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CONSISTENCY OF MAXIMUM LIKELIHOOD ESTIMATORS
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We consider a general random effects model for repeated binary
measures, assuming a latent linear model with any class of mixing
distributions. The latent model is assumed to have the Laird—Ware struc-
ture, but the random effects may be from any specified class of multivari-
ate distributions and the error vector may have any specified continuous
distribution. Elementwise threshold crossing then gives the observed vec-
tor of binary outcomes. Special cases of this model include recently
discussed mixed logistic regression and probit models, which have had
either parametric (usually Gaussian) or nonparametric mixing distribu-
tions. We give sufficient conditions for identifiability of the mixing distri-
bution and fixed effects and for convergence of maximum likelihood esti-
mators for the mixing distribution and fixed effects. As expected, the
conditions are much stronger for nonparametric mixing than for Gaussian
mixing. We illustrate the conditions by applying them to a practical
example.

1. Introduction. A number of authors have proposed random effects
models for repeated binary measures. Some have assumed a parametric
mixing distribution, usually Gaussian, while others have assumed nonpara-
metric mixing. Maximum likelihood estimation for models with Gaussian
mixing can be very cumbersome due to the integral form of the marginal
likelihood, particularly for multivariate random effects. Several authors have
used maximum likelihood estimation for a univariate Gaussian random
intercept, including Mislevy (1985), Bock and Aitken (1981), Anderson and
Aitken (1985) and Im and Gianola (1988), who maximize the marginal
likelihood using the EM algorithm with numerical integration at each itera-
tion. Conaway (1990) avoids numerical integration for the case of a random
intercept by assuming a log—gamma mixing distribution and a log—log link
function. For multivariate Gaussian random effects, a variety of methods for
estimation have been proposed, for example, by Korn and Whittemore (1979),
Stiratelli, Laird and Ware (1984), Harville and Mee (1984) for ordinal data,
Gilmore, Anderson and Rae (1985), Zeger, Liang and Albert (1988) and Zeger
and Karim (1991).

A nonparametric random intercept has been assumed by Feinberg, Bromet,
Follman, Lambert and May (1985), Follman and Lambert (1989), Lindsay,
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Clogg and Grego (1991) and Butler and Louis (1992), who use maximum
likelihood estimation with a discrete mixing distribution. The general results
of Laird (1978) and Lindsay (1983) then imply that the marginal likelihood is
maximized over all compact support mixing distributions, if the number of
mass points in the mixing distribution is at least as large as the number of
distinct observations. A lower limit is possible in special cases, as demon-
strated by De Leeuw and Verhelst (1986), Follman and Lambert (1991) and
Lindsay, Clogg and Grego (1991).

We consider a threshold crossing model for repeated binary measures,
assuming a latent linear random effects model. This latent model has the
Laird—-Ware structure [Laird and Ware (1982)]. However, in place of their
Gaussian assumptions, we allow any specified class of multivariate distribu-
tions for the random effects, and we allow the error vector to have any
specified strictly increasing continuous c.d.f. This model includes most of the
above models as special cases. We give sufficient conditions for identifiability
of the mixing distribution and fixed effects and for consistency of maximum
likelihood estimators for the mixing distribution and fixed effects. We define
consistency for estimators of the mixing distribution in terms of convergence
in distribution.

Conditions for consistency of maximum likelihood estimators for general
mixing distributions have been given by Kiefer and Wolfowitz (1956), who
assume identifiability, Pfanzagl (1988) and van der Vaart and Wellner (1992).
However, for reasons discussed later, we must use another approach. We first
demonstrate a type of convergence for the marginal distribution, relying on
very specific properties of our model, and this is used along with identifiabil-
ity conditions to prove consistency.

Conditions for the identifiability of general mixtures have been provided in
a broad context by Tallis (1969) and Tallis and Chesson (1982). These are
difficult to apply even in simple cases, as discussed in Maritz and Lwin
(1989). Simpler conditions are possible for location parameter mixtures
[Teicher (1961) and Maritz and Lwin (1989)], and these are extended as part
of our proof of identifiability.

We describe the model in Section 2. In Section 3 we give some conditions
for convergence of the marginal distribution with maximum likelihood esti-
mation. In Section 4 we give conditions sufficient for identifiability and for
consistency given marginal convergence. These conditions are quite strong
when we allow a general nonparametric class of mixing distributions, and, as
expected, they are much weaker for a specific parametric case such as
Gaussian mixing. In Section 5 we discuss the application of our conditions to
a practical situation. In Section 6 we discuss nonparametric maximum likeli-
hood estimation using discrete mixtures.

2. The model. For each individual i = 1,2,..., n, we assume the exis-
tence of a latent linear model

Ti =Xla + Zibi + 8i’
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where T, € R™ is an m X 1 vector of unobserved latent variables, @ € R? is
an s X 1 vector of fixed effects, b, € R” is an r X 1 vector of random effects,
g; € R™ is an m X 1 random error vector and X; € R *® and Z, € R"*")
are observed covariate matrices. The error vectors ¢; are ii.d. among individ-
uals with a specified continuous c.d.f. F. The random effects b, are i.i.d.
among individuals according to an unknown c.d.f. G. The vectors b, and ¢;
are independent, and both ¢, and b, are independent of the covariates X;
and Z;. Let @ be a class of probability measures on the Borel sets %" in R".
We suppose that the measure associated with G is contained in . For
convenience, we often write this as “G € @.” Two important examples for @
are the class of all probability measures on %" and the class of Gaussian
distributions on R’.

Let W, = (X, Z,), where (-, -) indicates horizontal concatenation, and sup-
pose that the W, are restricted to some Borel set S ¢ R™*¢*") The W, may
be selected randomly, systematically or by a combination of both types of
procedure. Let p™ be the empirical measure on S generated by {W,, i =
1,2,...,n}. Let p be a probability measure on the Borel sets . in S. For
example, in Theorem 3.1 we assume that p(™ converges in measure to p with
probability 1. This assumption holds if the W, are selected randomly and i.i.d.
according to p, but it can also hold with systematic selection, say by assign-
ing a fixed proportion of individuals to each of several treatment groups.

We observe the m X 1 vector Y; such that Y¥;; = 1if 7;; > 0 and Y;; = 0 if
T,;,<0,j=1,2,...,m. Let S be the set of all m X 1 vectors with elements
equal to 0 or 1. Then we have the following model: for i = 1,2,..., n,

(2.1) P(Y; =yIW,, a,b;) = P((X;a + Z;b; + ;) *(2y — 1) = O|W,, ;)

for each y € S, where 1 is a vector of unit elements, 0 is a vector with all
elements equal to 0 and “*” denotes elementwise multiplication. For exam-
ple, if we let F~ be the c.d.f. for —¢;, then Pr(Y, = 1|W,, a, b,) = F (X, +
Z.b,). Let (Q, 7, P) be the probability space with o-field ¥ and measure P
generated by the random components of {(Y;, W,, b, &,), i = 1,2,...}.

We write W, = w = (x,2z) to indicate that X, =x and Z, =z. Let
M(ylw, a,G) be the marginal probability that Y, =y given that W, = w,
defined as

M(ylw, a,G) =P(Y; =ylW,=w, a,G)
=E;[P((xa+2b+e)x(2y —1) = 0[b)]

for each y € S,. For example, MQ1|w, a,G) = E4[F~(xa + zb)]. Notice that
M is continuous in w on R™* ¢+,

An important special case of model (2.1) is the “conditional independence”
model, in which the elements of &£ are independent. Then the elements of
Y|(W = w, b) are conditionally independent. If the elements of ¢, are identi-
cally distributed, as is usually assumed, and the elements of —¢;, are dis-
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tributed according to some c.d.f. F;, then

Pr(Y; =ylW,=w, a, b)

2.2 m -
(22) =J_]:[1[F1yf(xja+zjb)(1 —Fl(xja-kzjb))( ])],

where y; is the jth element of y, and where x; and z; are the jth rows of x
and z. This model includes most of the cases considered by the authors
discussed in Section 1.

For the general model (2.1), we say that G, and «, are maximum
likelihood estimators (m.l.e.’s) for G and « if they simultaneously maximize
the joint marginal likelihood for (Y;|W)), i =1,2,...,n, over G € @ and
a € R®. In other words, if
1_[ [M(Ytlww d)> A)] ’

i=1

[1[M(Y,IW,, a,,G,)] = max
i=1 ¢, A

where the maximum is over ¢ € R® and A € Q.

We give sufficient conditions on model (2.1) for identifiability of G and «,
and we give sufficient conditions for consistency of the m.l.e’s for G and «.
We say that G and « are identifiable when we have the following implica-
tion: if G €@, G Q, o' €R®, a € R* and M(1|lw, o',G) = MQ|lw, a,G)
almost everywhere ( p), then G’ = G and o’ = «. We say that a sequence of
estimators {G, € @, «, € R°, n=1,2,...} is consistent for G and « if
G, >4 G and «a, — a, each with probability 1 (P).

