 0} is a gamma process when γ = 1. Moreover,
given a nonnull finite measure α on R with d.f. A, it is easy to verify that

E
[
exp(−λξA(x))

] = exp
(
−A(x)

∫
(0,+∞)

(1 − e−λv)
(1 − e−γ v)

(1 − e−v)

e−v

v
dv

)

=
{

�(1 + λ)�(1 + γ )

�(λ + γ + 1)

}A(x)

[cf. e.g., 3.413.1 in Gradshteyn and Ryzhik (2000)].

5.1.1. Finiteness of ϕ̃(f ). The first important issue we need to face, according
to the program expounded in Section 3, concerns the (almost sure) existence of
the mean ϕ̃(f ). A straightforward application of Proposition 1 leads us to write∫
R×(0,+∞)(1 − e−λv|f (x)|)(1 − e−γ v) e−v{(1 − e−v) v}−1α(dx) dv < +∞ as an

equivalent condition for (almost sure) finiteness of ϕ̃|f |. This, by virtue of 3.413.1
in Gradshteyn and Ryzhik (2000), reduces to

∫
R

log
�(γ + 1 + λ|f (x)|)

�(1 + λ|f (x)|) α(dx) < +∞

and, if γ is any positive integer, to∫
R

log
(
γ + λ|f (x)|)γ α(dx) < +∞

with (a)n := a(a − 1) · · · (a − n + 1). When γ = 1, the latter inequality coincides
with the Feigin and Tweedie condition. Moreover, we immediately see that
conditions for finiteness of ϕ̃(f ) in the Dirichlet case and in the present
generalization of the Dirichlet case are equivalent.
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5.1.2. Exact distribution of
∫

xϕ̃(dx). As far as the problem of determining
the distribution of ϕ̃(f ) is concerned, we confine ourselves to considering the case
f (x) ≡ x. By resorting to Proposition 2, we can easily show that the probability
d.f., F, of

∫
xϕ̃(dx) is characterized by

1

2
[F(σ ) + F(σ − 0)]

= 1

2
− 1

π
lim

T ↑+∞

∫ T

0

1

t

× exp

{
−1

2

∫
R

(
log

sinh(πt (x − σ))

πt (x − σ)

(5)

+ log
�(1 + γ − it (x − σ))�(1 + γ + it (x − σ))

(�(1 + γ ))2

)
α(dx)

}

× sin
(

1

2i

∫
R

log
B(γ ; 1 − it (x − σ))

B(γ ; 1 + it (x − σ))
α(dx)

)
dt,

σ ∈ R,

where B denotes the beta function. For computational details, refer to the
Appendix. If it is further supposed that γ ∈ N, then

1

2
[F(σ ) + F(σ − 0)]

= 1

2
− (γ !)α(R)

π
(6)

× lim
T ↑+∞

∫ T

0

1

t
exp

{
−1

2

γ∑
k=1

∫
R

log(k2 + t2(x − σ)2)α(dx)

}

× sin

( γ∑
k=1

∫
R

arctan
t (x − σ)

k
α(dx)

)
dt.

In this case the integrand is absolutely integrable in (M,+∞) for any M > 0
and, thus, the previous integral can be thought of as a Lebesgue integral on R. In
particular, if we set γ =1, we obtain the distribution of the mean of a Dirichlet
random probability measure; that is, 1/2 − (1/π)

∫ +∞
0 (1/t) exp{−(1/2)×∫

R log(1 + t2(x − σ)2)α(dx)} sin(
∫
R arctan(t (x − σ))α(dx)) dt [cf., e.g., (3) in

Regazzini, Guglielmi and Di Nunno (2002)]. Figures 1 and 2 display graphs of the
probability density function and of the probability d.f., respectively, of

∫
xϕ̃(dx).

Thicker lines refer to the generalized Dirichlet process with γ = 2, whereas the
other situation refers to the usual Dirichlet process (i.e., γ = 1). The measure α
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FIG. 1. Prior densities of
∫

xϕ̃(dx), where ϕ̃ corresponds to a Dirichlet process (γ = 1) and to
a generalized Dirichlet process (γ = 2). The measure α is the beta distribution with parameters
1/9 and 1 and total mass equal to 1/2.

corresponds to a beta distribution, with parameters 1/9 and 1, and total mass,
α(R), equal to 1/2. We do not give details about numerical aspects to be faced
at this stage, but the procedure adopted is similar to that in Regazzini, Guglielmi
and Di Nunno (2002).

