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We study properties of the variance function of the least squares
estimator for the response surface. For polynomial models, we identify a
class of approximate designs for which their variance functions are maxi-
mized at the extreme points of the design space. As an application, we
examine robustness properties of D-optimal designs and D, _,-optimal
designs under various polynomial model assumptions. Analytic formulas
for the G-efficiencies of these designs are derived, along with their D-ef-
ficiencies.

1. Introduction. This work examines a practical issue that sometimes
arises in designing an experiment: what types of designs have their variance
function maximized at the extreme points of the design space? Many allu-
sions to this question have been raised informally in the literature, often
expressed in statements like “the model is most strained near the extreme
points of the design space.” The implication is that model-based inference on
the relationship between the covariates and the response variable becomes
less reliable near the extreme points of the design space. One of our goals
here is to identify a large class of designs for which their variance functions
are maximized at the extreme points of the design space, and we show that
many of the commonly used designs have this property. We do this for the
case when we have a polynomial model with a single covariate and the design
space () is assumed to be a given compact space. Generalizations to the case
when there are several covariates are straightforward, especially if one
considers product models.

The statistical model of interest is

y=1f(x)B +e, x € Q,

where y is the response, the regression function is ij(x) =1, x,x2,..., x7),
BT =(By, Bys---» BJ-) is the vector of model parameters and e is a random
error with mean zero and constant variance, independent of x. Following
Kiefer and Wolfowitz (1960), all designs considered in this paper are approxi-
mate or continuous, and so they are probability measures defined on ). This

Received March 1994; revised March 1995.

'Research partially supported by the Deutsche Forschungsgemeinschaft.

AMS 1991 subject classifications. Primary 62K05; secondary 65D30.

Key words and phrases. Approximate designs, canonical moments, D- and G-optimal designs,
D, _ ,-optimal designs, homoscedasticity, information matrix, orthogonal polynomials.

2081



2082 H. DETTE AND W. K. WONG

means if a given number n of uncorrelated observations are to be taken from
the experiment, and a design ¢ with mass m; at x; € Q,1,2,...,¢, is used,
then approximately nm, observations are taken at x,, i = 1,2,...,¢. The set
of all approximate designs on () is denoted by =. For a given f;(x) and a
given ¢ € E, the information contained in ¢ is measured by its information
matrix:

M(€) = [ (x)f](x) dE(x).

Here and throughout, we focus attention only on designs whose information
matrices are nonsingular. Such designs are called nonsingular.

For estimating model parameters, a popular criterion is D-optimality.
Given fj(x), this criterion seeks a design §; so that the determinant of the
information matrix is maximized over =, that is,

¢ = argmax| M( £)l.

Under the assumptions of homoscedasticity, the D-optimal design ¢; is
also G-optimal [Kiefer and Wolfowitz (1960), theorem]. This means ¢ mini-
mizes the maximum variance of the estimated response surface across ().
Since the variance of the estimated response at the point x using design ¢ is
proportional to d(x, &) = ij(x)M j(f)’1 f,(x), this is equivalent to the asser-
tion

& argrgélg Ixnea())(dj(x, £).
G-optimality is particularly appealing when it is desired to estimate the
entire response surface, as it provides global protection against unreliable
estimates at points in ) after the experiment is run.

Following standard convention, we compare the worth of a nonsingular
design ¢ by its efficiency. If ¢ is an arbitrary nonsingular design ¢, the G-
and D-efficiency of ¢ are, respectively, given by

Jj+1

M 1/j+1
o6 - | ](f)|}

|M;(&)l

All subsequent comparisons of design are based on either one of these
measures.

There is a vast amount of work on D-optimal designs; the analytical
formula of the D-optimal design & for the homoscedastic model is known,
and properties of these designs are well studied [see Fedorov (1972), Kiefer
(1985) and the references therein]. In particular, it is known that ¢ has a
minimal number of j + 1 support points so that the design £; cannot be used
to test if there is a lack of fit in the model. This drawback, however, may be
overcome by using the optimal design for an expanded model if the resulting
loss in efficiencies is not severe [Kendall and Stuart (1968), Kussmaul (1969)
and Atkinson and Fedorov (1975a, b)]. The work here examines this issue
under the G-optimality criterion for a class of designs.

and D;(§) = {

max, e q dj(x’ £)
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Numerical work [see, e.g., Thibodeau (1977) and Wong (1994)] suggests
that many popular designs have the property that their variance functions
are maximized at the extreme points of the design space. The implication is
that the G-efficiencies of these (nonsingular) designs can be readily deter-
mined. In this work, we formalize a method for identifying such designs and
prove that these designs include the frequently used D-optimal designs and
the D, _,-optimal designs. The latter class of designs is introduced by Stud-
den (1980, 1982) and is useful for estimating a subset of the parameters in a
polynomial model. As an application, we examine how G- (and D-) efficiencies
of these designs change with the degree of the polynomial. This is an
important consideration since in practice the true model is often unknown
and polynomial approximations are often used. In the process, we generalize
Kussmaul’s results [Kussmaul (1969)] and also prove Thibodeau’s conjecture
[Thibodeau (1977)] concerning the G-efficiency of ¢, when the regression
function is f,(x), n > j.

Our analysis relies heavily on the theory of canonical moments, which is a
common tool for studying D-optimal designs [Lau and Studden (1985) and
Studden (1980, 1982, 1989)]. Because canonical moments do not change when
the designs are linearly transformed, we may, without loss of generality,
assume the design space () to be [—1,1]. Consequently, the D- and G-ef-
ficiency results here remain the same when () is any other compact interval.

