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Tukey’s median is among one of the earliest known high breakdown
point multivariate location statistics. Aside from its breakdown point, though,
little else appears to be known about its robustness properties. In this paper we
investigate other aspects of Tukey’s median, and in particular we derive and
study its influence function and its maximum contamination bias function.
When judged by these other robustness criteria, Tukey’s median again proves
to be highly robust.

1. Introduction and summary. In 1975, Tukey introduced the concept
of data depth. This concept measures how deep points are embedded within
a multivariate data set. It gives a more refined ordering of multivariate data than
that obtained from convex peeling. Although other measures of data depth have
subsequently been proposed, Tukey’s depth still appears to be the most viable
notion of depth; see, for example, the recent article by Zuo and Serfling (2000).
The deepest or innermost point with respect to Tukey’s depth is commonly viewed
as a multivariate median, and so we refer to this deepest point as Tukey’s median.
Numerous papers have appeared which study various properties of Tukey’s depth
and median. Most notably, Donoho (1982) has shown that the breakdown point of
Tukey’s median can be as high as 1

3 , regardless of the dimension d of the data. In
contrast, the breakdown point of the innermost point with respect to convex peeling
is at best 1

d+1 . Aside from its breakdown point, little else appears to be known
regarding the robustness properties of Tukey’s median. In this paper, we consider
other important robustness measures. In particular, we investigate the influence
function and the maximum contamination bias function of Tukey’s median. With
respect to these criteria, Tukey’s median again proves to be highly robust.

Our notation and definitions are formally set down in Section 2. The main
results of the paper are given in Sections 3 and 4. Section 3 deals with continuous
symmetric distributions, or more generally, the continuous halfspace symmetric
distributions as defined in Zou and Serfling (2000). For such distributions, we show
the following.
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1. Tukey’s median has an influence function, which like the univariate median,
is bounded and is constant along rays originating from the center of the
distribution.

2. The gross error sensitivity of Tukey’s median is never greater than the
supremum of the gross error sensitivities of the univariate medians taken over
all univariate projections of the distribution.

3. The maximum bias of Tukey’s median under ε-contamination has a relatively
simple form, namely the greatest distance between the deepest point and the
convex contour corresponding to all points of depth 1−3ε

2(1+ε)
. This is particularly

notable since maximum bias functions are usually difficult to derive even at the
standard normal distribution, and seldom have simple forms.

4. The contamination sensitivity of Tukey’s median is at least twice its gross error
sensitivity, but it is never greater than twice the supremum of the contamination
sensitivities of the univariate medians taken over all univariate projections of
the distribution.

Section 4 considers absolutely continuous distributions in general. A simple
upper bound is obtained for the maximum bias of Tukey’s median under ε-conta-
mination, and the contamination sensitivity is shown to be finite. A modest new
result on the breakdown point of Tukey’s median is also given.

Section 5 discusses some specific examples. In Section 5.1, we observe that for
spherically symmetric distributions the gross error sensitivity and the maximum
contamination bias of Tukey’s median do not depend on the dimension d of the
distribution. This contrasts with some other multivariate location statistics such as
the M- and S-estimates. For these statistics, the gross error sensitivities tend to be
of order

√
d . The gross error sensitivity and the maximum bias function of Tukey’s

median, though, can be dimension dependent for nonspherically symmetric
distributions. This occurs, for example, for the multivariate distribution possessing
i.i.d. Cauchy marginals; see Section 5.2. Finally, in Section 5.3, we illustrate
our results on the maximum contamination bias function for nonsymmetric
distributions by applying them to the uniform distribution having support within
an equilateral triangle.

Technical proofs are reserved for the Appendix. Some modest new results on
the uniqueness of the deepest point which arise as a byproduct of the proofs are
given in Theorem 5.1.

2. Tukey’s median. Let X(n) = {x1, x2, . . . , xn} represent a data set in �d

with d ≥ 2, and let Sd−1 = {u ∈ �d :u′u = 1} be the set of all unit vectors in �d .
For a given point x ∈ �d , consider the position of its univariate projection u′x
within the univariate data set u′X(n) = {u′x1, . . . , u

′xn} for some u ∈ Sd−1. Define
the depth of u′x within u′X(n) as the lesser of the number of points in u′X(n) which
are no greater than u′x and the number of points which are no less than u′x. The
depth of the multivariate point x ∈ �d within X(n), as defined in Tukey (1975),
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is then the smallest such depth possible over all univariate projections of the data.
More formally, Tukey’s depth for a point x with respect to a data set X(n) is defined
as

depth(x;X(n)) = min
u∈Sd−1

nFu,n(u
′x),(1)

where Fu,n is the empirical cumulative distribution function of X(n). For a given
u ∈ Sd−1, nFu,n(u

′x) corresponds the number of points in X(n) which are no
greater than u′x, whereas the number which are no less than u′x is given by
nF−u,n(−u′x). In one dimension, the point of maximal depth coincides with the
univariate median, and so in higher dimensions

arg max depth
x∈�d

(x;X(n))(2)

is generally referred to as a multivariate median, or more specifically as Tukey’s
median. Other generalizations of the median to higher dimensional spaces exist;
see, for example, Small (1990) for a general review, as well as Zuo and Serfl-
ing (2000).

For our purposes, we need a functional or “population” version of Tukey’s
depth. Let X be a random vector with probability measure P on �d , and
let Fu(y) represent the cumulative distribution function of u′X for u ∈ Sd−1.
A generalization of Tukey’s depth to probability measures, up to a scaling factor,
is given by

π(x;P ) = inf
u∈Sd−1

Fu(u
′x).(3)

If Pn represents the empirical probability measure derived from X(n), then
depth(x,X(n)) = nπ(x;Pn).

Tukey’s depth is sometimes referred to as the halfspace depth since it can be
expressed as

π(x;P ) = inf
u∈Sd−1

P {H(u,x)},(4)

where H(u,x) = {y ∈ �d :u′y ≤ u′x} is the closed halfspace of �d whose
boundary is orthogonal to u ∈ Sd−1 and passes through x. We utilize this
representation of Tukey’s depth for the proofs given in the Appendix.

A functional or “population” version of Tukey’s median can be defined as

arg max
x∈�d

π(x;P ),(5)

which in general may not be unique. However, for 0 < α < �(P ), where

�(P ) ≡ max
x∈�d

π(x;P ),(6)

the “level” sets

L(α;P ) = {
x ∈ �d :π(x;P ) ≥ �(P ) − α

}
(7)
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are nonempty convex compact sets and increasing in α. Hence, for any P the set

Med(P ) ≡ {
x ∈ �d :π(x;P ) = �(P )

} = ⋂
0<ε<�(P )

L(ε;P )(8)

is a nonempty convex compact set; see, for example, Small (1987) or Chen (1995).
For the sample Tukey’s median, Donoho and Gasko (1992) suggest taking an affine
equivariant preserving average over Med(Pn). This can also be done for general P

by taking the expected value over the uniform distribution on Med(P ). That is,
we can uniquely define Tukey’s median (or the halfspace median) for a probability
measure P on �d as

T (P ) =
∫

Med(P ) y dy∫
Med(P ) dy

,(9)

where the integral is with respect to Lebesgue measure on the plane generated
by Med(P ). The functional T (P ) is then affine equivariant. That is, if P ∗ rep-
resents the probability measure of X∗ = AX + b with A being nonsingular, then
T (P ∗) = AT (P ) + b. There are other choices for defining an affine equivariant
preserving average over Med(P ). The results of this paper hold for any such
choice.