The general conditions of Kiefer and Wolfowitz (1956), Pfanzagl (1988) and
van der Vaart and Wellner (1992) for consistency of maximum likelihood
estimators do not apply here, even assuming identifiability. Aside from the
fact that their models do not include covariates, the most important reason is
that we do not have continuity of the kernel density on a compact (or
compactified) parameter space. In other words, we cannot compactify R"** so
that Pr(Y = ylw, «, b) is continuous in («, b) on the resulting compact space.
We circumvent this problem by first demonstrating a type of convergence for
the marginal distribution, which is used together with our identifiability
conditions to prove consistency.

3. Marginal convergence. In this section we give some conditions that
imply two types of convergence for the marginal distribution, given that we
have m.l.e.’s for G and « for each n. The first type is used in the proof of
consistency. The second type is included for its immediate implications. These
results and some of the conditions are presented in Theorem 3.1. The remain-
ing conditions, which restrict S and the covariate selection process, are given
afterwards. It is important to note that the conditions for marginal conver-
gence do not depend on Q. Let (S,,S) ={(y,w): y €S,, w € S}. Then we
define 7, and u to be the measures on the Borel sets in (S,, S) such that
dn,(y,w) = M(ylw, «,,,G,) dp(w) and du(y,w) = M(ylw, a,G) dp(w), in
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the obvious manner. Then we have the following result, proved in Appen-
dix A.

THEOREM 3.1. For each n, let G, and «, be maximum likelihood estima-
tors for G and «. Suppose that p'™ —_ p with probability 1 (P), that F is
strictly increasing on R™ and that we have the additional conditions given
below. Then we have the following conclusions:

1. With probability 1 (P), for any subsequence {n(j), j = 1,2,...} there exists
a further subsequence {n(j(h)), h = 1,2,...} such that

M(ylw, a,inys Guiony) = M(ylw, a,G) ash — =
for all y and for values of w almost everywhere ( p).

2. With probability 1 (P), m, =, p asn —> .

For any p-continuity set B €.%, conclusion 2 implies convergence of the
expected marginal probabilities for Y over B according to p, in the sense that

b
p(B)

as n — o for all y.

fM(yIW,an,Gn)dp—> jM(yIW,a,G)dp
B B

b
p(B)

Note. For the conditional independence model, conclusions 1 and 2 of
Theorem 3.1 imply the corresponding conclusions for the marginal distribu-
tion of any m' < m elements of Y, conditional on the corresponding m’' rows
of W, if we replace p with the appropriate marginal probability measure.

Additional conditions. Roughly speaking, we allow discrete and continu-
ous columns of W, we assume that the discrete columns have a finite number
of possible values and we assume that the continuous columns are random
with an absolutely continuous joint distribution. Denote the columns of W as
(W, W,,...,W,, ). For some ¢ < s + r, let W, be a collection of ¢ columns of
W, so that W, = (W, ,W, ,..., W, ) for some fixed (i, iy, ...,,). The remain-
ing s +r—t columns of W are denoted W,. We suppose that W, is
restricted to a finite set Sy, = {wy, ;, £ =1,2,..., K} CR™ 779 Let S =
{we R™ T w ) € R™, wy, € S

For each k, let p, be the measure on the Borel sets #™*’ in R™*' such
that, if D € ™!, then p,(D) = p({w € S: w, € D, wy, = w,) ;). Let q;, =
p,(R™*"), and suppose that g, > 0 for all k. Since p'™ converges in measure
to p, then

M=

1
(3.1) — LW, o) = we, 1} — a

1

for each %, with probability 1 (P), where I{-} is equal to 1 if the argument is
true, and equal to O if it is false. We suppose that the conditional random
variables W, [(W,,) = w,, ,) are ii.d. according to the probability measure
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Pr/q, and that p, is absolutely continuous with respect to the Lebesgue
measure on R™*’.

4. Identifiability and consistency. In this section we assume the gen-
eral model (2.1) and that some sequence {G, € @, «, € R*, n=1,2,...}
satisfies conclusion 1 of Theorem 3.1. Then we give some conditions that are
sufficient for identifiability of G and « and that are also sufficient for
consistency of G, and «,,.

First, we need the following definitions. Let a = («(;), a(y)) for a scalar «,
and an (s — 1) X 1 vector a,,. Let ay, ; be the jth element of «,). Similarly,
let a, =(a,,)a, ) and let «, , ; be the jth element of «, ,. Let
X = (X, X,) for an m X 1 vector X; and an m X (s — 1) matrix X,. Then
W = (X,, X,, Z). Similarly, denote any w € R™*“*" as w = (x4, x,, 2).

Recall that p is a probability measure on .. Acting as if W were
distributed according to p, let px, , be the marginal distribution of p for
(X,, 2), and let px ., ., be the conditional distribution (where this exists) for
X, given that (X,,Z) = (x,, 2). Let S, c R™*¢*"~D be a support for the
marginal of p on (x,, 2). Let X, ; be the jth column of X,, and let X, ; be
the first j columns of X,, j=1,2,...,5 — 1. Let (X, (), Z2) = Z.

For each (x,,2) € S,, a € R° and G € @, if «, # 0, then define H, ; to
be the c.d.f. for (—1/a; Xx, ), + 2b + ¢). Let I'(x,, 2) be a class of c.d.f’s on
R™ that contains {H, ;: @ € R®, , # 0, G € @}. For example, if @ is the
class of all distributions on %”, then we can choose T'(x,, z) to be the class of
all distributions on %™, although a smaller class is possible when r < m. For
another example, if @ is the class of Gaussian distributions on %" and F is
Gaussian, then we can take I'(x,, z) to be the class of all Gaussian distribu-
tions on R™.

We say that the members of a class I' of c.d.f’s on R™ are uniquely
determined by their values on a set C € R™ if the following implication holds:
when HeTl',G&Tl and H= G on C, then H = G on R™ For example, if I'
is the class of all distributions on #™, then the smallest such C would be
R™. If T is a parametric class such as the class of Gaussian distributions on
R™, then a much smaller C would suffice. The following theorem is proved in
Appendix B.

THEOREM 4.1. Let G' € @ and o' € R*, and suppose that M(1|W, o',
G)=MQAIW, a,G) almost everywhere (p). Suppose that conclusion 1 of
Theorem 3.1 holds for some sequence (G, € @, a, € R°, n = 1,2,...} and that
we have the following conditions:

1. For any q X m matrix T of rank q < m, the characteristic function of Te is
nonzero on some set of points dense in RY.

2. s> 1and ay, # 0.

3. There exists a collection of sets {A; € S,, | = 1,2,...} with py ,(A;) >0
for all 1, such that, if (x,,z) € U, A,, then there exists a countable or open
set C(xy,2) C R™ with the following properties. Let x; € C(x,, z). Then
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any open neighborhood N(x,) of x, satisfies px ., .(N(x;) N C(xy, 2)) >
0, the members of T'(x,,z) are uniquely determined by their values on
C(xy, z) and there exist some v* and v in C(x,, z) such that vi > v, for
some j and v} > v; for all i, where v; and v} are the ith elements of v and

v¥, respectively.

Then we have the following results, which depend on the properties of individ-
ual sets in the collection {A; c S,, 1 =1,2,...}.

4. For some | €{1,2,..., L}, suppose that each (x,,z) € A, has rank(x,,
z) < m.

Then afj, = ayy and oy, = g

5. Suppose that af) = a4, and «, , = a4, For j€{1,2,...,5s — 1} and for
some I(j) € {1,2,...}, suppose that we have either (a) or (b) below:
(a) For each (x,,2) € Ay, rank(x, ;_;),2) <m and rank(x, ), 2) =
rank(x, ;_q),2) + 1.
(b) For some k(j) €{1,2,..., L}, for every (x,,2) € A);, and (x3,2z%) €
A, ;) we have (xy (;_1y,2) = (x5 1), 2%) and (x, ;, 2) # (x5 ;, 2%).

* —
Then asy i = Qg and Xy 2.7 X2y, )

6. Suppose that a® = a and «a, — «. Suppose that, for somel € {1,2,..., L},
each (x,,z) € A, has rank(z) = r.

Then G* = G and G, = G.

4.1. Discussion and special cases. In this section we discuss some impli-
cations of these conditions, and we consider the cases of discrete covariates,
general mixing and Gaussian mixing. Much of the discussion centers on how
the key condition 3 depends on @ and on the role of condition 3 in the proof.
We discuss each condition in turn, after a general note on discrete covariates.

Discrete covariates. The conditions of Theorem 4.1 are simpler when some
or all columns of (X,,Z) contain discrete covariates. For example, if all
columns of (X,, Z) are discrete, then it may be possible to choose A, to be a
single element (x5, z,) € S, for each [. If only some columns of (X,, Z) are
discrete, then it may be possible for all elements of A, to have the same
values in the discrete columns for each [. This can cause conditions 3 through
6 to be easier to satisfy, as discussed below and illustrated in Section 5.

