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We present a general approach to estimating probability measures con-
strained to lie in a convex set. We represent constrained measures as mix-
tures of simple, known extreme measures, and so the problem of estimating
a constrained measure becomes one of estimating an unconstrained mixing
measure. Convex constraints arise in many modeling situations, such as esti-
mation of the mean and estimation under stochastic ordering constraints. We
describe mixture representation techniques for these and other situations, and
discuss applications to maximum likelihood and Bayesian estimation.

1. Introduction. The problem of estimation under convex constraints arises
frequently in statistical inference: moment estimation, monotonicity restrictions,
quantile estimation and stochastic orderings are all situations which involve
constrained spaces of probability measures. These types of constrained inference
problems have been studied before in a variety of contexts. For example,
inference on the location of a distribution can be achieved by profiling over
convex sets of measures having a fixed location parameter: Owen (1988, 1990)
discusses constrained estimation as a method of constructing nonparametric
likelihood-based confidence intervals for the mean of a sampling distribution;
Doss (1985), Diaconis and Freedman (1986) and Brunner and Lo (1989) each
discuss nonparametric Bayesian methods of estimating the location of a sampling
distribution by taking a linear model approach, assuming each observation is
equal to a common location parameter plus some error term. These authors put
separate priors on the location parameter and the error distribution, the latter being
constructed to be median zero (Doss), to be symmetric about zero (Diaconis and
Freedman), or to be unimodal with mode zero (Brunner and Lo). Thus, each of
these approaches involves putting a prior on a convex set of probability measures.

As a slightly different example, many authors have considered estimation
of a collection of probability measures subject to a partial stochastic ordering
constraint. A set of collections of measures defined by each element of the
set satisfying the same partial ordering constraint is convex. Brunk, Franck,
Hanson and Hogg (1966) give a closed form expression for the MLEs of two
measures constrained to be stochastically ordered. For an arbitrary number of
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measures there is no closed form expression for the MLEs, however, Dardanoni
and Forcina (1998) give an iterative method of estimation when the ordering is
linear (each measure is either stochastically larger or smaller than every other
measure in the collection). For a partial (not necessarily linear) ordering, Dykstra
and Feltz (1989) give an iterative method based on Fenchel’s duality theorem.
Bayesian inference for the two sample stochastic ordering problem has been
discussed by Arjas and Gasbarra (1996), who construct a Markov chain which
samples from the space of two ordered hazard functions having support on a grid.

In this article we discuss a method of inference for such problems, applicable
whenever the constrained set of measures C is convex. The method is very general,
and is useful in many contexts, including both Bayesian inference and maximum
likelihood estimation. The method makes use of the special properties of convex
sets and a generalization of Choquet’s theorem: under mild conditions, each point
in a convex set of measures can be written as a mixture over the extreme points, or
vertices, of the convex set, that is,

P = T (Q) =
∫

exC
P ∗ dQ(P ∗).

The function T is called the barycenter mapping, and is a mapping from the space
of mixing measures to the constrained space C of interest. Inference over C can
be made via unconstrained inference over the set of mixing measures.

The remainder of this article is as follows: Section 2 discusses some of the the-
ory involved in mixture representations, such as continuity of the barycenter map,
measurability issues and identification of the extreme points. The special cases of
moment constraints, quantile constraints and partial stochastic orderings are devel-
oped in detail. The results of Section 2 are applied in Section 3 to provide a simple
means of maximizing a constrained likelihood, and examples are given in the case
of univariate moment constraints and partial stochastic orderings. In Section 4,
mixture representations are used as a method of constructing priors on constrained
spaces of probability measures. Specifically, priors for location, location-scale and
stochastic ordering problems are constructed. Posterior distributions for the mean
and median are calculated assuming a Dirichlet process prior on the mixing mea-
sure Q, and the results are compared to Doss’ (1985) posterior for the median. Ad-
vantages and disadvantages of the mixture representation approach are discussed
in Section 5. All proofs are given in the Appendix.

2. Mixture representations of probability measures. The set of extreme
points of a convex set C is the subset exC of C whose elements cannot be
written as a convex combination of any two other points in C. If C is a compact
subset of a vector space, then Choquet’s theorem says that each element of C

can be written as a mixture over the extreme points. Mixture representations for
convex sets of probability measures have been studied in a variety of contexts:
Dynkin (1978) examines the relationship between sufficient σ -algebras and
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unique mixture representations of probability measures, Diaconis and Freedman
(1980) give a representation for finitely exchangeable sequences, and de Finetti’s
theorem gives a representation for infinitely exchangeable sequences. Additionally,
representations for monotone measures and unimodal measures with a fixed mode
have been studied by several authors, including Dharmadhikari and Joag-Dev
(1988) and Bertin, Cuculescu and Theodorescu (1997).

More generally, von Weizsäcker and Winkler (1979, 1980) give conditions for
the existence of mixture representations for convex sets of probability measures,
and two corollaries in von Weizsäcker and Winkler (1979) will suffice for the needs
of this article. In what follows, we assume:

• X is a separable metric space and B the Borel sets;
• P is the set of probability measures on B;
• for A ⊂ P , σA is the smallest σ -algebra on A such that for every B ∈ B , the

function P → P (B) is measurable in P ∈ A.

COROLLARY 1 (Weakly closed sets). Let C be a convex, weakly closed subset
of P . Then for every P ∈ C there is a probability measure Q on σexC such that

P (B) =
∫

exC
P ∗(B)dQ(P ∗) ∀B ∈ B.

COROLLARY 2 (Moment sets). Let F be a countable set of measurable
functions. For each f ∈ F , let If be a closed, possibly degenerate real interval.
Let

C =
{
P ∈ P :F ⊂ L1(P ),

∫
f dP ∈ If ∀f ∈ F

}
.

Then for every P ∈ C, there is a probability measure Q on σexC such that

P (B) =
∫

exC
P ∗(B)dQ(P ∗) ∀B ∈ B.

For most sample spaces of interest, the above σ -algebras on subsets of P
can be related to the more familiar σ -algebras generated by the topology of
weak convergence w: if X is separable, then the σ -algebra generated by w is
equivalent to that generated by the functionals P → P (B), B ∈ B [Karr (1986)].
The restrictions of these σ -algebras to A ⊂ P are also equivalent, as σA = σ ∩ A

[Ash (1972)].
Given a set of probability measures A, we define Q = Q(A) as the set of

probability measures on σA. For a given Q, the probability measure T (Q) ≡ PQ

defined by PQ(B) = ∫
A P ∗(B) dQ(P ∗) is called the barycenter of Q, and the

function T :Q → P is called the barycenter map. For a convex set C ⊂ P , one
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strategy for estimating a measure P ∈ C is to assume P is the barycenter of
some unknown Q ∈ Q(exC). An unconstrained estimate Q̂ of Q is made, and
our estimate of P is taken as T (Q̂). With this in mind, we would like to ensure
that T (Q) ∈ C for each Q ∈ Q. If this inclusion does not hold, we would at least
hope T (Q) is “close” to C in some regard:

PROPOSITION 1. Let A ⊂ P , and Q be a measure on σA. Then T (Q) ∈ HA,
the weakly closed convex hull of A.

Therefore, if C is a convex set for which an integral representation holds and
Q is the set of measures on σexC , then C ⊂ T (Q) ⊂ C. Of course if C is closed,
we have T (Q) = C. This result provides a version of the Krein–Milman theorem
for mixtures of probability measures.

2.1. Closure. Closure of a convex set C has important implications. A closed
convex set of probability measures will have extreme points, which is not
necessarily the case for nonclosed convex sets. For example, consider the set
{P :P = pδx + (1 − p)δy,p ∈ (0,1)}. This is a convex set, but is not closed,
and does not have any extreme points. Closure of a set also implies an integral
representation for each element of the set (Corollary 1). However, nonclosure does
not preclude extreme points or an integral representation (Corollary 2).