3. Symmetric distributions.

3.1. Halfspace symmetry. Hereafter, we assume that P is absolutely contin-
uous with respect to Lebesgue measure on �d . In order to derive the influence
function of T at P , we will need arg maxx∈�d π(x;P ) to be unique. This oc-
curs, for example, if P has a probability distribution which is symmetric about
some point µ ∈ �d ; that is, if the distribution of (X − µ) and −(X − µ) are the
same. A symmetric distribution about µ is sometimes referred to as being centro-
symmetric about µ; see, for example, Donoho and Gasko (1992). In this section
we assume a more general notion of symmetry for P , namely we assume only that
P is halfspace symmetric, which as defined in Zuo and Serfling (2000), means
there exists a µ ∈ �d for which any plane passing through µ divides �d into half-
spaces of equal probability. More formally, it means that there exists a µ ∈ �d

such that P {H(u,µ)} = P {H(−u,µ)} for all u ∈ Sd−1. It readily follows that the
class of halfspace symmetric distributions contains the class of symmetric distri-
butions. Furthermore, for halfspace symmetric distributions, arg maxx∈�d π(x;P )

is unique and is equal to µ, T (P ) = µ and �(P ) = 1
2 . These last statements can

be found in either Small (1987), Chen (1995) or Zuo and Serfling (2000).
Since T (P ) is affine equivariant, unless stated otherwise, we assume without

loss of generality that T (P ) = 0 and hence the “center” µ = 0 for a halfspace
symmetric distribution. Zuo and Serfling (2000) note when P is continuous, as is
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assumed here, then halfspace symmetry is equivalent to angular symmetry, but not
necessarily otherwise. This implies that for µ = 0 the directional vector X

|X| has
a symmetric distribution about the origin, where here and throughout, | · | refers
to the Euclidean norm in �d . Angular symmetry is at times also referred to
as directional symmetry; see, for example, Randles (2000). The terminology
directional symmetry is perhaps more descriptive since it reflects that it is
the directional vector X

|X| , rather than any angle created by the directional
vector, which has a symmetric distribution about the origin. Alternatively, using
standard terminology from the directional data literature, we can say that the
directional vector X

|X| has an antipodal symmetric distribution; see, for example,
Mardia (1972) or Watson (1983).

3.2. The influence function and gross error sensitivity. To understand the local
stability of a statistic, one often studies its influence function. Recall that the
influence function of T at P as a function of x ∈ �d , as defined, for example,
in Hampel, Ronchetti, Rousseeuw and Stahel (1986), is given by

IF(x;T,P ) = lim
ε→0

T (P (ε, x)) − T (P )

ε
,(10)

where δx is the point mass probability measure at x ∈ �d , and P (ε, x) =
(1 − ε)P + εδx for ε ∈ [0,1]. In order to obtain results on the influence function,
we first establish some results for T (P (ε, x)). For 0 ≤ α < 1

2 and u ∈ Sd−1, let
r(α,u) be defined as the radius of the level set L(α;P ) along the direction u,
or more specifically, the length of the line segment L(α;P ) ∩ {tu : t ≥ 0}. It is
understood that r(α,u) depends upon P , which for convenience we do not include
in the notation. The influence function is obtained as a direct consequence of the
following theorem. This key theorem is also applied later in deriving the maximum
contamination bias function of Tukey’s median.

THEOREM 3.1. Suppose P is absolutely continuous with respect to Lebesgue
measure on �d and is halfspace symmetric about the origin. For an arbitrary fixed
x ∈ �d and 0 ≤ ε < 1

3 ,

T (P (ε, x)) =




x, for x in the interior of L

(
ε

1 − ε
;P

)
,

1

2
r

(
ε

1 − ε
,

x

|x|
)

x

|x| , for x /∈ L

(
ε

1 − ε
;P

)
or on its boundary.

To obtain the influence function of T at P , we note that for any fixed x �= 0,
there is a small enough ε such that x /∈ L( ε

1−ε
;P ).

COROLLARY 3.1. Under the conditions of Theorem 3.1, for x �= 0

IF(x;T,P ) = 1

2
λ

(
x

|x|
)

x

|x|
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provided λ( x
|x|) = limα→0 r(α, x

|x|)/α exists. For x = 0, IF(x;T,P ) = 0.

From Theorem 3.1, we observe that for a fixed ε, T (P (ε, x)) does not increase
montonically along rays originating from the origin. Rather it first increases
linearly along a ray and then redescends to a fixed value. This curious redescending
property of Tukey’s median is not apparent from the influence function alone,
which is constant along rays originating from the origin.

To help illustrate the above results, consider the special case when P has
an elliptically symmetric distribution, which without loss of generality we take
to be symmetric about the origin. That is, suppose P has a density of the form

f (x;�) = |�|−1/2g(x′�−1x)(11)

for some function g ≥ 0, and with � being a symmetric positive definite matrix of
order d . When � = Id , which corresponds to P having a spherically symmetric
distribution, the distribution of the univariate projection Y = u′X is the same for
any u ∈ Sd−1, and so for this case we can denote the cumulative distribution
function of Y simply by Fo(y) and the density function of Y by fo(y). For
general �, the cumulative distribution function Fu(y) and density fu(y) of
Y = u′X can be expressed in terms of Fo and fo respectively. That is,

Fu(x) = Fo

(
x/

√
u′�u

)
and fu(x) = fo(x/

√
u′�u)√

u′�u
.(12)

The α-level sets L(α;P ) for elliptical distributions are given by the interiors and
boundaries of ellipses, specifically

L(α;P ) = {
x :x′�−1x ≤ r2

o(α)
}
,(13)

where ro(α) = F−1
o (1

2 +α). This then gives r(α,u) = ro(α)/
√

u′�−1u, and so we
have, for u ∈ Sd−1,

λ(u) = {
fo(0)

√
u′�−1u

}−1
.(14)

For spherically symmetric distributions with � = Id , λ(u) = 1/fo(0). For the
standard normal distributions λ(u) = √