The rest of the paper is organized as follows. Section 2 contains our main
results. In Theorem 2.6, we illustrate how our results could be useful for
heteroscedastic models as well. In Section 3, we apply our results to answer
some of the issues raised earlier. This is followed by a brief discussion on
applications to other fields in Section 4 and a summary in Section 5. Auxil-
iary results on canonical moments and proofs of the main results are given in
the Appendix.

2. Main results. To our knowledge, the question of when a design has
its variance function maximized at the extreme points of the design space has
not been adequately addressed in the literature. The sufficient conditions
stated in Theorems 2.1 and 2.2 provide partial answers that enable us to
show that many popular designs have this property. Consequently, their
G-efficiencies under various polynomial assumptions can be easily assessed.

Let ¢ be a design defined on ) =[-1,1], and let c; = Jrixd dé(x),
j=1,2,..., denote the jth (ordinary) moment of ¢. Define ¢/ to be the
maximum value of the ith moment for fixed ¢, ¢, ¢y, ..., ¢;_;, and similarly
define ¢; to be the corresponding minimum. The canonical moments of ¢ are
defined by

b, = — —, 1=1,2,....

Note that 0 < p, < 1. Whenever ¢, = ¢;, the canonical moments are left
undefined for j > i, and the sequence is terminated. It is well known [Skibin-
sky (1986)] that every probability measure on the interval [ — 1, 1] is uniquely
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determined by its corresponding sequence of canonical moments. In what
follows, it is helpful to define q; =1 —-p,, i =1,2,....

THEOREM 2.1. Let & be a given design on Q) =[—1,1].

(a) If € is symmetric with canonical moments
(2.0) 0<py; <3, J=12,...,k,
then

mezlsézdj(x,g):dj(l,g)=dj(—1,§), J=12,... k.
(b) If € is not symmetric but satisfies (2.0) and
0<py; 1<%, J=1,2,...,k,
then
I;leagdj(x,f)=dj(1,§), J=12,... k.

(¢) If & is not symmetric but satisfies (2.0) and
1>py 125, Jj=1,2,...,k,
then
I;leagdj(x,f)=dj(—1,§), j=1,2,... k.

THEOREM 2.2. Let & be a given design on Q =[—1,1] with canonical
moments p;, € (0,1), j=1,2,...,2k — 1, and py, €(0,1]. If k =1, define
Py =0.

(a) If € is symmetric and its canonical moments satisfy

1 - py;
2.1 0< ——= < . i =1,2,...,k — 2
( ) 3_4p2j—p2j+2 J 9 “y ’ )
and
2pgp_o — 1

2.2 - =< DPap>

(2.2) 1 —py s 2k

then

maxd,(x,§) =d)(~1,6) =d,(1,£), Jj=12,....k.
(b) If the canonical moments of ¢ satisfy
2py; =11 —pyjy < 2pgjie— 1
1-py;  Pojs1 B Pojia

2psp-2— 11 =Py,
1—-py s Por-1

(2.3)

. j=1,2,... k-2,

(2.4)

< Pgp
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and
(2.5) p2j71 < %, J = 1,2, ,k
then

Igleagdj(x,f) d;(1,x), j=1,2,...,k.

(¢) If the canonical moments of & satisfy

2p2j_1 Poj+1 < 2p2j+2_1

(2.6) < , j=12,...,k — 2,
1-py; 1=pyji Pojia
2psr-2 =1 DPop_y
2.7 <p
(27) 1-=pors 1=pop_q 2k
and
(2.8) Poj 123, J=12,...k,
then

ineagdj(x,f)=dj(—1,§), j=1,2,... k.

REMARK 2.0. It is worth mentioning that in general the bounds in Theo-
rems 2.1 and 2.2 cannot be improved in the following sense. For every positive
integer k, there exists a design with canonical moments satisfying all condi-
tions of Theorem 2.1 (or Theorem 2.2) except one condition such that the
variance function is not maximized at the extreme points of the interval
[—1,1]. As an illustration, consider the case 2 = 3 and a symmetric design
with canonical moments p, = %, p, = 2, and ps € (0,2) which satisfies
condition (2.1) but not (2.2). Straightforward calculation shows the quantities
in (A.1) in the Appendix are a, = a, = 3, by = 2/pg, ¢5 = qs/2, fo =1 =1
= 0 and the orthonormal polynomials with respect to the measures dé(x)
and (1 — x%) dé(x) are given by

X x? — P2 x® — Pa2dy

Voo Pol®) = VP25 P4 and @(x) = Va5 P294P46
[see Lau (1983)]. Thus we obtain, from (A.0) and Lemma A.3,
di(x,¢) = i + (1 - L){1 + Z3c2 + ﬁ(xz - é)z}
2p 4

6

49251 N 8 \2
T TN T )

Py(x) =

It is now straightforward to verify that this function attains its maximum at
an interior point of the interval [ — 1, 1] whenever pg < %

Note that, in practice, conditions in Theorems 2.1 and 2.2 are verified by
first calculating the ordinary moments of the design and subsequently canon-
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ical moments are found in a standard way [see Karlin and Shapely (1953),
page 59]. We now apply the above results to establish results for G-ef-
ficiencies of D-optimal designs and D,_,-optimal designs under various
polynomial model assumptions.

THEOREM 2.3. Let ¢ denote a design such that p; € (0,1), j=1,...,2k —
1, and p,;, € (0,1]. Then, forj=1,2,...,k,

J i i-1 1
9om-1 9om
di(1,§) =1+ I —
i=1\m=1Pam-1m=1Pam | P2i
and
J i i-1 1
Pom-1 dom
a(-1,6-1e | I 2ot T )
i=1\m=1942,m -1 m=1 Pam | Pa;

If & is symmetric and [r] denotes the largest integer less than or equal to r,

[j/2]( i i-1g,. 1

A0,y =1+ ¥ | [T 2em=2 p Jom =

i=1 \m=1044y -9 m=1 Pam P4

. j=1,2,... k.