Checking whether or not a convex set of probability measures is closed is
typically quite easy: if the sample space X is a separable metric space, then the
topological space P with the weak topology is metrizable as a separable metric
space [Parthasarathy (1967), Theorem 2.6.2]. Therefore, if P ∈ C, there exists a
sequence {Pn}∞1 ⊂ C converging to P . Thus, to check closure, we just need to
check that every convergent sequence in C converges to a point in C.

Moment constraints. Let Cθ ⊂ P be the set of mean-θ probability measures
on a compact sample space X, say, X ⊂ [−c, c]K for some c ∈ R and integer K .
To show Cθ is closed, let {Pn}∞1 ⊂ Cθ be a sequence weakly converging to
P ∈ P . Note that the K component functions fi(x) = xi, i = 1, . . . ,K , are
bounded continuous functions on X, and by the properties of weak convergence
we have |∫ xi dP (x) − ∫

xi dPn(x)| → 0 as n → ∞. Since this difference is equal
to |∫ xi dP (x) − θi | for all n, we have P ∈ Cθ and so Cθ is closed. Therefore,
by Proposition 1, T (Q) = Cθ , where Q is the space of mixing measures on the
extreme points of Cθ .

The closure of Cθ does not necessarily hold for arbitrary sample spaces. If
X is not compact, then in general we do not have closure. For example, let
X = R, θ = 0 and Pn = ∑n

1(δ2i + δ−2i )2−i/2(1 − 2−n). Then Pn converges
weakly to P = 1

2
∑∞

1 (δ2i + δ−2i )2−i , but the first moment of P does not exist,
so P /∈ Cθ . However, an integral representation for Cθ exists by Corollary 2, and
so by Proposition 1, we have Cθ ⊂ T (Q) ⊂ Cθ .
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Quantile constraints. When our sample space X is the real line, we say
a probability measure P satisfies a set of K quantile constraints, given by
θ ∈ R

K, α ∈ [0,1]K , if P (−∞, θi) ≤ αi ≤ P (−∞, θi] for i = 1, . . . ,K . We
denote Cθ,α as the set of all probability measures satisfying the constraints given
by θ and α. As a simple example, the space of median-zero probability measures
is Cθ,α with θ = 0 and α = 1/2.

It is easy to check that Cθ,α is convex. Closure is also easy to check: if {Pn}∞1
is a sequence of measures in Cθ,α converging to a measure P , then

αi ≤ lim sup
n→∞

Pn(−∞, θi ] ≤ P (−∞, θi],
αi ≥ lim inf

n→∞ Pn(−∞, θi) ≥ P (−∞, θi),

which shows P also satisfies the constraints. Therefore Cθ,α is weakly closed and
so by Corollary 1, we have T (Q) = Cθ,α , where Q is the space of mixing measures
over the extreme points of Cθ,α .

2.2. Finding the extreme points. In order to make use of the integral
representation theorems we need to identify the extreme points of a given convex
set of probability measures. A strategy for finding the extreme points in some
important cases is as follows:

DEFINITION 1. For a convex set of measures C, a set s ∈ B is an extreme
support of C if there is one and only one probability measure Ps ∈ C having a
support set equal to s.

PROPOSITION 2. Let S be the set of extreme supports of C. Then for each
s ∈ S :

(i) the measure Ps is extreme in C, and
(ii) there are no P ∈ C with support equal to a proper subset of s.

This suggests sets in S are “small” in the sense that no proper subset of a set
in S can support a measure in C. As an example, consider C = P , the set of all
measures on a space X. The “smallest” set that can be the support of a probability
measure is a singleton {x} ⊂ X, and every point-mass measure is extreme.

Moment constraints. First consider the simple case where the sample space X
is some subset of the real line and our convex set of interest is Cθ , the space of
mean-θ measures. We assume X includes at least one point greater than or equal
to θ and at least one point less than or equal to θ . Using the above ideas, we look
for a class of sets S so that each s ∈ S supports only one mean-θ measure. If a
support set s consists of only one point, then clearly that point must be θ . Thus
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δθ is an extreme point. If a support set contains only two points then clearly one of
them is above θ and one below. In fact, for s1 < θ < s2, there is one and only one
mean-θ measure on s = (s1, s2), given by

Ps = s2 − θ

s2 − s1
δs1 + θ − s1

s2 − s1
δs2 .

Every such two-point measure is therefore extreme in Cθ . Conversely, if P has
support on more than two such points, it can be represented as a mixture of two
other mean-θ distributions, and so is not extreme.

The situation is similar for X ⊂ R
K . In this case, given any set s = {s1, . . . , sk}

of k ≤ K + 1 points of X such that the vectors si − θ are affinely independent and
θ is in their convex hull, there is one and only one mean-θ measure with support
on s. As was proven by von Weizsäcker and Winkler, such measures constitute the
extreme points of Cθ :

THEOREM 1 [von Weizsäcker and Winkler (1980)]. A measure P ∈ Cθ , the
set of mean-θ measures, is extreme in Cθ if and only if its support lies in the set
S = {(s1, . . . , sk) : sj ∈ X for j = 1, . . . , k ≤ K +1; s1 − θ, . . . , sk − θ are affinely
independent}.

For dimensions K > 1, an extreme point P can be constructed by first selecting
s1, . . . , sk, k ≤ K , such that the vectors s1 −θ, . . . , sK −θ are linearly independent.
Then let sk+1 = θ + ∑k

1 γi(θ − si) for some γi > 0, that is, let sk+1 lie in
the strictly positive hull of the rays emanating from θ in directions away from
s1, . . . , sk. The unique extreme point P with support on s1, . . . , sk+1 is then given
by P (si) = γi/(1 + ∑

γj ), i = 1, . . . , k.
An interesting special case is the convex set C(0,1) of univariate mean-zero,

variance-one distributions. To apply the above theorem, we can write our one-
dimensional sample space as the curve {(x, x2), x ∈ X}, and our convex constraint
becomes (E(X),E(X2)) = (0,1). The extreme points of C(0,1) are thus:

• measures with support on two points, x and −1/x, and
• measures with support on three points x1, x2, x3, satisfying

x1 < −1/x2 < 0 < −1/x1 < x2

and

−1/x2 < x3 < −1/x1.

The measures in C(0,1) with such supports are given respectively by P (x) =
1

1+x2 = 1 − P (−1/x) and P (xi) = 1+xjxk

(xi−xj )(xi−xk)
for permutations i, j, k

of (1,2,3).
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Quantile constraints. Consider first the space of median-θ distributions. It is
clear that if a point mass measure is median-θ then it must be a point mass on θ , and
so δθ is extreme. Now suppose a measure P has support on two points, s1 and s2,
neither of which is θ . Such a measure is median-θ if and only if s1 and s2 are
on opposite sides of θ and P puts equal mass 1/2 on the two points. Therefore,
Ps = (δs1 + δs2)/2 is extreme for each s1 < θ < s2 by the above results. The
situation is similar for more general quantile constraints, as shown by the following
result:

PROPOSITION 3. Let θ ∈ R
K,α ∈ [0,1]K such that θ1 < · · · < θK and α1 <

· · · < αK . Then a measure P is extreme in Cθ,α if and only if it can be written as

Ps =
K+1∑
i=1

(αi − αi−1)δsi

for α0 = 0, αK+1 = 1 and s1 ≤ θ1 ≤ · · · ≤ θK ≤ sK+1.

With this notation it is possible that si = θi = si+1, which may seem redundant.
However, this notation allows us to identify each extreme point by a (K + 1)-
dimensional vector s = {s1, . . . , sK+1}. The result above makes sense in light of
our previous observations: extreme points of sets of probability measures tend to
have small supports, and the above measures have the smallest supports possible
while still putting a certain amount of mass in each of the K + 1 intervals, as
required by the constraint.