FIG. 2. Prior distribution functions of
∫

xϕ̃(dx), where ϕ̃ coincides with a Dirichlet process
(γ = 1) and with a generalized Dirichlet process (γ = 2). The measure α is the beta distribution
with parameters 1/9 and 1 and total mass equal to 1/2.
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5.1.3. Posterior distribution in the discrete case with γ ∈ N. In moving on to
the computation of the posterior distribution of

∫
xϕ̃(dx) given x(n), we undertake

the procedure sketched in Section 4, and, from now on, γ is taken to be a positive
integer. We start by considering the case in which the support of α is discrete,
consisting of the points s1, . . . , sN . In such a case, we can show that F, that is, the
prior d.f. of

∫
xϕ̃(dx), is continuous and coincides with

F(σ ) = 1

2
(7)

− 1

π

∫ +∞
0

1

t
Im

(
exp

{
−

N∑
j=1

αj log
�(γ + 1 + it (sj − σ))

�(γ + 1)�(1 + it (sj − σ))

})
dt,

where αj = α(sj ), j = 1, . . . ,N . According to Proposition 3, (7) is the starting
point for the determination of the posterior. To this end, it is useful to introduce
some new notation. For any (r1, . . . , rn) in {1, . . . , γ }n, let ᾱj (r1, r2) = αj +
δsj1

({sj }) if r1 = r2, ᾱj (r1, r2) = αj if r1 �= r2, ᾱj (r1, . . . , rk) = ᾱj (r1, . . . ,

rk−2, rk) + δsjk−1
({sj }) if rk = rk−1 and ᾱj (r1, . . . , rk) = ᾱj (r1, . . . , rk−2, rk) if

rk �= rk−1, for any k ≥ 3. At this stage, following Proposition 3 with F as in (7),
we have

C(x(n))
∂n

∂s
ni1
i1

· · · ∂s
nik

ik

∫ +∞
0

1

t
exp

{
−

N∑
p=1

γ∑
q=1

αj log
(
q + it (sp − σ)

)}
dt

= C(x(n))αj1

∑
{(r1,...,rn)∈{1,...,γ }n}

ᾱj1(r1, r2) · · · ᾱjn(r1, . . . , rn)

×
∫ +∞

0
tn−1 exp

(
−

γ∑
q=1

N∑
p=1

ᾱk(r1, . . . , rn, q)

× log
(
q + it (sp − σ)

) )
dt

=: ψ(σ),

where (j1, . . . , jn) is a vector whose components are in {i1, . . . , ik} and k ≤ n.
Resort again to Proposition 3 to obtain: If n = 2p, a posterior probability density
function of

∫
xϕ̃(dx) given x(n) is

ρx(n)(σ ) = (−1)p+1(γ !)α(R)

π
In−1
a+ Imψ(σ);(8)
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if n = 2p + 1, a posterior probability density function of
∫

xϕ̃(dx) given x(n) is

ρx(n)(σ ) = (−1)p+1(γ !)α(R)

π
In−1
a+ Reψ(σ).(9)

5.1.4. Posterior distribution in a general setting. Finally, we apply results in
Section 4 to achieve a representation for the posterior probability density func-
tion ρx(n) of

∫
xϕ̃(dx) given X(n) = x(n) when the support of α is arbitrary.

Referring to the same partition defined by properties 1–4 in Section 4, we take
ρ∗

m,x(n) to be the probability density function corresponding to F∗
m,x(n) , with x(n) =

(x1, . . . , xn) ∈ Am,i1 × · · · × Am,in . First, observe that (3) can be used to show
that µ(n) is absolutely continuous with respect to the product measure ᾱ(n) of the
n factor measures α, ᾱ( · ; r1, r2), . . . , ᾱ( · ; r1, . . . , rn), where, for any (r1, . . . , rn)

in {1, . . . , γ }n, we set ᾱ(B; r1, r2) := α(B) + δx1(B) if r1 = r2, ᾱ(B; r1, r2) :=
α(B) if r1 �= r2 and, for k ≥ 3, ᾱ(B; r1, . . . , rk−1, rk) = ᾱ(B; r1, . . . , rk−2, rk) +
δxk−1(B) if rk = rk−1 and ᾱ(B; r1, . . . , rk−1, rk) = ᾱ(B; r1, . . . , rk−2, rk) oth-
erwise, for any B ∈ B(R). Thus, from a well-known result, we have, as
m goes to +∞, convergence (almost everywhere with respect to ᾱ(n)) of
C(am,i1 , . . . , am,in)αm,i1 ᾱm,i2(r1, r2) · · · ᾱm,in(r1, . . . , rn) to the Radon–Nikodým
derivative, g(x(n); r1, . . . , rn), of µ(n) with respect to ᾱ(n) on B(Rn). See, for ex-
ample, Theorem 35.7 in Billingsley (1995). Moreover, the dominated convergence
theorem yields, for any bounded interval (a, b), limm→+∞