REMARK 2.1. If the regression function is f,(x), Theorem 2.3 provides an
upper bound for the G-efficiency of a nonsingular design ¢ in terms of its
canonical moments:

J+1
max(dj(l, §),d;(—1, 5)) .

Gi(¢) <

THEOREM 2.4. Assume the regression function f,(x) is a polynomial of
degree n.

(a) Let &, denote the D-optimal design for f,(x). The G-efficiency of £, for
fi(x)is
n(j+1)

G, =— =1,2,...,n.
J(gn) n+2nj_j2’ J s &y »

(b) Let ¢, p, denote the optimal design for estimating the coefficient of x"
for f,(x). The G-efficiency of &, p for f(x) is

J+1 1o 1
<] < —
5+ 1 ifl<j<n-1,
Gi(&.0) =1, 41
, ifj=n.
2n

REMARK 2.2. Note that, from theorem 2.4(a), G(¢,) =2n/(Bn — 1) if
n > 1, and Gy(¢,) = 3n/(5n — 4) if n > 2, which coincide with the results of
Kussmaul (1969).
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REMARK 2.3. In a numerical study of properties of robust designs,
Thibodeau (1977) conjectured that

(n —Jj)*
maxdj(x,gn) =dj(1,§n) =dj(—1,§n) =n+1- .
xeQ n
Our proof of Theorem 2.4(a) in the Appendix will prove Thibodeau’s conjec-

ture as a by-product.

REMARK 2.4. It is interesting to note that both the D-optimal designs and
the D;-optimal designs are extreme cases in that their canonical moments
satisfy the inequalities of Theorems 2.1 and 2.2 with equalities.

Next, we consider the class of D,_,-optimal designs proposed by Studden
(1980). For the regression function f,(x), he defined a D, _,-optimal design as
one which minimizes the determinant of the covariance matrix of the least
squares estimates of the “highest” n — r parameters, B, ., B,,9,---, B,.- Note
that (i) when r = 0, the design ¢, p . becomes &, p , which coincides with
the D-optimal design ¢, for f,(x) in Theorem 2.4(a) [Studden (1980)] and (ii)
when r=n —1, §, 5  reduces to ¢, p in Theorem 2.4(b). The next result
generalizes the case to any values of r between 0 and n — 1.

THEOREM 2.5. Let 0 <r<n —1andlet §  denote the D,_,-optimal
design for the polynomial regression function f,(x) of degree n. The G-ef-
ficiency of &, p _, for fi(x) is

j+1
2j+1°
Gi(é.p,-r) = j+1

ifl<j<r,

, ifr+1<j<n.
n+1+r—(n-j)>/(n—r)

From the proof of this theorem in the Appendix, it will be apparent that
the conclusions in Theorems 2.1 and 2.2 hold as long as each of the first 2%
canonical moments of the design satisfies either one of the conditions in
Theorem 2.1 or Theorem 2.2. Thus, the conditions in these two theorems are
not as stringent as they appear to be.

Our next result may be used to assess the loss in G-efficiency when we
erroneously assume heteroscedasticity is present in the model. Following
Fedorov [(1972), page 39], we represent the heteroscedasticity by an efficiency
function A(x). This function is positive and its value at the point x is
inversely proportional to the variance of the response at the point x. The
interest here is the loss in efficiency if we determine the D-optimal design
assuming the efficiency function is AM(x) = (1 + x)*" (1 — x)#*!, a > —1 and
B > —1, when in reality the efficiency function is constant across Q = [ —1, 1].
The G-efficiency of the (heteroscedastic) D-optimal design &(*#) under a
homoscedastic model is now given. A numerical example is worked out in
Section 3.
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THEOREM 2.6. Suppose ) =[—1,1], the regression function f(x) is a
polynomial of degree j and the efficiency function M x) is constant across ().
Let £(“P) denote the (heteroscedastic) D-optimal design for f,(x) assuming
Mx) =0 +x)"' 1 —x)P*Y, a> —1 and B> —1. Then the variance func-
tion for £{“P) satisfies

maxd;(x, ) =d,(—-1,&P) ifa<B,
xeQ
and

maxd,(x, £ P) = d,(—1, £P) ifa> B,

xeQ

Furthermore, forj=1,2,...,n,

Jo(B+n+2—-i); (a+B+3+n—1i);,,
. (a,B)) =1 +
dJ(]-’é:n ) i=21 (a+n+2—l)l (n_l+1)l
X{a+ B+ 3+2n—2i}

and

Jo(a+n+2-i); (a+B+3+n—1i);_,
_ (a,B8)) — _
di(-L&"") =1 i§1(3+n+2—i)i (n—i+1);

X{a+ B+ 3+2n—2i},

where we have used the notation (a), = 1 and (a), = alea + 1)---(a + k& — 1).

REMARK 2.5. The heteroscedastic D-optimal design £(*#) is well known
[Fedorov (1972), page 89].

For the sake of comparison, we now state the D-efficiencies of ¢, and
&, p, . for the regression function fi(x), n > j > 1. The proof of these results
are omitted since they can be deduced from Studden (1980) or Lau (1983).

