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BAYESIAN METHODS AND MAXIMUM ENTROPY FOR
ILL-POSED INVERSE PROBLEMS

BY F. GAMBOA1 AND E. GASSIAT 2

Universite Paris Sud and Universite d’Evry-Val d’Essonne´ ´
In this paper, we study linear inverse problems where some general-

ized moments of an unknown positive measure are observed. We introduce
a new construction, called the maximum entropy on the mean method
Ž .MEM , which relies on a suitable sequence of finite-dimensional dis-
cretized inverse problems. Its advantage is threefold: It allows us to
interpret all usual deterministic methods as Bayesian methods; it gives a
very convenient way of taking into account prior information; it also leads
to new criteria for the existence question concerning the linear inverse
problem which will be a starting point for the investigation of superresolu-
tion phenomena. The key tool in this work is the large deviations property
of some discrete random measure connected with the reconstruction proce-
dure.

1. Introduction.

1.1. The inverse problem. In this paper, we study the inverse problem

1.1 Y s F ? m q « ,Ž .

Ž .where Y s Y , . . . , Y is the finite-dimensional observation, m is an un-1 k
Žknown infinite-dimensional parameter, F is a known linear operator highly

. Ž .noninvertible; k is fixed and « s « , . . . , « is a multidimensional noise.1 k
The inverse problem consists in recovering m on the basis of the observations
Y. Many physical problems may be formalized in this way, for instance, in

w Ž .xtomography, spectroscopy or astronomy see, e.g., McLaughlin 1984 . In
most applications, some prior information is available. We focus here on the

Ž .generic representative moment problem, where m is a positive measure on a
space U and F is a k-dimensional moment operator

1.2 F ? m s f dm .Ž . H jž / js1, . . . , kU

We propose a new construction, issuing from maximum entropy ideas, which
Ž .we call the maximum entropy on the mean method MEM . First of all, MEM

is not exactly what should be called a new statistical method, but a new
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stochastic procedure which leads, when some discretization step tends to 0, to
deterministic methods. We have in mind three principal goals:

1. In a deterministic framework or in a pure statistical one, regularization
methods are very popular. The choice of the regularization criterion is left
to the user. It is then interesting to give a Bayesian interpretation of these
criteria, in order to suggest a rational choice between them. Let us recall

Ž .the results concerning the regression problem Y s f x q « , i s 1, . . . , k.i i i
ŽThis is a particular moment problem, the interpolation operator being

Ž .the integral of 1 the product of the indicator function of an interval and
Ž . .2 the derivative of f. The regularization methods minimize a criterion
5 5 2 Ž .Y y F f q lJ f , where l is a parameter and J is a suitable func-

Ž . Ž .tional; see Wahba 1990 or Barry 1986 , for instance. A Bayesian inter-
pretation can be given using the distribution of Gaussian processes as
priors on the function f , as Wahba shows, for instance. All these Gaussian

Žpriors lead to criteria which are functionals of derivatives of f Sobolev
.norms : this is a restrictive way to take into account many kinds of prior

information and even for regularity it seems restrictive. Our construction
allows us to clarify the correspondence between Bayesian rules and regu-
larization technique, including of course the most popular ones, such as
least squares, Shannon entropy, Burg entropy, and L p-norms. This goal is

Ž .in spirit similar to that pursued by the paper of Csiszar 1991 , where
deterministic criteria are related to the different axioms which could be
required for the estimation method.

2. The MEM construction gives a natural and practical way of introducing
nonlinear but convex constraints considered as prior information. For

Ž . Žinstance, if the unknown measure m has a density function with respect
.to some known prior P f , the constraint may be a qualitative shape

Ž . Ž . Ž . 2Ž . Ž .a x F f x F b x , an energy constraint Hf x dP x F 1 or a positivity
constraint f G 0. In this paper, we focus on the positivity constraint,
whereas shape constraints or energy constraints appear in Dacunha-

Ž . Ž .Castelle and Gamboa 1990 and in Gamboa and Gassiat 1991 .
3. Our only concern are truly ill-posed problems, so that the classical asymp-

totics governed by the consistency of an estimator when the number of
observations increases is outside of the scope of this paper; such consis-
tency questions concern problems completely different in spirit. We are, on
the other hand, interested in the following asymptotic analysis linked with
what is called superresolution by people working in physical applications,
such as optics or astronomy. Considering nonnoisy observations Y s F ? m,

Ž .a boundary set which will be made precise later on separates data Y for
Žwhich the inverse problem has solutions in general, infinitely many

.solutions and data Y for which the inverse problem has no solution when
Žpositivity is taken into account. If we are near this boundary or if the

.noise moves the inverse problem a little away from the boundary , all
Ž .solutions built using nonlinear methods that incorporate the positivity

are very close. The use of nonlinear ‘‘positive’’ methods drastically im-
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proves the solution, compared to linear methods. We are then concerned
with the following asymptotic: what happens when the data are close to
the boundary.

Let us now give the precise setting of the MEM construction and how it
allows answers concerning the three previous aims.