2.3. Reparametrizations. As seen in the above examples, the set of extreme
points exC can often be indexed by a subset S of a finite-dimensional Euclidean
space. In such cases, it may be desirable to reparametrize the set of mixing
measures on exC in terms of measures on S. What is required is simply that
the integral of Ps over s ∈ S is well defined, that is, the indexing function
s → Ps ∈ exC satisfies a measurability condition. This and some of the preceding
results are summarized in the following proposition:

PROPOSITION 4. Let C be a convex set of probability measures on (X,B)

for which there is an integral representation. Let S be a regular topological space
and P(·) be a measurable map from S onto exC. Let T (Q) = ∫

Ps(·) dQ(s) for
each Q ∈ Q, the set of probability measures on B(S). Then C ⊂ T (Q) ⊂ C.

Note that P(·) is a measurable function from S to exC if and only if P(·)(B) is
measurable for each B ∈ B(X). From this, one can easily show that for both of
our preceding examples, the indexing functions

P(·): Ps = s2 − θ

s2 − s1
δs1 + θ − s1

s2 − s1
δs2
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and

P(·): Ps =
K+1∑

1

(αi − αi−1)δsi

are Borel measurable for S = {(s1, s2) ∈ R2 : s1 ≤ θ < s2} and S = {s ∈
R

K+1 : s1 ≤ θ1 ≤ · · · ≤ θK ≤ sK+1}, respectively, and thus satisfy the conditions
of the proposition.

2.4. Continuity. Suppose a mixing measure Q is close to Q0. Does this
imply T (Q) will be close to T (Q0)? This is an important question in maximum
likelihood inference, as the method of estimation is often based on a sequence
of estimates {Q̂l}∞l=1 converging to the MLE Q̂. If T is continuous, then we can
be assured that Q̂n → Q̂ implies P̂n = T (Q̂n) → T (Q̂) = P̂ . The question of
continuity is also relevant in Bayesian inference: If a prior π for Q has support
on the entire space of mixing measures, then continuity of T guarantees that the
resulting induced prior for P ∈ C will have support on all of C. This can be seen
as follows: let A be a weakly open set in C. Then Pr(P ∈ A) = Pr(T (Q) ∈ A) =
π(T −1A) > 0, since T −1A is an open set by the continuity of T .

PROPOSITION 5. Let P(·) :S → exC be a mapping from a space S to the
extreme probability measures on C, a subset of probability measures on B(X).
If g(s) = ∫

X f (x) dPs(x) is a bounded, continuous function of s for every f ∈
Cb(X), then T is a weakly continuous mapping from Q, the space of measures
on B(S), to C .

Moment constraints. For any bounded, continuous function f on R, we have

gf (s) = s2 − θ

s2 − s1
f (s1) + θ − s1

s2 − s1
f (s2),

which is a bounded continuous function of s ∈ {(s1, s2) ∈ R
2 : s1 ≤ θ < s2}. Thus

T mapping S to the mean-θ probability measures is weakly continuous.

Quantile constraints. Similarly, in the case of quantile constraints we have
gf (s) = ∑K+1

1 (αi − αi−1)f (si) which is a bounded, continuous function of s.
Thus the barycenter mapping is weakly continuous.

2.5. Inversion of the barycenter map. Maximum likelihood estimation of a
measure P is often based on an iterative procedure which starts with a value P̂0

which we think is “close” to the MLE P̂ . Estimation of P via Q thus requires
finding a Q̂0 ∈ T −1P̂0. In a Bayesian analysis, prior information may suggest P is
near some measure P0. We would then want to make sure our prior for Q puts
mass near a Q0 ∈ T −1P0. Finding such a Q may be difficult in general, but closed
form expressions exist for some simple special cases.
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Univariate moment constraints. By the results of the previous sections, any
mean-θ measure P can be written as T (Q) = ∫

Ps dQ(s) for some measure Q

on B(S). A closed form expression for one such Q is given as follows: let P be a
mean-θ measure having density p with respect to a measure µ. Let:

• 2γ = ∫
R

|x − θ |p(x) dµ(x),
• q(s) = 1

γ
(s2 − s1)p(s1)p(s2),

• µ−+ = µ|(−∞,θ ] × µ|(θ,∞).

A simple integration shows that Q, given by Q(A) = ∫
A q(s) dµ−+, is a

probability measure such that T (Q) = P .

Quantile constraints. Let P ∈ Cθ,α be a measure such that P {θi} = 0, i =
1, . . . ,K , that is, P has no atoms on the constraint points. In this case,
P (θi−1, θi] = αi − αi−1, and any Q representing P must satisfy

P (B) = T (Q)(B) =
K+1∑
i=1

(αi − αi−1)Q(si ∈ B)

for each Borel set B . It suffices to solve this equation for sets B ⊂ (θi−1, θi], i =
1, . . . ,K + 1. For such a B , the condition becomes

P (B) = (αi − αi−1)Q(si ∈ B) �⇒ Qi(B) = P
(
B|(θi−1, θi]),

that is, the ith marginal of Q is the conditional probability of B given (θi−1, θi].
One possible representer Q of P is the product measure given by Q(B1 × · · · ×
BK+1) = ∏K+1

1 P (Bi |(θi−1, θi]). A slight modification of this construction will
be necessary if there are i’s for which P {θi} > 0, in which case the mass at θi may
have to be shared by si and si+1.

2.6. Convex collections of probability measures: Stochastic orderings. Many
of the above ideas are applicable when considering convex collections of measures.
We illustrate this with the particular example of partial stochastic orderings. Given
two measures P1,P2 on X ⊂ R, P2 is said to be stochastically larger than P1
if P1(x,∞) ≤ P2(x,∞) for all x, and we denote this relationship symbolically
as P1 
 P2. A collection of measures (P1, . . . ,PK) is said to satisfy the partial
ordering given by E ⊂ (1, . . . ,K)2 if Pi 
 Pj ∀ (i, j) ∈ E.

Let P be the set of Borel probability measures on X ⊂ R. For a set E ⊂
(1, . . . ,K)2, let CE = {(P1, . . . ,PK) ⊂ P :Pi 
 Pj ∀ (i, j) ∈ E}.

PROPOSITION 6. The set CE is a weakly closed convex set.

We now try to identify the extreme points of CE , using the ideas presented in
Section 2.2. First consider E = {(1,2)} so CE is the set of all pairs of measures
P = (P1,P2) such that P1 
 P2. What is the nature of the smallest possible support
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of a pair P if it is to lie in CE? If P is a pair of point-mass measures (δs1, δs2),
then the stochastic ordering holds if and only if s1 ≤ s2. It turns out that such pairs
of point-mass measures constitute the set exCE . For more general sets of ordered
measures, we have the following similar result, proven in Hoff (2000):

PROPOSITION 7. Let CE be the set of measures on R
K which satisfy a partial

stochastic ordering given by E. A collection of measures P is extreme in CE iff
P = (δs1, . . . , δsK ) for a vector s ∈ S = {(s1, . . . , sK) ∈ XK : si ≤ sj ∀ (i, j) ∈ E}.

As in the previous examples of convex sets, we see that the set of extreme points
of CE can be indexed by a finite-dimensional parameter. In this case, the indexing
set is the set S of support vectors of the extreme points. Therefore, we can write
a mixing measure over the extreme points as a measure over S. For a probability
measure Q on Borel sets of S, the barycenter of Q is defined as

T (Q) =
(∫

S
δs1 dQ(s), . . . ,

∫
S
δsK dQ(s)

)
= (Q1, . . . ,QK) ∈ CE,

and so the barycenter function T maps measures on S to their marginal
distributions, which lie in CE . Note that the barycenter mapping T is continuous
in the product topology of weak convergence.