2π . In general, the density function fo(y)

does not have a simple closed form expression in terms of the function g in (11).
For the important case fo(0), we have the relationship

fo(0) = ωd−1

∫ ∞
0

g(r2)rd−2 dr > 0,(15)

where ωd−1 = 2π(d−1)/2	(d−2
2 ). Proofs of the above statements concerning the

elliptical distributions are given in the Appendix.
When P has an elliptically symmetric distribution, it follows from (14) and (15)

that the influence function is bounded. Unlike the univariate case, this holds even
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if the density of P vanishes at the origin since fo(0) > 0 always holds even if
g(0) = 0. The gross error sensitivity of T at P is given by

γ (T ;P ) = sup
x∈�d

|IF(x;T,P )| = 1

2
sup

u∈Sd−1
λ(u) =

√
λ1(�)

2fo(0)
,(16)

where λ1(�) represents the largest eigenvalue of �. The most influential points,
that is, points x which maximize the Euclidean norm of the influence function, are
those which are proportional to the eigenvectors of � corresponding to the largest
eigenvalue λ1(�). This last statement follows immediately from application of
the Cauchy–Schwarz inequality. When � �= Id , it is customary to use the self-
standardizing gross error sensitivity based on the norm |x|� = √

x′�−1x rather
than use the Euclidean norm; see, for example, Hampel, Ronchetti, Rousseeuw
and Stahel (1986). This then gives

γ (T ;P,�) = sup
x∈�d

|IF(x;T,P )|� = 1/{2fo(0)}.(17)

Note that this is equivalent to first transforming P so that it has a spherically
symmetric distribution and then evaluating the gross error sensitivity using the
Euclidean norm. When using the self-standardizing gross error sensitivity at
an elliptically symmetric distribution, all points x �= 0 are considered equally
influential.

In general, for any halfspace symmetric distribution, we show in the Appendix
that

r(α,u) ≤ F−1
u

(1
2 + α

)
(18)

and so, since F−1
u (1/2) = 0, we have

λ(u) ≤ lim
α→0

F−1
u (1

2 + α)

α
= {fu(0)}−1,(19)

where fu(y) represents the density of the univariate projection Y = u′X for
u ∈ Sd−1, or to be more precise, it represents the derivative from above of Fu(y).
As a side note, it is interesting to observe that for elliptically symmetric distri-
butions, equality holds in (18) and (19) if and only if u is an eigenvector of �.
[This can be verified by using the special expressions for Fu,fu, r(α,u) and λ(u)

given in (12), (13) and (14) whenever P has an elliptically symmetric distribution,
and then using the Cauchy–Schwarz inequality to note that u′�−1u u′�u ≥ 1 for
u ∈ Sd−1, with equality if and only if u is an eigenvector of �.] For any halfspace
symmetric distribution, inequality (19) can be used to obtain the following upper
bound on the gross error sensitivity of Tukey’s median.

THEOREM 3.2. Under the conditions of Corollary 3.1,

γ (T ;P ) = sup
x

|IF(x, T ,P )| = 1
2 sup

u∈Sd−1
λ(u) ≤

{
2 inf

u∈Sd−1
fu(0)

}−1

< ∞,
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provided infu∈Sd−1 fu(0) > 0.

The condition infu∈Sd−1 fu(0) > 0 is considerably weaker than assuming the
density of P is positive at the origin. Due to the compactness of Sd−1, if we make
the additional assumption that fu(0) is a continuous function of u ∈ Sd−1, then the
condition holds if and only if fu(0) > 0 for all u ∈ Sd−1. That is, it holds provided
no univariate marginal density vanishes at the origin, and does not hold otherwise.
This means that rather than demanding that the density of P be nonzero at the
origin, we demand only that the density of P not be almost surely zero on any
d − 1 dimensional subspace of �d .

In one dimension, the gross error sensitivity of the median is well known
to be equal to the inverse of twice the univariate density evaluated at zero;
see, for example, Hampel, Ronchetti, Rousseeuw and Stahel (1986). Suppose
we let medu(P ) represent the functional corresponding to the median of the
univariate projection u′X. The gross error sensitivity of medu(P ) is then given
by γ (medu;P ) = {2fu(0)}−1 and so we note that the inequality in Theorem 3.2
states

γ (T ;P ) ≤ sup
u∈Sd−1

γ (medu;P );(20)

that is, the gross error sensitivity of Tukey’s median is never worse than the
supremum of the gross error sensitivities of the univariate median over all possible
univariate projections of the distribution. We have equality in (20) for elliptically
symmetric distributions.

The influence function of Tukey’s median at P does not exist if limα→0 r(α,
x
|x|)/α does not exist. However, from (18) we see that r(α, x

|x|)/α is bounded above

by a convergent sequence and so for u ∈ Sd−1,

λ∗(u) = lim sup
α→0

r(α,u)/α(21)

exists. If we then apply this result to the more general definition of gross
error sensitivity given, for example, in Hampel, Ronchetti, Rousseeuw and
Stahel (1986), namely

γ (T ;P ) ≡ sup
x∈�d

lim sup
ε→0

|T (P (ε, x)) − T (P )|
ε

,(22)

then we have the following more general version of Theorem 3.2.

THEOREM 3.3. Under the conditions of Theorem 3.1,

γ (T ;P ) = 1
2 sup

u∈Sd−1
λ∗(u) ≤

{
2 inf

u∈Sd−1
fu(0)

}−1

< ∞

provided infu∈Sd−1 fu(0) > 0.
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A self-standardizing gross error sensitivity can be defined in general by
γ (T ;P,�(P )) = supx |IF(x, T ,P )|�(P ), where �(P ) is some well defined
affine equivariant scatter functional. That is, �(P ) represents some symmetric
positive definite matrix functional of order d possessing the property �(P ∗) =
A�(P )A′, where A is nonsingular and P ∗ represents the probability measure
of X∗ = AX + b. The self-standardizing gross error sensitivity is affine invariant
in the sense that γ (T ;P,�(P )) = γ (T ;P ∗,�(P ∗)), and so it is equivalent to
using γ (T ;P ) after the distribution P is standardized by an affine transformation
so that �(P ) = Id .

3.3. Contamination bias and sensitivity. The concept of gross error sensitivity
measures the maximum effect that an infinitesimal amount of point-mass contam-
ination can have on a functional. A stronger robustness concept is to measure the
maximum effect or bias that any type of contamination can have on a functional.
The maximum contamination bias function for T (P ) is defined to be

B(ε;T,P ) ≡ sup
Q

|T (P (ε,Q)) − T (P )|(23)

where P (ε,Q) = (1 − ε)P + εQ and Q is any arbitrary probability measure
on �d ; see, for example, He and Simpson (1993). As with the gross error
sensitivity, an affine invariant version of the maximum bias function can be defined
by replacing the Euclidean norm | · | in (23) by | · |�(P ). This is equivalent to
applying (23) after standardizing the distribution so that �(P ) = Id .