1.2. The maximum entropy on the mean construction and sequences of
Ž .Bayesian problems. Maximum entropy on the mean MEM is a construction

Ž .where the inverse problem 1.1 is approximated by a sequence of finite-
dimensional problems, which are obtained by a discretization of the underly-
ing space U. The MEM estimator is then obtained as the limit of the
discretized estimators defined for the finite-dimensional problems. Notice
that the number of observations stays finite, equal to k, and the asymptotic
only concerns the space discretization.

The first step is to choose a given probability P on U which can be thought
Ž .of as a translation of prior information on m. Let x be a given determin-i ig N

Ž . nistic sequence of U such that the discrete measure P [ 1rn Ý d con-n is1 x i

verges weakly to this chosen probability measure P.
The second step reflects another kind of prior information. To each coordi-

nate x is associated a random variable Z . Let F be the distribution ofi i n
n Ž . Ž .Z s Z , . . . , Z . Suppose for instance that the prior information is a x F1 n
Ž . Ž . Ž .f x F b x , where f x dx is the probability to be reconstructed. Then, for

every i, we choose the support of the distribution F i of Z to be included inn i
w Ž . Ž .x n ia x , b x and if we have no more information, F s m F . If the priori i n nis1

2Ž .information is Hf x dx F 1, we choose F with a support included in then
unit ball of R n.

Let us now introduce two kinds of estimators of the unknown m when the
noise-corrupted moments Y s Fm q « are observed. The observation Y is
definitely of fixed dimension k. Let

n1
1.3 n [ Z d .Ž . Ýn i x in is1

We define the discrete estimators of m as

bay 5 5n s E n f dn y Y F rˆ Hn F n nn

if r quantifies the noise level or, more generally,

bay, CC1.4 n s E n f dn g CC ,Ž . ˆ Hn F n nn

where CC is a convex compact set in R k, which describes together the
Ž .observation and the noise level for instance, a confidence set . For every level

n of the discretization of the space U, n bay, CC is a Bayesian estimator withn̂
a priori F ; we then have a sequence of n-dimensional Bayesian problemsn
with a k-dimensional observation. When n tends to infinity, we shall prove
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under weak assumptions that n bay, CC is convergent. To solve the linearn̂
inverse problem, a direct infinite-dimensional Bayesian reconstruction method

w Ž .xlike those used usually in statistics see Ferguson 1974 seems difficult: to
qŽ .do this, we have to endow MM U , the space of positive measures on U, with a

prior Q. Then we have to define the Bayesian estimator by conditioning with
the observation H f dm g CC:U

E m f dm g CC .HQ
U

The drastic effect of Q is that it introduces an arbitrary prior by lack of
invariance. For instance, if no prior is given, one has reasonably to require
that Q preserves invariance for the transformations which preserve P. As an

w xexample, when P is the Lebesgue measure on 0, 1 , Q has to be invariant for
Ž .the rearrangement group analogous to the permutation group on N . In

general there are no Q with this property. So we propose to study the
sequence n bay, CC of finite-dimensional Bayesian estimators.n̂

We then define the MEM estimate: at stage n, we choose the distribution
P MEM of Zn using a maximum entropy principlen

1.5 K P MEM , Fmn s min K R , Fmn ,Ž . Ž .Ž .n
5 5E Hf dn yY FrR n

Ž . wwhere K ?, ? is the Kullback information. For definition and properties of
the Kullback information, see, for instance, Dacunha-Castelle and Duflo
Ž . x1986 . Set
1.6 n MEM [ E ME M n .Ž . Ž .n̂ P nn

So for fixed n, n MEM is the maximum entropy reconstruction of m withn̂
reference measure F . Notice that the maximum entropy principle is notn
applied directly as in previous maximum entropy methods: Roughly speak-
ing, MEM seems to construct a stochastic process of maximum entropy
subject to the constraint that its mean function is a solution of inverse

Ž .problem 1.1 with noise level r. However, the coherent system of finite
distributions involved in the discretization does not lead to any infinite
distribution on the space of positive measures on U by lack of compactness.
No direct infinite-dimensional randomization would lead to the same recon-
structions. Note also that this point of view is of course completely different

Ž .from that of papers such as Diaconis and Freedman 1986 which are con-
cerned with classical consistency.

In the following sections, our results show that, under very weak assump-
tions, when the number n of discretization points tends to infinity, the
following statements hold:

1. Reconstruction n MEM converges to a solution n MEM of the inverse problemˆ ˆn
Ž .with noise level r see Theorems 2.1 and 2.2 .

bay bay Ž2. n satisfies similar asymptotic results and converges to n see Theo-ˆ ˆn
.rem 2.3 .

3. The Bayesian estimate and the MEM estimate are the same: n bay s n MEMˆ ˆ
Ž .see Theorem 2.3 .
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Moreover, we also prove that the inverse problem has solutions if and only if
bay Ž MEM .the asymptotic estimate n or n exists, and this holds for any choice ofˆ ˆ

distribution F. This leads us to criteria based only on the observations for
deciding on the existence of solutions to the inverse problem. In fact, from the
Bayesian point of view, regularization functions and existence criteria are
linked in a very narrow manner as we shall discuss below. Suppose that as
Bayesian n-dimensional a priori measure we use Fmn for every n. Then we
can associate to F a functional J such that n bay is exactly obtained as aˆF

Ž . 5 5minimizer of J m subject to the constraint HF dm y Y F r. Thus regular-F
ization methods have a very clear Bayesian interpretation if one considers
that Bayesian means increasing finite-dimensional Bayesian problems. Let
us give some examples. Let m s f ? P q s be the decomposition of m as the
sum of the absolutely continuous part with respect to P and the singular one.
In the most simple cases, J is the nonlinear integral functional associatedF

w Ž .xwith the Cramer transform of the distribution F see 2.7 . Other examples´
are given in the following list.