Our previous theorems on integral representations for probability measures
do not directly apply to the class CE , as elements of CE are not probability
measures, but collections of probability measures. However, if we assume our
sample space X is compact (thus making CE a compact subset of the product
space of signed measures) we can use Choquet’s theorem to prove the existence
of integral representations. Without the compactness assumption, we can prove a
representation theorem directly: if Q is a measure on exCE , it is easy to show
that the barycenter of Q is a collection of measures satisfying the ordering E.
On the other hand, let (P1, . . . ,PK) ∈ CE and for each i = 1, . . . ,K , construct
the functions si(ω) = F−1

i (ω), where Fi(x) = Pi(−∞, x] and ω ∈ [0,1]. Letting
Q be the canonical measure on the vector (s1, . . . , sK) induced by a uniform
distribution on ω, it is seen that Q represents (P1, . . . ,PK). Thus we have the
following:

PROPOSITION 8. A collection of probability measures {P1, . . . ,PK} satisfies
the partial stochastic ordering constraint given by E if and only if there exists
a K-variate measure Q with ith marginal equal to Pi for i = 1, . . . ,K and
Q(si ≤ sj ) = 1 for all (i, j) ∈ E.

This result can be seen as a generalization of the well-known result for a pair of
stochastically ordered measures [Lehmann (1997)] and is similar to a result given
by Kamae, Krengel and O’Brien (1977) for a linear stochastic ordering.
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As described in previous sections, it may be useful to invert the barycenter
map in order to specify a particular starting value in an iterative likelihood-
maximizing procedure, or in order to induce a desired prior on CE . One such
barycenter inversion is given above, in which si(ω) = F−1

i (ω) for i = 1, . . . ,K .
Unfortunately this construction will not be of much use in applications, as the
support of such a Q lies on the one-dimensional curve s(ω). In the context
of maximum likelihood estimation, some common iterative methods have the
property that the final estimate has support only on the support of the initial
estimate. In a Bayesian analysis, the priors we construct for Q will typically
have the same support as the prior predictive distribution of samples from Q.
Therefore, what is often needed is a Q having mass on all of S with marginals
Qk = Pk, k = 1, . . . ,K . A simple algorithm for obtaining such a Q is given in
Kullback (1968). He presents an iterative method for finding a measure Q with
fixed marginals so that Q minimizes

∫
ln q(s)

q0(s)
dQ(s), where q0(s) is the density

of some measure Q0 with support on S. The algorithm proceeds by repeated
sequential replacement of the marginals of Q0 with the desired marginals, and
so the measure being iterated is absolutely continuous with respect to Q0 at each
step.

3. Maximum likelihood inference. Constrained likelihood-based inference
proceeds by examining the likelihood function

L(P |X) =
n∏

i=1

P (Xi)(3.1)

for various values of P ∈ C, where C is the set of measures satisfying the
constraint in question. The value P̂ which maximizes (3.1) subject to P̂ ∈ C is the
constrained MLE of P , and can be found via convex optimization. For example,
El Barmi and Dykstra (1994, 1998) provide algorithms based upon solving a dual
problem.

As discussed in Hoff (2000), if C is convex the results in Section 2 allow us to
rewrite (3.1) as

logL(Q|X) = ∑
X

n(x) log
∫

Ps(x) dQ(s),(3.2)

where Q is a measure over an index set S of the extreme points of C, X is the
empirical support and n(x) = ∑n

i=1 δx(Xi), the empirical count function. Every
P ∈ C, including the MLE P̂ , can be represented by such a Q, and so if Q̂

maximizes (3.2), then P̂ = ∫
Ps dQ̂ maximizes (3.1) subject to P̂ ∈ C. Finding

an unconstrained MLE of Q thus provides a method of finding the constrained
MLE of P . In some cases, such as estimation under stochastic ordering constraints,
finding the unconstrained MLE of a representing mixing measure may be easier
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than using a constrained optimization method. Note that although P̂ is unique (at
least on the observed data), Q̂ may not be. See Lindsay and Roeder (1993) for a
discussion on the uniqueness of Q̂.

A review of methods for finding Q̂ and P̂ can be found in Böhning (1995) and
Lindsay (1995). Asymptotic properties of the estimators are discussed by Pfanzagl
(1988), Leroux (1992) and van de Geer (1995), among others. However, these three
authors focus on models in which the mixture components are dominated by a
σ -finite measure, a condition which is not met, for example, by the extreme points
of moment constrained sets, or collections of stochastically ordered measures.

As shown by Peters and Coberly (1976) and Lindsay (1983, 1995), a mixing
measure Q maximizes (3.2) if and only if

DQ(s) ≡ ∑
X

n(x)

(
Ps(x)

PQ(x)
− 1

)
≤ 0 ∀ s ∈ S,(3.3)

where PQ denotes the barycenter of Q. The left-hand side of (3.3) is the directional
derivative of the log-likelihood at Q in the direction of the point mass measure
on s, and is called the gradient function for Q. The EM algorithm for finding
the MLE of Q is based on the gradient function, in that it proceeds by iteration
of Ql+1(s) = Ql(s)(1 + DQl

(s)/n). The gradient function can also be used to
measure the discrepancy between a given estimate and the MLE: if Q̌ is any
estimate of Q and Q̂ is the MLE, then

n ln
(

1 + �(Q̌)

n

)
− (n − nmin) ln

(
1 + �(Q̌)

n − nmin

)

≤ ln
L(Q̂|X)

L(Q̌|X)
≤ n ln

(
1 + �(Q̌)

n

)

where �(Q̌) = maxs∈S D
Q̌

(s) and nmin = minx∈X n(x) [Lindsay (1995), Theo-

rem 23]. This result gives bounds on the difference between the log-likelihood of
any mixing measure Q̌ and that of the MLE Q̂. This result is quite useful, as it
allows us to monitor the convergence of any iterative scheme for maximizing the
likelihood.

The best approach for finding Q̂ will largely depend on the nature of the set S.
If the number of possible support points of Q̂ is small, then the EM algorithm
provides a very simple method of likelihood maximization. When the support
of S is large, the EM scheme is inefficient, as it needs to keep track of mass
on all possible extreme points, even though the MLE will have support on n or
fewer extreme points [Lindsay (1995)]. In these cases, methods such as the vertex
direction method [Wu (1978)] or the intra-simplex direction method [Lesperance
and Kalbfleisch (1992)] may be more appropriate.
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Univariate moment constraints. Nonparametric likelihood-based confidence
intervals for a mean can be derived from the empirical likelihood ratio function
[Owen (1988, 2001)]

λ(θ |x) = supP :EP (X)=θ

∏n
1 P (Xi)

supP

∏n
1 P (Xi)

.

Calculation of the above profile likelihood requires maximizing the likelihood
subject to the constraint EP (X) = θ for a range of θ values.

For a univariate mean, Owen suggests using Lagrange multipliers and a zero-
finding algorithm to do the constrained maximization. This approach is quite
easy, but as an illustrative example we consider using the mixture representation
approach. A measure P maximizing the likelihood will have mass only on the
empirical support X, and so we can restrict our search for a P to the set Cθ =
{P :P (X) = 1, EP (X) = θ}, which is convex, compact and nonempty as long as
θ is in the convex hull of X. Without loss of generality, we assume θ = 0. The set
of extreme points can be enumerated as

exC =
{
P :P = P(Xi,Xj ) = Xj

Xj − Xi

δXi
+ Xi

Xi − Xj

δXj
, Xi ≤ 0 < Xj

}

and therefore can be parametrized by the finite set {s ∈ X2 : s = (Xi,Xj ), Xi ≤
0 < Xj }. As described above, the constrained MLE of P can be calculated by
finding an MLE of Q using the EM algorithm or some other gradient based
method. The gradient can be written

DQ(s) = n(s1)

PQ(s1)

s2

s2 − s1
+ n(s2)

PQ(s2)

s1

s1 − s2
− n.

In an EM-sequence, the update Ql+1(s) is given by Ql(s)(1 + DQl
(s)/n), so an

EM-sequence is found by iterating

Ql+1(s) = Ql(s)

(
P̌ (s1)

PQl
(s1)

s2

s2 − s1
+ P̌ (s2)

PQl
(s2)

s1

s1 − s2

)

where P̌ is the empirical distribution of X1, . . . ,Xn.