THEOREM 2.7. Let fj(x) denote the polynomial regression function of de-
gree j. For n > j > 1, we have the following:

(a) The D-efficiency of &, for f(x) is given by

2 (27— 2i+1) (2j—2i+3) }““

1 J n—1+1
Dj(gn)j = I_I{(

s |\j—i+1) (2n—2i+1) (2n — 2i + 3)
n2j-1Y\

X\|— .
Jj2n -1

(b) The D-efficiency of &, ,  for f(x) is given by

2j—1)f J((2j-2i+1)2j—-2i+3)) !
J (j—i+1)°

i=2

Dj(gn,Dnir)jﬁ—l _ 2j2(
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if j < r; otherwise, the right-hand side expression is replaced by

2—2jr+r2( n-r )J‘r(zj—l)"

2n —2r -1 J

r+1_[1 (2j—2i +1)(2j—2i +3) ) """
X

i=2 (j—i+1)

izr42 |\ J—i+1) (2n — 21 + 1)(2n — 2i + 3)

y li[ {(n—i+1

2 (2) - 2i + 1)(2j — 2i + 3) }““

Theorem 2.7(a) yields, for example, for j = 1, 2 and 3,

5 1/3
n 1/2 3 n*(n—1)
(2.9) Dl(g"):{zn—l} ’ Dy(&) = 2n—1{ 8n — 12 }

and

_ n — n— 9)/2 5n’ v
Dy(£) = 2.5(n — 1)(n - 2) {(my_&@n_sf@n_lf} -

Letting ¢, denote the limiting design of &, [which exists by Kiefer and
Studden (1976)], we have

j+1
2.10 G -
(2.10) i(62) = 1775;
and
: 1, J (2j—2i+1\¥ %!
2.11 D(&) T = 2| ————
(211) (e = 2 [T (M=

The G-efficiency follows directly from Theorem 2.4, and its D-efficiency
follows from Theorem 2.7(a) after some algebra. Theorem 2.3 of Kiefer and
Studden (1976), which is expressed in terms of partial sums of the zeta
function, is a complicated version of (2.11). The expression in (2.11) has the
advantage that it is more compactly written and is numerically more efficient
to compute.

3. Examples and applications. We discuss some practical implications
of the results in the previous section in designing an experiment. Suppose the
relationship between the true expected response and a covariate x is a
polynomial. Since the degree of the polynomial is often not known, it is
prudent to choose a design which is robust to polynomial assumptions.
Ideally, we would like to have a design that remains efficient for moderate
changes in the assumed degree of the polynomial.

For G-efficiency, it is clear from Theorem 2.4(a) that, for fixed n G,(¢,) is a
monotonic increasing function of j, provided j% + 2j > n > j, which is true
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for most practical cases. Furthermore, if the true regression function is a
polynomial of degree j, the G-efficiency of using ¢;,, (instead of ¢,) is at least
g provided

(1-g)(J*+J)
2j+1)g—-1-j’

The constraint g > 3 ensures the denominator is positive for all j > 1; this
restriction is reasonable since designs with high efficiency are sought. When
g =11in (3.0), & is 0, confirming the uniqueness of the G-optimal design. By
Atwood’s inequality [Atwood (1969)], &, has a D-efficiency of at least g
when the regression function is f,(x) and 4 satisfies (3.0).

Further implications in terms of the loss in G- and D-efficiencies of using
&, when the regression function is fj(x), n > j, can be evaluated by applying
Theorems 2.4 and 2.7. Since the practical cases of interest are typically when
n=j+1,j+ 2 and possibly j + 3 (moderate changes in the assumed degree
of the polynomial model), we evaluate these cases by substituting n for one of
these values in Theorem 2.7. The resulting expressions are all monotonic
functions of j: Di(¢;, ;) > 0.8165, D/(¢&;,,) > 0.7746 and D(¢;, ;) > 0.7559
for all j > 1 with equality at j= 1. When j > 20, D,({;,,) > 0.9666 for
1 <k < 3. The practical implication here is that the D-optimal design ¢,
remains relatively efficient for the model f,(x) as longas 1 <j<n <j+ 3.
Similar conclusions are obtained for the G-efficiency: G,(¢;, ;) > 0.8100,
G;(§;45) = 0.7500 and G;(¢&;, 3) > 0.7273 for all j > 1 with equality at j = 1.
When j > 20, Gj( §j+k) > 0.8895 for 1 < k < 3. As in the case of D-efficiency,
these calculations suggest that correct model specification becomes increas-
ingly less important if one uses any ¢,’s, as long as n > j and j is sufficiently
large.

Atwo00d(1969), Thibodeau (1977) and, recently, Wong (1994) tabulated the
D- and G-efficiencies for selected cases studied here. Theorems 2.4 and 2.7
generalize their numerical results and also may be combined to express the
D-efficiency of &, for f,(x) in terms of its G-efficiency and vice versa. For
instance, if n > j = 1, (2.9) yields

(3.0) 0<h=<

S

Jj=z1l,5<g<1.

D _3n—1 n I/ZG
() = 5= {5] G

For the design ¢, it can be verified that both —D(¢.) and G,(£..) are
monotonically decreasing functions in j. A direct calculation shows G(¢.) =
0.67, 0.60 and 0.57 for j = 1, 2 and 3, respectively, and decreases in the limit
to 0.5. Also, if n > j — «© in such a way that 0 <j/n =r < 1, the limiting
value of G,(¢,)is 1/(2 — r). In contrast, (2.10) yields D;(¢.) = 0.71, 0.75 and
0.79 for j = 1, 2 and 3, respectively, and equals 1 in the limit. Thus, if the
true regression function is a polynomial of degree 3, say, then the D(G)-ef-
ficiency of ¢, is at least 0.79 (0.50) as long as n > 3.

Similar deductions can be made for the D,_ -optimal designs but, for space
consideration, their D- and G-efficiencies for the regression function fj(x) are
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displayed in Table 1 for selected values of j, r and n. Since §, and ¢, are
the same design [Studden (1980)], this table includes results for the D-opti-
mal design for all the parameters as well. It is clear from Table 1 that, for
fixed n and j, the G- and D-efficiencies of the design &,  increase as r
decreases. However, for fixed j and r (< n), both the G- and D-efficiencies of
ép, . do not change if n is sufficiently large. Other properties of these
efficiencies can be deduced from the table. Again, by Atwood’s inequality
[Atwood (1969)], note that the D-efficiencies always exceed the G-efficiencies.