The maximum bias function is related to the breakdown point, which is a mea-
sure of global robustness, as well as to the contamination sensitivity, which
is a measure of local robustness. The breakdown point of T at P over contami-
nation neighborhoods is defined as

ε∗(T ;P ) ≡ inf{ε :B(ε;T,P ) = ∞},(24)

and the contamination sensitivity is defined as

γ ∗(T ;P ) ≡ lim sup
ε→0

B(ε;T,P )/ε.(25)

Under certain regularity conditions, the contamination sensitivity and the gross
error sensitivity are equal; see Hampel, Ronchetti, Rousseeuw and Stahel (1986)
for further discussion. In general, though, it readily follows that

γ ∗(T ;P ) ≥ sup
x∈�d

{
lim sup

ε→0
|T (P (ε, x) − T (P )|/ε

}
= γ (T ;P ).(26)

As we will see, for Tukey’s median this inequality is strict.
In many problems, the contaminating distribution which produces the maximal

bias in (23) is often a point mass distribution; see, for example, Martin, Yohai
and Zamar (1989). As the following theorem states, this is also true for Tukey’s
median at halfspace symmetric distributions. Here, for a set A ⊂ �d , we set
‖A‖ ≡ supy∈A |y|.
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THEOREM 3.4. Under the conditions of Theorem 3.1 and for ε < 1
3 ,

B(ε;T,P ) = sup
x

|T (P (ε, x)) − T (P )| =
∥∥∥∥L

(
ε

1 − ε
;P

)∥∥∥∥.
Furthermore, ε∗(T ;P ) = 1

3 .

Note that ‖L(α;P )‖ = supu∈Sd−1 r(α,u) and hence under the conditions of
Theorem 3.1 we have

γ ∗(T ;P ) ≥ sup
u∈Sd−1

lim sup
α→0

r(α,u)/α ≥ 2γ (T ;P );(27)

that is, the contamination sensitivity differs from the gross error sensitivity by
at least a factor of 2. This is attributable to the different orders in which the
supremums and the limits are taken in their respective definitions. In particular, the
first part of the expression for T (P (ε, x)) in Theorem 3.1 applies when deriving
the contamination sensitivity, while the second part applies when deriving the gross
error sensitivity.

For the special case of elliptically symmetric distributions, the special form
of r(α,u) given after (13) can be used to obtain relatively simple expressions
for the maximum contamination bias function and the contamination sensitivity.
These are, respectively,

B(ε;T,P ) = √
λ1(�)F−1

o

{
1 + ε

2(1 − ε)

}
and γ ∗(T ;P ) =

√
λ1(�)

fo(0)
.(28)

Note that in this case we obtain equality in (27).
In general, we can bound the contamination sensitivity by applying the

bound (18) and by assuring that the lim sup and the sup can be interchanged in (25)
and (27). This is true if limα→0 F−1

u (1
2 + α)/α → 1/fu(0) uniformly in u ∈ Sd−1,

which in turn holds if fu(0) is continuous in u ∈ Sd−1. We thus have the following
theorem.

THEOREM 3.5. Under the conditions of Theorem 3.3,

γ ∗(T ,P ) ≤
{

inf
u∈Sd−1

fu(0)

}−1

< ∞.

provided fu(0) is continuous in u ∈ Sd−1.

4. General distributions. In this section we drop the symmetry assumption
and show that the contamination sensitivity of Tukey’s median is finite in general.
We still assume that P is absolutely continuous with respect to Lebesgue measure
on �d . We begin by giving a general bound on the maximum bias function, along
with some modest new results on the breakdown point of Tukey’s median. Note
that we still assume without loss of generality that T (P ) = 0. Also, recall that
�(P ) = maxx∈�d π(x;P ).
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THEOREM 4.1. If P is absolutely continuous with respect to Lebesgue
measure on �d , then for ε <

�(P)
1+�(P)

,

B(ε;T,P ) ≤
∥∥∥∥L

(
ε

1 − ε
;P

)∥∥∥∥.

Furthermore, �(P)
1+�(P)

≤ ε∗(T ;P ) ≤ 1
3 .

Donoho and Gasko (1992) give a finite sample version of the breakdown
point of Tukey’s median and show that its limiting value is 1

3 for symmetric
distributions and between 1

d+1 and 1
3 for distributions in general. They also

show that �(P ) ≥ 1
d+1 , which implies �(P)

1+�(P)
≥ 1

d+2 . Although Theorem 4.1 is

sufficient for showing that the contamination sensitivity is bounded, the bound on
the maximum bias function can be tightened so that we obtain ε∗(T ;P ) ≥ 1

d+1 .

To do so, let �(ε;P ) ≡ infQ �(P (ε,Q)), which is a continuous nonincreasing
function of ε, and define εL(T ;P ) to be the solution to the equation ε = �(ε;P ).

THEOREM 4.2. If P is absolutely continuous with respect to Lebesgue
measure on �d , then for ε < εL(T ;P ),

B(ε;T,P ) ≤
∥∥∥∥L

(
ε

1 − ε
− δ(ε;P );P

)∥∥∥∥,

where δ(ε;P ) = �(ε;P)−(1−ε)�(P )
1−ε

≥ 0. Furthermore, εL(T ;P ) ≥ �(P)
1+�(P)

and
1

d+1 ≤ εL(T ;P ) ≤ ε∗(T ;P ) ≤ 1
3 .

The form of δ(ε;P ) is somewhat complex. A simple lower bound for it
can be obtained by recalling �(ε;P ) ≥ 1

d+1 , and hence δ(ε;P ) ≥ δo(ε;P ) ≡
max{0, 1

(d+1)(1−ε)
− �(P )}. This lower bound can then be used in Theorem 4.1 in

place of δ(ε;P ) to obtain a simpler but cruder upper bound for the maximum bias
function. An example illustrating this is given in Section 5.3. Note that for d = 2
we always have ε∗(T ;P ) = 1

3 .
Finally, in order to show that the contamination sensitivity is bounded, it is

not necessary for arg maxx∈�d π(x;P ) to be unique. However, we still need
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infu∈Sd−1 fu(0) > 0. The proof of this seemingly simple result, which is given in
the Appendix, is rather challenging.

THEOREM 4.3. If P is absolutely continuous with respect to Lebesgue
measure on �d and infu∈Sd−1 fu(0) > 0, then γ ∗(T ;P ) < ∞.

5. Some examples with discussion.

5.1. Spherically symmetric distributions. We have already noted the relatively
simple form of the influence function and the maximum contamination bias
function of Tukey’s median at elliptically symmetric distributions. We now
examine these functions in more detail. For simplicity, we restrict our attention
to the subclass of spherically symmetric distributions. That is, unless stated
otherwise we assume in this subsection that P has a density which is given by (11)
with � = Id . Recall that if X has a spherically symmetric distribution, then the
distribution of the univariate projection u′X is the same for any u ∈ Sd−1. For any
u ∈ Sd−1, the cumulative distribution function and the density function of u′X are
again denoted by Fo and fo respectively.

