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We develop simple methods for constructing parameter priors for model
choice among directed acyclic graphical (DAG) models. In particular, we
introduce several assumptions that permit the construction of parameter priors
for a large number of DAG models from a small set of assessments. We then
present a method for directly computing the marginal likelihood of every
DAG model given a random sample with no missing observations. We apply
this methodology to Gaussian DAG models which consist of a recursive set of
linear regression models. We show that the only parameter prior for complete
Gaussian DAG models that satisfies our assumptions is the normal-Wishart
distribution. Our analysis is based on the following new characterization of
the Wishart distribution: let W be an n×n, n≥ 3, positive definite symmetric
matrix of random variables and f (W) be a pdf of W . Then, f (W) is a
Wishart distribution if and only if W11 − W12W−1

22 W ′12 is independent of
{W12,W22} for every block partitioning W11,W12,W ′12,W22 of W . Similar
characterizations of the normal and normal-Wishart distributions are provided
as well.

1. Introduction. Directed acyclic graphical (DAG) models have an increas-
ing number of applications in statistics [Cowell, Dawid, Lauritzen and Spiegel-
halter (1999)] as well as in decision analysis and artificial intelligence [Howard
and Matheson (1981), Heckerman, Mamdani and Wellman (1995), Pearl (1988)].
A DAG model m = (s,Fs) for a set of variables X = {X1, . . . , Xn} each asso-
ciated with a set of possible values Di , respectively, is a set of joint probability
distributions for D1 × · · · ×Dn specified via two components: a structure s and
a set of local distribution families Fs . The structure s for X is a directed graph with
no directed cycles (i.e., a directed acyclic graph) having for every variable Xi in X
a node labeled Xi with parents labeled by Pam

i . The structure s represents the set
of conditional independence assertions, and only these conditional independence
assertions, which are implied by a factorization of a joint distribution for X given
by p(x) =∏n

i=1 p(xi|pam
i ), where x= (x1, . . . , xn) is a value for X (an n-tuple)

and xi is a value for Xi and where pam
i is the value for Pam

i as in x. When xi has
no incoming arcs in m (no parents), p(xi |pam

i ) stands for p(xi). The local distri-
butions are the n conditional and marginal probability distributions that constitute
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the factorization of p(x). Each such distribution belongs to the specified family of
allowable probability distributions Fs . A DAG model is often called a Bayesian
network, although the latter name sometimes refers to a specific joint probability
distribution that factorizes according to a DAG, and not, as we mean herein, a set
of joint distributions each factorizing according to the same DAG. A DAG model is
complete if it has no missing arcs. Note that any two complete DAG models for X
encode the same assertions of conditional independence—namely, none. Also note
that a complete DAG determines a unique ordering of the variables in which Xi

precedes Xj if and only if Xi→Xj is an arc in this DAG.
In this paper, we assume that each local distribution is selected from a family Fs

which depends on a finite set of parameters θm ∈ �m (a parametric family).
The parameters for a local distribution are a set of real numbers that completely
determine the functional form of p(xi |pam

i ) when xi has parents and of p(xi)

when xi has no parents. We denote by mh the model hypothesis that the true
joint probability distribution of X is perfectly represented by a structure s of a
DAG model m with local distributions from Fs—namely, that the joint probability
distribution satisfies only the conditional independence assertions implied by this
factorization and none other. Consequently, the true joint distribution for a DAG
model m is given by

p(x|θm, mh)=
n∏

i=1

p(xi |pam
i , θi, mh),(1)

where θ1, . . . , θn are subsets of θm. Whereas in a general formulation of
DAG models, the subsets {θi}ni=1 could possibly overlap allowing several local
distributions to have common parameters, in this paper we shall shortly exclude
this possibility (Assumption 5). Note that θm denotes the union of θ1, . . . , θn for a
DAG model m.

We consider the Bayesian approach when the parameters θm and the model
hypothesis mh are uncertain but the parametric families are known. Given data
d = {x1, . . . , xN }, a random sample from p(x|θm, mh) where θm and mh are the
true parameters and model hypothesis, respectively, we can compute the posterior
probability of a model hypothesis mh using

p(mh|d)= cp(mh) p(d|mh)= cp(mh)

∫
p(d|θm, mh) p(θm|mh) dθm,(2)

where c is a normalization constant. We can then select a DAG model that has a
high posterior probability or average several good models for prediction.

The problem of selecting an appropriate DAG model, or sets of DAG models,
given data, poses a serious computational challenge, because the number of DAG
models grows faster than exponentially in n. Methods for searching through the
space of model structures are discussed, for example, by Cooper and Herskovits
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(1992), Heckerman, Geiger and Chickering (1995) and Friedman and Goldszmidt
(1997).

From a statistical viewpoint, an important question which needs to be addressed
is how to specify the quantities p(mh), p(d|θm, mh), p(θm|mh), needed for
evaluating p(mh|d) for every DAG model m that could conceivably be considered
by a search algorithm. Buntine (1991) and Heckerman, Geiger and Chickering
(1995) discuss methods for specifying the priors p(mh) via a small number of
direct assessments.

Herein, we develop practical methods for assigning parameter priors, p(θm|mh),
to every candidate DAG model m via a small number of direct assessments.
Our method is based on a set of assumptions the most notable of which is the
assumption that complete DAG models represent the same set of distributions,
which implies that data cannot distinguish between two complete DAG models.
Multivariate Gaussian, multinomial and multivariate t-distributions satisfy this
assumption. Another assumption is likelihood and prior modularity, which says
that the local distribution for xi and its parameter priors depends only on the
parents of xi but not on the entire description of the structure. These assumptions,
together with global parameter independence, introduced by Spiegelhalter and
Lauritzen (1990), are the heart of the proposed methodology.

The methodology described herein for setting priors to DAG models and con-
sequently calculating their marginal likelihoods is an extension of the results by
Dawid and Lauritzen (1993) for decomposable graphical models. For decompos-
able graphical models, which form a set of models that can be regarded both as
DAG models as well as undirected graphical models, the two methodologies are
identical. Our specification of a formal set of assumptions followed by a technical
derivation of this methodology provides an easy access to examine the validity of
the approach and devise alternatives when needed.

The contributions of this paper are as follows: a methodology for specifying
parameter priors for many DAG structures using a few direct assessments
(Section 2); a formula that computes the marginal likelihood for every DAG
model (Section 3); a specialization of this formula to an efficient computation for
Gaussian DAG models (Section 4); and an analysis of complete Gaussian DAG
models which shows that the only parameter prior that satisfies our assumptions is
the normal-Wishart distribution (Section 5). The analysis is based on the following
new characterization of the Wishart, normal, and normal-Wishart distributions.

THEOREM. Let W be an n× n, n ≥ 3, positive definite symmetric matrix of
real random variables such that no entry in W is zero, µ be an n-dimensional
vector of random variables, fW (W) be a pdf of W , fµ(µ) be a pdf of µ, and
fµ,W (µ, W) be a pdf of {µ, W }. Then, fW (W) is a Wishart distribution, fµ(µ) is a
normal distribution, and fµ,W (µ, W) is a normal-Wishart distribution if and only
if global parameter independence holds for unknown W , unknown µ, or unknown
{µ, W }, respectively.
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The assumption of global parameter independence is expressed differently
for each of the three cases treated by this theorem and the proof follows from
Theorems 7, 9 and 10, respectively, proven in Section 5. It should be noted that
a single principle, global parameter independence, is used to characterize three
different distributions.

A similar characterization for the bivariate Wishart, bivariate normal, and
bivariate normal-Wishart distributions has recently been obtained under the
assumption that the pdf is strictly positive, and assuming also some additional
independence constraints—termed standard local parameter independence [Geiger
and Heckerman (1998)]. Another related result is the characterization of the
Dirichlet distribution via global and local parameter independence [Geiger and
Heckerman (1997), Járai (1998)].

2. The construction of parameter priors. In this section, we present
assumptions that simplify the assessment of parameter priors and a method of
assessing these priors. The assumptions are as follows:

ASSUMPTION 1 (Complete model equivalence). Let m1 = (s1,Fs1) be a
complete DAG model for X. The family Fs2 of every complete DAG model
m2 = (s2,Fs2) for X is such that m1 and m2 represent the same set of joint
probability distributions, namely, that for every θm1 there exists θm2 such that
p(x|θm1, mh

1)= p(x|θm2, mh
2) and vice versa.