Stochastic ordering. Consider K groups of data on the real line, with
observations in the kth group X(k,1), . . . ,X(k,nk) modeled as i.i.d. according
to some unknown measure Pk . Given a partial ordering E on (1, . . . ,K), our
task is to maximize the log-likelihood

∑K
k=1

∑
x∈Xk

nk(x) logPk(x) subject to
the constraint Pi 
 Pj for (i, j) ∈ E. Each component Pk of the collection
(P1, . . . ,PK) maximizing the constrained likelihood can be assumed to have mass
on the empirical support of its sample, as well as potentially on Xmin and Xmax,
the largest and smallest observations from all groups, in order to ensure the
ordering can be achieved. Writing each augmented empirical support as Xk =
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{Xmin,Xmax} ∪ {X(k,1), . . . ,X(k,nk)}, we can restrict our search for an MLE to the
set CE = {(P1, . . . ,PK) :Pj(Xj ) = 1,Pi 
 Pj ∀ (i, j) ∈ E}. Dykstra and Feltz
(1989) discuss a method for finding the MLE by solving a convex dual problem.
Alternatively, we represent the collection of ordered measures as a mixture, and
maximize the unconstrained mixture likelihood.

As described in Section 2, the set CE is closed and convex, with extreme points
given by collections of point-mass measures whose supports can be indexed by
elements of the set S = {s ∈ X1 × · · · × XK : si ≤ sj ∀ (i, j) ∈ E}. A mixing
measure Q over the extreme points can be written as a measure over the set S.

Although this is a multi-sample problem, the aforementioned results are
applicable with respect to the appropriate gradient function. The directional
derivative of the log-likelihood at Q in the direction of δs is given by

DQ(s) =
K∑

k=1

∑
x∈Xk

nk(x)

(
Ps,k(x)

PQ,k(x)
− 1

)
=

(
K∑

k=1

nk(sk)

PQ,k(x)

)
− n,

where PQ,k is the kth marginal of PQ = T (Q). As in the previous example, an
EM-sequence is constructed by computing iterates of the function

Ql+1(s) = Ql(s)
(
1 + DQl

(s)/n
) = Ql(s)

K∑
k=1

nk

n

P̌k(sk)

PQl,k(sk)
,

where P̌k and nk are the empirical distribution and the number of observations
in the kth group, respectively. A slightly modified version of this EM algorithm
is used in Hoff (2000) to estimate four partially ordered distributions with the
additional complication of missing data.

4. Bayesian inference. A nonparametric prior is one which puts mass in all
open neighborhoods of the space of probability measures, relative to some sample
space and topology. One of the simplest of such priors is the Dirichlet process
prior [Ferguson (1973, 1974) and Blackwell and MacQueen (1973)] having weak
support on an entire space of probability measures. Putting priors on large but
proper subsets of a space is less straightforward. Doss (1985) discusses a technique
of putting a prior on the set of all median-zero measures, Diaconis and Freedman
(1986) construct a prior on the set of symmetric measures, and Brunner and Lo
(1989) present a method of putting a prior on the space of symmetric, unimodal
probability measures. We show these techniques are special cases of the mixture
representation method described above, and extend the method to Bayesian
estimation of the mean, given a nonparametric prior on the error distribution.
We also discuss the mixture representation approach for collections of measures
satisfying a partial stochastic ordering, and comment on methods of posterior
approximation using MCMC.
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4.1. The mixture model. A random variable X is modeled as having a
sampling distribution P , which is assumed to lie in a convex set C. Under
conditions given in Section 2, such a measure can be expressed as

P (A) =
∫
S
Ps(A)dQ(s)

where Q is a mixing measure over a set S which indexes the extreme points of C.
Prior uncertainty about an appropriate P can be quantified by a prior probability
measure π on Q, the space of measures on S. This gives rise to the following
model for observations X1, . . . ,Xn distributed according to an unknown P ∈ C:

Q ∼ π,

S1, . . . , Sn | Q ∼ i.i.d. Q,

Xi | Si ∼ PSi
independently over i.

Note that the latent data S = {S1, . . . , Sn} are unobserved.
A convenient choice for π is the Dirichlet process prior, for which there exist

closed form expressions of various quantities of interest; see Lo (1984) for some
results on general kernel density estimation via Dirichlet mixtures. Many posterior
quantities of interest can be derived via calculation of the marginal density of
the latent variables S1, . . . , Sn, unconditional on Q. This marginal density can be
derived by using Blackwell and MacQueen’s (1973) result concerning samples
from a Dirichlet-distributed probability measure: an i.i.d. sample S1, . . . , Sn from
Q ∼ D(αQ0) can be generated by first sampling S1 ∼ Q0. Then, with probability
α/(α + 1), S2 is sampled from Q0, and with probability 1/(α + 1), S2 is set equal
to S1. Proceeding sequentially, Si+1 is sampled from Q0 with probability α/(α+ i)

and is sampled from the empirical distribution of S1, . . . , Si with probability
i/(α + i).

Antoniak (1974) uses Blackwell and MacQueen’s result to show that the density
of a sample from a Dirichlet process with parameter αQ0, Q0 having a continuous
density q0, is given by

p(s1, . . . , sn) = αm 
(α)


(α + n)

m∏
1

q0(s(j))
(nj )(4.1)

where m is the number of unique values of s1, . . . , sn and nj is the number of
observations equal to the j th unique value s(j). From this it is easy to see that,
conditional on m, the unique values of the latent variables are i.i.d. according
to Q0, as was shown by Korwar and Hollander (1973). The situation for a
discrete Q0 is similar. In this case, the density of the Si’s is given by

p(s1, . . . , sn) = 
(α)


(α + n)

m∏
j=1


(αq0(s(j)) + nj )


(αq0(s(j)))
.
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As shown by Petrone and Raftery (1997), the density (4.1) is absolutely
continuous with respect to a sum of measures, having supports on various
hyperplanes of Sn. To see this, consider again the construction of the sample
S1, . . . , Sn: define a function g on (1, . . . , n) by setting g(1) = 1 and set g(2) = 2
if S2 is sampled from Q0 and g(2) = 1 if S2 = S1. For j ≤ n, let g(j) =
1 + maxi<j g(i) if the value of Sj is sampled from Q0 and set g(j) equal
to the unique value of {g(k) :Sj = Sg(k)} otherwise. The function g is thus a
mapping from the indices of the observations to the indices of the unique values,
where the number of unique values is given by m = maxg(i). We denote by Gm

the set of all possible mappings g : (1, . . . , n) → (1, . . . ,m) such that g(1) = 1,
max{g(1), . . . , g(n)} = m and g(j) ≤ 1 + maxi<j g(i). Thus Gm corresponds to
the set of partitions of (1, . . . , n) into m groups.

For B ∈ B(S)n, let

λ(B) =
n∑

m=1

∑
g∈Gm

µm,g(B),(4.2)

where µm,g is m-dimensional Lebesque measure on the hyperplane {(s1, . . . , sn) :
g(i) = g(j) ⇒ si = sj }. With this notation, the density p(s1, . . . , sn) given in (4.1)
is absolutely continuous with respect to λ, and so

Pr(S1 ∈ B1, . . . , Sn ∈ Bn)

= 
(α)


(α + n)

n∑
m=1

αm
∑
Gm

m∏
j=1


(nj )Q0

( ⋂
i:g(i)=j

Bi

)
.

(4.3)

Returning to the mixture model, the predictive distribution of the observed data
X1, . . . ,Xn is then

Pr(X1 ∈ A1, . . . ,Xn ∈ An)

= 
(α)


(α + n)

n∑
m=1

αm
∑
Gm

m∏
j=1

{

(nj )

∫
S

( ∏
i : g(i)=j

Ps(Ai)

)
q0(s) ds

}
.

(4.4)

Equation (4.4) is used in what follows to calculate posterior distributions. For
large n, however, (4.4) and expressions derived from it may be difficult to work
with, as the size of the set Gm grows quite quickly with n. In such cases, posterior
quantities may be calculated using MCMC methods, as discussed at the end of this
section.