To begin, we note that Tu(P ) = u′T (P ) represents a measure of univariate
location for u′X, and so it is natural to compare it to the univariate median of u′X.
Without loss of generality, consider simply T1(P ) versus med1(P ) = median(X1).
Their influence functions at P as a function of x ∈ �d are, respectively,

IF(x;T1,P ) = 1

2fo(0)

x1

|x| and

IF(x; med1,P ) = 1

2fo(0)
sign(x1).

(29)

Although the gross error sensitivities are the same, namely γ (T1;P ) =
γ (med1;P ) = {2fo(0)}−1, the influence function for T1 is always smaller then
that of med1 whenever x does not lie along the first coordinate. The functional T1
makes use of the information in all the coordinates in assessing the “outlying-
ness” of x, whereas med1 uses only the information in x1. The univariate median,
though, always fares better when judged in terms of the maximum bias function
since

B(ε;T1,P ) = F−1
o

{
1 + ε

2(1 − ε)

}
> B(ε; med1,P ) = F−1

o

{
1

2(1 − ε)

}
(30)

for any ε > 0. The expression for B(ε; med1,P ) is well known and can be found,
for example, in Huber (1981). For the contamination sensitivities, we likewise
have γ ∗(T1;P ) = {fo(0)}−1 > γ ∗(med1;P ) = {2fo(0)}−1. If we consider the
bias itself under a point mass contamination at x, then the bias of T1 can still
be considerably less than the bias of the marginal median med1 whenever x ∈ �d
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does not lie along the first coordinate. Specifically, under an ε contamination at x,
T1 and med1 change respectively from zero to

T1(P (ε, x)) =



x1, |x| < rε,

1

2

x1

|x| rε, |x| ≥ rε,

and

med1(P (ε, x)) =
{
x1, |x1| < bε,

sign(x1)bε, |x1| ≥ bε,

where rε = B(ε;T1,P ) and bε = B(ε; med1,P ). For |x| ≥ rε and |x1| ≥ bε, the
term x1/|x| can be arbitrarily small.

A curious property of Tukey’s median is that its gross error sensitivity,
maximum contamination bias function and contamination sensitivity, which are,
respectively,

γ (T ;P ) = 1

2fo(0)
, B(ε;T,P ) = F−1

o

{
1 + ε

2(1 − ε)

}

and

γ ∗(T ;P ) = 1

fo(0)

are the same as those for T1 itself, or more generally as those of Tu for any
fixed u ∈ Sd−1. Moreover, these expressions remain the same as the dimension d

increases as long as the marginal distributions remain fixed. This property
is unusual for multivariate location functionals. For example, the gross error
sensitivity, the maximum bias function and the contamination sensitivity of the
joint marginal medians (which is not affine equivariant), that is, of TM(P ) =
(med1(P ), . . . ,medd(P ))′, increase at the rate of

√
d . Specifically,

γ (TM;P ) =
√

d

2fo(0)
, B(ε;TM,P ) = √

dF−1
o

{
1

2(1 − ε)

}

and

γ ∗(TM ;P ) =
√

d

2fo(0)
.

The expressions above follow from considering point mass contaminating distri-
butions at points which are proportional to the vector (1, . . . ,1)′. Note that the
gross error sensitivity of Tukey’s median is always smaller than that of the joint
marginal medians for d ≥ 2, and its contamination sensitivity is less than or equal
to that of the joint marginal medians for d ≥ 4. A comparison of the maximum
contamination bias function of Tukey’s median to that of the joint marginal medi-
ans for different dimensions d whenever P = PZ, the standard multivariate normal
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FIG. 1. Plots of ε versus B(ε;T,PZ) (upper heavy line), B(ε;TM,PZ) for d = 2, . . . ,10
(light lines, in ascending order) and BL(ε;PZ) (lower heavy line).

distribution, is given in Figure 1. Although the breakdown point of Tukey’s me-
dian is less than the breakdown point of the joint marginal medians, namely 1/3
versus 1/2, the maximum bias of Tukey’s median at PZ is smaller for d > 4 even
for contamination proportions as high as ε = 0.24.

The lower bound indicated in Figure 1 follows from some general results for
lower bounds on the maximum contamination bias of a functional given by He
and Simpson (1993). These general results have recently been applied by Adrover
and Yohai (2002) to obtain a lower bound for the maximum contamination bias, as
well as a lower bound for the contamination sensitivity, of any affine equivariate
location functionals at some unimodal spherically symmetric distribution. These
lower bounds, which may not be strict, are respectively

BL(ε;P ) ≡ F−1
o

(
1

2(1 − ε)

)
and γ ∗

L(P ) ≡ 1

2fo(0)
.(31)

Note that these bounds are equal to the maximum contamination bias function
and the contamination sensitivity of the univariate median respectively. The
contamination sensitivity of Tukey’s median is only twice the corresponding lower
bound, and so for smooth Fo, the maximum contamination bias of Tukey’s median
is approximately twice its corresponding lower bound for small values of ε. The
ratios of the maximum bias of Tukey’s median at PZ to the lower bound for
ε = 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 are respectively 2.004, 2.020, 2.053,
2.117, 2.246 and 2.590. The lower bound in Figure 1 also applies to the joint
marginal medians since Croux, Haesbroeck and Rousseeuw (2001) have shown
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that the bound holds at PZ for any translation equivariant multivariate location
functional rather than for just affine equivariant functionals.

The dimension-free property of the gross error sensitivity, the maximum
contamination bias and the contamination sensitivity of Tukey’s median sets
it apart not only from the joint marginal medians but also from other robust
estimates of multivariate location such as the M-estimates, the S-estimates, the
MM-estimates and the constrained M-estimates. All of these latter estimates have,
for example, gross error sensitivities that tend to increase at the rate of

√
d ; see

Maronna (1976), Lopuhaä (1989), Lopuhaä (1992) and Kent and Tyler (1996),
respectively. The following simple heuristic argument shows that this

√
d rate

holds, under certain regularity conditions, at the multivariate normal model for any
asymptotic normal estimate of multivariate location. Suppose To(Fn) is an estimate
of µ based on a random sample of size n and that under the Normald(µ, Id) model

√
n{To(Fn) − µ} → Normald(0,	o)

in distribution. Under broad regularity conditions,

	o = EP

[
IF(X;To,P )IF(X;To,P )′

]
and the asymptotic variance covariance matrix of To(Fn) cannot be less than that
of the sample mean vector; that is, 	o ≥ Id under the usual ordering of symmetric
positive-definite matrices. Taking the trace of both sides of this inequality gives

γ (To,P ) ≥ EP

[‖IF(X;To,P )‖2]1/2 ≥ √
d.(32)

The above argument does not apply to Tukey’s median since, as shown
by Nolan (1999) and by Bai and He (1999), Tukey’s median does not have
an asymptotic normal distribution. This emphasizes a limitation in the definitions
of the influence function and the maximum bias function. Namely, they are
defined only with respect to contamination neighborhoods. Even though Fn may
be “close” to F , it does not lie within some contamination neighborhood of F . In
general, the influence function and the maximum bias function may not completely
reflect the stability of a functional near a particular model. Nevertheless, under
contamination, Tukey’s median is remarkably stable.