Ž . Ž .1. Shannon entropy. J m s Hf log f dP y Hf dP q 1 when s s 0, J m sF F
q` if s / 0, corresponds to the case where F is the Poisson distribution
with mean 1.

Ž . Ž . Ž .2. Fermi]Dirac entropy. J m s Hf log f dP q H 1 y f log 1 y f dP y log 2F
Ž .when s s 0, J m s q` if s / 0, corresponds to the case where F is theF

1 Ž .two point distribution d q d and the shape information is 0 F f F 1.0 12
Ž p. Ž .3. L -norms. When F has a density proportional to exp yx on R , J ? isp q F

equivalent to an L p-norm.
1 2Ž . Ž .4. Energy. J m s Hf dP when s s 0, J m s q` if s / 0, correspondsF F2

to the case where F is the standard Gaussian distribution with no
information on the meausre. The associated regularization method is least
squares.

Ž . Ž .5. Burg entropy. J m s yH log f dP q am U y 1 corresponds to the caseF
where F is an exponential distribution with mean a .

Ž .6. a-Burg entropy. If F is the Poissonized convolution of the g b, a distribu-
tion, then

a b
y1 y1Ž bq1. 1yŽ bq1.J m s yb a q f dP q as U .Ž . Ž .HF ž /b

So the most popular regularization functionals are covered by our results.
Some of the previous examples are introduced in detail in Dacunha-Castelle

Ž .and Gamboa 1990 , and item 4 above is related to infinite-dimensional a
priori measures considered as stochastic fields on U.

In this paper, we focus our attention on the special case where the
finite-dimensional prior has form Fmn with a technical choice of F, in order
to obtain existence criteria. Such criteria are obtained as an immediate
consequence of the MEM construction.

These criteria enlighten the problem of singular solutions, but, in fact, the
Ž .most interesting feature in such a choice of F as we see later is that it gives
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an illuminating explanation of the phenomenon called superresolution in
statistical signal theory; see Section 2.4. Let us note that superresolution

Ž .problems have already interested statisticians such as Frieden 1985 ,
Ž . Ž . wDonoho, Johnstone, Hoch and Stern 1992 and Donoho 1993 see also

Ž . Ž .xDonoho and Gassiat 1992 and Gassiat 1991 . Here we state it as a
boundary inverse problem, so that criteria based on the proximity of the data
to the boundary are needed to identify when this phenomenon occurs.

wThe main tool used in this paper is large deviation theory Varadhan
Ž .x1984 . In the usual parametric models, to prove consistency of the Bayesian
estimator, one definitely must use large deviation theory in its weaker form:
Laplace methods, where the asymptotic is on the number of observations.

bay ŽHere, to study the convergence of the Bayes estimator n the asymptoticn̂
.being on the discretization number , we also use, of course, large deviation

w Ž .theory in a more complicated setting see also Csiszar 1984 for similar use
xof large deviations . If one is not interested in Bayesian interpretations, the

whole problem may be investigated using purely deterministic convex meth-
Ž .ods, which was done by Borwein and Lewis 1993 after a previous version of

this work. However, our probabilistic framework allows us to consider a
deeper statistical analysis, especially to understand how the distribution of

Ž .the noise interferes with the Bayesian point of view; see Gamboa 1994 .
This paper is organized as follows. In Section 2, we state the assumptions

precisely and give the theorems concerning the asymptotic convergence of the
discretized reconstruction. In Sections 2.2 and 2.3, we prove the equivalence
between Bayesian methods, maximum entropy on the mean methods and
deterministic methods. In Section 2.4, we give the existence criteria that are
consequences of the large deviations point of view. A subsequent section
details different a posteriori behaviors of the discretized estimator. All proofs
are collected in Section 3.

2. Convergence of the discretized MEM and Bayesian distribu-
tions.

2.1. Notation and assumptions. Let U be a given compact set of R q,
q G 1, or more generally of a Polish space. The set U is endowed with its

Ž .Borel s-field BB U , and P is a given probability measure on U. We will
Ž . Ž .assume that the support of P is exactly U. The terms MM U , MM U andq

Ž .PP U are, respectively, the spaces of measures, positive measures and proba-
Ž .bility measures on U, endowed with the weak topology and C U is the set of

continuous functions on U endowed with the uniform norm. The function
Ž .f [ 1, f , . . . , f is a given k-dimensional real-valued P-a.s. continuous2 k

function defined on U. The restrictor f s 1 could be replaced by a more1
general compactness assumption, but we keep it for the sake of intuition,
since it says that the searched measure is nearly a probability measure.