Conditions 1 through 6. Condition 1 is very weak, and it holds for any
common choice of F. For example, this condition is satisfied by the multivari-
ate Gaussian distribution.

Conditions 2 and 3 compensate for the loss of information in observing Y
rather than 7. Condition 3 depends strongly on the choice of @. For example,
suppose that we let @ be the class of all distributions on %" and that, for
each (x,, z) € A,, we take I'(x,, z) to be the class of all distributions on %Z™.
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Then condition 3 requires that C(x,, z) = R™. This holds, for example, when
X (X5, Z) = (x4, 2)) has a continuous distribution with a positive density on
R™. This strong condition is used, in our proof, to uniquely identify H, ; in
I'(x,, z) given the values of H, ; on C(x,, z). For an illustrative example,
consider the case m =1, r=1, s =1, oy =1, Z=1 and a general @, so
that (—1/aq ) xyap +2b + &)= —(b+ ¢). Then H,; is simply the
marginal c.d.f. for a location mixture with a general mixing distribution. Then
I'(x,, z) must be the class of all distributions on %', and C(x,, z) must be
equal to R'. In fact, our condition 1 is the same as the condition given by
Teicher (1961) and Maritz and Lwin (1989) for identifiability of the mixing
distribution, given the marginal distribution for a general location mixture.

If we restrict @ to a parametric family, then condition 3 clearly becomes
much weaker because we can choose a much smaller class I'(x,, z). For
example, suppose that @ is the class of Gaussian distributions and F is a
Gaussian c.d.f., so that we can take I'(x,, z) to be the class of all Gaussian
distributions on R™. Then condition 3 requires that the Gaussian c.d.f’s on
R™ are uniquely determined by their values on C(x,, z). An example of this
is discussed in Section 5.

Condition 4 identifies « ;. This condition will always holdif m > s +r — 1.
However, for obvious reasons this can hold for smaller values of m when
some covariates are discrete or when some covariates are constant within
individuals.

Condition 5 identifies «,,. Option (a) implies that m > r + 1. This option
holds, for example, when m >s +r —1 and rank(x,,z)=s+r — 1 for
every (x,, z) in A;. Option (a) can be satisfied with a much smaller m when
some covariates are discrete. Option (b) requires for some /() and k(j), that
(%3, (j—1y, 2) be constant over A, and that (x5 _;),2*) be constant over
A, This is only reasonable when (X, ;_;),Z) are discrete covariates.
Compared to option (a), this option can allow much smaller values of m and
more variables to be constant within individuals.

Condition 6 identifies G once the fixed effects are identified. This condition
implies that r < m, so that the number of repeated observations is at least as
large as the number of random effects.

Other practical notes. As illustrated in Section 5, for different elements of
a we may rearrange the columns in W to use different columns as X;. Also,
following the note after Theorem 3.1, for the conditional independence model
it is sufficient that the conditions hold for the marginal of p on any subset of
m' rows of w. In fact, we may choose different subsets of m’' rows for each [ of
conditions 4, 5 and 6.

5. An application. We now illustrate the conditions by applying them to
a particular situation. This is a doubly nested study of interviewer variability
in a binary response, with covariates. Anderson and Aitken (1985) assume a
conditional independence model, a probit link function and Gaussian mixing.
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They analyze the responses on a binary item from a consumer attitude survey
carried out by the Social and Community Planning Research (SCPR) Insti-
tute. Interviews were conducted by 64 interviewers, two at each of 32
locations, with a total of 1265 respondents (all heads of households). The
average number of respondents per interviewer was 19.8. Due to the large
number of locations and interviewers, Anderson and Aitken argue that it is
appropriate to model these as having additive random effects, which they
assume to be independent and Gaussian. The covariates used by Anderson
and Aitken include six categories for interviewer age, five for interviewer
marital status and two for interviewer experience. Respondent age and
marital status were also included, with similar categories.

We now discuss the application of our conditions to this situation. First, we
suppose that the model assumed by Anderson and Aitken is used. We refer to
this as case A. We must assume a slightly different use of the available data
because we have not considered the case of unequal numbers of repeated
measures. We suppose that only those locations in which each interviewer
has 10 or more interviews are included and that only the first 10 interviews
are used for each interviewer at these locations. The number 10 is arbitrarily
chosen, and our discussion would be similar for any other choice. Otherwise,
we assume the same data used by Anderson and Aitken. In case B we assume
general nonparametric mixing, and we must make additional changes dis-
cussed below.

Let Y; be the 20 X 1 vector of binary responses for the ith location, listed
so that the first 10 elements of Y; are responses to “interviewer 1” and the
last 10 elements are responses to “interviewer 2.” (The labels “1” and “2” are
arbitrarily assigned to the interviewers at each location.) Let W, be the
corresponding 20 X 21 design matrix for the ith location, organized as fol-
lows: let X; be the first 19 columns of W,, which contains 19 dummy
variables for the five categorical covariates. Dropping the subscript “i,” let the
first nine columns of X contain the dummy variables for respondent charac-
teristics, out of which the first five columns contain the dummy variables for
respondent age. Then the last 10 columns of X contain the dummy variables
for interviewer characteristics (notice that these are constant over the first 10
rows and over the last 10 rows). Let Z; be the last two columns of W,. Let the
first column of Z;, be 1,,,,, defined as a 20 X 1 vector of 1’s, and let the
second column of Z; be (151,07, 1), or the 20 X 1 vector in which the first
10 elements are 1’s and the last 10 elements are 0’s.

Then « is a 19 X 1 vector of fixed effects, and b is a 2 X 1 vector of
random effects. The first element of b is the sum of the location effect and the
interviewer 1 effect, while the second element of b is the interviewer 2 effect.
Then in case A, following Anderson and Aitken, we take @ to be the class of
independent bivariate Gaussian distributions. In case B we take @ to be the
class of all distributions on #2. In case B we suppose that “respondent age”
is used directly as a continuous variable and that this is the covariate in the
column X;. Then the first five columns of X contain respondent characteris-
tics, and the total number of columns in X is 15.
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We suppose that the number of locations n approaches « and that the
locations, interviewers and respondents are selected independently and at
random. Then the (X, Z,) are ii.d. according to a measure p. We suppose
that every combination of the possible values for the categorical covariates
will be observed with some positive probability.

First, we discuss the conditions of Theorem 3.1, which hold in both cases A
and B. Recall that these conditions are independent of @. The link function F
is the c.d.f. for the m-dimensional Gaussian distribution with the identity
covariance matrix, which is continuous, increasing and never equal to 0 or 1,
as required. In case A let W = W, = (X, Z), and let Sy be the finite set of
possible values for (X, Z). For each (x, z) € S,), the proportion of observa-
tions with (X, Z) = (x, z) converges almost surely to a positive constant, due
to ii.d. sampling. Therefore, Theorem 3.1 holds for this case. In case B let
Wy, =X, and W, = (X,, Z). Let S, be the finite set of possible values for
(X,, Z). For each (x,, z) € S,), the proportion of observations with (X,, Z) =
(x4, 2) converges almost surely to a positive constant. If the conditional
distribution X;|(X,,Z) = (x,, 2) is continuous on R™ for each (x,, z), then
Theorem 3.1 holds in this case as well.

We now check the conditions of Theorem 4.1. Notice that condition 1 holds
because F is Gaussian. Let S, be the finite set of possible values for (X,, Z).
First, consider case A, and denote the respondent age category associated
with X, as category 1. The first four columns of X contain dummy variables
for respondent age categories other than category 1, and we denote these as
categories 2, 3, 4 and 5. Category 6 is the reference category. Condition 2
requires that the true effect associated with category 1, relative to the
reference category, is not equal to 0. This condition seems technically moot,
since the true effect would never be exactly 0. However, a large absolute
effect size could reduce the range of the distributions in TI'(x,, z) for each
(x4, 2), which could help in satisfying condition 3.

The relationship between X; and the first four columns of X, necessitates
the following approach. We begin by considering only those values of X for
which all the respondent ages are either in category 1 or the reference
category 6. In other words, let S, be the subset of S, consisting of all
members (x,, z) of S, for which x, ,, is a 20 X 4 matrix of 0’s, or x, 4 =
0y, 4. We take each A, to consist of one point (x,, z) € Sj, each of which has
positive p,,, , measure. For each A, ={(x,, 2)} CS;, we take I'(x,, z) of
condition 3 to be the class of all Gaussian distributions on R™. Then
condition 3 holds because C(x,, z) includes every m X 1 vector with elements
equal to 0 or 1 and the Gaussian c.d.f’s on R™ are uniquely determined by
their values on these points. We choose v* =1, ,, and v* =0,, ;.

