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NORMAL, GAMMA AND INVERSE-GAUSSIAN ARE
THE ONLY NEFS WHERE THE BILATERAL UMPU

AND GLR TESTS COINCIDE

BY SHAUL K. BAR-LEV, DAOUD BSHOUTY AND GÉRARD LETAC

University of Haifa, Technion and Université Paul Sabatier

Consider an NEF F on the real line parametrized by θ ∈ �. Also
let θ0 be a specified value of θ . Consider the test of size α for a simple
hypothesis H0 : θ = θ0 versus two sided alternative H1 : θ �= θ0. A UMPU
test of size α then exists for any given α. Suppose that F is continuous.
Therefore the UMPU test is nonrandomized and then becomes comparable
with the generalized likelihood ratio test (GLR). Under mild conditions we
show that the two tests coincide iff F is either a normal or inverse Gaussian
or gamma family. This provides a new global characterization of this set of
NEFs. The proof involves a differential equation obtained by the cancelling
of a determinant of order 6.

1. Introduction. Consider a natural exponential family (NEF) F = F(µ)

generated by a positive measure µ on the real line R:

F(µ)= {
P (θ,µ)(dx)= exp{θx − kµ(θ)}µ(dx) : θ ∈�(µ)}(1)

where

Lµ(θ)=
∫
R

exp(θx)µ(dx)= ekµ(θ),

D(µ)= {θ ∈R :Lµ(θ) <∞},(2)

�(µ)
.= intD(µ).

Consider the testing of a simple hypothesis versus a two-sided alternative:

H0 : θ = θ0 versus H1 : θ �= θ0,(3)

where θ0 is fixed but arbitrary in �(µ). A uniformly most powerful unbiased
(UMPU) test of size α for testing (3) exists for any given α [see Lehmann (1986)].
The test function of such a UMPU test is given by

ϕ(x)=



1, if x < c1 or x > c2,
γi, if x = ci for i = 1,2,
0, if c1 < x < c2.

(4)
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The critical points c1 and c2 in (4) are uniquely determined as the simultaneous
solution of the equations

α =Eθ0(ϕ(X))(5)

and

αEθ0(X)=Eθ0(Xϕ(X)).(6)

Such a UMPU test exists for any size α ∈ (0,1). For discrete distributions
(i.e., when the NEF F is generated by a counting measure) this UMPU test is
randomized for almost all tests of size α (except perhaps on a countable set of α
values depending on the support points of F ). If F is generated by a continuous
measure then the UMPU test is nonrandomized, in which case γi = 0 for i = 1,2,
and the UMPU test function attains the values 1 and 0 only.

On the other hand, the generalized likelihood ratio (GLR) test is a nonrandom-
ized test and is given by a test function of the form:

ϕ1(x)=
{

1, if g(x)≤ λ0,

0, otherwise,
(7)

where g(x) is the GLR statistic and λ0 is determined by the equation

α =Eθ0(ϕ1(X)).(8)

Accordingly, for delineating situations in which the UMPU and GLR tests coincide
for all size α, the UMPU test must be nonrandomized. Evidently, such a situation
occurs only when the NEF F is generated by a continuous measure. In such a case,
the distribution of the likelihood ratio statistic g(x) is also continuous: this comes
from the fact that since we are dealing with an NEF model, g is analytic [see (13)].
Consequently, the two tests are then comparable for any size α.

The aim of the present paper is to prove under some regularity conditions, that
the UMPU and GLR tests for testing (3) coincide if and only if up to an affine
transformation, F is either a normal, inverse Gaussian or gamma family. This set
of families has been characterized in the literature by Blaesild and Jensen (1985).
Our result provides therefore an additional new characterization. The “only if”
part of the statement is proved in Section 3. Section 2 gathers some required
preliminaries and notation, a formal description of the problem of the coincidence
of the two tests, and the proof of the “if” part of the characterization. Some of the
painful computations of Section 3, like a derivative of order 7 and a determinant
of order 6 whose entries are functions, have been performed with the computer
software Mathematica.