∫ b
a ρ∗

m,x(n)(σ ) dσ =∫ b
a ρx(n)(σ ) dσ , where ρx(n) is expressed as in (8) or (9) with

ψ(σ) = 1C(Ā)(σ )
∑

{(r1,...,rn)∈{1,...,γ }n}

1

g(x(n); r1, . . . , rn)

×
∫ +∞

0
tn−1 exp

(
−

γ∑
q=1

∫
R

log
(
q + it (s − σ)

)

× ᾱ(ds; r1, . . . , rn, q)

)
dt,

Ā being the d.f. corresponding to ᾱ and C(Ā) denoting the set of continuity points
of Ā. Therefore, in view of Proposition 4, ρx(n) is a probability density function
for Fx(n) . Moreover, by Scheffé’s theorem,

lim
m→+∞ sup

A∈B(R)

∣∣∣∣
∫
A

ρ∗
m,x(n)(σ ) dσ −

∫
A

ρx(n)(σ ) dσ

∣∣∣∣ = 0

[see, e.g., Theorem 16.12 in Billingsley (1995)].
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In particular, in the Dirichlet case (γ = 1) and for n = 1 (i.e., ᾱ = α + δx ), we
obtain

ρx(1) (σ ) = 1C(Ā)(σ )
a

π

∫ +∞
0

Re
(

exp
(
−

∫
R

log
(
1 + it (s − σ)

)
ᾱ(ds)

))
dt,

which is a useful alternative representation of the posterior probability density
function of the mean of the Dirichlet random probability measure, given X(1) = x.
See Proposition 5 in Regazzini, Guglielmi and Di Nunno (2002).

It is clear that to obtain the results we have just illustrated, existence of
an Rm satisfying (A.5) is crucial. One might wonder whether it is possible
to determine such an Rm concretely. An answer for the Dirichlet case can be
given, for example, by applying the Markov inequality to bound the conditional
probability appearing in (A.5) from above and, then, by resorting to the expression
of the predictive probability d.f. for censored observations given, for example, in
Regazzini (1978).

As far as the numerical evaluation of the posterior density of
∫

xϕ̃(dx) is
concerned, we can use (8) and (9), after discretizing α (if necessary). For il-
lustrative purposes, we consider an example already investigated, just for the
Dirichlet case, by Regazzini, Guglielmi and Di Nunno (2002), in which n = 2,
x(2) = (0.05,0.1) and α is the beta distribution, with parameters (1/9,1) and to-
tal mass equal to 1/2. Here we set N = 20, sj = j/N and αj = α((sj−1, sj ])
(j = 1, . . . ,N ). Plots of posterior densities and d.f.’s are sketched in Fig-
ures 3 and 4. Again, thicker lines correspond to the generalized Dirichlet process
with γ = 2. Notice that one can also consider more observations, although with a
greater computational effort.

FIG. 3. Posterior densities of
∫

xϕ̃(dx), where ϕ̃ coincides with a Dirichlet process (γ = 1) and
with a generalized Dirichlet process (γ = 2). The measure α is the beta distribution with parameters
1/9 and 1 and total mass 1/2.
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FIG. 4. Posterior distribution functions of
∫

xϕ̃(dx), where ϕ̃ coincides with a Dirichlet process
(γ = 1) and with a generalized Dirichlet process (γ = 2). The measure α coincides with the beta
distribution with parameters 1/9 and 1 and total mass 1/2.

5.2. A normalized γ -stable subordinator. Let

νt (dv) = ctv−γ−1 dv, γ ∈ (0,1), c > 0,

and notice that the family of measures {νt : t ≥ 0} meets conditions 1–3 in
Section 2. The IAP {ξt : t ≥ 0} associated with {νt : t ≥ 0} is the so-called γ -stable
subordinator. Its use is relevant in certain problems in applied probability as
pointed out, for example, in Kingman (1975). An analysis similar to the one we are
going to develop below was presented in Barlow, Pitman and Yor (1989), where
the authors discussed the generalization of the multivariate Dirichlet obtained by
replacing the gamma subordinator by a stable one. See also Pitman and Yor (1997).
The expression of the Laplace transform of ξA(x) is given by

E
[
exp

(−λξA(x)

)] = exp
(
−A(x)c

∫
(0,+∞)

(1 − e−λv)v−γ−1 dv

)

= exp
(
−A(x)c�(1 − γ )λγ

γ

)
.