Two examples where this assumption holds are quite common. One happens
when p(x|θm1, mh

1) and p(x|θm2, mh
2) are multivariate normal distributions and the

other happens when X consists of variables with finite domains and p(x|θm1, mh
1)

and p(x|θm2, mh
2) are unrestricted discrete distributions. In these two cases, all the

local distributions have the same functional form in every ordering of the variables.
If the joint distribution for X is a multivariate t-distribution, then too, all local
conditional distributions have the same functional form [e.g., DeGroot (1970)].
However, unlike the unrestricted discrete and multivariate normal distributions,
for t-distributions, the parameters of the local distributions are dependent which
violates Assumption 5 discussed below.

We now provide an example where this assumption fails. Suppose the set
of variables X = {X1, X2, X3} consists of three variables each with possible
values {xi, xi}, respectively, and s1 is the complete structure with arcs X1→X2,
X1 → X3, and X2 → X3. Suppose further, that the local distributions Fs1
of model m1 are restricted to the logit

p(xi |pam
i , θi, mh)= 1

1+ exp{ai +∑xj∈pam
i

bjixj } ,

where θ1 = {a1}, θ2 = {a2, b12} and θ3 = {a3, b13, b23}.
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Consider now a second complete model m2 for X = {X1, X2, X3} whose
structure consists of the arcs X1→ X2, X1→X3, and X3→ X2. Assumption 1
asserts that the families of local distributions for m1 and m2 are such that the set
of joint distributions for X represented by these two complete models is the same.
In this example, however, if we specify the local families for m2 by also restricting
them to be logit distributions, then the two models will represent different sets
of joint distributions over {X1, X2, X3}. Hence, Assumption 1 will be violated.
Using Bayes rule one can always determine a set of local distribution families that
will satisfy Assumption 1; however, their functional form will usually involve an
integral (and will often violate Assumption 5 below).

Note that whenever two DAG models represent the same set of probability
distributions for X, they must also specify the same set of independence
assumptions. The example with the logit distributions highlights that the converse
does not hold because every complete DAG represents the same independence
assumptions, namely none, and yet complete DAG models can represent different
sets of probability distributions.

Our definition of mh, that the true joint pdf of a set of variables X is perfectly
represented by m, and Assumption 1, which says that two complete models
represent the same set of joint pdfs for X, implies that for two complete models
mh

1 = mh
2 . This is a strong assumption. It implies that p(θm2|mh

2) = p(θm2|mh
1)

because two complete models represent the same set of distributions. It also
implies p(d|mh

1) = p(d|mh
2) which says that the marginal likelihood for two

complete DAG models is the same for every data set, or equivalently, that complete
DAG models cannot be distinguished by data. Obviously, in the example with the
logit distributions, the two models can be distinguished by data because they do
not represent the same set of joint distributions.

ASSUMPTION 2 (Regularity). For every two complete DAG models m1
and m2 for X there exists a one-to-one mapping k1,2 between the parameters
θm1 of m1 and the parameters θm2 of m2 such that the likelihoods satisfy
p(x|θm1, mh

1) = p(x|θm2, mh
2) where θm2 = k1,2(θm1). The Jacobian |∂θm1/∂θm2|

exists and is nonzero for all values of �m1.

Assumption 2 implies p(θm2|mh
1) = | ∂θm1

∂θm2
| p(θm1|mh

1) where θm2 = k1,2(θm1).

Furthermore, due to Assumption 1, p(θm2|mh
2)= p(θm2|mh

1), and thus

p(θm2|mh
2)=

∣∣∣∣∂θm1

∂θm2

∣∣∣∣ p(θm1|mh
1).(3)

For example, suppose x = {x1, x2} has a nonsingular bivariate normal pdf
f (x)= N(x|µ, W) where µ is the vector of means and W = (wij ) is the inverse
of a positive definite covariance matrix. If we write f (x) = fx1(x1)fx2|x1(x2|x1)
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where fx1(x1) = N(x1|e1, 1/v1) and fx2|x1(x2|x1) = N(x2|e2|1 + b12x1, 1/v2|1),
then the following well-known relationships are satisfied:

w11 = 1

v1
+ b2

12

v2|1
, w12 =− b12

v2|1
, w22 = 1

v2|1
,

e1 =µ1, e2|1 =µ2 − b12µ1.

(4)

Note that the transformation between {µ, W } and {e1, v1, e2|1, v2|1, b12} is one-to-
one and onto as long as W is the inverse of a covariance matrix and the conditional
variances v1, v2|1 are positive. The Jacobian of this transformation is given by,∣∣∣∣∂w11, w12, w22, µ1, µ2

∂v1, v1|2, b12, e1, e2|1

∣∣∣∣= v−2
1 v−3

2|1.(5)

Symmetric equations hold when f (x) is written as fx2(x2)fx1|x2(x1|x2) and
so there is a one-to-one and onto mapping between {e1, v1, e2|1, v2|1, b12} and
{e2, v2, e1|2, v1|2, b21}. Note that the parameters µ, W for the joint space are
instrumental for decomposing the needed mapping into a composition of two
mappings.

ASSUMPTION 3 (Likelihood modularity). For every two DAG models m1
and m2 for X such that Xi has the same parents in m1 and m2, the local
distributions for xi in both models are the same, namely, p(xi |pam

i , θi, mh
1) =

p(xi|pam
i , θi, mh

2) for all Xi ∈X.

ASSUMPTION 4 (Prior modularity). For every two DAG models m1 and m2
for X such that Xi has the same parents in m1 and m2, p(θi |mh

1)= p(θi |mh
2).

ASSUMPTION 5 (Global parameter independence). For every DAG model m

for X, p(θm|mh)=∏n
i=1 p(θi |mh).

The likelihood and prior modularity assumptions have been used implicitly
in the work of, for example, Cooper and Herskovits (1992), Spiegelhalter,
Dawid, Lauritzen and Cowell (1993) and Buntine (1994). Heckerman, Geiger
and Chickering (1995) made Assumption 4 explicit in the context of discrete
variables under the name parameter modularity. Spiegelhalter and Lauritzen
(1990) introduced Assumption 5 in the context of DAG models under the name
“global independence.”

Note that the first three assumptions concern the distribution of X whereas the
last two assumptions concern the distribution of the parameters. Obviously, when
the parameters θ1, . . . , θn are not variation independent for every complete DAG
model for X, the assumption of global parameter independence is inconsistent with
the model and cannot be true. Hence, Assumption 5 excludes, for example, the
possibility that two local distributions share a common parameter. On the other
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hand, even when the parameters are variation independent, it is possible to specify
a prior distribution for θ that violates global parameter independence. Cowell,
Dawid, Lauritzen and Spiegelhalter [(1999), pages 191 and 192] highlight this
point.

The assumptions we have made lead to the following significant consequence:
When we specify a parameter prior p(θmc|mh

c ) for one complete DAG model mc,
we also implicitly specify a prior p(θm|mh) for any DAG model m among the super
exponentially many possible DAG models. Consequently, we have a framework in
which a manageable number of direct assessments leads to all the priors needed to
search the model space. In the rest of this section, we explicate how all parameter
priors are determined by the one elicited prior. In Section 4, we show how to elicit
the one needed prior p(θmc|mh

c ) under specific distributional assumptions.
Due to the complete model equivalence and regularity assumptions, we can

compute p(θmc|mh
c ) for one complete model for X from the prior of another com-

plete model for X. In so doing, we are merely performing coordinate transforma-
tions between parameters for different variable orderings in the factorization of
the joint likelihood (3). Thus by specifying the parameter prior for one complete
model, we have implicitly specified a prior for every complete model.

It remains to examine how the prior p(θm|mh) is computed for an incomplete
DAG model m for X from the prior p(θmc|mh

c ) for some complete model mc.
Due to global parameter independence we have p(θm|mh)=∏n

j=1 p(θj |mh) and
therefore it suffices to examine each of the n terms separately. To compute
p(θi |mh), we identify a complete DAG model mc(i) such that Pam

i = Pa
mc(i)

i . As
we have shown, the prior p(θmc(i)|mh

c(i)) is obtained from p(θmc|mh
c ) for every pair

of complete DAG models. Due to global parameter independence p(θmc(i)|mh
c(i))

is a product one term of which is p(θi |mh
c(i)). Finally, due to prior modularity

p(θi |mh) is equal to p(θi |mh
c(i)).

This methodology of constructing priors is described by Heckerman, Geiger and
Chickering (1995) for discrete DAG models and in Section 4 for Gaussian DAG
models. Our method is equivalent to the method of compatible priors devised for
decomposable graphical models [Dawid and Lauritzen (1993)]. Our arguments, via
a set of assumptions, can be regarded as an axiomatic justification for compatible
priors, and as an extension of this method to general DAG models and to any
probability distributions that satisfy Assumptions 1–5. We are currently unaware,
however, of additional probability distributions that satisfy these five assumptions.