We should remark that if the set of hypotheses is one-sided versus one-sided
alternative, for example,H0 : θ ≤ θ0 versusH1 : θ > θ0, then the two tests coincide
for any continuous NEF F . In such a situation both tests are nonrandomized and
there is only one critical value which is solved by the same unique equation. It also
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should be noted that our characterization does not seem to be extended to NEFs
on R2. Indeed, consider the NEF on R2 which is associated to the normal family
on R with two unknown parameters m and σ 2, where m is the mean and σ 2 the
variance. (These parameters are not the natural parameters of the associated NEF.)
Then, for testing H0 :σ 2 = σ 2

0 versus H1 :σ 2 �= σ 2
0 , where σ 2

0 is fixed but arbitrary
andm is unknown, the GLR test does not coincide with the UMPU test. In fact the
corresponding GLR test is biased in this case as shown in Stuart and Ord [(1991),
Example 22.5, page 258]. Note, however, that H0 in the latter example is a
composite hypothesis whereas in our characterization H0 is a simple hypothesis.

2. Mathematical description of the problem. We first introduce some
notation and basic definitions and properties of NEFs [for a thorough description
see Letac and Mora (1990)]. Let µ be a positive, non-Dirac measure on R such
that �(µ) as defined by (2) is not empty. The NEF F = F(µ) generated by µ is
given by (1). Note that the cumulant function kµ is strictly convex and real analytic
on �(µ) and that

k′
µ(θ)=

∫
R
x exp{θx − kµ(θ)}µ(dx)

is the mean function of F . The open interval �F = k′
µ(�(µ)) is called the

mean domain of F . Since the map θ 
→ k′
µ(θ) is one-to-one, its inverse function

ψµ :�F →�(µ) is well defined. Hence the map m 
→ P (m,F )= P (ψµ(m),µ)

is one-to-one from �F onto F and is called the mean domain parameterization
of F .

The variance of the probability P (m,F ) is VF (m) = 1/ψ ′
µ(m) = k′′

µ(θ). The
map m→ VF (m) from �F into (0,∞) is called the variance function (VF) of F .
In fact, the VF of an NEF F is a pair (VF ,�F ). It uniquely determines an NEF
within the class of NEFs. Morris (1982) characterized all NEFs having quadratic
VFs and Letac and Mora (1990) characterized all NEFs having a cubic VFs.

The VFs of the form (VF ,�F ) = (σ 2,R), (Am2, (0,∞)) and (Bm3, (0,∞))

where A and B are positive constants correspond, respectively, to families of
normal, gamma and inverse Gaussian. Let fα,β (F ) be the image of a NEF F under
the affine transformation x 
→ αx+ β . Then by applying such a transformation on
the above three categories of NEFs, their VFs become C1σ

2, (C2m + C3)
2 and

(C4m+ C5)
3, respectively, for suitable constants Ci and a suitable change of �F

(depending, of course, on α and β). Consequently, the latter three VFs represent
affine transformations of the normal, gamma and inverse Gaussian NEFs. We shall
use this fact in Theorem 3 in which we provide a characterization of this set of
NEFs.

We also need one more property of NEFs, namely steepness. The measure µ or
the NEF F = F(µ) are called steep if �F = intC(µ), where C(µ) denotes the
closed convex support of µ [Barndorff-Nielsen (1978) gives a characterization
of the steepness of an NEF]. Moreover, if x is the sample mean, and if µ is
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continuous and steep, the maximum likehood estimate (MLE), θ̂ = θ̂ (x), exists
and is the unique solution of the maximum likelihood equation k′(θ̂) = x exists,
since x ∈�F a.s.

If F is steep and and if µ(dx) = h(x) dx the test function of the UMPU test
in (4) becomes

ϕ(x)=
{

1, if x ≤ c1 or x ≥ c2,

0, if c1 < x < c2.
(9)

Whereas the two critical points c1 and c2 in (5) and (6) are determined by the two
equations as

1 − α = Pθ0(c1 <X < c2)(10)

and ∫ c2

c1

xeθ0x−kµ(θ0)h(x) dx =m0

∫ c2

c1

eθ0x−kµ(θ0)h(x) dx,(11)

where m0 = k′
µ(θ0)=Eθ0(X) and where we have used (10) in (6).