5.2.1. Finiteness of ϕ̃(f ). Before approaching the problem of determining the
distribution of the mean ϕ̃(f ), we are going to verify the equivalent conditions for
existence given in Proposition 1. In this case we observe that the second of those
conditions is equivalent to requiring∫

R
|f (x)|γ α(dx) < +∞.
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5.2.2. Exact distribution of ϕ̃(f ). When dealing with an f satisfying the
above inequality, Proposition 2 leads to the following expression for the probability
d.f. of ϕ̃(f ):

1

2
[F(σ ) + F(σ − 0)]

= 1

2
− 1

π
lim

T ↑+∞

∫ T

0

1

t
exp

{
−ctγ

�(1 − γ )

γ
cos

πγ

2

∫
R

|f (x) − σ |γ α(dx)

}

× sin
(
ctγ

�(1 − γ )

γ
sin

πγ

2

×
∫

R
sgn

(
f (x) − σ

)|f (x) − σ |γ α(dx)

)
dt.

The integrand is absolutely integrable in (M,+∞) for any M > 0 and, therefore,
we have

1

2
[F(σ ) + F(σ − 0)]

(10)

= 1

2
− 1

πγ
arctan

(∫
R sgn(f (x) − σ)|f (x) − σ |γ α(dx)∫

R |f (x) − σ |γ α(dx)
tan

πγ

2

)
.

For technical details, refer to the Appendix.

5.2.3. Posterior distribution. Finally we face the problem of finding an ex-
pression for the posterior distribution of ϕ̃(f ) given x(1) by resorting to Proposi-
tion 3. Let y1 < y2 < · · · < yh be the h distinct values among f (s1), . . . , f (sN)

arranged in increasing order (h = 1, . . . ,N ). Thus, if σ ∈ (yi−1, yi) is a point at
which F is continuous, we get

F
(
σ ;f (s1), . . . , f (sN)

)

= 1

2
− 1

πγ
arctan

(−∑i−1
j=1(σ − yj )

γ αj + ∑h
j=i (yj − σ)γ αj∑i−1

j=1(σ − yj )γ αj + ∑h
j=i (yj − σ)γ αj

tan
πγ

2

)
,

where αj = ∑
{i : f (si)=yj } α(si), j = 1, . . . , h. Suppose xk is any point such that

f (xk) = yr . Application of Proposition 3 yields the following expression, up
to a constant, for the posterior density of a mean of the normalized γ -stable
subordinator given X1 = xk :

αr(σ − yr)
γ−1 ∑h

j=i(yj − σ)γ αj

(
∑h

j=1 |yj − σ |γ αj )2 + (
∑h

j=1 sgn(yj − σ)|yj − σ |γ αj )2 tan2(πγ/2)
(11)
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if yr ≤ yi−1 < σ and

αr(yr − σ)γ−1 ∑i−1
j=1(σ − yj )

γ αj

(
∑h

j=1 |yj − σ |γ αj )
2 + (

∑h
j=1 sgn(yj − σ)|yj − σ |γ αj )

2 tan2(πγ/2)
(12)

if yr ≥ yi > σ .
General results given in Section 4 can be used, by taking f (x) ≡ 1{sj }(x) in

(11) and (12), to provide an expression for the distribution of the random
probability ϕ̃(sj ), as well. If we observe X1 = xk , it is enough to consider two
cases: xk �= sj and xk = sj . Hence, for any σ ∈ (0,1), the posterior density
function is, up to a constant, equal to

σγ−1(1 − σ)γ α1α2

(σ γ α1 + (1 − σ)γ α2)
2 + ((1 − σ)γ α2 − σγ α1)

2 tan2(πγ/2)
(13)

in the first case and equal to

σγ (1 − σ)γ−1α1α2

(σ γ α1 + (1 − σ)γ α2)2 + ((1 − σ)γ α2 − σγ α1)2 tan2(πγ/2)
(14)

in the second case. It is worth noting an interesting, although not surprising, feature
of (13) and (14): If xk = sj , then, from (14), we observe that the posterior density
function of ϕ̃(sj ), given X1 = xk , tends to +∞ (0, respectively) as σ → 1 (σ → 0,
respectively). On the other hand, if xk �= sj , then, from (13), it is possible to
conclude that the posterior density function of ϕ̃(sj ), given X1 = xk , tends to +∞
(0, respectively) as σ → 0 (σ → 1, respectively).