5.2. Independent Cauchy marginals. In this subsection, we consider the
random vector X = (X1, . . . ,Xd)′ having density

f (x1, . . . , xd) = π−d
d∏

i=1

(1 + x2
i )−1.(33)

That is, X is formed from independent and identically distributed standard Cauchy
marginals. We denote the probability measure associated with X by PC . Note
that the distribution of X is symmetric about the origin, but it is not spherically
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symmetric. Although PC and a spherically symmetric Cauchy distribution both
have Cauchy marginals, the marginals are not independent for the latter. Also,
although any linear combination of either distribution has a univariate Cauchy
distribution, the spread of the univariate Cauchy distribution for u′X is not the
same for all u ∈ Sd−1 under PC , whereas they are the same under a spherically
symmetric Cauchy distribution.

Under PC , it is well known that the distribution of Y = u′X is the same as the
distribution of σuX1, where σu = ‖u‖1, and hence Y has density

fu(y) = (πσu)
−1

(
1 + y2

σ 2
u

)−1

.(34)

Here, for a ∈ �d , ‖a‖1 ≡ ∑d
i=1 |ai| is the L1 norm. In this subsection, we also use

the L2 norm and the L∞ norm. To avoid confusion, we now denote the Euclidean
or L2 norm by ‖a‖2, and the L∞ norm by ‖a‖∞ ≡ maxi=1,...,d |ai|.

In the bivariate case, Rousseeuw and Ruts [(1999), Proposition 13] derive the
depth function for PC . Their results can be extended to general d as follows. Since
PC(H(u, x)) = P (u′X ≤ u′x) = P (X1 ≤ u′x

‖u‖1
), application of Holder’s inequality

implies PC(H(u, x)) is minimized when u′x = −‖u‖1 ‖x‖∞ and hence

π(x,PC) = P (X1 ≤ −‖x‖∞) = 1

2
− 1

π
arctan(‖x‖∞).(35)

From this it follows that the convex set corresponding to all points of depth greater
than or equal to 1

2 − α, that is, the level set L(α,PC) = {x :‖x‖∞ ≤ tan(πα)},
consists of those points on or inside a cube centered at the origin, with sides
parallel to the coordinate axes and half-lengths equal to tan(πα). Figure 2 shows
these depth contours, along with the contours of the density (33), for the bivariate
case.

For PC , the general results on Tukey’s median for symmetric distributions given
in Section 2.2 can be expressed as follows:

r(α,u) = tan(πα)/‖u‖∞,(36)

T (P (ε, x)) =




x, for ‖x‖∞ < tan
(

πε

1 − ε

)
,

1

2
tan

(
πε

1 − ε

)
x

‖x‖∞
, for ‖x‖∞ ≥ tan

(
πε

1 − ε

)(37)

and

IF(x, T ,PC) = π

2

x

‖x‖∞
.(38)

The L2 norm of the influence function is maximized when |x1| = · · · = |xd |,
resulting in a gross error sensitivity of γ (T ,PC) = π

√
d

2 . For the maximum bias
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FIG. 2. The depth contours (solid lines) and the density contours (dashed lines) of PC for
d = 2. The depth contours, from the outermost to the innermost square, represent depths
of 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and 0.40, respectively.

function of Tukey’s median at PC we have

B(ε,T ,PC) = sup
u∈Sd−1

r

(
ε

1 − ε
,u

)
= √

d tan
(
π

ε

1 − ε

)
,(39)

with the contamination sensitivity being γ ∗(T ,PC) = π
√

d . The last equality
above is obtained by noting that ‖u‖∞ is minimized over u ∈ Sd−1 when
|u1| = · · · = |ud | =

√
d .

Unlike what happens at spherically symmetric distributions, the gross error
sensitivity, the contamination sensitivity, and the maximum bias function of
Tukey’s median at PC are not independent of the dimension d , but rather are
each proportional to

√
d . We conjecture, though, that this

√
d rate may be

the best possible rate at PC for any translation equivariate location functional.
The basis for this conjecture is that the scale σu = ‖u‖1 itself of the Cauchy
distribution associated with the univariate projection u′X, with u ∈ Sd−1, can be
of the order

√
d . That is, supu∈Sd−1 σu = 1/

√
d . A formal proof of the conjecture,

however, appears to be rather challenging.
To conclude this subsection, we observe that the maximum contamination bias

of the joint marginal medians TM at PC is given by

B(ε,TM,PC) = √
d tan

(
π

2

ε

1 − ε

)
.(40)
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This is always less than the maximum bias of Tukey’s median at PC . The joint
marginal medians, though, are not rotationally equivariant and one might expect
them to perform best when the marginals are independent. That is, suppose we
consider the distribution P ∗

C associated with the random vector X∗ = Q′X, where
Q = [q1, . . . , qd ] is some d × d orthogonal matrix. The maximum contamination
bias of Tukey’s median is the same for all Q, whereas the maximum contamination
bias of TM depends on Q and can be shown to be

B(ε,TM,P ∗
C) =

{
d∑

i=1

‖qi‖2
1

}1/2

tan
(

π

2

ε

1 − ε

)
.(41)

This quantity is smallest when Q is the identity matrix. It is largest when all the
elements of Q are either ±1/

√
d , which is possible whenever d = 2k for some

positive integer k. For such Q, B(ε,TM,P ∗
C) = d tan(π

2
ε

1−ε
), which increases at

a
√

d rate faster than the maximum contamination bias of Tukey’s median.

5.3. Uniform distribution over a triangle. To illustrate the results of Section 4
on a distribution which does not possess halfspace symmetry, we consider here the
uniform distribution within the triangle � in �2 having vertices (−1,0), (1,0)

and (0,
√

3), which we denote by P�. For this distribution, Rousseeuw and
Ruts (1999) show that Tukey’s depth at a point x ∈ �2 in the region G = {x |
−1 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1−|x1|√

3
} is given by π(x;P ) = 2

3 [√3(1 − |x1|)x2 − x2
2 ].