Condition 4 holds for each (x,, z) € S}, as follows. Recall that x, has 18
columns, and the last 10 contain interviewer characteristics. Then the last 10
columns must be linear combinations of the columns of Z. Since x, 4) = 0444,
then rank(x,, z) < 7. In fact, for particular choices of (x,, z) € S}, the rank
of (x4, z) can be as low as 2, for example, when all elements of x, are equal
to 0. Therefore, afj, = ¢y, and ay, , = a4, Now, in order to demonstrate
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identifiability and consistency for the effects associated with respondent age
categories 2, 3, 4 and 5, we can exchange each of these categories with
category 1 and repeat the above discussion.

We use option (b) of condition 5 for the last 14 elements of «. For any
(xy, 2) and (x3}, 2*) in S, we have that z = z* and x, 4, = x5 ), so that for
each j =5,6,...,18 we must find some (x,, z) and (x3, z*) in S} such that
Xg (j—1) = %5 (j—1y and x, ; # x5 .. There are many such choices. For example,
for each j we may take xy ;i ;) =5 ;_1)= 0g0x(j—1) X2,; = Loox1, X3 ;=
050, and x, , = x5, = 0y, for & =j+ 1,7+ 2,...,18, where 1 is a vector
with unit elements. Finally, condition 6 holds for every (x,, z) € Sj,.

Now consider case B. Condition 2 holds if the linear effect of age is not 0.
We take each A, to consist of one point (x,, z) in S,, each point of which has
positive p,,, , measure. For each A; ={(x,, 2)} CS,, we take I'(x,, z) of
condition 3 to be the class of all distributions on %#™. Then condition 3 will
hold for each (x,, z) such that py . ., has a positive density on R™, so that
C(x,, z) = R™. This is technically impossible, since the range of respondent
ages is finite. Some further limitations on the classes T'(x,, z) are therefore
necessary, in practice, so that the range of X; will be “large enough.”
However, it is clear that a continuous “respondent age” allows a larger class
@ than does a categorical “respondent age.” If condition 3 holds for some @,
then condition 4 holds because rank(x,, z) < 7, as before. Then option (b) of
condition 5 holds due to arguments similar to (but simpler than) those used
for case A, and condition 6 holds for any (x,, 2).

6. Discrete mixtures. We now discuss some practical implications of
the general results due to Laird (1978) and Lindsay (1983) on the existence
of discrete nonparametric maximum likelihood estimators. Let @ be the set of
all distributions on the Borel sets in R” such that each distribution has a
compact support. Let N be the number of distinct observations of (Y, W), and
let @V be the class of discrete distributions in @ with N mass points.
Suppose that G, and «, are maximum likelihood estimators (m.l.e.’s) for G
over QY and for a over R®. Then we can show that these also maximize the
marginal likelihood over @ and R, as follows. Let B C R" and C C R® be
compact sets. Define @2 to be the class of distributions in @ that have
support B. Then the conditions of Lindsay (1983) guarantee the existence of
m.le’s G, and «, over Q% and C such that G, has at most N mass points.
But this implies that G, and «, are m.l.e’s over @2 and C for any compact
B and C, and the claim follows.

APPENDIX A

Proof of Theorem 3.1. For this proof we combine « and b so that b is
an (s + r) X 1 random vector in which the first s elements are degenerate.
Redefine M, G and @ accordingly. Define u as in Section 3, and let u™ be
the empirical c.d.f. on the Borel sets in (S,,S) generated by {(Y;, W), i =
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1,2,..., n}. We now present some inequalities upon which the proofis founded.
First, we have a standard inequality based on the nonnegativity of the
Kullback-Liebler distance. For all (y,w) € (S,, S),

(A1) T [M(ylw,G)n(M(3lw,G))] = T [M(yhw,G)n(M(ylw,G,))].

Therefore, for any Borel set H C S,

(A2) E,[In(M(YIW,G))I{W € H}] > E,[In(M(Y|W,G,)){W € H}|.
Because In M(Y|W,G,) = 0, for any Borel set H € S we have

(A3)  E,w|[In(M(YIW,G,))[{W € H}| > E,[In(M(YIW,G,))],

where I{-} is equal to 1 if the argument is true, and 0 otherwise. Finally, from
the definition of G,

(A.4) Ew[In(M(YIW,G,))] = E,o[ln(M(YIW,G))].

n

The conditions of Theorem 3.1 imply that
(A5) Eﬂm[ln( M(YIW,G))] - Eﬂ[ln( M(YIW,G))],

with probability 1 (P) (hereafter “w.p.1”). This follows from (3.1) and the
SLLN, which together imply for each % that

1
— Z In(M(Y,IW,,G)) KW, o = we, .}

S QE, | X In(M(yIW,G)M(yIW,G, Wy = wy, )
y

= quM[ln(M(YIW,G))|W(2) = w(2),k]

as n — o, w.p.1, where the expectation E, , isover W, according to p,/q,
and where we define M(y|W,G, W, = w, ,:) =P(Y =y|lW,G, Wy, = wg, ).
Finally, we may take the sum of each side over £ in the above expression,
and the convergence holds because the sum is finite. This gives (A.5).

We now give two lemmas. Together with (A.5), these lemmas will allow us
to link inequalities (A.1) to (A.4) as outlined later in (A.7) and (A.8).

LEmMA A.1.  For any subsequence {n(j), j = 1,2, ...}, there exists a further
subsequence {n(j(h)), h = 1,2,...} and a function M*(y,w) on (S, S) such
that, for every y and for w almost everywhere p on S,

(A.6) M(ylw,G,ny) = M*(y,w) ash — .

ProoF. Let b;, be the ¢ X 1 random vector consisting of the elements of &
that are associated with the columns of W, Let sign(b;,) be the ¢ X 1
random vector with /th element sign(b,,), defined as follows: let sign(b,,,), = 1
if by, > 0, and let sign(b;)), = —1if by, <0 for I =1,2,...,t. Let v be the
random diagonal matrix with sign(b,) on the diagonal, or, in other words,
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with diag(v) = sign(b ;). We denote any particular value of v as ». Also, for
each y €S, let sign(y) be the m X 1 random vector with /th element
sign(y), defined as follows: let sign(y), = 1if y, = 1, and let sign(y), = —1if
y,=0 for [ =1,2,...,m. Let 7(y) be the diagonal matrix with diagonal
diag(7(y)) = sign(y).

To simplify the notation, we define G; = G,;) in the proof of this lemma.

For each %k, we make the following definitions for all w in S such that
Wy = Wy, k'

Let M; ,(y,w.) = M(ylw, G)).

For each v, let M, (y,w,) =P =y|W =w,G),sign(b,)) = diag(v)),
and let p;, = P(sign(b,) = diag(»)IG)), so that M, ,(y, w,) =
L, pj VMj,k,V(ya w(1))-

Then M, , (y,7(y)yv) is nondecreasing in y on R™*’, which follows
directly from the definition of M(ylw,G)).

This allows us to proceed exactly as, for example, in the proof of Theorem
25.9 in Billingsley (1986), which does not require that M; , ,(y, 7(y)y»)) be a
c.d.f. in v, to construct a function M, ,(y,y) with the following properties:

1. For a subsequence j(h), we have M, , (y,7(y)yv) - MkT’ y,7) on
continuity points of M;* (y,7(y)yv)in R™*" as h — =.
2. The function M; (¥, v) is right continuous and nondecreasingon y € U, ,.

By choosing successive subsequences on the finite set of values for y, £ and
v, this construction may be done so that the convergence holds for all y, %
and v on the same subsequence. Also, by a successive construction using
Helly’s selection theorem for a tight sequence of measures, we may construct
p; with X, p¥ = 1 such that p;,, , = p; for all v.

Notice that the transformation vy —» 7(y)yr from R™*! to R™*! is invert-
ible for any y and v, so that we can define M} (y, (y)yv) = M} (y, 7).
Then property 1 implies that M, , ,(y,w,) = M (y,wq,) on continuity
points of M (y,w)) in R™*’. Also, property 2 implies that M;" ,(y, 7(y)yv)
is continuous for y almost everywhere (), where A is the Lebesgue measure
on R™*'. [ Note: The set of discontinuities in M}’ (y, 7(y)yv) is measurable,
as discussed for a more general class of functions in Billingsley (1986), pages
343 and 391. It is straightforward to show that the Lebesgue measure of this
set must be 0, since M; (y,7(y)yr) is nondecreasing in 7y.] Therefore,
M (y,w)) is continuous for w,,, almost everywhere (1) on R™*".

Finally, then, for all y and k, we have that ¥, p;;, , M 1, (¥, W) =
X, piMy (y,wq) for w,, almost everywhere (A). This convergence holds
almost everywhere (p,) on R™*‘ since p, is absolutely continuous with
respect to A. This gives result (A.6) with M*(y,w) = X, ps M}’ (y,w,) for
all w € S such that wy, = we ,, £ =1,2,..., K. [The fact that this conver-
gence holds for w;, almost everywhere (A) will be used later in the proof of
this theorem.] O
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Denote the mt elements of any w) € R™*’ as e}, ey, e3,..., e, (according
to any arbitrary one-to-one allocation scheme). Let B be a positive integer,
and let C € R™*" be the half open hypercube C = {w, € R™*": e, € [-B, B),
J=1,2,..., mt}. Let A be a positive integer, and partition C into disjoint half
open cells of width 1/A in each dimension, as follows. Let (/,,1,,15,...,1,,,)

be a list of m¢ integers between 1 and 2BA. In other words, let [; €
{1,2,...,2BA} for j = 1,2, ..., mt. Then we define the cell

I(ZI:ZZ7ZS»--'>lmt) = <w(1) ERth: ej E[_B + (lj o 1)/A’ —B + ZJ/A)a
j=1,2,...,mt}.