We now give an example to illustrate the use of Theorem 2.6 in practice.
Consider, for example, the case when Q =[—1, 1], the regression function is
f.(x) and the D-optimal design for the efficiency A(x) = (1 + x)**}(1 — x)#*1,
a> —1, B> —1, is used in the homoscedastic model. To see how the
G-efficiency is affected, we discuss two special cases: (i) a = B = — 3, with
Mx) =1 — xH)V%; and (i) @ = B = 3, with Mx) = (1 — x?)3/2. Other situa-
tions can be treated similarly. A straightforward calculation shows, for case

@,
Jj+1
27+ 1’

G(eVH 1Y) = i=12,...,n,

TABLE 1
G(D)-efficiencies of the optimal designs, &, p  forfi(x),2<j<6,1<r<j2<n<7

n
J n-r 2 3 4 5 6 7
2 1 0.750(0.750) 0.600(0.750) 0.600(0.750) 0.600 (0.750) 0.600 (0.750) 0.600 (0.750)
2 1.000 (1.000) 0.667 (0.826) 0.600 (0.750) 0.600 (0.750) 0.600 (0.750) 0.600 (0.750)
3 1 0 0.667(0.786) 0.571(0.786) 0.571(0.786) 0.571(0.786) 0.571(0.786)
2 0 0.800 (0.975) 0.615(0.845) 0.571(0.786) 0.571(0.786) 0.571(0.786)
3 0 1.000 (1.000) 0.706 (0.875) 0.600 (0.823) 0.571(0.786) 0.571 (0.786)
4 1 0 0 0.625 (0.934) 0.556(0.813) 0.556 (0.813) 0.556 (0.813)
2 0 0 0.714(0.966) 0.588(0.861) 0.556 (0.813) 0.556 (0.813)
3 0 0 0.833 (0.986) 0.652(0.886) 0.517(0.843) 0.556 (0.813)
4 0 0 1.000 (1.000) 0.741(0.902) 0.625 (0.862) 0.571(0.835)
5 1 0 0 0 0.600(0.936) 0.546 (0.834) 0.546 (0.834)
2 0 0 0 0.667 (0.963) 0.571(0.875) 0.546 (0.834)
3 0 0 0 0.750(0.979) 0.621(0.896) 0.563 (0.834)
4 0 0 0 0.857(0.991) 0.706 (0.909) 0.600 (0.876)
5 0 0 0 1.000 (1.000) 0.857 (0.920) 0.652 (0.888)
6 1 0 0 0 0 0.583 (0.939) 0.539 (0.850)
2 0 0 0 0 0.636 (0.962) 0.560 (0.886)
3 0 0 0 0 0.700 (0.976) 0.600 (0.904)
4 0 0 0 0 0.778 (0.986) 0.651(0.916)
5 0 0 0 0 0.875(0.994) 0.714 (0.925)
6 0 0 0 0 1.000 (1.000) 0.793 (0.932)
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which is the same as the D;-optimal design except when j = n. For case (i),

(n—Jj+D(n-j+2)(J+1)

(£1/2,1/2)) _
Gj(gn )) 2(n—j)(j-1)(n+1)+Bn+5)n+2’

Jj=12,...,n.
If we specialize to the cases when j = 1 and n,
Gy(£0/21/) = and G, (&0/%1/) = 2
o 3n + 2 e 3n+2°

Observe now the high cost in terms of G-efficiency of the erroneous
assumption of heteroscedasticity. If n = 2, G,(£§1/%Y/?) = 0.25 and if n = 3,
G4(£§1/21/2) = 0.182. The implication is that one should be very careful
about the heteroscedastic assumption since use of the heteroscedastic optimal
design for the homoscedastic model can result in very severe loss in G-ef-
ficiency.

4. Further applications. The results stated in Section 2 are closely
related to some problems associated with the Gauss—Jacobi quadrature and
we will indicate some of these relations very briefly here. The interested
reader is referred to the paper by Nevai (1986), which provides an excellent
overview on this topic. See also Freud (1972) and Nevai (1986) for important
applications of the Gauss—Jacobi quadrature in numerical integration and
approximation theory.

On the compact interval [ —1, 1], the Christoffel function of order n, with
respect to a given measure d&(x), is defined by

M(dE, x) = min{f1 |l () d§(t)‘7r(t) is a polynomial of degree
-1
less than or equal to n — 1 and 7 (x) = 1}.

If P,(x) denotes the nth orthonormal polynomial with respect to the
measure d&(x) and x,, x,,..., x, are the zeros of P (x), then

LA, x)m(x) = [ (o) deC)

for all polynomials of degree 2n — 1 (i.e., the Gauss—dJacobi quadrature with
knot at x; and weight A,(d¢;, x;), i = 1,2,..., n, integrates these polynomi-
als exactly). It is well known that

{’\n(dg’x)}71 = r'L_ZOPiZ(x) = dn—l(x’ 5)’
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and, consequently, the results of Section 2 state sufficient conditions under
which the Christoffel function is minimized at the extreme points of the
interval [ —1,1]. There are several results in the literature addressing this
issue, but all of them are motivated primarily from the monotonic properties
of the Christoffel functions. The approach of this paper in addressing this
question is new and has the advantages that it avoids the common assump-
tion that d£(x) has to be an absolute continuous measure. Consequently, our
results are applicable to discrete measures as well.

5. Summary. We gave sufficient conditions where the variance function
of a continuous design is maximized at the extreme points of the design
space. These results are applied to study the D- and G-efficiencies of D- and
D, _,-optimal designs when there is uncertainty in the degree of the polyno-
mial model. Applications of our results to numerical analysis and approxima-
tion theory are also briefly noted.