The following theorem summarizes the general construction which was formu-
lated to cover both cases: the discrete and the Gaussian.

THEOREM 1. Given Assumptions 1–5, the parameter prior p(θm|mh) for
every DAG model m is determined by a specified parameter prior p(θmc|mh

c )

for an arbitrary complete DAG model mc.



PRIORS FOR DAG MODELS 1419

Theorem 1 shows that once we specify the parameter prior for one complete
DAG model all other priors can be generated automatically and need not be
specified manually. Consequently, together with (2) and because likelihoods can be
generated automatically in a similar fashion, we have a manageable methodology
to automate the computation of p(d|mh) for any DAG model of X which is being
considered by a search algorithm as a candidate model. Next we show how this
computation can be done efficiently.

3. Computation of the marginal likelihood for complete data. For a
given X, consider a DAG model m and a complete random sample d . Assuming
global parameter independence, the parameters remain independent given com-
plete data. That is,

p(θm|d, mh)=
n∏

i=1

p(θi |d, mh).(6)

In addition, assuming global parameter independence, likelihood modularity
and prior modularity, the parameters remain modular given complete data. In
particular, if Xi has the same parents in s1 and s2, then

p(θi|d, mh
1)= p(θi |d, mh

2).(7)

Also, for any Y ⊆ X, define dY to be the random sample d restricted to
observations of Y. For example, if X= {X1, X2, X3}, Y= {X1, X2} and d = {x1 =
{x11, x21, x31}, x2 = {x12, x22, x32}}, then we have dY = {{x11, x21}, {x12, x22}}.
Let Y be a subset of X, and sc be a complete structure for any ordering where
the variables in Y come first. Then, assuming global parameter independence and
likelihood modularity, it is not difficult to show that

p(y|d, mh
c )= p

(
y|dY, mh

c

)
.(8)

Given these observations, we can compute the marginal likelihood as follows,
yielding an important component for searching DAG models via a Bayesian
methodology.

THEOREM 2. Given any complete DAG model mc for X, any DAG model m

for X, and any complete random sample d , Assumptions 1–5 imply

p(d|mh)=
n∏

i=1

p(dPai∪{Xi }|mh
c )

p(dPai |mh
c )

.(9)

PROOF. From the rules of probability, we have

p(d|mh)=
m∏

l=1

∫
p(xl|θm, mh) p(θm|dl, mh) dθm,(10)
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where dl = {x1, . . . , xl−1}. Using (1) and (6) to rewrite the first and second terms
in the integral, respectively, we obtain

p(d|mh)=
m∏

l=1

∫ n∏
i=1

p(xil|pail , θi , mh) p(θi |dl, mh) dθm,

where xil is the value of Xi in the lth data point.
Using likelihood modularity and (7), we get

p(d|mh)=
m∏

l=1

∫ n∏
i=1

p
(
xil|pail , θi , mh

c(i)

)
p
(
θi |dl, mh

c(i)

)
dθm,(11)

where sc(i) is a complete structure with variable ordering Pai , Xi followed by
the remaining variables. Decomposing the integral over θm into integrals over the
individual parameter sets θi , and performing the integrations, we have

p(d|mh)=
m∏

l=1

n∏
i=1

p
(
xil|pail , dl, mh

c(i)

)
.

Using (8), we obtain

p(d|mh)=
m∏

l=1

n∏
i=1

p(xil, pail|dl, mh
c(i))

p(pail |dl, mh
c(i))

=
m∏

l=1

n∏
i=1

p(xil, pail|dPai∪{Xi }
l , mh

c(i))

p(pail|dPai

l , mh
c(i))

(12)

=
n∏

i=1

p(dPai∪{Xi}|mh
c(i))

p(dPai |mh
c(i))

.

By the likelihood modularity, complete model equivalence and regularity assump-
tions, we have that p(d|mh

c(i)) = p(d|mh
c ), i = 1, . . . , n. Consequently, for any

subset Y of X, we obtain p(dY|mh
c(i)) = p(dY|mh

c ) by summing over the vari-
ables in X \Y. Consequently, using (12), we get (9). �

An equivalent approach for computing the marginal likelihood (9) for decom-
posable discrete and Gaussian DAG models has been developed by Dawid and
Lauritzen (1993) using compatible priors.

An important feature of (9), which we now demonstrate, is that two DAG
models that represent the same assertions of conditional independence have the
same marginal likelihood. We say that two structures for X are independence
equivalent if they represent the same assertions of conditional independence.
Independence equivalence is an equivalence relation and induces a set of
equivalence classes over the possible structures for X.
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Verma and Pearl (1990) provide a simple characterization of independence
equivalent structures using the concept of a v-structure. Given a structure s,
a v-structure in s is an ordered node triple (Xi, Xj , Xk) where s contains the arcs
Xi→Xj and Xj ←Xk , and there is no arc between Xi and Xk in either direction.
Verma and Pearl show that two structures for X are independence equivalent if and
only if they have identical edges and identical v-structures. This characterization
makes it easy to identify independence equivalent structures.

An alternative characterization developed by Chickering (1995) and indepen-
dently by Andersson, Madigan and Perlman [(1997), Lemma 3.2] is useful for
proving our claim that independence equivalent structures have the same marginal
likelihood. An arc reversal is a transformation from one structure to another, in
which a single arc between two nodes is reversed. An arc between two nodes is
said to be covered if those two nodes would have the same parents if the arc were
removed.

THEOREM 3 [Chickering (1995), Andersson, Madigan and Perlman (1997)].
Two structures for X are independence equivalent if and only if there exists a set

of covered arc reversals that transform one structure into the other.

A proof of this theorem can also be found in Heckerman, Geiger and Chickering
(1995).

Theorem 3 implies that if every pair of DAGs that differ by a single covered arc
represents the same set of distributions, then every two independence equivalent
DAGs represent the same set of distributions. Furthermore, a consequence
of the next theorem is that Assumptions 1–5 imply that indeed every two
independence equivalent DAGs represent the same set of distributions. Without
these assumptions, two independence equivalent DAGs can represent different sets
of distributions.

THEOREM 4. Given Assumptions 1–5, every two independence equivalent
DAG models have the same marginal likelihood.

PROOF. Theorem 3 implies that we can restrict the proof to two DAG models
that differ by a single covered arc. Say the arc is between Xi and Xj and that
the joint parents of Xi and Xj are denoted by π . For these two models, (9)
differs only in terms i and j . For both models the product of these terms is
p(dπ∪{Xi,Xj }|mh

c )/p(dπ |mh
c ). �

The conclusions of Theorem 2 and, consequently, of Theorem 4 are not justified
when our assumptions are violated. In the example of the logit distributions,
discussed in the previous subsection, which violates Assumption 1, the structures
s1 and s2 differ by the reversal of a covered arc between X2 and X3, but, given that
all local distribution families are logit, there are certain joint distributions that can
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be represented by one structure, but not the other, and so their marginal likelihoods
will be different.

The implication of Theorem 4 is quite strong: all models in the same
independence equivalence class are scored equivalently. This severely constrains
possible parameter priors as shown in the next two sections. One possible approach
to bypass our assumptions is to select one representative DAG model from
each class of independence equivalent DAG models, assume global parameter
independence only for these representatives, and evaluate the marginal likelihood
only for these representatives. The search can then be conducted in the space
of representative models as suggested in Spirtes and Meek (1995), Chickering
(1996), and Madigan, Andersson, Perlman and Volinsky (1996). The difficulty
with this approach is that when projecting a prior from a complete DAG model to a
DAG model with missing edges, one needs to perform additional high-dimensional
integrations before using the parameter modularity property (see Section 2).
Another approach is to modify the definition of mh to allow independence
equivalent DAG models to have different parameter priors. This alternative is
needed when arcs have a causal interpretation. However, when choosing this
alternative, the parameter prior for each model examined by a search procedure
must be provided by a user as the search is being conducted, or a new mechanism
to produce acceptable priors on-the-fly must be devised.