4.2. Location and location-scale families. In a location problem we have
observations of the form

Xi = θ + εi, i = 1, . . . , n,

where θ is the unknown location parameter and ε1, . . . , εn are i.i.d. according to
some unknown error distribution P . A Bayesian procedure puts a prior on both
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θ and P , the prior on P having support on some set of measures with a fixed
location, that is, mean, median or mode equal to zero. A nonparametric prior for P

is a prior with support on an entire space of fixed-location measures.

Median. Let C be the space of median-zero measures. Doss (1985) suggests
if the error distribution P ∈ C is known to be close to a measure P0 ∈ C, then we
can model P as follows:

• sample P− ∼ D[α{1
2P0(· ∩ {0}) + P0(· ∩ (−∞,0))}];

• sample P+ ∼ D[α{1
2P0(· ∩ {0}) + P0(· ∩ (0,∞))}];

• let P = 1
2 (P− + P+).

Note the resulting measure P is median zero.
In general, a method of sampling a median-zero measure is obtained by noting

that C is weakly closed and that the set of extreme points of C is

exC = {
Ps ∈ C :Ps = (δs1 + δs2)/2, s1 ≤ 0 ≤ s2

}
.

By the results of Section 2, any median-zero measure P can be written as P =∫
S Ps dQ(s) for some measure Q on S = {s ∈ R

2 : s1 ≤ 0 ≤ s2}. A measure P ∈ C

can be generated by:

• sampling Q ∼ π , where π is a prior on Q, the set of distributions on S;
• setting P = T (Q) = ∫

(δs1 + δs2)/2 dQ(s).

The barycenter map T , mapping Q to C, is weakly continuous. Thus if the prior π

has weak support on Q, then the induced prior for P has weak support in C.
Doss’ procedure is an example of this general method: Doss’ prior for P ∈ C

is equivalent to sampling P− and P+ from the Dirichlet distributions above,
and setting Q(S ∈ A × B) = P−(S1 ∈ A)P+(S2 ∈ B). Diaconis and Freedman’s
(1986) model is simpler still: their procedure is equivalent to sampling P ∼
D(αP0) where P0 has mass on R, and letting Q(S ∈ A × B) = 1

2 (P (−A ∩ B) +
P (A ∩ −B)), that is, S1 = −S2 a.s. Q. This further restricts their error distribu-
tion P to be symmetric.

Mean. The set of extreme points of the mean-zero distributions C is given by

exC =
{
Ps = s2

s2 − s1
δs1 + s1

s1 − s2
δs2, s1 ≤ 0 < s2

}
.

As above, a prior on C can be constructed by putting a prior π on Q, the
space of measures on S. A P is sampled by first sampling Q ∼ π and letting
P = T (Q) = ∫

Ps dQ(s). Recall that C is not a closed convex set unless the
sample space is compact and so T (Q) may not have a mean for some Q. However,
such a T (Q) will be the weak limit of a sequence of mean-zero measures.
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Posterior quantities for the median and mean. The extreme points in the
above examples are indexed by the same set S, and as a result, calculations of
posterior quantities are quite similar. Suppose we wish to estimate the location θ ,
assuming a Dirichlet process prior for Q and an absolutely continuous prior π

for θ . Letting x = x1, . . . , xn be the observed values of X1, . . . ,Xn, the posterior
of θ is proportional to π(θ)p(x|θ), where the latter term can be derived from (4.4).
This density in general is quite complicated due to the possibility of ties among the
latent data, but can be greatly simplified if there are no ties in the observed data.
We compute this simplified density in a manner similar to that in Doss (1985): for
η > 0 we consider the conditional probability

Pr
(
θ ∈ A|Xi ∈ Nη(xi), i = 1, . . . , n

)
=

∫
A π(θ)Pr(εi ∈ Nη(xi − θ), i = 1, . . . , n) dθ∫
R

π(θ)Pr(εi ∈ Nη(xi − θ), i = 1, . . . , n) dθ
,

where Nη(x) = (x − η/2, x + η/2). Since the limit

p(x|θ) = lim
η→0

1

ηn
Pr

(
εi ∈ Nη(xi − θ), i = 1, . . . , n

)
exists for θ a.e. and can be passed through the integral above, then by a theorem
of Pfanzagl (1979),

Pr(θ ∈ A|X1 = x1, . . . ,Xn = xn) =
∫
A π(θ)p(x|θ) dθ∫
R

π(θ)p(x|θ) dθ

is a conditional probability distribution of θ given X1 = x1, . . . ,Xn = xn,
absolutely continuous with respect to Lebesque measure with density given by
π(θ |x) ∝ π(θ)p(x|θ).

PROPOSITION 9. Using the above notation, if Q0 is absolutely continuous
with respect to Lebesque measure, with bounded density q0 and marginal densities
q01, q02, then

p(x| θ) ∝
n∑

m=n−∨n+
αm

∑
A∈A(n−m)

( ∏
ij∈A

q0(εi, εj )P(εi,εj )(εi)P(εi ,εj )(εj )

)

×
( ∏

i /∈A,εi≤0

q01(εi)EQ0

(
Ps(εi)|s1 = εi

))

×
( ∏

i /∈A,εi>0

q02(εi)EQ0

(
Ps(εi)|s2 = εi

))
,

where εi = xi − θ are the residuals, n−, n+ are the numbers of negative and
positive residuals respectively, and A(k) is the set of all possible pairings of
k indices of negative residuals with k indices of positive residuals.



192 P. D. HOFF

The sum over the set Gm in (4.4) reduces to a sum over the set A as follows:
We assume there are no ties among the observed data, but this does not preclude
ties in the latent data. However, a tie between two latent variables Si and Sj is
only possible if εi and εj are of opposite sign, otherwise we would have a tie in
the observed data. By this reasoning, there must be at least n− ∨ n+ unique values
of the latent variables. For a given number of unique values m, the set A(n − m)

represents all possible pairings of the latent variables, assuming n − m pairs. The
above formula simplifies greatly if Q0 has a certain structure:

COROLLARY 3. Suppose {Ps : s ∈ S} are the extreme points of the set of
mean-zero distributions. If the base measure Q0 has a density q0(s1, s2) =
γ −1(s2 − s1)p0(s1)p0(s2), where p0 is the density of a mean-zero measure P0
and 2γ = ∫

R
|ε|dP0(ε), then P0 = T (Q0) and

p(θ |x) ∝ π(θ)

(
n∏
1

p0(xi − θ)

)

×
n∑

n−∨n+
(αγ )m

∑
A(n−m)

∏
ij∈A

(θ − xi)(xj − θ)

xj − xi

.

(4.5)

COROLLARY 4. Suppose {Ps : s ∈ S} are the extreme points of the set of
median-zero distributions. If the base measure Q0 has a density q0(s1, s2) =
p0(s1)p0(s2), where p0 is the density of a median-zero measure P0, then
P0 = T (Q0) and

p(θ |x)∝π(θ)

(
n∏
1

p0(xi − θ)

)
n∑

n−∨n+
αm n−!n+!

(m − n−)!(m − n+)!(n − m)! .(4.6)

Note in both cases, the first two terms form the joint density of θ and X1, . . . ,Xn

under a parametric model using P0 as the error distribution. The remaining term
reflects the effect of the Dirichlet prior. For each model, as α gets large the
m = n term in the sum dominates the posterior, and so the nonparametric posterior
concentrates around the parametric posterior based on P0. This is more or less
what we would expect: for large α, Q should be close to Q0, and so P should be
close to P0. On the other hand, when α is much less than 1, then the m = n− ∨ n+
term tends to dominate the posterior. In fact, for fixed n and small enough α the
posterior will be largest at θ -values for which n− ∨ n+ is a minimum, that is, θ is
a sample median. This is due to the large probability of ties in the latent data for
small α.