The test function ϕ1(x) of the GLR test is given in (7). Let us give an expression
for the likelihood ratio test statistics g(x). This will allow us then to compare the
two tests. For testing the hypothesis in (4), g(x) has the following form:

g(x)= h(x) exp(θ0x − kµ(θ0))

supθ∈�(µ){h(x) exp(θx − kµ(θ))} = exp{(θ0x − kµ(θ0))}
exp(θ̂x − kµ(θ̂x))

.(12)

Since x ∈�F µ-a.e. we can write θ̂ =ψµ(x) so that

sup
θ∈�(µ)

{θx − kµ(θ)} = xψµ(x)− kµ(ψµ(x))
.= k∗

µ(x),

where k∗
µ :�F → R is called the Legendre transform of kµ. Hence, (11) becomes

g(x)= exp
(
θ0x − kµ(θ0)− k∗

µ(x)
)
,(13)

where g :�F → (0,1). The function logg is strictly concave on �F and attains a
unique maximum at m0 = k′

µ(θ0) with g(m0)= 1. Fix λ0 = (0,1), then

g(x) > λ0 ⇐⇒ c1 < x < c2, where g(c1)= g(c2)= λ0.(14)

Hence the GLR test function (7) becomes

ϕ1(x)=
{

1, if x ≤ c1 or x ≥ c2,

0, if c1 < x < c2,
(15)

where, by using (8) and (14), the numbers c1 and c2 are determined by the two
equations

1 − α = Pθ0(c1 <X < c2)(16)



1528 S. K. BAR-LEV, D. BSHOUTY AND G. LETAC

with

g(c1)= g(c2)= λ0.(17)

Accordingly, by comparing the two equations (10) and (11) relating to the UMPU
test with the respective equations (16) and (17) relating to the GLR test, it follows
that the two tests coincide iff the two relations (11) and (17) hold for the same
numbers c1 and c2. More specifically, fix θ ∈�(µ) and consider the two functions
on the mean domain �F of the NEF F = F(µ),

Gθ(y)=
∫ ∞
y

(
x − k′

µ(θ)
)
P (θ,µ)(dx),

gθ (x)= exp
(
θx − kµ(θ)− k∗

µ(x)
)(18)

and assume that F is steep and that µ is continuous. We want to find F such that
for all θ the two curves

{
(c1, c2) ∈�F ×�F ; c1 ≤ c2; Gθ(c1)−Gθ(c2)= 0

}
= {

(c1, c2) ∈�F ×�F ; c1 ≤ c2; gθ (c1)− gθ (c2)= 0
}(19)

coincide. Examples of such curves are presented in the proof of Theorem 1.
Under the assumptions that F is steep, that µ is absolutely continuous and that

its density is C2 we show in Section 3 that (19) is statisfied for all θ only for
the normal, gamma and inverse Gaussian families. Note that the characterization
of this set of NEFs given by Blaesild and Jensen (1985) is using the same kind
of regularity assumptions. To remove them seems to be a hard problem. The
next theorem shows the much easier direct result: these families and their affine
transformations fulfill (19).

THEOREM 1. Suppose that µ(dx) is either:

(i) exp(−x2/2) dx/
√

2π , or
(ii) xa−11(0,∞)(x) dx/-(a) for some a > 0, or

(iii) ax−3/2 exp(−a2/(2x))1(0,∞)(x)) dx/
√

2π for some a > 0.

For θ ∈ �(µ) consider the two functions Gθ and gθ defined by (18) on the
mean domain �F of the NEF F = F(µ). Then there exists a strictly increasing
continuous function z 
→Hθ(z) on (0,1) such that

Gθ(y)=Hθ(gθ (y))

for all y in �F . In particular, (19) holds and the two tests GLR and UMPU
coincide for these NEFs as well as for their affine transformations.
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PROOF. Note that the end of the statement is obvious. We prove the first part
by inspection.