4. Gaussian directed acyclic graphical models. We now apply the method-
ology of previous sections to Gaussian DAG models. A Gaussian DAG model is a
DAG model as defined by (1), where each variable Xi ∈X is continuous, and each
local likelihood is the linear regression model

p(xi|pam
i , θi, mh)=N

(
xi|mi +

∑
xj∈pai

bj ixj , 1/vi

)
,(13)

where N(xi|µ, τ) is a normal distribution with mean µ and precision τ > 0.
Given this form, a missing arc from Xj to Xi is equivalent to bji = 0 in the
DAG model. The local parameters are given by θi = (mi, bi, vi), where bi is the
column vector (b1i , . . . , bi−1,i) of regression coefficients. Furthermore, mi is the
conditional mean of Xi and vi is the conditional variance of Xi .

For Gaussian DAG models, the joint likelihood p(x|θm, mh) obtained from (1)
and (13) is an n-dimensional multivariate normal distribution with a mean vector µ

and a symmetric positive definite precision matrix W ,

p(x|θm, mh)=
n∏

i=1

p(xi|pam
i , θi, mh)=N(x|µ, W).

For a complete model mc with ordering (X1, . . . , Xn) there is a one-to-one
mapping between θmc = ⋃n

i=1 θi where θi = (mi, bi, vi ) and {µ, W } which has
a nowhere singular Jacobian matrix. Consequently, assigning a prior for the
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parameters of one complete model induces a parameter prior, via the change of
variables formula, for {µ, W } and in turn, induces a parameter prior for every
complete model. Any such induced parameter prior must satisfy, according to our
assumptions, global parameter independence. Not many prior distributions satisfy
such a requirement. In fact, in the next section we show that the parameter prior
p(µ, W |mh

c ) must be a normal-Wishart distribution.
For now we proceed by simply choosing p(µ, W |mh

c ) to be a normal-Wishart
distribution. In particular, p(µ|W, mh

c ) is a multivariate-normal distribution with
mean ν and precision matrix αµW (αµ > 0) and p(W |mh

c ) is a Wishart distribution
given by

p(W |mh
c )= c(n, αw)|T |αw/2|W |(αw−n−1)/2e−1/2 tr{T W }

≡Wishart(W |αw, T )
(14)

with αw degrees of freedom (αw > n − 1) and a positive definite parametric
matrix T and where c(n, αw) is a normalization constant given by

c(n, αw)=
[

2αwn/2πn(n−1)/4
n∏

i=1

'

(
αw + 1− i

2

)]−1

(15)

[DeGroot (1970), page 57]. We provide interpretations for αµ, αw , ν and T later in
this section. Note that in some expositions of the Wishart distribution, the inverse
of T is used for the parameterization; T −1 is called the scale matrix [e.g., Press
(1972), page 101].

This choice of a prior satisfies global parameter independence due to the
following well-known theorem.

Define a block partitioning {W11, W12, W ′12, W22} of an n by n matrix W to
be compatible with a partitioning µ1, µ2 of an n-dimensional vector µ, if the
indices of the rows that correspond to block W11 are the same as the indices of
the terms that constitute µ1 and similarly for W22 and µ2. Also define W11.2 =
W11−W12W−1

22 W ′12 and recall that ((W−1)11)−1 =W11.2.

THEOREM 5. If f (µ, W) is an n-dimensional normal-Wishart distribution,
n ≥ 2, with parameters ν, αµ, αw and T , then {µ1, W11 − W12W−1

22 W ′12} is
independent of {µ2 +W−1

22 W ′12µ1, W12, W22} for every partitioning µ1, µ2 of µ

where W11,W12, W ′12, W22 is a block partitioning of W compatible with the
partitioning µ1, µ2. Furthermore, the pdf of {µ1, W11.2} is normal-Wishart with
parameters ν1, αµ, T11, and αw − n+ l where T11, T12, T ′12, T22 is a compatible
block partitioning of T , ν1, ν2 is a compatible partitioning of ν and l is the size of
the vector ν1.

The proof of Theorem 5 requires a change of variables from (µ, W) to (µ1, µ2+
W−1

22 W ′12µ1) and (W11−W12W−1
22 W ′12, W12, W22). Press [(1972), pages 117–119]
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carries out these computations for the Wishart distribution. Standard changes are
needed to obtain the claim for the normal-Wishart distribution. A consequence of
Theorem 5 is the following.

COROLLARY 6. Let W be a n×n positive definite matrix of random variables.
Let a, b, and c be three sets of indices of W . If f (Wab.c)=Wishart(Wab.c|α1, T1)

and f (Wbc.a) =Wishart(Wbc.a|α2, T2), then α1 − lab = α2 − lbc where lab is the
number of indices in the block a, b and lbc is the number of indices in the block
b, c.

PROOF. The pdf for Wb.ac = (Wab.c)b.a = (Wcb.a)b.c is a Wishart distribution,
and from the two alternative ways by which this pdf can be formed, using
Theorem 5, it follows that α1 − lab = α2 − lbc . �

To see why the independence conditions in Theorem 5 imply global parameter
independence, consider the partitioning in which the first block contains the first
n − 1 coordinates which correspond to X1, . . . , Xn−1 while the second block
contains the last coordinate which corresponds to Xn. For this partitioning, bn =
−W−1

22 W ′12, vn =W−1
22 and mn =µ2+W−1

22 W ′12µ1. Furthermore, ((W−1)11)−1 =
W11−W12W−1

22 W ′12 =W11.2 is the precision matrix associated with X1, . . . , Xn−1.
Consequently, {mn, bn, vn} is independent of {µ1, W11.2}. We now recursively
repeat this argument with {µ1, W11.2} instead of {µ, W }, to obtain global parameter
independence. The converse, namely that global parameter independence implies
the independence conditions in Theorem 5, is established similarly.

Our choice of prior implies that the posterior p(µ, W |d, mh
c ) is also a normal-

Wishart distribution [DeGroot (1970), page 178]. In particular, p(µ|W, d, mh
c ),

where d is a sample of N complete cases, is multivariate normal with mean
vector ν′ given by

ν′ = αµν +NxN

αµ +N
(16)

and precision matrix (αµ + N)W , where xN is the sample mean of d , and
p(W |d, mh

c ) is a Wishart distribution with αw + N degrees of freedom and
parametric matrix R given by

R = T + SN + αµN

αµ +N
(ν − xN)(ν − xN)′,(17)

where SN =∑N
i=1(xi − xN)(xi − xN)′. From these equations, we see that αµ and

αw can be thought of as effective sample sizes for µ and W , respectively.
In order to calculate the marginal likelihood of a Gaussian DAG model, we can

work in the parametric space (µ, W). According to Theorem 5, if p(µ, W |mh
c )

is a normal-Wishart distribution with the parameters given by the theorem, then
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p(µY, ((W−1)YY)−1|mh
c ) is also a normal-Wishart distribution with parameters

νY, αµ, TY = ((T −1)YY)−1 and α′w = αw − n + l, where Y is a subset of
l coordinates. Thus, applying standard formulas pertaining to t-distributions [e.g.,
DeGroot (1970), pages 179–180], we obtain the terms in (9),

p(dY|mh
c )= (2π)−lN/2

(
αµ

αµ +N

)l/2
c(l, α′w)

c(l, α′w +N)
|TY|α′w/2|RY|−(α′w+N)/2,(18)

where RY = ((R−1)YY)−1 is the posterior parametric matrix restricted to the
Y coordinates. Equations (9) and (18) together provide a way to compute the
marginal likelihood for Gaussian DAG models given the direct assessment of a
parameter prior p(µ, W |mh

c ) for one complete model.
The task of assessing a parameter prior for one complete Gaussian DAG

model is equivalent, in general, to assessing priors for the parameters of a set
of n linear regression models [due to (13)]. However, to satisfy global parameter
independence, the prior for the linear regression model for Xn given X1, . . . , Xn−1
determines the priors for the linear coefficients and variances in all the linear
regression models that define a complete Gaussian model. In particular, 1/vn

has a one-dimensional Wishart pdf Wishart(1/vn | αw + n− 1, T22 − T ′12T −1
11 T12)

(i.e., a gamma distribution), and bn has a multivariate normal pdf N(bn | T −1
11 T12,

T22/vn). Consequently, the degrees of freedom αw and the parametric matrix T ,
which completely specify the Wishart prior distribution, are determined by the
normal-gamma prior for the parameters of one regression model. Kadane, Dickey,
Winkler, Smith and Peters (1980) address in detail the assessment of such a
normal-gamma prior for a linear regression model and their method applies herein
with no needed changes. The relationships between this elicited prior and the priors
for the other n − 1 linear regression models can be used to check consistency
of the elicited prior if these other priors have been elicited separately rather
than computed. Finally, a normal prior for the means of X1, . . . , Xn is assessed
separately and it requires only the assessment of a vector of means along with an
effective sample size αµ.