The posterior (4.6) is very similar to Doss’ (1985) posterior for the median:
both Doss’ posterior and the above posterior can be written as π(θ){∏n

i=1 p0 ×
(xi − θ)}f (x, θ), where in Doss’ case f (x, θ) = {
(α/2 + n−)
(α/2 + n+)}−1.



NONPARAMETRIC ESTIMATION VIA MIXTURES 193

The f corresponding to (4.6) concentrates a bit more about the empirical median
than Doss’ f , especially for small α, although this seems to be partially an artifact
of the probability of ties among the latent data.

Mode. Mixture representations for unimodal measures have been studied by
Dharmadhikari and Joag-Dev (1988) and Bertin, Cuculescu and Theodorescu
(1997). The set C of unimodal, mode-zero distributions is weakly closed and
convex, and the set of extreme points of C is given by exC = {Ps :Ps =
(s2 − s1)

−1δ(s1,s2), s1 ≤ 0 ≤ s2}, the set of uniform densities which include the
origin. As above, a mode-zero measure can be sampled by first sampling Q ∼ π

and setting P = T (Q) = ∫
Ps dQ(s). Brunner and Lo (1989) restrict themselves

to the class of symmetric unimodal densities by generating P+ ∼ D(αP0), where
P0 is a measure on R

+, and then letting Q(S ∈ A × B) = P+(−A ∩ B). Modeling
unimodal measures which are not necessarily symmetric can be achieved by letting
π have support on mixing measures having mass on all extreme distributions of C.
For example, if Q ∼ D(αQ0) where Q0 is a measure with support on all of
{s ∈ R2 : s1 ≤ 0 ≤ s2}, then since the mapping T :Q → C is weakly continuous,
the induced prior on P will have weak support in C.

Location-scale families via quantile constraints. As in the location problem,
suppose we are modeling a set of random variables where our prior information is
in terms of the center θ and scale σ of the set of observations. Our model is:

• θ ∼ π(θ), σ ∼ π(σ ), P ∼ π(P ),
• ε1, . . . , εn | P ∼ i.i.d. P ,
• Xi = θ + σεi ,

where P is constrained to be an error distribution with a fixed center and scale.
One possibility is to constrain P to lie in the convex set C of measures having a
median of zero and an interquartile range of two. As discussed in Section 2, the
extreme points of this set are measures with equal mass on four support points, one
in each quartile:

exC = {
Ps = (δs1 + δs2 + δs3 + δs4)/4 : s1 ≤ −1 ≤ s2 ≤ 0 ≤ s3 ≤ 1 ≤ s4

}
.

Our full model is:

• θ ∼ π(θ), σ ∼ π(σ ), Q ∼ π(Q),
• S1, . . . , Sn | Q ∼ i.i.d. Q,
• εi | Si ∼ 1

4
∑4

j=1 δSi,j
,

• Xi = θ + σεi .

Newton, Czado and Chappell (1996) propose a similar model: from a given
prior, they select three points at random to represent the quantiles of the error
distribution. These three points induce a partition of the real line into four regions.
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The error distribution P is then modeled as the average of four independent
Dirichlet processes, each one with a base measure proportional to a given
measure P0 restricted to one of the four partitions. In our formulation this is
equivalent to the following prior on Q:

• Qi ∼ D(αP0(·|Ai)), i = 1,2,3,4,

• Q = Q1 × Q2 × Q3 × Q4,

where Ai is one of the four sets of the partition. Newton, Czado and Chappell then
use the resulting measure P as an inverse-link function for binary regression.

The posterior distribution for θ and σ can be obtained in a manner similar to
that in estimating the median alone, although the possibility of ties among four
groups of latent variables makes the posterior more complex.

4.3. Stochastic orderings. For K groups of data, we assume observations in
the kth group are i.i.d. according to some unknown probability measure Pk . We
wish to impose a stochastic ordering constraint given by the set E ⊂ (1, . . . ,K)2

so that Pi 
 Pj ∀ (i, j) ∈ E. As discussed in Section 2 the extreme points of this set
CE are collections of point-mass measures on vectors satisfying the ordering E:

exCE = {
(δs1, . . . , δsK ) : si ≤ sj ∀ (i, j) ∈ E

}
.

The extreme points can be indexed by the set S = {s ∈ R
K : si ≤ sj ∀ (i, j) ∈ E},

and any collection in CE can be expressed as a mixture over these extreme points.
As in previous examples, a prior on CE can be induced by a prior π on the space Q
of mixing measures over the set S.

Given a prior π on Q, a set of observations X1, . . . ,Xn can be sampled as
follows:

• Q ∼ π(Q),
• S1, . . . , Sn | Q ∼ i.i.d. Q,
• Xi ∼ PSi,yi

⇒ Xi = Si,yi
,

where yi is the group membership of the ith observation and Ps,j denotes the j th
component measure of the collection Ps (thus PSi,yi

is the point-mass measure
on Si,yi

).
Observing Xi = xi is equivalent to observing Si ∈ Bi , where Bi = S ∩

{syi
= xi}. From (4.3), the posterior probability that a new value of S ∼ Q lies

in a set B is seen to be

α

α + n
Q0(B) + 1

α + n

n∑
i=1

Pr(Si ∈ B|Sj ∈ Bj , j = 1, . . . , n).

The sum in the above is equivalent to the expected number of latent observations
in the set B , conditional on the observed data. Although this simplifies somewhat
in some cases (e.g., if there are no within-group ties in the observed data), the
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expectation is still quite complicated due to the possibility of ties in the latent
data (as in the examples involving the mean and median) and the additional
complication that the possibility of ties among the latent data is dependent on the
assumed stochastic ordering.

4.4. Posterior approximation methods. Due to the complicated nature of
many of the posteriors presented above, practical use of the aforementioned
mixture models may require MCMC methods for posterior approximation. When
the number of extreme points is finite and the dimension of S is small, posterior
approximation is made relatively easy by use of the Gibbs sampler for the unknown
quantities S and Q. Given current values (Sb,Qb), one scan of the Markov chain
consists of:

• sampling Sb+1
i ∼ p(s|Qb,Xi), independently for i = 1, . . . , n,

• sampling Qb+1 ∼ D(αQ0 + nQ̂Sb+1),

where Q̂Sb+1 is the empirical distribution of (S1, . . . , Sn)
b+1. This sampling

scheme is straightforward to implement, as the conditional distribution of Si

given Q and the observed data is simply Pr(Si = s|Q,Xi = xi) = Q(s)Ps(xi)/

{∑s′ Q(s′)Ps′(xi)}. Sampling Q given S1, . . . , Sn is also straightforward. It is well
known [Ferguson (1973)] that a sample Q from a Dirichlet distribution D(αQ0)

can be obtained by independently sampling zi ∼ Gamma(αQ0(si),1), i =
1, . . . ,K , and setting Q(si) = zi/

∑
zj , where s1, . . . , sK are the points of the finite

space indexing the extreme points.
Covariate information or hyperparameters can be incorporated into the esti-

mation procedure by adding appropriate Metropolis–Hastings steps to the above
scheme. Such a sampling scheme was implemented in Hoff et al. (2001) in the
context of estimating stochastically ordered measures in the presence of missing
data and other model parameters.

MCMC methods are more difficult when the number of extreme points is not
finite or the dimension of S is large. In such cases, incorporating a sequence
of Q’s into the Markov chain is impractical, and posterior inference must be made
via the posterior distribution of S1, . . . , Sn. West, Müller and Escobar (1994) and
MacEachern and Müller (1998) discuss Gibbs sampling of S1, . . . , Sn, although
such Gibbs methods are typically either inefficient or unworkable for the models
presented here: the main difficulty is that in many cases the extreme points Ps

do not have common support, resulting in poor mixing. Alternatively, a feasible
approach is to construct a Markov chain using Metropolis–Hastings updates which
alternately resamples the tie-structure information g and the unique values of the
latent variables S1, . . . , Sn. This is tractable, as g has a fairly simple structure and
the unique values of the Si ’s are i.i.d. Q0, given g. Such an approach is discussed
in Neal (2000), and efficient application of this approach to stochastic ordering
problems is a topic of current research of the author.
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5. Discussion. Mixture representations allow one to turn a possibly difficult
constrained problem into an unconstrained mixture problem, at a cost of intro-
ducing a high-dimensional and difficult to interpret mixing distribution. In terms
of maximum likelihood estimation, one can expect that mixture model estimation
methods (such as EM) will be less efficient than other methods for direct opti-
mization of the constrained likelihood, at least in terms of raw computation time.
On the other hand, estimation of a representing mixture may be much easier to
implement.