APPENDIX

PROOF OF PROPOSITION 1. To prove this proposition, define

g|f |(λ) := E
[
exp(−λξ̃ |f |)], λ ≥ 0,

and

γ|f |(t) := E
[
exp(it ξ̃ |f |)], t ∈ R,

whenever (i) is valid. Moreover, let (fn)n≥1 be a sequence of measurable simple
functions such that 0 ≤ |f1| ≤ · · · ≤ |f |, fn → f pointwise and fn → f uniformly
on any set on which f is bounded. By virtue of fact 4 in Section 2 and (3), we
obtain the equalities

g|fn|(λ) = exp
[∫

R×(0,+∞)

[
exp

(−λv|fn(x)|) − 1
]
ν̃α(dx dv)

]
, λ ≥ 0,(A.1)

γ|fn|(t) = exp
[∫

R×(0,+∞)

[
exp

(
itv|fn(x)|) − 1

]
ν̃α(dx dv)

]
, t ∈ R.(A.2)
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Finally, if (iii) is in force, by the Fubini theorem,∫
R×(0,+∞)

[
1 − cos

(
yt|f (x)|)]ν̃α(dx dy)

(A.3)

=
∫
(0,+∞)

sinu

∫
Au/|t |

ν̃α(dx dy) du, t �= 0,

with Au/|t| = {(x, y) ∈ R × (0,+∞) :y|tf (x)| > u}. Note that the (general-
ized) monotone convergence theorem, together with (A.1), entails g|fn|(λ) →
exp[∫R×(0,+∞)(e

−λv|f (x)| − 1)ν̃α(dx dv)] as n → +∞, for any λ ≥ 0. More-

over, pointwise convergence of (fn)n≥1 to f implies that ξ̃ (fn)
d→ ξ̃ (f ) in R̄ as

n → +∞, so that g|fn|(λ) → g|f |(λ) and, under (i), γ|fn|(t) → γ|f |(t) pointwise.
Hence,

g|f |(λ) = exp
[∫

R×(0,+∞)
(e−λv|f (x)| − 1) ν̃α(dx dv)

]
, λ ≥ 0,

and, since P (ξ̃ |f | < +∞) = limλ↓0 g|f |(λ), we obtain the equivalence between
(i) and (ii).

Next, given t �= 0 and ε ∈ (0, π
2 ), combine the monotone convergence theorem

with the properties of (fn)n≥1 to prove that∫
Ac

ε/|t |

[
1 − cos

(
yt|fn(x)|)]ν̃α(dx dy) →

∫
Ac

ε/|t |

[
1 − cos

(
yt|f (x)|)]ν̃α(dx dy)

and ∫
Ac

ε/|t |
sin

(
yt|fn(x)|)ν̃α(dx dy) →

∫
Ac

ε/|t |
sin

(
yt|f (x)|)ν̃α(dx dy)

as n → ∞. Moreover, if (i) and (ii) hold, then we have

(1 − e−ε)

∫
Aε/|t |

ν̃α(dx dy) ≤
∫
Aε/|t |

[
1 − e−|tyf (x)|]ν̃α(dx dy) < +∞,(A.4)

which allows us to apply the dominated convergence theorem to obtain∫
Aε/|t |

[
1 − cos

(
yt|fn(x)|)]ν̃α(dx dy) →

∫
Aε/|t |

[
1 − cos

(
yt|f (x)|)]ν̃α(dx dy)

and ∫
Aε/|t |

sin
(
yt|fn(x)|)ν̃α(dx dy) →

∫
Aε/|t |

sin
(
yt|f (x)|)ν̃α(dx dy)
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as n → +∞. Thus, under (i) and (ii),

γ|f |(t) = exp
[∫

R×(0,+∞)

[
cos

(
tv|f (x)|) − 1 + i sin

(
tv|f (x)|)]ν̃α(dx dv)

]

and this is enough to assert that (i) entails (iii).
Finally, assume (iii). Then

∫
Au/|t | dν̃α < +∞ holds true for every u > 0.