For any convex compact set CC of R k define

2.1 SS CC [ m g MMq U : f x dm x g CC .Ž . Ž . Ž . Ž . Ž .H½ 5
U
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Ž .When CC is the closed ball centered on Y with radius r, SS CC is the set of
solutions of the inverse problem with noise level r. F is a given probability
measure on R . In this paper we will always assume that the convex hull ofq
the support of F is R .q

Let us introduce some more notation and assumptions. The function c is
Ž .the log-Laplace transform of F, D c is its domain and g is its Legendre

transform:
q`

2.2 c t [ log exp t y dF y , t g R,Ž . Ž . Ž . Ž .H
0

2.3 D c [ t g R, c t - ` ,� 4Ž . Ž . Ž .
2.4 g t [ sup t t y c t ,Ž . Ž . Ž .Ž .

tgR

k ² :2.5 D F , f [ v g R : c v , f x dP x - ` ,Ž . Ž . Ž . Ž .Ž .H½ 5
U

k ² :2.6 D9 F , f [ v g R : ; x g U, v , f x g D c .� 4Ž . Ž . Ž . Ž .
² : kHere, ? , ? denotes the usual scalar product on R .

ŽLet g be a measurable function on U. We define the nonnegative possibly
.infinite functional

G g [ g g x dP x .Ž . Ž . Ž .H
U

Ž .For m in MM U with Radon]Nikodym decomposition m s gP q s and a g R ,q
set

as U q G g , if m g MM U ,Ž . Ž . Ž .q2.7 J m [Ž . Ž .F ½ q`, otherwise

Ž . Ž . Ž . Ž .ASSUMPTION H1 . The domain D c is open: D c s y`, a , a g R .q

The case a - ` says that F weights the tail. In this case, our Assumption
Ž . Ž .H1 on D c could be weakened with a little extra work to

D c s y `, a and lim c 9 t s q`Ž . Ž Ž .
tªa

Ž w Ž . x.that is, c is essentially smooth Rockafellar 1970 , page 251 . The case
Ž .where a s q` has been studied in Dacunha-Castelle and Gamboa 1990 .

Ž . k � 4 Ž Ž ..ASSUMPTION H2 . For all v g R _ 0 , P V v - 1, where0

² : kV v [ x g U : v , f x s h , v g R , h g R.� 4Ž . Ž .h

It will be clear later how the use of Laplace methods leads naturally to
such an assumption.

Ž . 1Ž . Ž . Ž . Ž .ASSUMPTION H3 . There exist g g L P , g ) 0 P-a.s., H f x g x dP xU
g CC.
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Ž .Assumption H3 says that the inverse problem has at least one solution.
Ž .Criteria to decide validity of Assumption H3 are the object of Section 2.4.

2.2. The convergence theorem for n MEM. Before stating our result, let usn̂
MEM, CC Ž .explain the construction of the discretized estimate n generalizing 1.5n̂

Ž . MEM, CCand 1.6 to the case where CC is not necessarily a ball. Define P byn

2.8 K P MEM, CC, Fmn s min K R , Fmn .Ž . Ž .Ž .n
E Hf dn gCCR n

Set

2.9 n MEM, CC [ E ME M , CC n .Ž . Ž .n̂ P nn

Ž . MEM, CCLet us recall the results of Gamboa and Gassiat 1991 concerning n .n̂
For large enough n,

n1
MEM, CC ² :n s c 9 v , f x d ,Ž .ˆ Ž .Ýn n , CC i x in is1

where v minimizesn, CC

n1
² :² :H v , CC [ c v , f x y inf v , Y .Ž . Ž .Ž .Ýn in YgCCis1

We now have the following theorem.

Ž . Ž . Ž .THEOREM 2.1. Suppose that Assumptions H1 , H2 and H3 hold.
Ž MEM, CC .Then any accumulation point n of the sequence n has the form˜ n̂

² U :n s c 9 v , f x P q s ,Ž .˜ Ž .CC CC

where vU is the unique minimum of the functionCC

² :² :H v , CC [ c v , f x dP y inf v , YŽ . Ž .Ž .H
YgCCU

˜Ž .Uand s is a measure lying in RR [ SS CC , withCC v CC

˜ U² :CC [ Y y f x c 9 v , f x dP : Y g CC .Ž . Ž .Ž .H CC½ 5
U

Ž U .UMoreover, any element of RR is concentrated on V v .v a CCCC

Theorem 2.1 proves that the MEM reconstruction may have singular parts.
Ž .This was observed in a work of Livesey and Skilling 1985 . Our result gives

the theoretical background to their example:
w .3 Ž 1 2 3. jy1Let U [ 0, 2p , f x , x , x s cos x , j s 2, 3, 4. Let P be the uni-j

Ž .form probability. The point Y s 1, j , j , j lies in the set of moments KK
Ž .which will be precisely defined in Section 2.4 if and only if y1 F j F 1. Set

� 4CC s Y . Then taking for F the exponential distribution of parameter 1, we
Ž . Ž .y1 Ž .find c 9 t s 1 y t , t - a s 1. Now there is a critical value j g 0, 10

Ž xsuch that for any j g 0, j , the only accumulation point of the sequence0
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Ž MEM, CC . Ž ² U Ž .:.y1 Ž . Žn is n s 1 y v , f x P, whereas if j g j , 1 , then n s 1 yˆ ˜ ˜n CC 0
² U Ž .:.y1v , f x P q ld for some positive real l.CC 0

The MEM reconstruction reduces to the absolute continuous part in sev-
eral cases.