There are (2BA)™! such cells, and, in order to reduce the notation, we reindex
them as follows. With each integer ¢ € {1,2,...,(2BA)™'} we associate a
unique list (2{,14,14,...,1},) with 1} €{1,2,...,2BA} for j =1,2,..., mt.
(This may be done according to any arbitrary one-to-one allocation scheme).
Then we define I, = I({,1§,1{,...,1},). Define the collection .7 ={I,, =
1,2,...,(2BA)™'}. Then C is the union of all the cells in .#. For each vy, £ and
iy, define

v,(y,k, ) = sup{|M(y|w,Gn) - M(yl¢,G,)l: wy €1,, ¢y, €1, and

W) = Loy = w(z),k}>

where {,, and (, are defined for { as w, and w,, are defined for w.
Similarly, define v*(y, k&, ) as above but with M*(y,w) in place of
M(ylw,G,). Then we will prove the following lemma.

LEMMA A.2.  For each y and k, we have that (1/(2BA)")E [v,(y, k, y)] <
mt/(2BA) and that (1/(2BA)")L [v*(y, k, $)] < mt/(2BA).

Before the proof, we first note the following consequences. Let § > 0, and
let .7, be the set of cells I, €7 such that both v,(y, %, ¢) <
8 and v*(y, k, ) < & for all y and k (simultaneously). Let C, ; € C be the
union of the cells in .#,. For each y and k&, Lemma A.2 provides the upper
bound m¢/(2BA) for the average of the v,(y, &, ) over all . This implies
that the proportion of the cells in .# that have v,(y, k, ) > § is less than or
equal to m¢/(62BA). Similarly, the proportion of the cells in .# that have
v¥(y, k, ) = § is less than or equal to m¢ /(52 BA). Hence, the proportion of
the cells in .# that have either v, (y, k, ) = & or v*(y, k, ) = & for some y
or k is less than or equal to 2" K2m¢t/(62BA) = 2™ Kmit /(8BA). This implies
that AC, ;)/MC) < 2"Kmt/(8BA), so that MC) — MC, ;) > MCX1 —
2™ Kmt/(8BA)). Notice that this bound is independent of n.

Therefore, for fixed values of B and 8, we have XC, ;) — AC) uniformly
over n as A — «, where A is the Lebesgue measure on R™*’. Since p, is
absolutely continuous with respect to A on R™*‘, this implies that
pr(C, 5) = p,(C) uniformly over n as A — . [This follows from a general
result: for any 7 > 0, there exists s > 0 such that any Borel set U c R™**
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with MU) < s also has p,(U) < 7. This result follows by contradiction:
otherwise, for some 7> 0 and every s > 0, there exists U, € R™** such that
MU, < s and p,(U,) = 7. Take s(n) = 1/2" for n=1,2,..., and let D, =
U= U Then MD,) <277/(1-1/2) >0 as g - », while p,(D,) >
pr(U,,)) = 7. But D, decreases with ¢ to some limiting Borel set D, c S
with A(D,) = 0. Therefore, p,(D,) - p,(D,) =0 as q — =, giving a contra-
diction.]

Since K is finite, for any ¢ > 0, we may choose B large enough so that
p.(C)/q, > 1 — £ for all k. Also, for any 6 > 0, we may then choose A large
enough so that p,(C)/q;, = p,(C, 5)/q, >1— ¢ for all n and k. Let T =
{w € S: wy, € C}, and let T(n, 8) = {w € S: w,, € C, ;}. Then, for A and B
as above, we have that p(T') > p(T'(n, §)) > 1 — ¢ for all n.

Proor or LEMMA A.2. Consider the same definitions as in the first
paragraph of the proof of Lemma A.1. Then, for each %k, we make the
following definitions for all w in S such that w,, = w,) ,: let M, ,(y,wq,) =
M(ylw,G,). For each v, let M, , (y,w,) =P =y|W =w,G,,sign(b,)) =
diag(v)), and let p, , = P(sign(b,)) = diag(»)|G,), so that M, ,(y,w,) =
Zv pn, an,k, V(y’ w(l))'

Then it follows that

Y. (y, k)
]

Zsup<|Mn,k,v(y?w(1)) -M, (5, 5(1))|3 way €1, {qy € I¢>
W

Sup{Z“Mn,k(y’w(l),lp) ~ M, (3, ¢a)):
o

Way,y €1y, La), 4 €1, Vd’}

Mn,k,v(y>w(1),llj) - Mn,k,v(y’ §<1),w)”)5

IA

sup{Z(Ev[

v

Way,y €1y, Lay,y €1, le}

SUP{EV[Z“Mn,k,v(ya Way,y) ~ Mn,k,v(y’ g(l)uﬁ)')}:
¥

Way,y €1y, La)y Eva‘/’}’

where the expectation E, is over the distribution for v according to the
probabilities p, ,. We will show that X |M, , (y,wq, ,) — M, , (¥, )] <
mt(2BA)™*~! for every v, for any choice of w,, , € I, and ;, , € I, for each
. Given this result, the first conclusion of Lemma A.2 follows immediately.
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To show this, we use the original indexing of the cells in .7 according to
Uyl lg, . 00,0, 1;€1{1,2,...,2BA}, j=1,2,...,mt. Recall that I, =

> ¥mt

Iy, 14,14,...,1},). Consider the cells for which /;, = 1 for at least one j. In
other words, consider the collection denoted 7* = {I(l,1,,1,,...,1,,,) €7
l =1 for some j € {1,2,..., mt}}. These are the cells at the lower boundaries

of C. Then .#* has at most m#(2BA)"'~ " elements. For each I, € 7*, define
an associated diagonal subset Z(i) c.7 as follows: let

Z(p) ={I,er: (17,15,15,...,15,) = (W + w, 1y + u, ¥ +u,..., Ik +u),

> Ymt > ¥mt
u=0,1,2,..}.
Because M, , (v, 7(y)yv) is bounded between 0 and 1 and nondecreasing on

y€ U, ,, it follows that

)y |Mn,k,v(y’w(1),0) _Mn,k,v(y’g(l),6)|s L
{6: 196_7(1[;)}
with any choice of w;, , € I, and {;, , € I, for each 6. Because every cell in
 belongs to Z(y) for some I, €.7*, we have the desired result.

Recall the properties of M*(y,w) and M;’ (y,wq,) given in the proof
of Lemma A.1. Then the second conclusion in Lemma A.2 follows in the
same way as the first, substituting p; for p, ,, substituting M} (y,w;,)
for M, , ,(y,w,) and substituting M*(y,w) for M(ylw,G,) in the above
argument. O

We now need a series of definitions, after which we will present the
general structure of the proof. First, for the subsequence n(j(%)) defined in
Lemma Al let G, = G, let w), = u"U™), let p'™ = pU and let
T'(h, 8) = T(n(j(h)), §). For each k e {1,2,...,K} and ¢ €
{1,2,...,2BA)™}, let W(k, ) ={w € S: w,, €1, Wy, = wy, ). If we fix A
and B, then for each (, ¢) we have p’'™(W(E, ) — p(¥(E, ¢)), w.p.1. For
each (y, &, ), let Il(y, k, ) = {(w,w) €(S,,8): w=y, w € V(k, ¢)}. Then
Wy, k, ) = w(TI(y, k, ), w.p.1. This convergence is uniform over
(y, k, ), because the set {(y,k,4): ye€S,, ke{l,2,...,K}, ¢€
{1,2,...,(2BA)™}} is finite.

Let ¢ = infilM(ylw,G): y € S,, w € C}. Recall that F is a continuous and
strictly increasing c.d.f. on R™, so that F > 0 on R™. Therefore, M(y|lw,G) is
continuous in w, and M(ylw, G) > 0 for all w in the closure C of C for every
y. This implies that ¢ > 0. For each h, let

o(h) = min{,ufh(l'[(y,k, ) /0P (Y (k,p)):y €S, ke {l,2,..., K},
I,e7and p™(W(k, ) > o}

[where the minimum is over all (y, k, ¢y) such that the stated conditions
hold]. Then ¢(h) = ¢() as k& — =, where

¢(*) = min{ w(T(y, &, §)) /p(¥(k,¥)): y €S,, ke (1,2,..., K},
I,€7and p(V(k,¢)) > 0}.
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Then ¢(*) > ¢. Let 6 be such that ¢ > 6 > 0. Then there exists some A,
such that ¢(h) > ¢ — 0> 0 for all & > h,,.