Moreover, letting A
(n)
u/|t| = {(x, y) : y|tfn(x)| > u}, we get A

(n)
u/|t| ↑ Au/|t| and

|γ|fn|(t)| = exp
[
−

∫
(0,+∞)

sinu

∫
A

(n)
u/|t |

ν̃α(dx dy) du

]

→ exp
[
−

∫
(0,+∞)

sinu

∫
Au/|t |

ν̃α(dx dy) du

]

by the dominated convergence theorem. Analogously, under (iii) and with ε

in (0, π/2),∫
Ac

ε/|t |
sin

(
tv|fn(x)|)ν̃α(dx dv) →

∫
Ac

ε/|t |
sin

(
tv|f (x)|)ν̃α(dx dv)

(by monotone convergence),∫
Aε/|t |

sin
(
tv|fn(x)|)ν̃α(dx dv) →

∫
Aε/|t |

sin
(
tv|f (x)|)ν̃α(dx dv)

(by dominated convergence)

and both limits are finite. Thus, we can state that

γ|fn|(t) → exp
[∫

R×(0,+∞)

[
cos

(
tv|f (x)|) − 1 + i sin

(
tv|f (x)|)]ν̃α(dx dv)

]

as n → +∞ for every t ∈ R, where the limiting function is continuous at t = 0.
Then (i) holds true by the continuity theorem for characteristic functions. �

PROOF OF PROPOSITION 2. In view of (4) it is enough to prove that the
integrand is absolutely integrable on (0, ε) for any ε > 0. Fix a constant a > 0
and observe that the absolute integral on (0, ε) is bounded from above by∫ ε

0

1

t

∫
v|x−σ |≤a

∣∣∣∣sin(tv(x − σ))

tv(x − σ)

∣∣∣∣tv|x − σ |ν̃α(dx dv) dt

+
∫ ε

0

1

t

∫
v|x−σ |>a

∣∣sin
(
tv(x − σ)

)∣∣ν̃α(dx dv) dt

=: I1 + I2.
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Moreover,

I1 ≤ ε

∫
v|x−σ |≤a

v|x − σ |ν̃α(dx dv)

= ε

∫
{v|x−σ |≤a}∩{0<v≤1}

v|x − σ |ν̃α(dx dv)

+ ε

∫
{v|x−σ |≤a}∩{v>1}

v|x − σ |ν̃α(dx dv)

≤ ε

∫
0<v|x−σ |≤a∧|x−σ |

v|x − σ |ν̃α(dx dv)

+ ε

∫
{|x−σ |<a}∩{|x−σ |<v|x−σ |<a}

v |x − σ |ν̃α(dx dv)

= ε

∫
{|x−σ |≤a}∩{0<v≤1}

v|x − σ |ν̃α(dx dv)

+ ε

∫
{|x−σ |>a}∩{0<v|x−σ |≤a}

v|x − σ |ν̃α(dx dv)

+ ε

∫
{|x−σ |<a}∩{|x−σ |<v|x−σ |<a}

v|x − σ |ν̃α(dx dv).

Indicate by I11 and I12 the second and third integrals, respectively. First, we
immediately note that ε

∫
{|x−σ |≤a}∩{0<v≤1} v|x − σ |ν̃α(dx dv) ≤ a ×∫

{|x−σ |≤a}∩{v≤1} vν̃α(dx dv) < +∞. Next, (ii) of Proposition 1 guarantees that∫
{|x−σ |>a}∩{v|x−σ |≤a}[1 − e−λ|x−σ |v]ν̃α(dx dv) is finite and, for some δ > 0, in-

dependent of (x, v), we have∫
{|x−σ |>a}∩{v|x−σ |≤a}

[
1 − e−λ|x−σ |]ν̃α(dx dv)

≥
∫
{|x−σ |>a}∩{v|x−σ |≤a}

δλv|x − σ |ν̃α(dx dv)

= δλI11.

An analogous argument shows that I12 < +∞.
Next, rewrite I2 as

I2 =
∫
|x−σ |>a

(∫ ε

0
t−1∣∣sin(tv|x − σ |)∣∣dt

)
ν̃α(dx dv)

=
∫ +∞

0
| sin z|z−1

∫
v|x−σ |>(a∨z/ε)

ν̃α(dx dv) dz



580 E. REGAZZINI, A. LIJOI AND I. PRÜNSTER

=
∫ aε

0
| sin z| z−1

∫
v|x−σ |>a

ν̃α(dx dv) dz

+
∫ +∞
aε

| sin z| z−1
∫
v|x−σ |>z/ε

ν̃α(dx dv) dz.