Ž .CASE 1. If a s `; see Dacunha-Castelle and Gamboa 1990 or Gamboa
Ž .and Gassiat 1991 .

Ž .CASE 2. If for any boundary point u of D F, f we have

² :lim c 9 v , f x f x dP x s q`.Ž . Ž . Ž .Ž .H
vªu U
Ž .vgD F , f

U Ž .CASE 3. When v lies in the interior of D F, f .CC

We are able to give the dual characterization of the accumulation points
Ž .in the sense of convex analysis . For this purpose, let us introduce the
function linked to H by the Legendre duality:

U ² : kh c [ sup v , c y H v , CC , c g R .Ž . Ž .Ž .CC
kvgR

THEOREM 2.2. Under the same assumptions as in Theorem 2.1,

hU 0 s inf G f s min J m s J n ,Ž . Ž . Ž . Ž .˜CC F F
Ž .˜ mgSS CCŽ .fgSS CC

where

˜2.10 SS CC [ f g C U : f P g SS CC� 4Ž . Ž . Ž . Ž .
Ž MEM, CC .and n is any accumulation point of n .˜ n̂

Theorem 2.2 gives a stochastic interpretation to a large class of determinis-
tic convex methods. Indeed, if we solve the inverse problem by minimizing the
convex functional J under the constraintF

fdm g CC ,H
then the set of all the solutions contains all the accumulation points of the
sequence of discretized estimates obtained by MEM.

Theorem 2.1 together with Theorem 2.2 proves that the reconstruction
obtained by a deterministic convex method may have a singular part. A
similar result was obtained after a preliminary version of this work by

Ž .Borwein and Lewis 1993 .

2.3. The convergence theorem for n bay, CC. The following theorem states then̂
equivalence between MEM and the infinite-dimensional Bayesian estimator
defined as the limit of the finite-dimensional Bayesian estimators.
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Ž . Ž . Ž .THEOREM 2.3. Assume that Assumptions H1 , H2 and H3 hold.
Assume that RR U is either a singleton or empty. Then, as n tends to infinity,v CC

Ž bay, CC . MEM, CC MEM, CCthe sequence n converges weakly to n , where n is the uniqueˆ ˆ ˆn ` `

Ž . Ž MEM, CC .accumulation point and thus the limit of the sequence n .n̂

Ž . U
UREMARKS. i The assumption on RR is always true when v lies inv CCCC

Ž .D9 F, f .
Ž . w Ž .xii In general, the usual convex methods see Borwein and Lewis 1993

Ž .have the general form J is the convex criterionF

dm dm
J m s G q a m y P U .Ž . Ž .F ž / ž /dP dP

When G and a are associated with a distribution F as defined in Section 2.1,
n MEM, CC is the measure that minimizes J under the constraint Hf dn g CC.ˆ̀ F
Theorem 2.2 together with Theorem 2.3 says that the convex method is an
asymptotic Bayesian method with prior Fmn as described previously.

Ž .iii Our Bayesian Theorem 2.3 is a direct consequence of the large devia-
Ž .tions principle for n proved in Section 3. Analogous results are ob-n ng N

Ž . Ž .tained by Csiszar 1984, 1985 , Van Campenhout and Cover 1981 and
Ž .Robert 1990a, b , for i.i.d. variables: their results are a direct consequence of

the usual Sanov theorem.

Ž .2.4. The existence problem. In this section we will assume that, in 1.1 , m
Ž .is a probability measure Y s 1 . The interesting statistical inverse problems1

occur when the parameter of interest m could be recovered in the absence of
noise through the observation Y. This situation can occur only near the
boundary of KK, where KK is the set of all f-moments of probability distribu-
tions on U:

KK [ Y g R k : 'm g PP U , f x dm x s Y .Ž . Ž . Ž .H½ 5
U

Indeed, the boundary points are those around which superresolution phenom-
Ž . Žena can appear as described in Gassiat 1991 , Gamboa and Gassiat 1994,

. Ž .1996a and Doukhan and Gamboa 1996 . Roughly speaking, superresolution
Žmeans that nonlinear methods such as maximum entropy or L -norm mini-1

.mization taking into account the positivity information are drastically better
than linear methods such as least squares. Points of the boundary are
moments of singular measures with respect to P, in some situations purely

w Ž .xdiscrete measures see Krein and Nudel’man 1977 . Intuitively, to be able to
observe them via n , we have to allow zero values and very large values forn

Ž� 4.the Z at the same time; this is why we set F 0 ) 0 and a - `.i
Now, around a boundary point and in the presence of noise, it could

happen that the observation Y contradicts the prior information; that is,
there exists no probability measure having Y as f-moments. It is then quite
important to be able to decide if, given an observation, there exist solutions to
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the inverse problem with noise level 0. In other words, to decide if Y lies in KK
or not. In this section, we give a family of criteria to answer this question.