The normal case. Here �(µ)=�F = R, kµ(θ)= θ2/2 and

gθ (x)= e−(x−θ)2/2,

Gθ(y)=
∫ ∞
y
(x − θ)e−(x−θ)2/2 dx√

2π
= 1√

2π
e−(y−θ)2/2.

Thus Hθ(z)= z√
2π

. The curves (19) are the lines c1 + c2 = constant.

The gamma case. Here �(µ) = (−∞,0), �F = (0,∞), kµ(θ) = −a log(−θ)
and

gθ (x)=
(−θe
a

)a
xaeθx,

Gθ(y)=
∫ ∞
y

(
x + a

θ

)
eθx+a log(−θ) xa−1

-(a)
dx = 1

−θ e
θy+a log(−θ) ya

-(a)
.

Thus Hθ(z) = Cθz, where Cθ is a positive constant. The curves (19) are
log c2−log c1

c2−c1
= constant.

The inverse Gaussian case. This case is somewhat harder. Here �(µ) =
(−∞,0), �F = (0,∞), kµ(θ) = −a√−2θ . For simplification we denote s =√−2θ . We get

gθ (x)= e−(xs−a)2/(2x), Gθ (y)= a

s2
√

2π

∫ ∞
y
(xs − a)x−3/2gθ (x) dx.

We now show that the function

Hθ(z)= 2a

s2
√

2π

∫ z

0
(4as − 2 log t)−1/2 dt

satisfies Gθ(y) = Hθ(gθ (y)). To prove this we observe that the derivative of
the y 
→ Gθ(y) − Hθ(gθ (y)) is 0 (we skip this standard computation). Thus the
function is constant. We also observe that limy→0Gθ(y) = 0, limy→0 gθ (y) = 0,
which proves that the constant is 0. The curves (19) are the hyperbolas c2c1 =
constant. �

3. Main result. In this section we show the hard part of the characterization.
We work with a fixed NEF F = F(µ). Henceworth for simplicity we suppress the
dependence on µ and F and write k, ψ , �V and � instead of kµ,ψµ,�(µ),VF
and �F , respectively. In what follows we also use f (k), k = 1,2, . . . , to denote the
kth derivative of a mapping f . Since the proof is long and delicate we split it into
three theorems.
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THEOREM 2. Suppose that (19) holds for all θ ∈�. Assume that F is steep,
that µ(dx)= h(x) dx and that h is twice continuously differentiable on �. Then
h(t) satisfies

2h′(t)ψ ′(t)− h(t)ψ ′′(t)+ 2h(t)ψ ′(t)ψ(t)≡ 0(20)

for all t in �. Furthermore, h is real analytic on the open interval �.

PROOF. We fix θ0 ∈�. For simplicity set gθ0(t)= exp(g1(t)). Then

g1(t)= θ0t − k(θ0)− tψ(t)+ k(ψ(t)).(21)

Let c1 ≤ m0 ≤ c2, then gθ0(c1) = gθ0(c2) = λ0 ∈ [0,1] iff g1(c1) = g2(c2) =
logλ0 ∈ (−∞,0].

The basic idea of the proof is to solve the equation

g1(c1)= g1(c2)= −ε2/2, ε > 0,(22)

for c1 and c2. Note that g1 is increasing on the left of m0 and decreasing on the
right of m0, and c1(ε) and c2(ε) are well defined. In these two intervals g1 is
not invertible in a closed form, but as we are going to see, for small values of ε,
c1 = c1(ε) and c2 = c2(ε) are real analytic in ε so that they can be traced by
a power series expansion. To see this we observe that the function g1, which is
analytic at m0 satisfies

g1(m0)= g′
1(m0)= 0.(23)

This comes from the fact that g′
1(t) = θ0 − ψ(t) − tψ ′(t) + k′(ψ(t))ψ ′(t) =

θ0 −ψ(t). Since g′′
1 (t)= −ψ ′(t) we may write

g1(t)= −(t −m0)
2

2! ψ ′(m0)− (t −m0)
3

3! ψ ′′(m0)+O
(
(t −m0)

4)
.(24)

This last equality and the implicit function theorem for analytic functions show
that the two functions c1 and c2 are analytic functions of ε at 0.