In this paper, our attention has been confined to D- and G-efficiencies.
Other measures of efficiencies, such as A- and E-efficiencies, could also be
studied. However, it appears difficult to obtain analogous analytical results
for the A- and E-efficiencies. A reason for this is that A- and E-optimal
designs cannot be described in a nice closed form like those of D- and
G-optimal designs. See Wong (1994) for numerical results for A- and E-ef-
ficiencies in selected cases under the setting considered here.

APPENDIX

Auxiliary results and proofs. Here we state several auxiliary results
on canonical moments. Let |M*(¢)| denote the determinant of an (m + 1) X
(m + 1) information matrix

M7(£) = 1 M) fu(x) £ (x) di(x)

in a weighted polynomial regression with efficiency function A(x). Note that
the choice A(x) = 1 gives the homoscedastic case considered in Sections 1-4.
Recalling that ¢; denotes the ith moment of a design &, it is easy to see that

D,,.(¢) = |ci+j|0£i,j£”” Dy, (¢) = |Ci+j - ci+j+2|05i,j£ m—1,

D,,, .1(§) = |ci+j + ci+j+1|0£i,jém’ Dy, 1(€) = |ci+j - Ci+j+1|0si,jsm

are the determinants of the information matrices for weighted polynomial
regression with efficiency functions Mx) =1, Mx)=1—-x2, Mx)=1+«
and AM(x) = 1 — x, respectively. In terms of the canonical moments, they are
given by the following lemma.
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LEMMA A.1 [Lau and Studden (1985)]. We have

Qz;n(f) = 2m(m+1)_71_[1(§2i71§2i)m+17ia
EZm(f) = 2m(m+l)1j[(72i7172i)m+17i7
D2m+1(§) = 2(m+1)2n(§2l§2l+1)m+1 l

= 2 +1-i
Dyyiq(€) =270 H}(Vzﬂ’ziﬂ)m .
iz

where {4 =1, =p1, Yo=1, v1 =91, {=9;-1P;» ¥, =Pj-14;,J =2, q¢; = 1
— p; and {pJ}J2 1 are the canonical moments of &.

There are two results that will be used repeatedly.

1. If ¢ has canonical moments p; € 0,1), j=1,2,...,2k, then ¢ has at
least & + 1 support points [see Karlin and Shapely (1953) or Karlin and
Studden (1966)]. Consequently, M,(¢) is nonsingular for j = 1,2,..., k.

2. Let Py(x),..., P,(x) denote the orthonormal polynomials with respect to
the measure dé(x) let P (x)T = (Py(x),..., P,(x)) and let A be a non-
singular matrix such that fi(x) = AP, (x). Then the variance function of
¢ is given by

-1
1 A A

4. &) = 1) | Af' P P)" de() A7) ()
(A.0) L
= P(x)"Py(x) = ¥ PX(x).

i=0

Therefore the discussion of variance functions is intimately related to the
properties of the orthonormal polynomials P,(x)s with respect to the mea-

sure d&(x). The proof of the next lemma is straightforward and therefore
omitted.

LeEmmA A.2. Let {s;},_;.; be real numbers, and let {P{(x)},_ ., denote
the orthornormal polynomials with respect to the probability measure d&(x).
Then the variance functions d(x, £),...,d,(x, £) satisfy

m—1 m-—2
) SijQ(x) = —s + 2 (s; = 8:1)dj(x, &) +5,,_1d,, (%, &),
j=1 j=1
2<m<k+1.

One of the key steps for obtaining conditions for which the maximum of the
variance function is attained at the extreme points of the design space is
described in the next lemma.
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LEMMA A.3. Let & denote a probability measure on the interval [—1,1]
with canonical momentsp; € (0,1), j = 1,2,...,2k — 1, py;, € (0, 1]. Then the
variance functions d,(x, £),dy(x, £),...,d,(x, §) satisfy the recursive rela-
tion
dm+1(x’ 5) = (1 + al)bm+1 + (1 - ambm+1)dm(x’ 5)

- (1 - xz)ber lcm+lQr2n(x)

m—1 m
boi1 2 (aji1—a;)di(x,¢) — (1 —x)b,, 4 )y ijJQ(x)
j=1 Jj=0
m=1,2,...,k — 1,

where {S(x)}y_ ;.41 and {Q(x)},_ ;_;_, are the orthonormal polynomials
with respect to the measures (1 —x)dé(x) and (1 — x?) dé(x), respectively.
Here,

m*l . .
Pom-— n{pZJI q21}{1_q2m}, m=1,2,...,k_1’

9om-1 q2j-1 P2j Pam
1 Gom-1 "1 [ 42j-1 Py
(A1) b, = =t | {Lﬁ m=1,2,...,k,
Pom Poam-1 j=1 \ P2j-1 92j
Pom- p q
Cm=QQm 2 - ]._I{ 21 21} m=1’2’~ ’ky
92m-1 j=1 \d2j—1 Pgj
p — q / p m
and  f, = Hﬂﬁ{k&}, m=0,1,...,k — 1.
j=14d2j-1 Pgj Qom+1

Proor. Using Theorem 4.1(a) in Dette (1993), it follows that the orthonor-
mal polynomials P,(x), @,(x) and S,(x) with respect to the measures d&(x),
1 - x2?) df(x) and 1 —x)dé(x) Satlsfy the following identities, m =
1,2,...,k:

m-1D Dy;_4(§) _21 2(€) 1_)21'(5) 9
Dy (0 | D& Doty [
Dy, 5(£) Dy, (€) Dy o(€)
) Dy (&) Din(E) Dy (&) 7 ()
' 2 (€) [Da; 1(§)  Dyyia(€)) .,
H-e )§ zm{ D,, () Dm(s)}sf‘(x)
Cla(ee )_zm (&) zm(s)%il(x)‘