Ž .To obtain our result, we need to strengthen Assumption H2 .

Ž . k � 4 Ž Ž ..ASSUMPTION H29 . For all v g R _ 0 , P V v s 0.0

Ž . U Ž . Ž � 4.kDenote by L the function L Y [ h 0 s yinf H v, Y .�Y 4 v g R

Ž . Ž .THEOREM 2.4. Assume that Assumptions H1 and H29 hold and
Ž� 4. k � k 4F 0 ) 0. Then, for any Y in R l Y g R , Y s 1 :1

Ž . Ž . Ž� 4.i The function L Y - ylog F 0 q a if and only if Y is in the interior
of KK.

Ž . Ž . Ž� 4.ii The function L Y s ylog F 0 q a if and only if Y is on the bound-
ary of KK.

Ž . Ž .iii The function L Y s q` if and only if Y is outside KK.

Using considerations on convex sets, an existence criterion was given a
w Ž . xlong time ago see, e.g., Krein and Nudel’man 1977 , Theorem 1.1, page 58 :

² :2.11 Y g KK m ; v g LL , v , Y G 0,Ž . q

where
k ² :2.12 LL [ v g R : ; x g U, v , f x G 0 .� 4Ž . Ž .q

This classical characterization can be viewed as an extremal version of
Theorem 2.4. Theorem 2.4 says that Y lies in KK if and only if, for all

Ž .log-Laplace transforms of probabilities on R satisfying Assumption H1 andq
Ž� 4.F 0 ) 0, we have

² : ² :; v g LL , y v , Y q a y c y v , f x q a dP xŽ . Ž .Ž .Hq
U

� 4F ylog F 0 q a ,Ž .
that is,

² :² : � 4; v g LL , y c y v , f x q a dP x q log F 0 F v , Y .Ž . Ž . Ž .Ž .Hq
U

Taking the supremum of this last equation over all F satisfying Assumption
Ž . Ž� 4. Ž .H1 and F 0 ) 0 leads to the criterion 2.11 .

The functions L appear also as a new theoretical tool: see Gamboa and
Ž .Gassiat 1996a for applications in signal processing and Gamboa and Gas-

Ž .siat 1996b for statistical applications. Similar ideas are developed for pro-
Ž .cesses in Cattiaux and Leonard 1994 and for marginal problems in Cattiaux´

Ž .and Gamboa 1995 .

w . Ž .EXAMPLE 1. If U s 0, 2p , P is the uniform probability, f x s cos x,2
Ž . ŽY s 1, d and F is the Poissonized exponential distribution see example 6

. Ž .in the Introduction; here b s 1 , direct calculations lead to L Y s
w Ž 2 .1r4 x < < Ž .2 1 y 1 y d if d F 1 and L Y s q` otherwise.
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ŽŽ . . ` Ž .EXAMPLE 2. For F [ e y 1 re Ý exp yn d , where d is the Diracns0 n n
Ž . Ž� 4.mass at point n, the equation L Y F ylog F 0 q a is equivalent to

k ² : ² :; v g R , v , Y q log 1 y exp v , f x dP x F 0,� 4Ž . Ž .H
U

where log x [ y` whenever x F 0.

2.5. A posteriori asymptotic properties of n . Here, the omission of then
� 4subscript or exponent CC means that CC reduces to a singleton Y . We will

now give some asymptotic properties of the random measure n when R n isn q
endowed with P MEM. The aim of the results is to state precisely the conver-n
gence of the discretized estimator to the infinite-dimensional reconstruction.
We give two different results concerning the case where the limit is well
defined, that is, where the set of accumulation points reduces to a singleton.

Ž . n MEMWhen v* lies in D9 F, f and if R is endowed with P , we show theq n
Ž . MEMexponential convergence in probability of n to n . Indeed, we have aˆn

Ž . Ž .large deviations principle for n as soon as v* lies in D9 F, f .n ng N

PROPOSITION 2.5. Let A be a measurable set of measures. If v* lies in
Ž .D9 F,f , then

1
MEMyL int A F lim inf log PŽ .Ž .Y nŽn g A.nnnª`

1
MEMF lim sup log PnŽn g A.nnnª`

F yL A ,Ž .Y

Ž . Y Ž .where L A [ inf J m withY m g A F

Y ² :² : ² :J m [ J m y G c 9 v*, f x y v*, f x dm x q v*, Y .Ž . Ž . Ž . Ž . Ž .Ž .Ž . HF F
U

Ž .When v* does not lie in D9 F, f and RR reduces to a singleton therev*
Ž MEM .exist situations where the distribution of n under P does not convergen n

to a delta distribution: there is no law of large numbers, though the expecta-
tion converges.