We set

c(ε)=
∞∑
i=0

αiε
i = α0 + α1ε+ α2ε

2 +O(ε3),

where c is either c1 or c2. We have c1(0)= c2(0)= α0 =m0.
Consequently, from (24),

g1(c(ε))= −(α1ε+ α2ε
2 +O(ε3))2

2! ψ ′(m0)

− (α1ε+ α2ε
2 +O(ε3))3

3! ψ ′′(m0)+O(ε4)= −ε2/2
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yields
(

1 − α2
1ψ

′(m0)

2

)
ε2 −

(
α1α2ψ

′(m0)+ α3
1ψ

′′(m0)

6

)
ε3 =O(ε4).

By comparing coefficients we conclude that

α2
1 = 1

ψ ′(m0)
and α2 = −α

2
1ψ

′′(m0)

6ψ ′(m0)
= − ψ ′′(m0)

6(ψ ′(m0))
2 .

Hence,

c1(ε)=m0 − ε(ψ ′(m0))
−1/2 − ε2 ψ ′′(m0)

6(ψ ′(m0))2
+O(ε3)

and

c2(ε)=m0 + ε(ψ ′(m0))
−1/2 − ε2 ψ ′′(m0)

6(ψ ′(m0))2
+O(ε3).

It remains now to substitute c1(ε) and c2(ε) in (10), to calculate the integral

l(ε)=
∫ c2(ε)

c1(ε)
(x −m0)h(x) exp

(
θ0x − k(θ0)

)
dx,(25)

and then to equate it to 0. Now, by changing the variable of integration, we
obtain

l(ε)= e−k(θ0)+m0θ0

∫ c2(ε)

c1(ε)
(x −m0)h(x)e

θ0(x−m0) dx

= e−k(θ0)+m0θ0

∫ c2(ε)−m0

c1(ε)−m0

th(t +m0)e
θ0t dt

= e−k(θ0)+m0θ0

∫ c2(ε)−m0

c1(ε)−m0

[
t
(
h(m0)+ th′(m0)+O(t2)

)(
1 + θ0t +O(t2)

)]
dt

= e−k(θ0)+m0θ0

[
t2

2
h(m0)+ t3

3

(
h′(m0)+ θ0h(m0)

) +O(t4)

]
c2(ε)−m0

c1(ε)−m0

= ε3e−k(θ0)+m0θ0

[−ψ ′′(m0)h(m0)

3(ψ ′(m0))5/2
+ 2

3

(
h′(m0)+ θ0h(m0)

(ψ ′(m0))3/2

)]
+O(ε4)≡ 0.

Hence

−ψ ′′(m0)h(m0)+ 2
(
h′(m0)+ θ0h(m0)

)
ψ ′(m0)= 0.

By noting that θ0 = ψ(m0), the result (20) follows.
Finally, we observe that in (20), a division by ψ ′(t) = 1/V (t) on �F is

possible and h′ = ah where a = ψ ′′/(2ψ) − ψ is real analytic on �F . Thus
h(t)=C exp

∫
a(t) dt is real analytic on �F and the proof is complete. �
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Since l(ε) as defined by (25) is 0, we obtain that l(5)(0) = 0 and l(7)(0) = 0.
We are going to use these high order variations to reduce (20) into equations that
involve ψ and its derivatives only.

THEOREM 3. Under the hypothesis and notation of Theorem 2 we have

12ψ ′′3 − 14ψ ′ψ ′′ψ(3) + 3ψ ′2ψ(4) = 0,(26)

12ψ ′′5 − 17ψ ′ψ ′′3ψ(3) + 6ψ ′2ψ ′′(ψ(3))2 = 0.(27)

PROOF. We shall use (27) for the characterization and not (26). The principle
of the proof of (27) will be explained by showing (26) only. For simplicity set
h(t)= ∑3

i=0 hi(t −m0)
i +O((t −m0)