An alternative approach uses the observation that when p(µ, W |mh
c ) is normal-

Wishart as we have described (with αw > n+ 1), then p(x|mh
c ) is a multivariate

t-distribution with γ degrees of freedom, location vector ν′ and precision T ′,
where

γ = αw − n+ 1, ν′ = ν, T ′ = αµγ

αµ + 1
T −1(19)

[e.g., DeGroot (1970), page 180]. Thus, a person can assess the needed quantities
by assessing αµ, αw , and a multivariate t-distribution for X. Furthermore, rather
than assess a multivariate t-distribution, which can be a difficult task, a person
can—as an approximation—specify a multivariate-normal distribution having the
same mean and covariance as the multivariate t-distribution. Note that the mean
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and covariance of a multivariate t-distribution with γ degrees of freedom, location
vector ν′, and precision matrix T ′ is

E(x)= ν′, Cov(x)= γ

γ − 2
T ′−1(20)

[e.g., DeGroot (1970), pages 60, 61]. Finally, rather than assess a multivariate
normal distribution directly, a person can assess a Gaussian DAG structure along
with a value for each parameter. This method for constructing parameter priors for
many DAG models has recently been applied to analysis of data in the domain
of image compression [Thiesson, Meek, Chickering and Heckerman (1998)]. This
method also provides a suitable Bayesian alternative for many of the examples
discussed in Spirtes, Glymour and Scheines (2001).

5. Characterization of several probability distributions. We now charac-
terize the Wishart distribution as the only pdf that satisfies global parameter inde-
pendence for an unknown precision matrix W with n≥ 3 coordinates (Theorem 7).
This theorem is phrased and proved in a terminology that relates to known facts
about the Wishart distribution. We proceed with similar characterizations of the
normal and normal-Wishart distributions (Theorems 9 and 10).

We will use tr{A+B} to denote the sum of traces tr{A} + tr{B} even when the
dimensions of the square matrices A and B are different.

THEOREM 7. Let W be an n× n, n≥ 3, positive definite symmetric matrix of
random variables and f (W) be the pdf of W . Then, f(W) is a Wishart distribution
if and only if W11 −W12W−1

22 W ′12 is independent of {W12, W22} for every block
partitioning W11, W12, W ′12, W22 of W .

PROOF. That W11.2 = W11 − W12W−1
22 W ′12 is independent of {W12, W22}

whenever f (W) is a Wishart distribution is a well-known fact [Press (1972),
pages 117–119]. It is also expressed by Theorem 5. The other direction is proven
by induction on n. The base case n= 3 is treated at the end.

The pdf of W can be written in n! orderings. In particular, due to the assumed
independence conditions and since the transformations from {W11, W12, W22} to
{W11.2, W12, W22} and to {W22.1, W11, W12} both have a Jacobian determinant of 1,
we obtain the following functional equation:

f (W)= f1(W11−W12W−1
22 W ′12)f2||1(W22, W12)

= f2(W22−W ′12W−1
11 W12)f1||2(W11, W12),

(21)

where a subscripted f denotes a pdf.
We divide the indices of W into two blocks, the first block (say, block 1)

contains n − 1 indices and the second block (say, block 2) consists of one
index. By the induction hypothesis, and since the independence conditions
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on W also hold for W11.2, we conclude that W11.2 is distributed according
to Wishart(W11.2| α1, T1). Since this argument holds for every block of size
n − 1 of W , and since if a matrix V is distributed Wishart so is V11.2 for any
block of indices (Theorem 5), it follows that W11.2 is distributed according to
Wishart(W11.2| α1, T1) also for blocks of size smaller than n− 1.

Thus,

c1|W11−W12W−1
22 W ′12|β1etr{T1(W11−W12W−1

22 W ′12)}f2||1(W22, W12)

= c2|W22−W ′12W−1
11 W12|β2etr{T2(W22−W ′12W

−1
11 W12)}f1||2(W11, W12)

(22)

where c1 and c2 are normalizing constants.
We now argue that β1 = β2. Divide the indices of W into three nonempty sets

a, b, c such that block 1 consists of the indices in a, b and block 2 consists of
the indices in c. The matrices Wab.c and Wbc.a have a Wishart distribution, with,
say, degrees of freedom α1 and α2, respectively, and so according to Corollary 6,
α1 − lab = α2 − lbc. Furthermore, Wc.ab = (Wbc.a)c.b has a Wishart distribution
with α2 − lbc + lc degrees of freedom. Consequently, β1 = (α1 − lab − 1)/2 is
equal to β2 = (α2 − lbc + lc − lc − 1)/2. Let β = β1 = β2.

Define

F2||1(W22, W12)= c1f2||1(W22, W12)/|W22|βetr{T2W22+T1(W12W−1
22 W ′12)},(23)

F1||2(W11, W12)= c2f1||2(W11, W12)/|W11|βetr{T1W11+T2(W ′12W−1
11 W12)},(24)

substitute into (22), and obtain, using |W11 − W12W−1
22 W ′12||W22| = |W |, that

F2||1(W22, W12) = F1||2(W11, W12). Consequently, F2||1 and F1||2 are functions
only of W12 and thus, using (21), we obtain

f (W)= |W |βetr{T1W11+T2W22}H(W12)(25)

for some function H .
To show that f (W) is Wishart we must find the form of H and show that it is

proportional to e2 tr{T12W12} for some matrix T12.
Considering the three possible pairs of blocks formed with the sets of indices a,

b and c, (25) can be rewritten as follows:

f (W)= |W |β1etr{TaaWaa+TbbWbb+TccWcc}e2 tr{T ′abWab+T ′acWac+T ′bcWbc}
(26) ×H1(Wac, Wbc),

f (W)= |W |β2etr{SaaWaa+SbbWbb+SccWcc}e2 tr{S′abWab+S′acWac+S′bcWbc}
(27) ×H2(Wab, Wbc),

f (W)= |W |β3etr{RaaWaa+RbbWbb+RccWcc}e2 tr{R′abWab+R′acWac+R′bcWbc}
(28) ×H3(Wab, Wac).
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By setting Wab =Wac =Wbc = 0, we get β1 = β2 = β3 and Tii = Sii = Rii , for
i = a, b, c. By comparing (26) and (27) we obtain

e2 tr{(T ′ac−S′ac)Wac}H1(Wac, Wbc)

= e2 tr{(S′ab−T ′ab)Wab+(S′bc−T ′bc)Wbc}H2(Wab, Wbc).
(29)

Each side of this equation must be a function only of Wbc. We denote this function
by H12. Hence,

H1(Wac, Wbc)=H12(Wbc)e
2 tr{(S′ac−T ′ac)Wac}

and by symmetric arguments, comparing (26) and (28),

H1(Wac, Wbc)=H13(Wac)e
2 tr{(R′bc−T ′bc)Wbc}.

Consequently, H12(Wbc) is proportional to e2 tr{(R′bc−T ′bc)Wbc} and so, substituting
into (25), f (W) is found to be a Wishart distribution, as claimed.

It remains to examine the case n= 3. We first assume n= 2 in which case f (W)

is not necessarily a Wishart distribution. In the Appendix we show that given the
independence conditions for two coordinates, f must have the form

f (W)= c|W |βetr{T W }H(W12),(30)

where H is an arbitrary function, and that the marginal distributions of W11.2 and
W22.1 are one-dimensional Wishart distributions.

We now treat the case n = 3 using these assertions about the case n = 2.
Starting with (21), and proceeding with blocks a, b, c each containing exactly one
coordinate, we get, due to the given independence conditions for two coordinates,
that f1 has the form given by (30), and that f2 is a one-dimensional Wishart
distribution. Proceeding parallel to (22)–(24), we obtain

H(a12− b1b2/W22)F2||1(W22, W12)= F1||2(W11, W12),(31)

where (b1, b2) is the matrix W12, a12 is the off-diagonal element of W11, a12 −
b1b2/W22 is the off-diagonal element of W11 −W12W−1

22 W ′12, and W22 is a 1× 1
matrix. Note that the left-hand side depends on W11 only through a12. Thus
also the right-hand side depends on W11 only through a12. Let b1 and b2 be
fixed, y = b1b2/W22 and x = a12. Also let F (t) = F2||1(b1b2/t, (b1, b2)) and
G(a12)= F1||2(W11, (b1, b2)). We can now rewrite (31) as H(x−y)F (y)=G(x).
Now set z= x − y, and obtain for every y and z,

H(z)F (y)=G(y + z),(32)

the only measurable solution of which for H is H(z)= cebz [e.g., Aczél (1966)].
Substituting this form of H into (30), we see that W11.2 has a two-dimensional

Wishart distribution. Recall that W22.1 has a one-dimensional Wishart distribution.
Consequently, we can apply the induction step starting from (22) and prove the
theorem for n= 3. �
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We now treat the situation when only the means are unknown, characterizing
the normal distribution. The two-dimensional case turns out to be covered by the
Skitovich–Darmois theorem [e.g., Kagan, Linnik and Rao (1973)].