3. Proofs.

Ž .3.1. Proof of Theorem 2.1. We first show that if the sequence vn, CC

converges to vU , then the result holds. U and CC are compact; thus theCC

Ž MEM, CC .sequence n is tight. Let n be an accumulation point of the sequenceˆ ˜n
Ž MEM, CC . Ž .n and let n be an increasing sequence of integers such thatn̂ k
Ž MEM, CC .n converges weakly, as k tends to infinity, to n . For any measure n onˆ ˜nk

U set
AA [ A g BB U : n  A s 0 ,� 4Ž . Ž .n
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where A denotes the boundary of A. Let A g AA l AA such that there existsP ñ

Ž U .a closed subset F of U with A ; F and F l V v s B. Thena CC

MEM, CC ² U :n A s c 9 v , f x dP q S q S ,Ž . Ž .Ž .Hn CC 1, n 2, nk k k
A

where
nk1

U² :S [ c 9 v , f x y c 9 v , f x 1 x ,² :Ž . Ž . Ž .Ž .Ý ž /ž /1, n n , CC i CC i A ik ink is1
nk1

U U² : ² :S [ c 9 v , f x 1 x y c 9 v , f x dP .Ž . Ž . Ž .Ž . Ž .Ý H2, n CC i A i CCk n Ak is1

Ž U .However, because A ; F and F is closed and does not intersect V v ,a CC
< < 5 U 5there exists a constant C such that for k large enough, S F C v y v ,1, n n , CC CCk k

so lim S s 0. As P converges weakly to P and A g AA , we then getk ª` 1, n n Pk k

lim S s 0. Finally, since A g AA ,k ª` 2, n ñk

MEM, CC ² U :lim n A s n A s c 9 v , f x dP .Ž . Ž . Ž .ˆ ˜ Ž .Hn CCkkª` A

Ž U .Let B g AA l AA with B l V v s B. For d ) 0, setP n a CC˜

² U :A [ x g B : v , f x F a y d .Ž .� 4d CC

Ž .As d decreases to 0, A increases to B. Moreover, there exists a sequence dd n
decreasing to 0 with ;n G 1, A g AA l AA . Using the monotone convergenced P ñn

theorem, we then get

² U : ² U :n B s lim n A s lim c 9 v , f x dP s c 9 v , f x dP .Ž . Ž . Ž .˜ ˜ Ž . Ž . Ž .H Hd CC CCnnª` nª` A Bdn

Let now B g AA l AA ,P ñ

n B s n B _ B l V vU q n B l V vUŽ . Ž . Ž .Ž . Ž .˜ ˜ ˜Ž .a CC a CC

² U :s c 9 v , f x dP q s B ,Ž . Ž .Ž .H CC CC
B

3.1Ž .

Ž U .where s is supported by V v . Now, since the s-field generated byCC a CC
Ž . Ž . Ž .AA l AA is BB U , 3.1 remains valid for any B g BB U .P ñ

We shall now prove that the sequence v possesses a finite limit vU .n, CC CC
k U Ž . Ž² : Ž ..kDefine for c9 g R , h c9 [ sup v, c9 y H v, CC . As in Dacunha-n, CC v g R n

Ž .Castelle and Gamboa 1990 , using a separation theorem, it is not difficult to
U Ž .prove that for n sufficiently large, h is finite on a nonvoid open ball Bn, CC

Ž .centered in 0. Since H ?, CC is minimized at the point v , 0 lies inn n, CC
Ž . Ž . H v , CC , the subdifferential of the function H ?, CC at the point v .n n, CC n n, CC

Using the fact that H is lower semicontinuous, we deduce from the Theoremn
wŽ . x U Ž .23.5 of Rockafellar 1970 , page 218 that v g  h 0 .n, CC n, CC

Ž . Ž .Using Lemma 3.4 of Gamboa 1989 , we see that the function H ?, CC
attains its minimum at a unique point v* and, using the same arguments as

U Ž . � 4 wŽ .before,  h 0 s v* . Now using Theorem 24.5 of Rockafellar 1970 , pageCC
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x U233 on subdifferential sequence convergence, we get that lim v s vnª` n, CC CC
U Ž . U Ž .as soon as lim h c9 s h c9 for all c9 lying in an open ball around 0.nª` n, CC CC

This is the aim of Proposition 3.1, which is proved in Section 3.2. I

PROPOSITION 3.1. Under the assumptions of Theorem 2.1,

;c9 g B , lim hU c9 s hU c9 .Ž . Ž .n , CC CC
nª`

3.2. Proof of Theorem 2.2. We shall need the following technical result:

LEMMA 3.2. If f is a nondecreasing sequence of strictly convex functionsn
on R k converging to f , if the minimum m of f is attained at x and if m, then n n
minimum of f , is finite, then m converges to m.n

Ž .PROOF OF THEOREM 2.2. For any positive M define exp c t , t g R, theM
Laplace transform of the truncated finite positive measure F1 . Define asw0, M x
usual

U ² : ² : ² :h c [ sup v , c q inf v , Y y c v , f x dP x ,Ž . Ž . Ž .Ž .HM , CC M½ 5YgCCk UvgR

g t [ sup t t y c t ,� 4Ž . Ž .M M
tgR

G f [ g f x dP x .Ž . Ž . Ž .Ž .HM M
U

wŽ . xUsing Corollary 37.3.2 of Rockafellar 1970 , page 393 ,

hU 0 s inf hU 0Ž . Ž .M , CC M , �Y 4
YgCC

and this infimum is attained at a point c M in the interior of the cone
generated by KK; that is, in the interior of