Let L = E [In(M(Y|W, G))], which is a finite, negative constant. Consider
the same 6 > 0 as above. Then, using (A.4) and (A.5), we have that, w.p.1,
there exists an A}, > h, such that E, [In(M(Y|W,G))] > L — 6 for all h > hj,.

Denote the set of observed data as @, = {(Y;,W,), i = 1,2,..., n(j(h))}. Let
1> &> 0, and, for each & and A, let

HA(h,e,k) = {Il,, €.7: for each y € S, there exists some (Y;, W;) € g,
with Y, =y, W, € ¥(k, ¢) and M(yIW,,G,) > &}.

By definition, if I, € #(h, ¢, k), then for each y there exists some
((h, e, y, k, ) € V(k,y) such that M(yl{(h, e, y, k, ¢), G}) > . Let
V(h, &, k) be the union of the W(k, ¢) over all ¢ such that I, € #(h, &, k). Let
V(h, ¢) be the union of the V(4, ¢, k) over all k, and let H, , ;= V(h,&) N
T'(h, §).

Let #%h, e,k) be the set of elements in .# that are not contained in
Ah, &, k). Suppose that I, € 7°(h, &, k). Then there exists some y°(k, ¢) €
S, such that M(yo(k ¥)lw, G’) < e on V(k, ), and therefore
ln(M(yO(k Wlw, G,)) < In(e) on ‘I’(k ). Let VO(h, &, k) be the union of the
W(k, ) over all ¢ such that I, € 7°(h, &, k), and let Vo(h &) be the union of
the V&, e, k) over all k e {1,2,. K} Then VOh,e)=V(h,e)NT,
where “c” denotes ‘complement.” Now 1f h > h), then

E,[In(M(YIW,G,))]
= L [E,[In(M(YIW,G)){W € ¥ (k, ¢)}]]

&, ¥}
< )3 [ B [In(M(YIW, G,)) (W & W(k, ),
{k,y:1,€7°h, &, k)}
Y zyo(k? ¢’)}”
< Y [In(&) @(h) p P (W(k, )]

{k,g: 1,e7°h, &, b}
=In(&)¢(h) p " (VO(, 2)).
Therefore, since In(e) < 0,
P O(VE(h, &) N T) = p™(VO(h, 2)) < (L — 8)/(¢(h)In(&))
<(L—-10)/((¢— 0)n(e)).

Recall that p'"(W(E, ) — p(¥(E, ) uniformly over all (%, ), w.p.l.
Because this convergence is uniform, there exists, w.p.1, some h, > A, such
that

p(V(h,e) N T) = p(V°(h.£)) < (L - 0)/((¢ ~ 6)In(s))
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for all A > h,. For fixed values of A and B, this bound can be made
arbitrarily small by choosing small enough &.

For any £ > 0, we can choose B large enough so that p(T) > 1 — £/3, and
then & small enough so that (L — 0)/((¢ — 0)In(e)) < £/3. We may then
take 8 < £2/3, and, as a result of Lemma A.2 (discussed after the statement
of the lemma), we can choose A large enough so that p(T'(h,8)) > 1 — &/3
for all h. Then there exists some A, such that p(H, , ;) = p(T"(h, ) N
V(h,e) >1~-(&/3+¢&/3 + 5/3) =1—¢ for all 2> h,. Recall that the
probability space is denoted (), Z, P), and let Q, € Q be the set on which A,
exists.

We now present the general structure of the proof, which is outlined in
expressions (A.7) and (A.8) below. The three inequalities in (A.7) follow from
inequalities (A.3), (A.4) and (A.2), respectively. In both (A.7) and (A.8) we use
“= " 1to indicate “within any given distance, w.p.1, for large enough B, A, 1/¢
and A” in a sense that will be formalized and proved below. Then we
demonstrate the following:

E[In(M*(Y,W)){W € H, , ;}]
~E, [In(M(YIW,G),)){W € H, , ,}]
> E, [In(M(YIW,G}))] = E, [In(M(YIW,G))]
E,[In(M(YIW,G))]
Eﬂ[ln(M(YIW G){W € H,_, ;}]
E,[In(M(YIW,G,)){W € H, , ;}]
[

E,[In(M*(Y,W))I{W € H, _ ;}]

"

(A7)

"

I

Y

n

(notice that the first and last terms are the same), and
EM[ln(M*(Y,W))I{W = Hh,s,S}]

(A.8)
= EM[ln(M(YIW,G))I{W S H,M,g}].
The formalization of (A.8) will be used to show that, w.p.1, for each y € S, we
have M*(y,w) = M(y|lw,G) for w almost everywhere ( p).

We now address each of the four relations denoted as “= " in (A.7). We
begin with the third “=.” We will follow with the second, fourth and first
“= " in that order.

The third “=." First, notice that E [In(M(Y|W,G))] > —«, which fol-
lows from the fact that M(y|lw, ®In(M(y|lw,G)) > —exp(—1) for all y and
w. Let 7> 0. Then there exists some &, such that, for any Borel set H € S
with p(H)>1 - &,

|E,[In(M(YIW,G))] — E,[In(M(YIW,G))[{We H}|| <7



RANDOM EFFECTS MODELS 369

[This follows by contradiction: if not, then for every & > 0 there exists some
Borel set K C S such that p(Kg) < ¢ and IEM[ln(M(YIW, G)IKW e Kg}]| > .
Take ¢(n) =1/2" forn=1,2,..., and let D, = U, ., K., Then p(D,) <
277/(1 —1/2) - 0 as ¢ - ». Because In(M(ylw, G)) < 0, we have

|E,[In(M(YIW,G))I{W € D,}|| 2| E,[In( M(YIW,G)) {W € K, , }]| = =

for all gq. But D, converges to some Borel set D, c S with p(D,) = 0, and
therefore EM[ln(M(YIW, G)IW e Dq}] - EM[ln(M(YIW, G)IKW  D,}] = 0 by
the dominated convergence theorem, giving a contradiction.]

The second “= " Expression (A.5) implies that, w.p.1, there exists some
hs such that |E, [In(M(YIW,G))] — E,[In(M(YIW,G)]| <& for all h > h,.
Let Q; € Q be the set on which A, exists.

The fourth “= . Consider B, &, 6 and A to be fixed. Recall from the proof
of Lemma A.1 that, for each &, the convergence result (A.6) holds for w with
W, = W), and w;, almost everywhere (1) on R™*, where A is the Lebesgue
measure. Therefore, for each y and %, we have M(ylw,G}) - M*(y,w) for
W, = W), and w, almost everywhere (A) on R™*’. Then, for each (y, &, §),
there exists some w(y,k, ) € W(k, ) such that M(ylw(y,k, ), G,) —
M*(y,w(y, k, ). The set of all values for (y, &, i) is finite, so that we have
uniform convergence over all (y, k, ). Therefore, there exists some A5 such
that, if h > A%, then [M(ylw(y,k, ),G;) — M*(y,w(y, k, )| < § for all
(y, &, ).

Consider any (y, k, §) such that I, €.7, ;) NA(h, &, k). Then there exists
some ((h,e,y,k, ) € V(k,y) such that M(y|{(h, e, y,k, ¥),G)) > &>
2 > 38. Also, from the discussion after the statement of Lemma A.2, we have
Uiy, B, ) < 8 and v*(y, k, ) < 8. Suppose that A > A5, and consider
any w € V(k, ). Then, using the triangle inequality, we have

| M(ylw,G) — M*(y,w)]
<|M(ylw,G,) — M(ylw(y, k,¥),G)|
+M(ylw(y, b, 9),Gy) — M*(y,w(y, k, )]
+|M*(y,w(y, k,¥)) — M*(y,w)|<38.

Also, using the fact that M(y|{(h, e, y,k, ¢),G),) > &, we have M(ylw,
G,) > & — 6 > 0. Therefore, for all w € K(h, ¢, ), we have that |[M(ylw, G))
- M*(y,w)l <38 and M(ylw,G)) >¢e— 86> ¢e— 356> 0 for each y. Also,
again using the triangle inequality and the fact that M(y|{(h, ¢, y, &k, ), G},)
> g, we have M*(y,w) > & — 38. Then since In(-) is monotonic and differen-
tiable with maximum derivative 1/(e — 36) on [¢ — 38, 1] and because § <
£2/3, we have

|ln(M(y|w,G}l)) - ln(M*(y,w))| <38/(e— 39)
<elf(e—e¥)=¢/(1—&).



370 S. M. BUTLER AND T. A. LOUIS

Finally, then,

|E,[In(M(YIW,G,)){W €K, , ;}] - E[In(M*(Y,W)) W <K, , }]|
<E [|In(M(YIW,G))) (W€K, ,;} - In(M*(Y,W)[{WeK, , }]
<eg/(1-¢).