THEOREM 8 (Skitovich–Darmois). Let z1, . . . , zk be independent random
variables and αi, βi , 1 < i < k, be constant coefficients. If L1 = ∑

αizi is
independent of L2 =∑βizi , then each zi for which αiβi �= 0 is normal.

The Skitovich–Darmois theorem is used in the proof of the base case of our
next characterization. Several generalizations of the Skitovich–Darmois theorem
are described by Kagan, Linnik and Rao (1973).

THEOREM 9. Let W be an n × n, n ≥ 2, positive definite symmetric matrix
such that no entry in W is zero, µ be an n-dimensional vector of random variables
and f (µ) be a pdf of µ. Then, f(µ) is an n-dimensional normal distribution
N(µ|η, γ W) where γ > 0 if and only if µ1 is independent of µ2+W−1

22 W ′12µ1 for
every partitioning µ1, µ2 of µ where W11,W12, W ′12, W22 is a block partitioning
of W compatible with the partitioning µ1, µ2.

PROOF. The two independence conditions, µ1 independent of µ2 +
W−1

22 W ′12µ1 and µ2 independent of µ1 +W−1
11 W12µ2, are equivalent to the fol-

lowing functional equation:

f (µ)= f1(µ1)f2||1(µ2+W−1
22 W ′12µ1)= f2(µ2)f1||2(µ1+W−1

11 W12µ2),(33)

where a subscripted f denotes a pdf. We show that the only solution for f that
satisfies this equation is the normal distribution. Consequently both the if and only
if portions of the theorem will be established.

For n ≥ 3, we can divide the indices of W into three nonempty sets a, b

and c. We group a and b to form a block and b and c to form a block. For
each of the two cases, let W11 be the block consisting of the indices in {a, b}
or {b, c}, respectively, and W22 be the block consisting of the indices of c or a,
respectively. By the induction hypothesis applied to both cases and marginalization
we can assume that f1(µ1) is a normal distribution N(µ1|η1, γ1((W−1)11)−1)

and that f2(µ2)= N(µ2|η2, γ2((W−1)22)−1). Consequently, the pdf of the block
corresponding to the indices in b is a normal distribution, and from the two
alternative ways by which this pdf can be formed, it follows that γ1 = γ2.

Let γ = γi , i = 1, 2, and define

F2||1(x)= f2||1(x)/N(x|η2 +W−1
22 W ′12η1, γ W22),

F1||2(x)= f1||2(x)/N(x|η1 +W−1
11 W12η2, γ W11).

By substituting these definitions into (33), substituting the normal form for f1(µ1)

and f2(µ2) and canceling on both sides of the equation the term N(µ|η, γ W)
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[which is formed by standard algebra pertaining to quadratic forms, e.g., DeGroot
(1970), page 55], we obtain a new functional equation,

F2||1(µ2 +W−1
22 W ′12µ1)= F1||2(µ1+W−1

11 W12µ2).

By setting µ2 =−W−1
22 W ′12µ1, we obtain F1||2((I − (W−1

11 W12)(W−1
22 W ′12))µ1)=

F2||1(0) for every µ1. Hence, the only solution to this functional equation is
F1||2 = F2||1 ≡ constant. Consequently, f (µ)=N(µ|η, γ W).

It remains to prove the theorem for n= 2. Let z1 = µ1, z2 = µ2 +w−1
22 w12µ1,

L1 = µ1 + w−1
11 w12µ2 and L2 = µ2. By our assumptions, z1 and z2 are

independent and L1 and L2 are independent. Furthermore, rewriting L1 and L2

in terms of z1 and z2, we get L1 = w−1
11 w−1

22 (w11w22 − w2
12)z1 +w−1

11 w12z2 and
L2 = z2 − w−1

22 w12z1. All linear coefficients in this transformation are nonzero
because W is positive definite and w12 is not zero. Consequently, due to the
Skitovich–Darmois theorem, z1 is normal and z2 is normal. Furthermore, since
z1 and z2 are independent, their joint pdf is normal as well. Finally, {µ1, µ2} and
{z1, z2} are related through a nonsingular linear transformation and so {µ1, µ2}
also has a joint normal distribution f (µ)=N(µ|η, A) where A= (aij ) is a 2× 2
precision matrix. Substituting this solution into (33) and comparing the coefficients
of µ2

1, µ2
2 and µ1µ2, we obtain a12/a11 =w12/w11 and a12/a22 =w12/w22. Thus

A= γ W where γ > 0. �

The proofs of Theorems 7 and 9 can be combined to form the following
characterization of the normal-Wishart distribution.

THEOREM 10. Let W be an n × n, n ≥ 3, positive definite symmetric
matrix of real random variables such that no entry in W is zero, µ be an
n-dimensional vector of random variables and f (µ, W) be the joint pdf of {µ, W }.
Then, f (µ, W) is an n-dimensional normal-Wishart distribution if and only if
{µ1, W11 − W12W−1

22 W ′12} is independent of {µ2 + W−1
22 W ′12µ1, W12, W22} for

every partitioning µ1, µ2 of µ where W11,W12, W ′12, W22 is a block partitioning
of W compatible to the partitioning µ1, µ2.

PROOF SKETCH. The two independence conditions, {µ1, W11−W12W−1
22 W ′12}

independent of {µ2 +W−1
22 W ′12µ1, W12, W22} and {µ2, W22 −W ′12W−1

11 W12} in-
dependent of {µ1+W−1

11 W12µ2, W ′12, W11}, are equivalent to the following func-
tional equation:

f (µ, W)= f1(µ1, W11−W12W−1
22 W ′12)f2||1(µ2+W−1

22 W ′12µ1, W22, W12)

(34)
= f2(µ2, W22−W ′12W−1

11 W12)f1||2(µ1+W−1
11 W12µ2, W11, W12),
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where a subscripted f denotes a pdf. We show that the only solution for f that
satisfies this functional equation is the normal-Wishart distribution. Setting W to a
fixed value yields (33) the solution of which is

f (µ, W)∝ N
(
µ|η(W), γ (W)W

)
=N

(
µ2|η2(W), γ (W)[W22−W ′12W−1

11 W12])(35)

×N
(
µ1|η1(W)+ η2(W)W−1

11 W12−W−1
11 W12µ2, γ (W)W11

)
,

where both γ and η = (η1, η2) potentially can be functions of W . To see that
these quantities in fact do not depend on W , first note that the normal distributions
for µ2 and µ1 in (35) must be proportional to the functions f2 and f1||2 in (34),
respectively. Comparing the form of f2 with the normal distribution for µ2, we see
that γ (W) and η2(W) can only depend on W22 −W ′12W−1

11 W12. Comparing the
form of f1||2 with the normal distribution for µ1, we see that γ (W) and η2(W) can
only depend on {W11, W12}. Consequently, γ (W) and η2(W) must be constant.
Similarly, η1(W) must be a constant. Substituting these solutions into (34) and
dividing by the common terms which are equal to f (µ|W) yields (21), the solution
of which for f is a Wishart pdf. �

Note that the conditions set on W in Theorem 10, namely, a positive definite
symmetric matrix of real random variables such that no entry in W is zero, are
necessary and sufficient in order for W to be a precision matrix of a complete
Gaussian DAG model.

6. Local versus global parameter independence. We have shown that the
only pdf for {µ, W } which satisfies global parameter independence, when the
number of coordinates is greater than two, is the normal-Wishart distribution.
We now discuss additional independence assertions implied by the assumption
of global parameter independence.

Consider the parameter prior for {mn, bn, vn} when the prior for {µ, W } is a
normal-Wishart as specified by (14) and (15). By a change of variables, we get

fn(mn, bn, vn)

=Wishart(1/vn | α + n− 1, T22 − T ′12T −1
11 T12)

×N(bn | T −1
11 T12, T22/vn)N(mn | νn, αµ/vn),

where the first block (T11) corresponds to X1, . . . , Xn−1 and the second one-
dimensional block (T22) corresponds to Xn. We note that the only indepen-
dence assumption expressed by this product is that mn and bn are independent
given vn. However, by standardizing mn and bn, namely defining, m∗n = (mn −
νn)/(αµ/vn)1/2 and b∗n = (T22/vn)1/2(bn − T −1

11 T12), which is well defined be-
cause T22 is positive definite and vn > 0, we obtain a set of parameters (m∗n, b∗n, vn)
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which are mutually independent. Furthermore, this mutual independence property
holds for every local family and for every Gaussian DAG model over X1, . . . , Xn.
We call this property the standard local independence for Gaussian DAG models.