Additionally, one should keep in mind that a representing Q is typically not
unique, and one should be cautious about inference on Q beyond the measure P

it represents. This point is underscored by the fact that the maximum likelihood
estimate P̂ is unique, whereas Q̂ is generally not. Similarly, in a Bayesian analysis
one should take care that one’s prior distribution for Q induces a desired prior
distribution on P . What may seem like a “noninformative” prior for Q may not be
noninformative for P . For example, in the two sample stochastic ordering problem
on a finite sample space, a prior for Q which is uniform on the simplex induces a
prior on P with highly separated component measures.

APPENDIX: PROOFS

PROOF OF PROPOSITION 1. Since X is a separable metric space, so is (P ,w)

[Parthasarathy (1967), Theorem 2.6.2] and thus also (A,w ∩ A) for A ⊂ P . The
set Q of probability measures on (A,σA) is a separable metric space, and by
Parthasarathy (1967), Theorem 2.6.3, the set of measures with finite support is
weakly dense in Q. Therefore, for each Q ∈ Q there is a sequence Qn → Q

such that Qn has support on no more than n points. Now the weak topology w

on P is the weakest topology such that
∫

f dP is continuous for each f ∈ Cb(X).
Therefore

∫
f dP is bounded and continuous in P ∈ A in the inherited topology

w ∩ A. Since Qn → Q and f is bounded, we have∫
f dPQn =

∫ (∫
f dP

)
dQn �⇒

∫ (∫
f dP

)
dQ =

∫
f dPQ,

and so PQn → PQ in the weak topology on P . Now PQn = ∑n
1 PiQn(Pi) ∈ HA,

and so PQ is the weak limit of a sequence of elements of HA. �

PROOF OF PROPOSITION 2. Let s ∈ S and suppose Ps = α0P1 + (1 − α0)P2
where P1 and P2 are in C and α0 ∈ (0,1). This implies αP1 + (1 − α)P2 is in C

and has support on s for all α ∈ (0,1). By the uniqueness of Ps , we must have
P1 = P2, and so Ps is extreme. Now suppose s ∈ S and let s0 be a proper subset
of s. Then there can be no probability measure Ps0 ∈ C with support on s0, since
if there was then αPs + (1 − α)Ps0 would have support on s and be in C for all
α ∈ (0,1]. �
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PROOF OF PROPOSITION 3. Suppose P has the given form, and so the
corresponding CDF has the form F(x) ∈ {αi,αi+1} ∀x ∈ [θi, θi+1). Now suppose
F(x) = αF1(x) + (1 − α)F2(x) for some α ∈ (0,1) and F1,F2 ∈ C. The quantile
constraint implies

αi ≤ F1(x),F (x),F2(x) ≤ αi+1 ∀x ∈ [θi, θi+1).

Letting x be any point in [θi, θi+1), if F(x) = αi then so must F1(x) and F2(x).
The same holds for the possibility F(x) = αi+1, and thus F1 = F2 = F , proving
extremity of the measure P . On the other hand, suppose P is in C and let F be
the corresponding CDF. Suppose there is an x0 ∈ [θi, θi+1) such that αi < F(x0) <

αi+1. We can construct two CDFs F+,F− ∈ C such that F+ �= F− as follows:
F+(x) = F(x) + min{F(x) − αi,αi+1 − F(x)}/2,

F−(x) = F(x) − min{F(x) − αi,αi+1 − F(x)}/2

for x ∈ [θi, θi+1), and F+(x) = F−(x) = F(x) otherwise. Since F = (F− +
F+)/2, such an F cannot be extreme. Thus for F to be extreme we must have
F(x) ∈ {αi,αi+1} ∀x ∈ [θi, θi+1). This condition, together with the quantile
constraint, implies the parametrization. �

PROOF OF PROPOSITION 4. Let P ∈ C and Q0 represent P . Since P(·) is
measurable, by a theorem of Yershov (1973), any measure Q0 on exC can
be extended to a measure Q on B(S), and so C ⊂ T (Q). On the other
hand, if P = T (Q) then we can define Q0 so that Q0(A) = Q(s :Ps ∈ A) =
Q(P −1A). Therefore T (Q)(B) = T (Q0)(B) for all B ∈ B , and since T (Q0) ∈ C

(Proposition 1), so is T (Q). �

PROOF OF PROPOSITION 5. Let f ∈ Cb(X), Qn
w→ Q, Pn = T (Qn) and

P = T (Q). Then

E(f |Pn) =
∫
X

f (x) dPn(x) =
∫
S

(∫
X

f (x) dPs(x)

)
dQn(s).

If the term in the parentheses is a bounded continuous function of s for all bounded
continuous f , then by the weak convergence assumption we have E(f |Pn) →
E(f |P ), that is, Pn

w→ P . Therefore, Qn
w→ Q ⇒ T (Qn)

w→ T (Q). Since
the weak topology is metrizable, this convergence property implies continuity
of T . �

PROOF OF PROPOSITION 6. Let P ∈ CE , and let {P (n)}∞n=1 ⊂ CE be a
sequence weakly converging to P (i.e., converging in the product topology of weak
convergence). Pick any (i, j) ∈ E and let Fi, Fj be the CDFs of the corresponding

component measures of P . Let A = {x ∈ R :F (n)
i (x) → Fi(x), F

(n)
j (x) →

Fj(x)}. By the definition of weak convergence, A is the intersection of Ai , the
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set of continuity points of Fi , and Aj , the set of continuity points of Fj . Note that
Ac

i and Ac
j are both countable, and so Ac is countable and A is dense in R. For

x ∈ A, we clearly have Fj(x) ≤ Fi(x) by the definition of A and the stochastic
ordering constraint. Since Fi, Fj are right continuous, for x /∈ A and any ε > 0,
a y > x can be chosen from A such that Fi(y)−Fi(x) < ε and Fj(y)−Fj (x) < ε.

Thus

Fi(x) − Fj(x) = [Fi(x) − Fi(y)] + [Fj (y) − Fj (x)] + [Fi(y) − Fj(y)] ≥ −ε.

Since ε is arbitrary, we have Fi(x) ≥ Fj(x) and the stochastic ordering is
preserved. Therefore P ∈ CE , and so CE is a weakly closed, convex set. �

PROOF OF PROPOSITION 8. If Q has the specified support then {s : sj ≤ x} ⊂
{s : si ≤ x} and so Fj (x) ≤ Fi(x). Conversely, construct the K functions si(ω) =
F−1

i (ω) for i = 1, . . . ,K and ω ∈ [0,1], where F−1(ω) = inf{x :F(x) ≥ ω}. Then
if Pi 
 Pj we have {x :Fj(x) ≥ ω} ⊂ {x :Fi(x) ≥ ω} and so si(ω) ≤ sj (ω) ∀ω.

Let ω be uniformly distributed and let F̂i be the canonical distribution of si . We
need to show F̂i(s) = Fi(s), or equivalently, that the two sets {ω : inf{x :Fi(x) ≥
ω} ≤ c} and {ω :ω ≤ Fi(c)} are equal. Suppose ω ≤ Fi(c), in which case
c ∈ {x :Fi(x) ≥ ω} and so inf{x :Fi(x) ≥ ω} ≤ c trivially. On the other hand,
if inf{x :Fi(x) ≥ ω} ≤ c, then w ≤ F(c) by the monotonicity of F and the
equivalence of the two sets is shown. �
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