The depth of other points inside the triangle � follows from the symmetry of the
triangle. The contours of π(x;P ) and the region G are illustrated in Figure 3(a).
The depth of points on or outside the triangle � is of course zero. The maximum
depth �(P�) = 4

9 is uniquely obtained at T (P�) = (0, 1√
3
). [In this subsection,

we depart from our convention of using translation to obtain T (P ) = 0.]
From Theorem 4.1, we know that the maximum bias function B(ε;T,P�) is

bounded above by ‖L( ε
1−ε

;P�)‖ for ε < 4
13 . To evaluate this upper bound, we

note that the convexity of the depth contours implies that the largest distance from
the center of the triangle (0, 1√

3
) to a depth contour must occur either along the

line segment from the center to (0,0) or along the line segment from the center
to (0,1). After some lengthy but straightforward calculations, this gives

B(ε;T,P�) ≤




√
3

6

(√
1 + 17ε

1 − ε
− 1

)
, 0 ≤ ε ≤ 20

101
,

2
√

3

3

(
1 − 1

2

√
4 − 13ε

1 − ε

)
,

20

101
< ε <

4

13
.

(42)

The upper bound for the maximum bias function given in (42) is poor for larger
values of ε since the breakdown point of Tukey’s median at P� is 1

3 . For larger
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FIG. 3. (a) The depth contours of P� and the region G. The depth contours, from the outermost to
the innermost contour, represent depths of 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and 0.40,
respectively. (b) Upper bounds (42) (thin line) and (43) (heavy line) for B(ε;T,P�).

values of ε, a tighter upper bound can be obtained by applying Theorem 4.2,
with δ(ε;P�) in Theorem 4.2 replaced δo(ε;P�) = max{0, 4ε−1

9(1−ε)
}. Again, after

some lengthy but straighforward calculations, we obtain

B(ε;T,P�) ≤




√
3

6

(√
1 + 17ε

1 − ε
− 1

)
, 0 ≤ ε ≤ 20

101
,

2
√

3

3

(
1 − 1

2

√
4 − 13ε

1 − ε

)
,

20

101
< ε ≤ 1

4
,

2
√

3

3

(
1 − 1

2

√
3(1 − 3ε)

1 − ε

)
,

1

4
< ε <

1

3
.

(43)

Plots of the upper bounds (42) and (43) are given in Figure 3(b). An upper bound
for the contamination sensitivity can be obtained by evaluating the derivative at

zero for the upper bound in (42). This gives γ ∗(T ,P�) ≤ 3
√

3
2 .

APPENDIX: PROOFS AND TECHNICAL RESULTS

PROOF OF THEOREM 3.1. Since P is halfspace symmetric about the origin,
P {H(u,0)} = 1

2 for all u ∈ Sd−1. By considering half spaces which do not
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include x, we see that π(0;P (ε, x)) = 1−ε
2 and that π(y;P (ε, x)) < 1−ε

2 for any
y /∈ {λx : 0 ≤ λ ≤ 1}. Therefore, Med(P (ε, x)) ⊂ {λx : 0 ≤ λ ≤ 1}.

Now for y = λx with 0 < λ < 1, we can chose a sequence of vectors ui ∈ Sd−1

such that the halfspaces H(ui, y) do not contain x but get arbitrarily close
to x. Each element of the sequence H(ui, y) thus contains the origin with their
boundaries being arbitrarily close to the origin. This implies P (ε, x){H(ui, y)}
gets arbitrarily close to 1−ε

2 , and so π(y;P (ε, x)) ≤ 1−ε
2 .

Consider first the case x /∈ L( ε
1−ε

;P ). For this case, π(x;P (ε, x)) < 1−ε
2 and

thus �(P (ε, x)) = 1−ε
2 . Likewise for y = λx with 0 < λ < 1, π(y;P (ε, x)) < 1−ε

2
if and only if y /∈ L( ε

1−ε
;P ). Thus, Med(P (ε, x)) = L( ε

1−ε
;P ) ∩ {tx : t ≥ 0}. The

result for this case then follows from (9) or by noting that any affine equivariant
preserving average over a line must give the midpoint of the line.

Consider next the case when x is on the boundary of L( ε
1−ε

;P ). For this case,

π(x;P (ε, x)) = 1−ε
2 and so since the depth regions are convex we again have

Med(P (ε, x)) = L( ε
1−ε

;P ) ∩ {tx : t ≥ 0}. The result for this case then follows as
before.

Finally, consider the case when x is in the interior of L( ε
1−ε

;P ). For this case,

π(x;P (ε, x)) > (1−ε)(1
2 − ε

1−ε
)+ε = 1−ε

2 . This implies that Med(P (ε,Q)) = x

and so T (P (ε, x)) = x. �

PROOF OF EQUATION (13). Consider first the spherical case, that is when
� = Id . For this case, the α-level sets L(α;P ) are easily shown to be the
interiors and boundaries of spheres centered at the origin and with radii ro(α) =
F−1

o (1
2 + α). For the general elliptical case, the sets L(α;P ) are obtained by

considering affine transformations of the spherically symmetric case. �

PROOF OF EQUATION (15). When � = Id , P has density g(x′x) and
the marginal density of x1 is given by fo(x1). It then follows that fo(0) =∫
�d−1 g(x′

2x2) dx2, where x2 ∈ �d−1. Application of the standard polar transforma-
tion to x2 [see, e.g., Proposition 2.23 in Bilodeau and Brenner (1999)] yields (15)
with ωd−1 being the surface area of the unit sphere in �d−1. �

PROOF OF BOUND (18). Let y = r(α,u)u. Then by definiton y ∈ L(α;P )

and so π(y;P ) ≥ 1
2 − α. This implies P {H(−u,y)} ≥ 1

2 − α. However,
P {H(−u,y)} = 1 − Fu(u

′y) = 1 − Fu(r(α,u)). Thus, Fu(r(α,u)) ≤ 1
2 + α

and (18) then follows. �

PROOF OF THEOREM 3.4. We first show that for any Q, Med(P (ε,Q)) ⊂
L( ε

1−ε
;P ). To do so, we note that π(0;P (ε,Q)) ≥ 1−ε

2 and so �(P (ε,Q)) ≥
1−ε

2 . Now π(y;P (ε,Q)) ≤ (1 − ε)π(y;P ) + ε, and so if y /∈ L( ε
1−ε

;P ),

then π(y;P ) < 1
2 − ε

1−ε
and, consequently, π(y,P (ε,Q)) < 1−ε

2 . Hence, if
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y /∈ L( ε
1−ε

;P ), then y /∈ Med(P (ε,Q)), which implies Med(P (ε,Q)) ⊂
L( ε

1−ε
;P ). The results concerning the maximal bias function then follow since

Theorem 3.1 states that if x is in the interior of L( ε
1−ε

;P ) then T (P (ε, x)) = x.
The results on the maximum bias function imply that ε∗(T ;P ) ≥ 1

3 . To
show ε∗(T ;P ) ≤ 1

3 and hence equality, consider P (ε, x) with ε > 1
3 . Now, by

considering any half-plane that does not contain x, we see that π(y;P (ε, x)) ≤
1−ε

2 < ε for any y �= x. However, π(x;P (ε, x)) ≥ ε and so T (P ) = x, which can
be taken to be arbitrarily large. �

PROOF OF THEOREMS 4.1 AND 4.2. To begin, note that π(0;P (ε,Q)) ≥
(1 − ε)�(P ), which implies �(ε;P ) ≥ (1 − ε)�(P ) and hence δ(ε;P ) ≥ 0 and
εL(T ;P ) ≥ �(P)

1+�(P)
. Thus, we see that Theorem 4.1 is a corollary to Theorem 4.2.