2m 1(5) D m(é:)
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where D3, (&) = Dy, (§) + [Dy, 5(£)/D,,, 5(6)1D,,(¢) [Karlin and
Shapely (1953), page 59]. By Lemmas A.1 and A.2, (A.2) can be rewritten as

P2(x) = bm{l (1 - 26, @2 (x)
Y AP x) - (1-x) X ijf(m}
j=1 j=0

m—2
= bm{l +a; + Z (aj+1 - aj)dj(x’ §) —a,_1d,_(x,¢)

Jj=1

m-—1
—(1 = x%)c, @ 1(x) — (1 —x) _§0 ijjz(x)},

where the quantities a;, b, c; and f; are defined in (A.1). Using Lemma A.2
and (A.0), we obtain the following relationship for the variance functions:
m+1

dpii(x,6) = X PP(x) =d,(x,8) + P7 (%)

Jj=0

(1 - ambm+1)dm(x’ f)

m—1
+ 0,41 Z (aj+1 - aj)dj(x, §)+(1+ay)b, .,
j=1

= by 16 1(1 = 2*)Q (%) — b, (1 —x) X f;87 (%),
j=0

m=1,2,...,k — 1.
This proves Lemma A.3. O

Proor oF THEOREM 2.1. Consider case (b) and let {S;(x)}o_ ;.11
{2}y j<1r-1 and {P(x)},_ ., denote the orthonormal polynomials with
respect to the measures (1 — x)dé(x), (1 — x%)dé(x), and dé(x), respec-
tively. By Theorem 4.1(c) of Dette (1993), these polynomials satisfy for
j=0,1,...,k — 1, the identity

(1 _ x2) le !i2m+1(§) {ng(g) . g2m+2(§) }Qi(.’XI)
m=0 Domi1(x) | Dap(€) Dypia(€)

sz(f) 22j+1(§) l_)zj+2(§) 1_)2j+2(§)

(A3) T, Doy (6) Diya(©) Doy 6) 7
: J QZm(f) Q2m71(§) 22m+1(§) 2
-l-(l - x)mgo E2m(€_—) {1_)2m1(§) N Z_)2m+1(§) }Sm(x)
_1_ 1_)2j+1(§) 1_)2j+2(§)P2 (x)

Dy, 1(€) Dyjoa(€) 71
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and

Dya(€) —
D, (¢) D29

[see Karlin and Shapely (1953), page 59]. By an application of Lemma A.1
and assumption (2.0), we obtain, for m = 1,2,...,k — 1,

22m+1(§) {QQm(g) _ 22m+2(§) }
E2m+1(§) D

(A-4) E§j+2(f) :EZj+2(§) +

EQm(g) D2m+2(§)
_ Pom+1 &% Poj-1 &(1 + P2m+2) > 0.

Qom+1 j=1942j-1 4gj

9om+2

Similarly, using the condition on p,; ; in Theorem 2.1(b), it can be shown
that all the “coefficients” of the polynomials S Jz(x) are nonnegative. Thus we
have from (A.3), for all x € [—1,1],

Dsjoa8) Dayalé) g (%), =0, k-1
Dyii1(€) Dyjia(€) " ’ Y
It follows that, for any x € [ —1, 1], we have

52j+1(§) l_)z_j+2(§)
Dy 1(€) Dyjia(€)

where the last equality is obtained from (A.3) for x = 1. The assertion (b) of
the theorem now follows from the representation of the variance function in
(A.0). To prove (c), let £* denote the reflection of ¢ at the origin so that
dx,&*)=d(—x, &), j=1,..., k. Since the canonical moments of ¢* and ¢
are related by

(A5) 0<1-

(A.6) PP (x) < = P4(1),

pgj:p2j and P§j71=‘szf1, Jj=1,...,k

[Lau and Studden (1985)], it follows that &* satisfies the assumptions of
Theorem 2.1(b). Thus we obtain, for j = 1,2,..., k&,

I;lea())(dj(x,g) = rxneaé(dj( -x,&) = Ixnea())(dj(x,g*) =d;(1,£%) =d;,(—1,¢),

proving (c). Finally, part (a) follows from (b) or (c) since the symmetry of ¢
implies all canonical moments of odd order are +[Lau (1983)]. O

ProoF oF THEOREM 2.2. First, we prove part (b) of the theorem by
induction. For j = 1, we calculate the first orthonormal polynomial with
respect to the measure dé&(x) as in Lau (1983) to get Py(x) =(x + 1 —
2¢,)/(4¢, £,)Y? and, consequently, the variance function is d,(x, ) = 1 + (x
+1-2p,))?/(4p,q,p,). Because p, < &+ by assumption, this function at-
tains its maximum in the interval [ —1, 1] at the point 1, which proves the
assertion for j = 1. For the step j to j + 1 < k&, we assume that the variance
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functions d,(x, £), i = 1,2,...,j, all attain their maximum in the interval
[—1,1] at the point 1. By Lemma A.3, we have

di(x,€) = (1+a)bj+ (1—a;b.,)d(x,¢)
-(1 _x2)bj+1cj+1QJ2(x)

Jj—1
(A7) +bj+1 Z (a1 —a;)d(x,¢)
i=1

J
—(1=x)b;,, Y 87 (x), J=1,...,k -1,
i=0

where the quantities a;, b;, ¢; and f; are defined in (A.1). In terms of the

canonical moments, the difference a;,,; — a;, can be written as

L P21 ‘Tl G 92 Pait1 9o 92
b —a = TIP3 oq 4 J2iy Paen Bai () Goiea ||
j=149d9j-1 j=1 Pgj P2 92i+1 P2 DPojso

and it is straightforward to show that the nonnegativity of this term is
equivalent to (2.3). Similarly, it follows that (2.5) is equivalent to the asser-
tion that f; > 0, for i = 0,..., k2 — 1. From (2.3), we obtain
2py; =11 —pyjiy
1-py; P21