This yields

I2 ≤ aε

∫
v|x−σ |>a

ν̃α(dx dv) + (aε)−1
∫ +∞

0
| sin z|

∫
v|x−σ |>z/ε

ν̃α(dx dv) dz,

the right-hand side of which is finite because of (ii) in Proposition 1,
(A.3) and (A.4). �

PROOF OF PROPOSITION 4. Without loss of generality, assume that f (x) ≡ x.
Denote the value of P ( · |ζ (n)

m ) on the set {X(n) = x(n)} by P ( · |ζ (n)
m )(x(n)). For

notational convenience, set φ̃ = ∫
xϕ̃(dx) and abbreviate P (φ̃ ≤ σ |ζ (n)

m )(x(n))

to Fm,x(n)(σ ). Since (i) in Proposition 1 holds true, then, for some µ(n)-null set
N1 ∈ B(Rn), P (

∫
R |x|ϕ̃(dx) < +∞|ζ (n)

m )(x(n)) = 1 for each x(n) ∈ N c
1 and it is

possible to choose (Rm)m≥1 in such a way that

P

(∫
[−Rm,Rm]c

|x|ϕ̃(dx) >
εm

4

∣∣∣∣ζ (n)
m

)
(x(n)) < εm, ∀x(n) ∈ N c

1 .(A.5)

We now show that Fm,x(n) may be used to approximate Fx(n) .

PROPOSITION A1. There exists a set N2 ∈ B(Rn) such that µ(n)(N2) = 0
and, for every x(n) ∈ N c

2 ,

lim
m→+∞ Fm,x(n)(σ ) = Fx(n)(σ )(A.6)

holds true for each σ ∈ C(Fx(n)).

Indeed, by virtue of a martingale convergence theorem [cf. Theorem 35.6 in
Billingsley (1995)], for every σ ∈ R there is a µ(n)-null set Nσ ∈ B(Rn) such that
Fm,x(n)(σ ) → Fx(n)(σ ) for any x(n) ∈ N c

σ . Let N2 = ⋃
σ∈Q Nσ . If x(n) ∈ N c

2 , then

lim
m→+∞ Fm,x(n)(σ ) = Fx(n)(σ ), ∀σ ∈ Q ∩ C(Fx(n)).(A.7)

Taking S := {(σ1, σ2] :σ1 < σ2, σ1, σ2 ∈ Q}, (A.7) entails P (φ̃ ∈ A|ζ (n)
m )(x(n)) →∫

A dFx(n)(σ ) as m → +∞ for all x(n) ∈ N c
2 and for every A ∈ S. Hence, (A.6)

follows by resorting to Theorem 2.3 in Billingsley (1999).
To complete our proof, we need an intermediate approximation result.
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PROPOSITION A2. For any x(n) ∈ N c
1 , we have

dL(Fm,x(n) ,F∗
m,x(n)) < εm, m = 1,2, . . . ,(A.8)

where dL is the Lévy metric for probability d. f.’s.

In fact, inequalities

|ϕ̃1,m − φ̃| ≤
km∑
i=1

∫
Am,i

|am,i − x|ϕ̃(dx) + 2
∫
[−Rm,Rm]c

|x|ϕ̃(dx)

≤ εm

2
+ 2

∫
[−Rm,Rm]c

|x|ϕ̃(dx)

combined with (A.5) give

P
(|ϕ̃1,m − φ̃| > εm

∣∣ζ (n)
m

)
(x(n)) ≤ P

(∫
Am,km+1

|x|ϕ̃(dx) > εm/4
∣∣∣ζ (n)

m

)
(x(n)) < εm

for every x(n) ∈ N c
1 . These inequalities, in turn, entail

Fm,x(n)(σ ) = P
(
φ̃ ≤ σ, |ϕ̃1,m − φ̃| ≤ εm

∣∣ζ (n)
m

)
(x(n))

+ P
(
φ̃ ≤ σ, |ϕ̃1,m − φ̃| > εm

∣∣ζ (n)
m

)
(x(n))

≤ F∗
m,x(n)(σ + εm) + εm,

and, analogously, F∗
m,x(n)(σ ) ≤ Fm,x(n)(σ + εm) + εm. The proof of (A.8) is now

complete, and Proposition 4 follows from combination of (A.6) and (A.8). �

DETAILS FOR THE DETERMINATION OF (5) AND (6). Straightforward
application of (4) yields