The proof of the bound on B(ε;T,P ) in Theorem 4.2 is similar to the first
part of the proof of Theorem 3.4. First note that if ε < εL(T ;P ) and we let α =

ε
1−ε

−δ(ε;P ), then 0 ≤ α < �(P ). Now π(y;P (ε,Q)) ≤ (1 − ε)π(y;P ) + ε and
so if y /∈ L(α;P ), then π(y;P ) < �(P ) − α and, consequently, π(y;P (ε,Q)) <

�(ε;P ). Hence, if y /∈ L(α;P ), then y /∈ Med(P (ε,Q)), which implies
Med(P (ε,Q)) ⊂ L( ε

1−ε
;P ). This gives us the stated bound on B(ε;T,P ).

The bound on the maximum bias in Theorem 4.2 implies ε∗(T ;P ) ≥
εL(T ;P ). The inequality εL(T ;P ) ≥ 1

d+1 follows since from Lemma 6.3 in

Donoho and Gasko (1992) we know that �(ε;P ) ≥ 1
d+1 , and hence εL(T ;P ) =

�(εL(T ;P ),P ) ≥ 1
d+1 . The proof that ε∗(T ;P ) ≤ 1

3 is identical to its proof in
Theorem 3.4. �

Before giving the proof for Theorem 4.3, we need some results which
characterize Med(P (ε,Q)). As a consequence of these results, we also obtain
some new results on the uniqueness of the deepest point. The uniqueness results
are not needed for the proof of Theorem 4.3. We state them for completeness.
Note that the second condition of the following theorem is satisfied whenever
infu∈Sd−1 fu(0) > 0.

THEOREM 5.1. If P is absolutely continuous with respect to Lebesgue
measure on �d and P (0 ≤ u′X ≤ δ) > 0 for all u ∈ Sd−1 and δ > 0, then:

(a) µ ∈ Med(P ) if and only if the set of all closed halfspaces Hµ =
{H(u,µ) :P {H(u,µ)} = π(µ;P )} covers �d .

(b) If the set of interiors of Hµ, that is, the set of all open halfspaces
{int(H(u,µ)) :H(u,µ) ∈ Hµ} covers �d/µ, then Med(P ) = {µ}.

(c) In �2, Med(P ) consists of a unique point.

PROOF. Without loss of generality, we let µ = 0.
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(a) If H0 covers �d , then, for any x �= 0, there is a half space H(u,0) ∈ H0 such
that x ∈ H(u,0), and hence π(x;P ) ≤ P {H(u,x)} ≤ P {H(u,0)} = π(0;P ).
Thus, 0 ∈ Med(P ).

On the other hand, assume 0 ∈ Med(P ) and for any v ∈ Sd−1, let vn = v/n.
Then there is a sequence un ∈ Sd−1, such that π(vn;P ) = P {H(un, vn)} ≤
π(0;P ) ≤ P {H(un,0)}. This implies that if un

′vn > 0, then P (0 ≤ un
′X ≤

un
′vn) = 0, which contradicts the conditions of the theorem. We thus have

un
′vn ≤ 0 and hence un

′v ≤ 0. Now, since un ∈ Sd−1, there is a convergent
subsequence um with say u0 as its limit. For this u0, we have u0

′v ≤ 0
and consequently v ∈ H(u0,0). Furthermore, we also have P {H(u0,0)} =
limm→∞ P {H(um,vm)} ≤ π(0;P ) ≤ P {H(u0,0)}, which implies H(u0,0) ∈ H0.
Therefore Sd−1 and hence �d is covered by H0.

(b) By the conditions of part (b), for any x �= 0, there is an H(u,0) ∈ H0 such
that x ∈ int{H(u,0)}, or equivalently such that u′x < 0. By assumption, P (u′x <

u′X ≤ 0) > 0 and so we have π(x;P ) ≤ P {H(u,x)} < P {H(u,0)} = π(0;P )

and hence Med(P ) = {0}.
(c) Since without loss of generality we take T (P ) = 0, we need to show that

Med(P ) = {0}. If π(0;P ) = 1
2 , then P must be halfspace symmetric about 0 (since

any probability measure on a circle that gives mass 1
2 to each closed half circle is

symmetric and continuous). It readily follows that H(u,0) ∈ H0 for any u ∈ S1

and hence the set of interiors of H0 covers �2. The uniqueness of the median
follows from part (b).

If π(0;P ) �= 1
2 , then π(0;P ) < 1

2 since P is absolutely continuous [see Donoho
and Gasko (1992)]. By part (b), it suffices to prove that the set of interiors of H0
covers �2/0. Suppose this is not true, that is, suppose there exists an x �= 0 which
is not covered by the interiors of H0. By part (a), however, we know H0 covers �2.
Together, this implies that H0 = {H(u,0),H(−u,0)} with u ⊥ x, which in turn
implies π(0;P ) = 1

2 , a contradiction. �

PROOF OF THEOREM 4.3. By Theorem 5.1(a), since by assumption T (P ) = 0
and hence 0 ∈ Med(P ), we know that H0 covers �d . We can choose a finite
subcovering, say {H(ui,0) : i = 1, . . . , k}. For each ui and ε > 0, define ai,ε > 0
such that P {H(ui,−ai,εui)} = π(0;P )− ε

1−ε
.

We begin by proving the claim that L( ε
1−ε

;P ) ⊂ ⋂
i=1,...,k H(−ui,−aiui).

To do so, note that if y /∈ ⋂
i=1,...,k H(−ui,−ai,εui), then u′

iy < −ai,ε for
some i = 1, . . . , k. For such i, we then have P {H(ui, y)} < P {H(ui,−ai,εui)} =
π(0;P ) − ε/(1 − ε). This implies y /∈ L( ε

1−ε
;P ), and so the claim follows.

Combining this claim with Theorem 4.1, we obtain B(ε :T,P ) ≤
‖⋂

i=1,...,k H(−ui,−aiui)‖. Now,
⋂

i=1,...,k H(−ui,−aiui) is a polyhedron. Mo-
reover, ai,ε = F−1

ui
(π(0;P )) − F−1

ui
(π(0;P ) − ε/(1 − ε)) and so limε→0

ai,ε

ε
=

{fui
(0)}−1. Hence, lim supε→0 ‖⋂

i=1,...,k H(−ui,−ai,εui)‖/ε < ∞, which com-
pletes the proof. �
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