This observation leads to the following corollary of our characterization
theorems.

COROLLARY 11. If global parameter independence holds for every complete
Gaussian DAG model over X1, . . . , Xn (n≥ 3), then standard local parameter in-
dependence also holds for every complete Gaussian DAG model over X1, . . . , Xn.

This corollary follows from the fact that global parameter independence implies
that, due to Theorem 10, the parameter prior is a normal-Wishart, and for this prior,
we have shown that standard local parameter independence must hold.

It is interesting to note that when n= 2, there are distributions that satisfy global
parameter independence but do not satisfy standard local parameter independence.
In particular, a prior for a 2 × 2 positive definite matrix W which has the
form Wishart(W |α, T )H(w12), where H is some real function and w12 is the
off-diagonal element of W , satisfies global parameter independence (as shown
in the Appendix) but need not satisfy standard local parameter independence.
Furthermore, if standard local parameter independence is assumed, then H(w12)

must be proportional to eaw12 , which means that, for n= 2, the only pdf for W that
satisfies global and standard local parameter independence is the bivariate Wishart
distribution. In contrast, for n > 2, global parameter independence alone implies a
Wishart prior.

7. Discussion. The formula for the marginal likelihood applies whenever
Assumptions 1–5 are satisfied, not only for Gaussian DAG models. Another
important special case is when all variables in X are discrete and all local
distributions are multinomial. This case has been treated in Heckerman and Geiger
(1995) and Geiger and Heckerman (1997) under the additional assumption of local
parameter independence which was introduced by Spiegelhalter and Lauritzen
(1990). Our generalized derivation herein dispenses with this assumption and
unifies the derivation in the discrete case with the derivation needed for Gaussian
DAG models.

Our characterization means that the assumption of global parameter indepen-
dence when combined with the definition of mh, the assumption of complete model
equivalence and the regularity assumption, may be too restrictive. One common
remedy for this problem is to use a hierarchical prior p(θ |η)p(η) with hyperpara-
meters η. When such a prior is used for Gaussian DAG models, our results show
that for every value of η for which global parameter independence holds, p(θ |η)

must be a normal-Wishart distribution. The difficulty with this approach is that the
marginal likelihood no longer has closed form and therefore approximate methods
such as MCMC are usually employed to compute the marginal likelihood. Also
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the elicitation of hierarchical priors is often difficult. Other alternative approaches
have been discussed at the end of Section 3.

We conclude with a technical comment. Equation (21), which encodes global
parameter independence for an unknown covariance matrix, is an interesting
example of a matrix functional equation. The domain of each unknown function is
a nonsingular matrix and the range is R. A well-known functional equation of this
sort is the equation

f (XY )= f (X)f (Y ),(36)

where X and Y are nonsingular matrices. The general solution of this equation
is f (X)= |X|α or f (X)= |X|α sgn(|X|) [e.g., Aczél (1966)]. When the domain
of f is the set of positive definite matrices, the solution is simply f (X)= |X|α .

We note that the solution of (36) is obtained for matrices over arbitrary fields.
Only algebraic manipulations are used in its proof. It seems reasonable to believe
and interesting to investigate whether a solution to (21) can be obtained via purely
algebraic manipulations. The proof technique that we have employed, however,
especially for the base case of the induction, uses the fact that the matrices are
over the real numbers.

APPENDIX

We now characterize the pdfs of an unknown 2 × 2 precision matrix that
satisfy global parameter independence. This result has been obtained in Geiger
and Heckerman (1998) under additional regularity conditions.

THEOREM 12. Let W be a 2 × 2 positive definite symmetric matrix with
random entries w11, w12 and w22 and let f (W) be the pdf of W . Then, f (W) =
|W |βetr{T W }H(w12) where H is a real function if and only if w11 − w2

12/w22 is
independent of {w12, w22} and w22 −w2

12/w11 is independent of {w12, w11}.

PROOF. That w11 − w2
12/w22 is independent of {w12, w22} whenever f (W)

is a Wishart distribution [e.g., when H(x)= constant] is a well-known fact [Press
(1972), pages 117–119]. Consequently, this claim holds for any real function H .
We prove the other direction by solving the functional equation, which is implied
by the given independence assumptions,

f (W)= f1(w11 −w2
12/w22)f2||1(w22, w12)

= f2(w22 −w2
12/w11)f1||2(w11, w12),

(37)

where a subscripted f denotes a pdf. To solve this functional equation, namely to
find all pdfs that satisfy it, we use techniques described in Aczél (1966) and results
from Járai (1986, 1998).
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Let w12 be a value such that the integral of f2||1(x, w12) over the domain
of x is not identically zero. Such a value for w12 exists because f2||1(x, w12)

integrates to 1 over its domain. Without loss of generality, suppose this value of
w12 is 1, lest we can modify the scale using the transformations w11← w12w11
and w22←w12w22. We rewrite (37) as

f1(w11− 1/w22)f2||1(w22, 1)= f2(w22 − 1/w11)f1||2(w11, 1).(38)

We claim that all density functions satisfying (38) must be positive everywhere
and smooth. This is shown in Lemmas 14 and 16 at the end of the proof. Con-
sequently, we can take the logarithm of (38) and then take derivatives. First, we
take the logarithm and rename the functions. We get

g1(w11 − 1/w22)+ g2||1(w22)= g2(w22 − 1/w11)+ g1||2(w11),(39)

where g1(x)= ln f1(x), g2||1(x)= ln f2||1(x, 1), and where g2 and g1||2 are defined
analogously.

We take a mixed second derivative with respect to w11 and w22 of (39). We get

g′′1 (w11− 1/w22)/w2
22 = g′′2 (w22 − 1/w11)/w2

11.(40)

By substituting w11 = w22 we obtain g′′1 = g′′2 . We denote this function by h and
so,

w2
11h(w11− 1/w22)=w2

22h(w22 − 1/w11).(41)

It is easy to show, using this functional equation for h, that if h is zero at some
point then h must be identically zero; if h is positive at one point then h is positive
everywhere, and if h is negative at one point then h is negative everywhere. We
now take a derivative wrt w11 and a derivative with respect to w22,

2w11h(w11− 1/w22)+w2
11h′(w11 − 1/w22)= {w22/w11}2h′(w22− 1/w11),

2w22h(w22− 1/w11)+w2
22h′(w22 − 1/w11)= {w11/w22}2h′(w11− 1/w22).

From these equations, and using (41) we get

2(w22+ 1/w11)h(w22 − 1/w11)=−(w2
22 − 1/w2

11)h′(w22 − 1/w11).

Consequently,

h′(x)/h(x)=−2/x,

where x = w22 − 1/w11. This equation holds for every x ∈ R+. Assuming h

is positive everywhere, we have (ln h(x))′ = −2/x and so ln h(x) = ln x−2 + c′
where c′ is a constant. If h is negative everywhere, we have (ln−h(x))′ = −2/x

and so ln(−h(x))= ln x−2 + c′. Consequently, whether h is positive everywhere,
negative everywhere, or identically zero, it has the form h(x) = c/x2 where c

is a constant. Recall that h = (ln f1)′′. Hence, f1(x) = c1x−cec2x and similarly
f2(x) = c′1x−cec′2x (i.e., one-dimensional Wishart distributions with the same
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degrees of freedom). We conclude the proof by substituting f1 and f2 into (37)
and proceeding as in (22)–(25). �

The next lemma shows that every positive everywhere pdf that satisfies (38)
must be smooth. Our lemma is an immediate consequence of Járai’s theorem which
we now state.

THEOREM 13 [Járai (1986, 1998)]. Let Xi be an open subset of Rri (i =
1, 2, . . . , n), T be an open subset of Rs , Y be an open subset of Rk , Zi be an open
subset of Rmi (i = 1, 2, . . . , n), D be an open subset of T × Y and let Z be a
Euclidean space. Consider the functions f : T → Z, gi : D→ Xi , fi : Xi → Zi ,
hi : D ×Zi→ Z (i = 1, 2, . . . , n). Suppose that 0≤ p ≤∞ and:

(i) for each (t, y) ∈D,

f (t)=
n∑

i=1

hi

(
t, y, fi

(
gi(t, y)

));
(ii) hi is p+ 1 times continuously differentiable (1≤ i ≤ n);

(iii) gi is p+2 times continuously differentiable and for each t ∈ T there exists
a y ∈ Y such that (t, y) ∈D and ∂gi

∂y
(t, y) has rank ri (1≤ i ≤ n).