1

2
[F(σ ) + F(σ − 0)]

= 1

2
− 1

π
lim

T ↑+∞

∫ T

0

1

t
exp

{∫
R×(0,+∞)

[
cos

(
tv(x − σ)

) − 1
]

× (1 − e−γ v)

(1 − e−v)

e−v

v
α(dx) dv

}

× sin
(∫

R×(0,+∞)
sin

(
tv(x − σ)

)

× (1 − e−γ v)

(1 − e−v)

e−v

v
α(dx) dv

)
dt.
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To simplify the previous expression, consider

∫
R×(0,+∞)

[
cos

(
tv(x − σ)

) − 1
]
α(dx)

(1 − e−γ v)

(1 − e−v)

e−v

v
dv

=
∫

R
α(dx)

∫ +∞
0

{
1 − cos(tv(x − σ))

v(ev − 1)

− e−(γ+1)v(1 − cos(tv(x − σ)))

v(1 − e−v)

}
dv.

From 3.951.21 in Gradshteyn and Ryzhik (2000),

∫ +∞
0

1 − cos(tv(x − σ))

v(ev − 1)
dv = 2

∫ +∞
0

sin2(tv(x − σ)/2)

v(ev − 1)
dv

= 1

2
log

sinh(πt (x − σ))

πt (x − σ)
.

On the other hand,

∫ +∞
0

e−(γ+1)v(1 − cos(tv(x − σ)))

v(1 − e−v)
dv

= 1

2
log

�(1 + γ − it (x − σ))�(1 + γ + it (x − σ))

(�(1 + γ ))2

from 2.2.4.26 in Prudnikov, Brychkov and Marichev (1992). Moreover, observe
that ∫

R×(0,+∞)
sin

(
tv(x − σ)

)(1 − e−γ v)

(1 − e−v)

e−v

v
α(dx) dv

= 1

2i

∫
R

α(dx)

∫ +∞
0

(1 − e−2it (x−σ)v)(1 − e−γ v)e−(1−it (x−σ))v

v(1 − e−v)
dv

= 1

2i

∫
R

log
B(γ ; 1 − it (x − σ))

B(γ ; 1 + it (x − σ))
α(dx),

where the last equality follows from 3.413.1 in Gradshteyn and Ryzhik (2000). In
light of these considerations, we get (5).

Further suppose that γ ∈ N. Using well-known properties of the gamma
function and 8.332.3 in Gradshteyn and Ryzhik (2000),

log�
(
1 + γ − it (x − σ)

)
�

(
1 + γ + it (x − σ)

)
= log

πt(x − σ)

sinh(πt (x − σ))
+

γ∑
k=1

log
(
k2 + t2(x − σ)2)

.
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By virtue of 1.622.3 in Gradshteyn and Ryzhik (2000) we also have

1

2i
log

B(γ ; 1 − it (x − σ))

B(γ ; 1 + it (x − σ))
=

γ∑
k=1

arctan
t (x − σ)

k

and (6) clearly holds.

DETAILS FOR THE DETERMINATION OF (10). Application of Proposition 2
in this case leads to

1

2
[F(σ ) + F(σ − 0)]

= 1

2
− 1

π
lim

T ↑+∞

∫ T

0

1

t
exp

{
−c

∫
R×(0,+∞)

(
1 − cos

(
tv(x − σ)

))

× v−γ−1α(dx) dv

}

× sin
(
c

∫
R×(0,+∞)

sin
(
tv(x − σ)

)
v−γ−1α(dx) dv

)
dt.

To obtain an explicit form for the distribution, take the integral that appears in the
exponential and use Lemma 14.11 in Sato (1999) to prove that, for any t > 0,∫ +∞

0

(
1 − cos

(
tv(x − σ)

))
v−γ−1 dv

= 1

2

{
−|t|γ |x − σ |γ �(−γ )

(
exp

(
i
πγ

2
|x − σ | sgn(t)

)

+ exp
(
−i

πγ

2
|x − σ | sgn(t)

))}

= tγ |x − σ |γ �(1 − γ )

γ
cos

πγ

2
,

where �(−γ ) = −�(1 − γ )/γ . Moreover, using 3.761.4 in Gradshteyn and
Ryzhik (2000), we find that∫ +∞

0
sin

(
tv(x − σ)

)
v−γ−1 dv = sgn(x − σ) tγ |x − σ |γ �(1 − γ )

γ
sin

πγ

2
.

These computations lead to the expression for the distribution function F provided
in (10).
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