4) and ψ(t)= ∑∞
i=0 pi(t −m0)

i . Consider
the function l defined by (25). Then elementary calculations show that l(5)(0)= 0
reduces to

24h3p
3
1 + 72h1p

2
0p

3
1 + 24h0p

3
0p

3
1 + 12h2p

2
1(6p0p1 − 5p2)

− 120h1p0p
2
1p2 − 60h0p

2
0p

2
1p2 + 70h1p1p

2
2 + 70h0p0p1p

2
2(28)

− 35h0p
3
2 − 30h1p

2
1p3 − 30h0p0p

2
1p3 + 35h0p1p2p3 − 6h0p

2
1p4 = 0.

Now (20) and two successive derivatives thereof read

2h1p1 + 2h0p0p1 − h0p2 = 0,(29)

2h2p1 + 2h1p0p1 + 2h0p
2
1 + h1p2 + 2h0p0p2 − h0p3 = 0,(30)

2h3p1 + 3h2p2 + 2h0p1p2

+ 4p1(h1p1 + h0p2)(31)

+ 2p0(h2p1 + 2h1p2 + h0p3)− h0p4 = 0.

By noting that (28), (29), (30) and (31) form a homogeneous linear system in
hi, i = 0,1,2,3, it follows that either h0 = h1 = h2 = h3 = 0, or the determinant
of the coefficient matrix must vanish, which is equivalent to

12p3
2 − 14p1p2p3 + 3p2

1p4 = 0.(32)

Recall that from Theorem 2 that the density h is analytic on the open interval�. If
Z ⊂� is the set of zeroes of h, then (32) occurs for m0 /∈ Z. Thus (26) holds for
t =m0 /∈ Z. In other terms, the first member of (26) is an analytic function which
is 0 on � \ Z. Now, since h is not identically 0, the principle of isolated zeroes
applied to h and Z shows that (26) holds on the whole interval �. (We thank the
referee for pointing out that Z has to be taken into account.) The proof of (26) is
complete.

The same procedure applied to l(7)(0) = 0, to (29), (30), (31) and to two
equations obtained from (20) by two more derivations provides a homogeneous
linear system in (hi)

5
i=0. Equating the determinant of the system to zero

yields (27). We skip the details, which can be checked by Mathematica. �

We now use (27) to conclude.
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THEOREM 4. Under the hypothesis and notations of Theorem 2, up to affinity,
F is an NEF corresponding to one of the normal, gamma or inverse Gaussian
families.

PROOF. We first translate the differential equation in ψ (27) into a differential
equation for the variance function V = 1/ψ ′ of the NEF F ,

1

V 10
(−2V ′5 + 7VV ′3V ′′ − 6V 2V ′V ′′2)= 0.(33)

Now, the miracle is that (33) factors into the three factors related to the three groups
of NEF,

V ′(3VV ′′ − 2V ′2)(2VV ′′ − V ′2)= 0.(34)

Since the function V is real analytic on the open interval� the principle of isolated
zeros implies that one of the three factors in (34) is identically 0 on �. Therefore

either V ′ = 0 or
V ′′

V ′ = 2

3

V ′

V
or

V ′′

V ′ = 1

2

V ′

V
.

Straightforward integration yields

either V =A1 or V ′ =A2V
2/3 or V ′ =A3V

1/2,

where A1,A2,A3 are constants.
Actually, in the two latter cases, we have to use the fact that V is a nonconstant

analytic function on �, thus the zeroes of V ′ are isolated ones. Furthermore,
V never vanishes on�. Therefore the two equalities V ′ =A2V

2/3 or V ′ =A3V
1/2

which hold outside of this set of zeroes also show that this set is empty (we thank
the referee for this point).

Again in the two later cases, another integration gives

V (t)= (C3t +C4)
3 or V (t)= (C1t +C2)

2

and the desired result follows. Note that the order of the differential equation (27)
is three while (26) has order four. Thus the translation of (26) into an equation
for V gives 2V ′3 − 4VV ′V ′′ + 3V 2V ′′′ = 0, a differential equation of order three
which is more complicated than (34). �
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