The first “=.” We continue the above discussion with B, ¢, 6 and A
fixed, and we now demonstrate a relationship of the following type:

E,[In(M(YIW,G,)){W € K, , ;}| =E,[In(M(YIW,G,)){W e K, , ;}].

Combined with the fourth “=,” this will imply the first “= ,” w.p.1, as we
will show. First, since w,(II(y, &, ) = w(II(y, &, ¢)) uniformly over (y, &, ¢)
w.p.1, there exists some A% such that, if 2 > A%, then

| n(T(y, ks ) = w(T(y, k, ) | < 8(|In(e — 35)|2"‘K(ZBI‘1)"”)_1

for all (y, &, ). The reason for choosing this particular bound will become
clear shortly. Let 0, C Q) be the set on which A} exists.

Suppose that v € O, N Q, and that A > h_, h > A}y and 2 > k. Consider
any (y, k, §) such that I, €.7,,, NAh, e, k). Then, for any w € V(k, i)
and ¢ € W(k, ), we have that In(M(ylw, G})) > In(e — 38), that
In(M(y|Z,Gy)) > In(e — 38) and that |M(ylw,G},) — M(ylZ,G))| < 8. Since
In(-) is monotonic and differentiable with maximum derivative 1/(e — 35) on
[ — 368,1], we have

[In(M(ylw,G)) — In(M(y1¢,G;))| < 8/(s — 38) < 35/(e — 35)
<e?f(e—e)=¢g/(1—&).

In the following, let I(y, %, /) be shorthand for (Y, W) € II(y, &, ¢)}. We
now show that

|E,, [In(M(YIW,G))I(y,k,¢)] — E,[In(M(YIW,G,))I(y,k, ¥)]|
(A9) < u(Il(y, k,¥))e/(1 - ) + (8/(2"K(2BA)™))
X(1+ (1 - ¢)|In(e - 38)[) ).
Suppose that u(T1(y, &, ¢)) < w,(TI(y, k, &)). Then we create a new measure
i by adding a mass of weight p = (w,(II(y, &, ) — w(Il(y, k, ) to u at
some point (y,w) € II(y, k, ¢). Since u(I11(y, &k, ) = w,(I1(y, &, )), then

|E,, [In(M(YIW,G))I(y, k,¢)] + E;[In(M(YIW,G,))I(y, k, ¥)]|
<My, k,¢))e/(1 - &).
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Therefore, since p < 8(|In(s — 38)|2"K(2BA)™")"! and In(M(ylw,G))) >
In(e — 358) on II(y, &, /), we have

|E,, [In(M(YIW,G}))I(y, &, ¥)] —E,[In(M(YIW,G,))I(y,k, )|
<|E, [In(M(YIW,G,))I(y, k, 9)] — B, [In(M(YIW,G))I(, &, )]
+| E,[In(M(YIW,G))I(y,k, ¥)] —E,[In(M(YIW,G))I(y, k, ¥)]|
< i(I(y,k,¢))e/(1 = &) + p(|In(e — 38)])
= w(M(y, k,¢))e/(1— &) + p((e/(1 — &) +|In(e — 35)])
< w(1(y,k, 9))e/(1 - &) + (8/(2"K(2BA)™))
x(e((1 - )ln(e - 38)])"" + 1).

Alternatively, suppose that w(II(y, &, ) > w,(I1(y, &, ¢)). Then we create a
new measure [ by adding a mass of weight p = (u(I(y, &, ¢)) —
W,(TICy, &, ) to w), at some point (y, w) € TI(y, k, ). Then W(T1(y, k, ) =
wI(y, &, ), p < 8(In(e — 38)I12"K(2BA)™)"! and In(M(ylw, G})) >
In(e — 358) on II(y, &, ). Therefore, we have

|E,, [In(M(YIW,G,))I(y,k,¥)] — E,[In(M(YIW,G,))I(y,k, )|

<|E, [In(M(YIW,G)(y,k, ¥)] — E[In(M(YIW,G)))I(y, k, ¥)]]
+| B [In(M(YIW,G))I(y, k, ¥)] — E,[In(M(YIW,G))I(y, k. ¢)]|
B(IIn(e = 38)[) + u(1(y, &, ¥))(e/(1 - ¢))
(8/(2"K(2BA)™)) + w(T(y, k, ¥))(2/(1 - )
(8/(27K(2BA)™))(1 + (1 — )|In(e - 38)]) ')
+ u(I(y, k,4))(e/(1 = &)).

IA

IA

IA

Hence, we have (A.9). As a consequence, where the following summations are
over (y, k, ) such that I, €.7, ., NAh, &, k), we have

|E,[In(M(YIW,G,))[{W € H, , ;}| —E,[In(M(YIW,G),))[{W € H, , ;}]|
= | S [ B, (MW, G)) Iy, b, )]
—Z[[mewamuykwm
< L[| B, In(M(YIW,G,)) (5, &, ¥)]
—E,[In(M(YIW,G;)) (5, %, 9)]]]
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IA

E [ w(M(y, &, ) e/(1 - &) + (8/(2"K(2BA)™))
x(1+ e((1- )|in(e - 38)[) )]

IA

/(1 - &) + 2"K(2BA)"'(5/(2"K(2BA)™"))
x(1+ (1 - ¢)|In(e — 38)[) ')

—e/(1—¢) +5(1+e((1 - &)lIn(e — 38)]) ).

Recall that 36 < £2 < ¢, and notice that (1 — &)|In(¢ — 38)))"! - 0as ¢ — 0.
Incorporating the fourth “= )" we have

|E,, [In(M(YIW,G),)){W € H, , ;}]
—E,[In(M*(YIW,G)){W € H, , ;}]|
< |E, [In(M(YIW,G}))[{W € H, , ,}]
—E,[In(M(YIW,G),)){W € H, , ,}]|
+|E,[In(M(YIW,G,))[{W € H, , ;)
—In(M*(YIW,G)){W € H, , ;}]|
<2¢/(1— &) +8(1+ &((1— &)|In(e - 35)) ),

which completes the formalization of (A.7).

Now let = > 0, let ¢ < &, let £ > 0 and choose B, 6 and A as discussed
above. Then p(H, , ;) >1—&é>1— £ . Suppose that w € Q; N Q; N Q,,
and suppose that A > h,, h > hs;, h > ks and h > h%. Then, using the
formalization of (A.7), we have

E,[In(M*(Y,W)){W € H, , ,}]
>E,[In(M(YIW,G){W e H, , ;}| +2&/(1 - ¢)
+8(1+e((1—¢)ln(e—38)) ") +6+m

and
E,[In(M(YIW,G)){W € H, , ;}]
>E,[In(M*(Y,W))[{W e H, , ;}|] +¢/(1-¢),
so that
|E[In(M(YIW,G)) (W € H, , ;)]
(A.10) —E,[In(M*(Y,W)){W € H, , ,}]|

<2¢/(1l-¢) +8(1 + e((1 —£)|ln(8—36)|)71) + 6+ 7.

This finally formalizes (A.8), since, for any y > 0, we can choose 7, &, B, &, 8
and A so that the right-hand side of (A.10) is less than y on an o set of
probability 1 (P).
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Returning to Lemma A.1, since ¥, M(ylw,G)) =1 for all w and &, the
convergence (A.6) implies that X, M*(y,w) = 1 for w almost everywhere p
on S. Therefore, for such w,

L[M(yw,G)In(M(ylw,G))] = X[ M(ylw,G)In(M*(y,w))]

y y

by the nonnegativity of the Kullback—Liebler distance, where equality holds
only if M(y|lw,G) = M*(y,w) for all y. Let

D, = {w €S: M(ylw,G) # M*(y,w) for some y € Sy}.
Then, for w € D,

¥ [ M(yho, G)In(M(3lw,G))] > ¥ [ M(slw, G)n(M* (y,w))].

y y
Suppose that p(D,) > 0 for all @ in some set O, € Q, with P(Q,) > 0. If
w € Qg, then for some ¥ > 0 there exists a set Dy € D, with p(Dy) =d > 0
such that

L[M(ylw,G)n(M(ylw,G))] > ¥ [M(ylw,G)In(M*(y,w))] + &

y y
for all w € D.

Now, in the argument leading to (A.10), we may choose 7, &, B, ¢, § and

A so that £¢<d/2 and 2&/(1 — &) + 8(1 + £((1 — &)lIn(e — 38)D)~1) +
6+ m < 9d/2. Then take w € Q3 N Oy N Q; N Q,, where this set has prob-
ability P(Q; N Qy N Qy N Q) =P(Q,) > 0. Take A > h,, h > hs, h > k)
and & > A5. Then we have (A.10), but we also have p(H, , ;) > 1 —d/2 for
all &, so that p(H, , s N D) > d/2 for all h. Then

Eﬂ[ln(M(YIW, G))[{W e Hh,g,s}]
> EM[ln(M*(Y, W) KW e H, , ;}] + 9d/2

for all A, which contradicts (A.10). Therefore, p(D,) = 0 w.p.1, giving conclu-
sion 1.