Sp2j+2, jzl,...,k_2,

which is equivalent to the inequality 1 —a;b;,;, >0, j=1,2,...,k — 2. In
the remaining case, j = £ — 1, this inequality follows directly from assump-
tion (2.4) and, consequently, the terms 1 —a;b;.,, b, ;c;.q, b; 1, [; and
a;.1—a;, i=1,...,j—1, in (A7) are all nonnegative. By the induction
hypotheses and Lemma A.3, we have

dii(x,8) <(L+a)b .+ (1—ab,q)di(1,¢)
-1
+ bj+1 E (a;r1—a;)di(1, €)
i=1
=d;,(1,¢) forall x € [—1,1].

This is the assertion for j + 1 < & and hence proves part (b) of the theorem.
Part (c) is obtained by the same “reflection” argument as in the proof of
Theorem 2.1(c). Finally, part (a) follows from part (b) because the symmetry
of the design yields p,; ; = 3 for all j, [Lau (1983)]. O

ProoFr or THEOREM 2.3. From (A.3), we have

Dy; 1(€) Dyi(€)
D

=5, () Du(e)

j=1,2,... k,
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where

(by Lemma A.1)

and

D-. Jj-1 ) J-1 1
2(6) _ ‘12_"1(& + 1) — T £~ " |by(A4) and Lemma A.1].
Z_)ZJ'(f) m=1 Pam \ Pgj

m=1 Paom Paj
The assertion for d (1, £) can now be obtained from (A.0). The representation
for d (-1, ¢) follows by similar arguments as in the second part of the proof
of Theorem 2.1. Finally, if ¢ is symmetric, then the monic orthogonal polyno-
mials with respect to d£(x) satisfy the recursive relation P& (x) = 1, P* (x)
=0, and

PP (x) = xPf(x) — qq; o P9 P 1(x) forj>0,

with L,-norm given by 87 = [1,P/(x)* d&(x) = [1/_1q4; 5 py; [Lau (1983)].
A straightforward calculation now yields for the orthonormal polynomials
P(x) = Pj*(x)/3;, with respect to the measure d¢(x),

i Pam-2 i1 Qam 1
Pzi(o)z = l_[ 1_[ —

m=19Y94m -2 m=1 Pay P4

and P,;_,(0) = 0. The assertion now follows from (A.0). O

ProOF OF THEOREM 2.4. (a) From Studden (1980), the canonical moments
of ¢, are given by

n—j+1 1

(AS) p2j=2n_—2j+1 and p2j—1:§’ j=1,2,...,n.

It is easy to see that, for j = £ — 1, (2.1) implies (2.2) and, consequently,
the first part of Theorem 2.2 is applicable, where the special choice of

canonical moments in (A.8) yields equality in (2.1), for all j = 1,2,..., &k — 1.
Together with Theorems 2.2 and 2.3, this yields

Jo2(n—i)+1

maxd(x,£) = d(1,) =1+ ¥ ——

1
(n —j)?
n b

=n+1-

This proves part (a) of the theorem by the definition of G-efficiency.

(b) This is proved similarly by an application of Theorem 2.1 and Lemma
A.3 and by noting that the canonical moments of the D;-optimal design for
f.(x) are given by p, = 3, j=1,2,...,2n — 1, and p,, = 1 [Studden (1982)].

O
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Proor oF THEOREM 2.5. We assume that r > 1 [the case r = 0 is treated
in Theorem 2.4(a)l. By Theorem 3.1 of Studden (1980), ¢, , ~ has all odd
canonical moments equal to 3 and even canonical moments given by

1
E, if 1 Sj <r,
(A9) Pa; = n—j+1
—, fr+l<j<n.
2n —2j+1
For j=1,2,...,r, the assertion follows directly from Theorem 2.1. For

Jj=r+ 1, we apply Lemma A.3 and obtain the recursive relation, for m = r,
r+1,....,n—1,

dm+1(x’ n,Dn,,) = bm+1 + (1 - ambm+1)dm(x’ n,Dn,r)
-(1 _x2)bm+1cm+1Qr2n(x)

(A.10)
m—1
+ 0,41 Z (aj.1 —a))d;(x, €& p )
j=r
Note that a, =a, = - =a, = 0 because p,, =3, m =1,2,...,r. By the
definition of a,, in (A.1) and the representation (A.9) of the canonical
moments of the D, _ -optimal designs, we obtain a,,; =a,,, = - =a, =

1/(n — r) and, consequently, (A.10) simplifies to
dm+1(x’ n,Dn,,) = bm+1 + (1 - ambm+1)dm(‘x? n,D",,)

bm+1
(A.11) +o—d(x 6p, )
_(1 - xz)bm+lcm+1Q31(x)’
m=r,r+1,...,n—1.
It is easy to see that, for the canonical moments in (A.9),1 — a,,b,,.; = 0 and
the assertion for j=r,...,n follows from (A.11) by a similar induction

argument as in the proof of Theorem 2.2. O

Proor or THEOREM 2.6. From Studden (1982), we have, for the canonical
moments of & F)

a+n+1-—1

1= s 1=0,1,...,n,
Pt = g on + 2 - 2i

and
n+1-—1
a+B+3+2n—2i’

If o+ B> —1, the assertion follows from Theorems 2.1 and 2.3 and if
-2 < a+ B < —1, the result follows from Theorems 2.2 and 2.3. O

Do = 1=1,2,...,n+ 1.
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