Then:

(iv) if fi (i = 1, 2, . . . , n) is Lebesgue measurable and (ii), (iii) are satisfied
with p = 0 then f is continuous on T ;

(v) if fi (i = 1, 2, . . . , n) is continuous and (ii), (iii) are satisfied with p = 0
then f is continuously differentiable on T ;

(vi) if fi (i = 1, 2, . . . , n) is p times continuously differentiable and (ii), (iii)
are satisfied then f is p+ 1 times continuously differentiable on T .

This theorem is stated in Járai (1998) and its proof is based on Theorems 3.3,
5.2 and 7.2 of Járai (1986). A simple corollary of Járai ’s theorem is the following.

LEMMA 14. All Lebesgue measurable real functions l1, l2, l1||2 and l2||1
defined on R+ which satisfy

l1(y − 1/t)+ l2||1(t)= l2(t − 1/y)+ l1||2(y)(42)

for every y, t > 0 such that yt > 1, are p times continuously differentiable where
p is arbitrarily large.

PROOF. The proof follows closely the lines of reasoning that Járai (1998)
applied to another functional equation.

Using statement (iv) of Theorem 13 we show that l2||1 is continuous. To
match Járai’s theorem notation we define f = l2||1, f1 = −l1, f2 = l2, f3 = l1||2,
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hi(t, y, w) = w for i = 1, 2, 3, g1(t, y) = (y − 1/t), g2(t, y) = (t − 1/y) and
g3(t, y)= y. The only nonobvious condition to check is that for each t ∈R+ there
exists a y ∈ R+ such that ty > 1 and ∂gi

∂y
(t, y) has rank ri , 1≤ i ≤ n. But here the

rank is 1 and so we just need to observe that there exists a y such that ∂gi

∂y
(t, y) is

not zero.
To show that l1 is continuous, rewrite (42) as

l1(t)+ l2||1(y)= l2

(
ty2

ty + 1

)
+ l1||2(t + 1/y),(43)

where t, y > 0. Now define f = l1, f1 =−l2||1, f2 = l2, f3 = l1||2, hi(t, y, w)=w

for i = 1, 2, 3, g1(t, y) = y, g2(t, y) = ty2

ty+1 and g3(t, y) = t + 1/y. Observe
that the conditions of Járai’s theorem hold and so f = l1 is continuous. By the
symmetry of the equation, l2 and l1||2 are also continuous on R+.

Now we can apply statement (v) of Járai’s theorem. We obtain, in the same way
as above, that all four functions are continuously differentiable. Finally, applying
statement (vi) of Járai’s theorem in the same way, we get that all four functions
are twice continuously differentiable. Repeating this process shows that all four
functions are p times continuously differentiable for every p > 0. �

The next theorem and lemma show that every pdf that satisfies (38) must be
positive everywhere and so taking the logarithm of this equation, as we have done,
is legitimate. We denote by λs the s-dimensional Lebesgue measure and by λ the
one-dimensional Lebesgue measure.

THEOREM 15 [Járai (1995, 1998)]. Let X1, . . . , Xn be orthogonal subspaces
of Rr of dimensions r1, . . . , rn, respectively. Suppose that ri ≥ 1 (1 ≤ i ≤ n) and∑n

i=1 ri = r . Let U be an open subset of Rr and F : U → Rm be a continuously
differentiable function. For each x ∈ U , let Nx denote the nullspace of F ′(x). Let
pi denote the orthogonal projection of X onto Xi . Suppose that dim Nx = r −m

and pi(Nx) = Xi (i = 1, . . . , n) for all x ∈ U . Let Ai be a subset of Xi (i =
1, . . . , n). If A1 ×A2 × · · · ×An ⊂ U and Ai is λri measurable with λri (Ai) > 0
(1≤ i ≤ n), then F (A1×A2× · · · ×An) contains a nonempty open set.

Recall that if X1, . . . , Xn are the standard orthogonal axes of Rn, then
pi(X1, . . . , Xn)=Xi , and Pi(Nx)= {x|(X1, . . . , Xi−1, x, Xi+1, . . . , Xn) ∈Nx}.

LEMMA 16. Let f, g, h, k be nonnegative real functions that are Lebesgue
integrable with integral c > 0. If these functions satisfy

f (s − 1/t)g(t)= h(t − 1/s)k(s)(44)

for every s, t > 0 such that st > 1, then they are everywhere positive.
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PROOF. The proof follows closely the lines of reasoning that Járai (1998)
applied to another functional equation.

Let {f = 0} denote the set of points in the domain of f for which f is zero and
let {f �= 0} denote the complementary set of all points in the domain for which
f is not zero, namely, the set of points for which f is positive. Similar notation
is used for the functions g, h and k. The idea of the proof is to show that the set
{f = 0} and the set {f �= 0} are both open and therefore, since the domain of f

is connected, one of these sets must be empty. The set {f �= 0} cannot be empty
because f is nonnegative and integrates to a positive constant and so {f = 0}must
be empty as claimed by the theorem. Similar arguments show that g, h and k are
also positive everywhere.

The proof proceeds in three steps. First, we use Theorem 15 to establish that the
set {g �= 0} contains a nonempty open set (i.e., it contains an inner point). Then we
show that every point in {f �= 0} is an inner point and so {f �= 0} is open. Finally,
we show that every point in {f = 0} is an inner point and so {f = 0} is open as
well. Similar arguments work for g, h and k.

We start by rewriting (44) in two symmetric ways. First as

f (y)g(z)= h(x(y, z))k(w(y, z))(45)

for all y > 0 and z > 0, where x(y, z) = yz2/(yz + 1) and w(y, z) = y + 1/z;
second as

f (y(x, w))g(z(x, w))= h(x)k(w)(46)

for all x > 0, and w > 0 where y(x, w)= xw2/(xw+ 1) and z(x, w)= x + 1/w.
Step 1. We show that {g �= 0} contains an inner point. Since both h and k

integrate to a positive constant, there must exist two λ-measurable sets Ah in
{h �= 0} and Ak in {k �= 0} such that λ(Ah) > 0 and λ(Ak) > 0. The image of these
sets under z(x, w)= x + 1/w contains an inner point z according to Theorem 15.
This theorem is applicable because the nullspace of z′ is {a(1/w2, 1))|a > 0} and
its projection on either of the two coordinates is R+. Due to (46), and because the
right-hand side is not zero for any x ∈Ah and w ∈Ak, each term on the left-hand
side is also not zero. Consequently, their image under z(x, w), which includes an
inner point, belongs to {g �= 0}.

Step 2. Let y be an arbitrary point in {f �= 0}. We now show that y is an inner
point and so {f �= 0} is open. Let z be an inner point in {g �= 0}. It follows that the
image of a sufficiently small open set containing z under x(y, z)= yz2/(yz+ 1)

and the image under w(y, z) = y + 1/z are open sets. These images belong to
{h �= 0} and {k �= 0}, respectively, because the left-hand side of (45) is positive.
Now we fix x in the image and vary w in a small open neighborhood. Then y is
varied in a small open neighborhood. Since the right-hand side of (45) is positive,
the neighborhood of y belongs to {f �= 0} and so y is an inner point. Similar
arguments show that {g �= 0} is open as well. By the symmetry of (44) the same
claim holds for h and k.
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Step 3. Let y be an arbitrary point in {f = 0}. We now show that y is an inner
point and so {f = 0} is open. Let z be an inner point in {g �= 0}. It follows that the
image of a sufficiently small open set containing z under x(y, z)= yz2/(yz+ 1)

and the image under w(y, z) = y + 1/z are open sets. Since the left-hand side
of (45) is zero, at least one term in the right-hand side must be zero. If x is
in {h= 0}, then fix x. As we vary w in a small open neighborhood in the image,
g remains positive due to continuity. Also y is varied in a small open neighbor-
hood. Since the right-hand side of (45) is zero, the neighborhood of y belongs to
{f = 0} and so y is an inner point. The other case occurs when w is in {k = 0}, in
which case we fix w and vary x in a small neighborhood. Similar arguments show
that {g = 0} is open as well. By the symmetry of (44), the same claim holds for
h and k. �

Note that Lemmas 14 and 16 together imply that every pdf that solves (44) must
be positive everywhere and smooth.
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