Conclusion 1 implies that for any subsequence n(j) there exists a further
subsequence n(j(h)) such that 7,.;), 2o w, w.p.1. This implies tightness of
n,, for example from Theorem 25.10 of Billingsley (1986). Also, if n,;
converges to some probability measure u*, then 7,.,), =5 u*, so that u =
p*. It follows that n, =, u, for example from the corollary to Theorem 25.10
in Billingsley (1986). This gives conclusion 2. O

APPENDIX B

Proof of Theorem 4.1. Consider any II € S with p(II) = 1. Then for
each A, of condition 3 there exists some (x}, z,) € A, such that C(x}, z,)
satisfies the following: for each x, € C(x}, z;) and for any open neighborhood
N(x,) of x,, the set N(x,) N C(x}, z,) contains a sequence {v,, & = 1,2,...}
converging to x,, and II,(x},z,) ={(v, x,,2) € S: (x,,2) =(xk,2), ve
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{v,, £ =1,2,...}} CII. Otherwise, for each (x,,2) € A; and for some x* €
C(x,, 2), there exists an open interval N*(x3¥) such that {(x, z) € S: (x,, 2)
= (x}, z)), x; € N*(x1)} N 11 is empty. But p({(x, 2) € S: (x,,2) €A, x, €
N*(x*¥))) > 0, which then contradicts the assumption that
p(Il) = 1.

We first prove identifiability. For this part of the proof, let II be the set on
which M(Q|lw, o, G) = M(1|w, a*, G*). Because M is a continuous function in
w, this equality holds for all w in the set ¥, = {(x, 2) € S: (x,, 2) = (x}, z,),
x; € C(xk, z,)} for each 1. We now describe a procedure that identifies @ and
G, given the values of M(1|lw, @,G) on ¥ = U ,¥,.

For any [, the sign of a(l) is determined by the value of
M@|(x,, xb, zl) a,G) on v and v*. We may assume, without loss of general-
ity, that a,) > 0. Then using condition 3 for each [, the values of

M(l(xl, x5, 2,),a,G) = Pr((—l/a(l))(xéa@) +2z;b+ &) < le)

on Y, determine the distribution of (—=1/ay x}ay +2,b + ). Let U, =
x4 a, + z;b. Then for any ¢ X m matrix T, this determines the distribution
of (1/a,)T(U, + &). For [ as in condition 4, there exists a 1 X m vector T
with rank 1 such that T,U, = 0, so that the distribution of (1/a,))Ts is
determined. Because F is continuous, T,e is not degenerate at 0, and
therefore «;, is determined. Now consider any g X m matrix T of rank gq.
Using condition 1 and the continuity of characteristic functions, from the
characteristic function of TU, + Te we can solve for the characteristic func-
tion of TU, for every [. This argument is of a type that extends simpler proofs
for the identifiability of general location parameter mixtures in Teicher
(1961) and Maritz and Lwin (1989).

Let oy, ; be the jth element of «y,. Using I(j) from condition 5 with
j=s—-1,5—2,...,1, and using option (a), we can choose 7; such that
Tz, =0, Tx} ; 4 —OwhenJ > 2, and Tjx} ; # 0 (where 0 is a q X 1 vector
Wlth elements equal to 0), so that we successively determine the values of
ay ; j=s—1,8 —2,...,1. Using option (b) with 7' as the identity matrix,
then

1 o k)
Uy ~ 28y + 2150, Uy ~ 25V, + 20,
1 k(j I(j+1 k(j+1
(B.1) Uy ~ Uy + (287 = 259D) @y ; + (25957 — 2391) @) ji1
I(s—1 k(s—1
+ (27 — 2557 ) ag) o1

so that we successively determine the values of «, ;, j=s— 1,5 —2,...,1.
[The two options (a) and (b) may clearly be used in comblnatlon] Finally, for l
as in condition 6, we may choose T to be a left inverse T, for z,. Then
T\U, = T)x} a, + b, and the distribution G for b is determined.

We now prove consistency. We do so by showing that for n(j(h)) in
conclusion 1 of Theorem 3.1 there exists a further subsequence n(j(h(7)))
such that G,y ~o G and @,y = « as 7 — . It follows that G, -, G
and a, - a as n — « (e.g., by contradiction at a continuity point of G). For
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this proof, let II be the set of values for w on which conclusion 1 of Theorem
3.1 holds. For notational convenience we replace n(j(h)) with A in the
remainder of this proof. Without loss of generality, let «; > 0. Then, for each
I and for every (x,, x5, z;) € ¥, we have that

M(1l(x,, x5, 2;), ay, Gy)
= Pr((—l/ahy(l))(xgah’(z) +2,b + &)
(B2) < 1,1Gy, @y ) > 0)I{a, ) > 0)
+ Pr(( 2y o) + by, o) + 2,0 + €)
> 0|G,,, @, o) < 0)I{ey, o, < 0},

where I{-} is an indicator function taking the value 1 if the argument is true
and 0 if the argument is false, and where, if Ha;, 4, > 0} or Ha; 4, < 0} is
equal to 0, then the corresponding term on the right-hand side of (B.2) is
defined to be equal to 0.

We may use Helly’s selection theorem for a not necessarily tight sequence
of measures to obtain a further subsequence A(7), 7= 1,2,..., such that the
following hold: Kay,,, ), > 0} = & for all 7, where & is equal to 0 or 1. If
8 = 1, then for each [ there exists a (possibly improper) probability measure
w,; with a (possibly improper) c.d.f. D, on R™ such that

(B.3) Pr((—l/ahm’(l))(xé Apiry. @ T 20+ 8) <x11Girys Opiry 1y > 0)
- D;(x,)

on continuity points of D, as 7 — «. This construction may be done so that
(B.3) holds on a countable dense subset C'(x}, z;) of C(x4, z,), such that for
any x, € C(x}, z,) the set C'(x}, z,) contains a sequence converging to x,
from above. (The sequence may be constant at x;.) This may be done by
finding a countable set C'(x}, z,) which contains, for each x, € C(x}, z,), a
sequence converging from above to x,. Such a set must exist because C(x}, z;)
is countable or open in R™. Then C'(x}, z;) can be included as part of a
countable dense subset of R™, which can then be used in the same way as
the rational numbers are used in Billingsley (1986) for the preliminary con-
struction.

Now suppose that & = 0. Then for x, € C'(x}, z,) the second term on the
right in (B.2), which is nonincreasing in x;, must converge to
M@|(x,, x5, 2,), @, G) as 7 — ». However, as x, approaches v and x} ap-
proaches v* of condition 3, then eventually M(|(x}, x5, z)), a, G) >
M@1|(x,, x5, 2;), a, G) because F is strictly increasing. This contradicts (B.2).
Therefore, § = 1, and from (B.2) we have for each [ that

(B.4) Dy(x,) = Pr((—1/ay)(xbag + 2,6 + £) < x,IG)

for every x, € C'(x}, z,). Because the term on the right-hand side of (B.4) is
continuous in x; and because D, is right continuous, (B.4) holds for every
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x, € C(x%, 2z,). Condition 3 then implies that D,(x,) is the c.df for
(=1/ag ) xbay, +2,b + ).

From this point the proof parallels that of identifiability. Let U, ~ (x4 ay +
z,b)IG, and let U, ;) ~ (xb oy, 5 + 2,0)IG),), where “~ ” indicates “is dis-
tributed as.” For any g X m matrix T, then (1/a,,) 1, XTU, i, + Te) =,
(1/ay)XTU; + Te). For [ as in condition 4 and with T, as above, then
ToU, ~ 0 and T, U, j(,, ~ 0. Because T ¢ is not degenerate at 0, it follows that
Xy, 1) 7 1

Because TU, ;,, + Te =, TU, + T« for each [, it follows that the distribu-
tions for TU, ,,, are a tight sequence. Also, using condition 1 as in the proof
of identifiability, if TU, ,,, converges in distribution on some further subse-
quence, then the limiting distribution must be that of TU,. These two facts
together imply that TU, ,., =, TU,, as can be shown by contradiction at a
continuity point of the c.d.f. for TU,.

Let a, (2 ; be the jth element of a;,, ). For I(j) as in condition 5, using
option (a), we obtain T} as above. Then, with T=T;, j=s - 1,5 — 2,...,1,
we successively demonstrate that ) 9 ; > @9, J=s—1s—2,...,1
Using option (b) and the analogs to (B.1) for U, ,,, and U,, then

(059 = 259 anioy, 0,5 + (95558 = 28510 ) oy, @501 +
+ (xé(,ssill) - xé,(?i %)) Ap(r), (@), s—1
= (0 =25 ) ) + (2855 - 231 ) ey jer + o
+ (xé(,ss_—ll) - xé’/,(‘:: i)) a(2), s—1-
Therefore, we demonstrate successively that a;.) o ; > @g, ; for j=s -1,
s — 2,...,1. Finally, for [ as in condition 6, we choose T = T, as above, so
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