� 4KK [ lY , l g R , Y g KK .l q

M Ž . MNow, if c g int KK , there exists M such that c is a f-moment of al 0
wfunction bounded strictly by M apply, for example, results of Dacunha-0

Ž . Ž .xCastelle and Gamboa 1990 or Gamboa and Gassiat 1991 .
Using the assumption on the support of F, it is easy to see that there

exists a sequence of M converging to q` such that F1 is a positivew0, M x
w xmeasure for which the convex hull of the support is 0, M . It is now possible

wto apply the earlier results on MEM we are in the case where a s q`; see
Ž .xGamboa and Gassiat 1991 to obtain

3.2 ;M ) M , hU 0 - q` and hU 0 s inf G g .Ž . Ž . Ž . Ž .0 M , CC M , CC M
˜Ž .ggSS CC
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Ž . Ž² Ž .:. Ž . ² :Define f v s H c v, f x dP x y inf v, Y . Using Beppo]Levi’sM U M Y g CC

lemma, we have that the sequence f satisfies the assumptions of Lemma 3.2M
Ž . Ž .with f ? [ H ?, CC and then

3.3 hU 0 s lim hU 0 .Ž . Ž . Ž .CC M , CC
Mªq`

Using again Lemma 3.2, g decreases to g and G decreases to G. We haveM M
Ž . Ž .obviously inf G f G inf G f . Let « be a positive number. Let˜ ˜f g SS ŽCC . M f g SS ŽCC .

Ž . Ž . Ž .g be a function of C U such that G g F inf G f q « . Then, for M˜f g SS ŽCC .
Ž . Ž . Ž . Ž .large enough, G g F G g q « . So inf G f F inf G f q 2« .˜ ˜M f g SS ŽCC . M f g SS ŽCC .

We may deduce that

3.4 lim inf G f s inf G f .Ž . Ž . Ž .M
Mª` ˜ ˜Ž . Ž .fgSS CC fgSS CC

Ž . Ž . Ž .From results 3.2 , 3.3 and 3.4 we deduce the first equality of Theorem 2.2.
The second and the third follow from Lemma 3.3. I

PROOF OF PROPOSITION 3.1. Let B be an open ball that contains 0 and
U U Ž .such that, for large enough n, h is finite on B. By definition, h c9 Gn, CC n, CC

Ž . ² : kyH v, CC q v, c9 for all c9 in B and v in R . Consequently,n

U ² :; v g D9 F , f , lim inf h c9 G yH v , CC q v , c9 .Ž . Ž . Ž .n , CC
nª`

Ž .Now H is lower semicontinuous and D F, f is included in the closure of
Ž . Ž Ž . ² :. Ž Ž .D9 F, f . Therefore, inf H v, CC y v, c9 s inf H v, CC yv g D 9ŽF , f . v g DŽF , f .

² :.v, c9 . Then

3.5 lim inf hU c9 G hU c9 .Ž . Ž . Ž .n , CC CC
nª`

0 U Ž . U Ž . U Ž .0Define c by h 0 s inf h 0 s h 0 . We haveCC Y g CC �Y 4 �c 4

;c9 g B , ' f g C U , f x f x dP x s c0 q c9.Ž . Ž . Ž . Ž .H
U

5 5 ŽFor all M G 2 f we can apply the construction with c see the proof of` M
.Theorem 2.2 , so that

n
X Mh c9 F 1rn g c v , f x ,² :Ž . Ž . Ž .Ž .Ýn , CC M M n , CC i

is1

lim sup h c9 F G c X vU M , f x s hU c9 ,² :Ž . Ž . Ž .Ž .ž /n , CC M M CC m , CC
nª`

where v M and vU are the minimizers defined in Section 2 and in Theoremn, CC CC

2.1 for MEM with the truncated measure F1 . Taking the limit as M goesw0, M x
to infinity, we get

3.6 lim sup h c9 F hU c9 .Ž . Ž . Ž .n , CC CC
nª`

Ž . Ž .Equations 3.5 and 3.6 give Proposition 3.1. I
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LEMMA 3.3. Any accumulation point of the sequence n MEM, CC is a mini-n̂
Ž .mizer of J on SS CC .F

PROOF. Let n be an accumulation point of the sequence n MEM, CC. Let˜ n̂
Ž .f g C U be such that H f f dP g CC. Using the proof of Lemma 6 in GamboaU

Ž .and Gassiat 1991 , we have

G n MEM, CC F G fŽ .ˆŽ .n n n

with
n1

MEM, CC ² :G n s g c 9 v , f xŽ .ˆ Ž .Ž . Ýn n n , CC in is1

and
n1

G f s g f x .Ž . Ž .Ž .Ýn in is1

Using the same arguments as in Section 3.1, it is easy to show that

lim G n MEM, CC s J n ,Ž .ˆ ˜Ž .n n F
nª`

lim G f s G f ,Ž . Ž .n
nª`

so that
J n F inf G f ,Ž . Ž .˜F

˜Ž .fgSS CC

which, together with the second equality of Theorem 2.2, proves the lemma.
I

Ž .3.3. Large deviations principle for n . To prove the results of Sec-n ng N

tion 2.3, we make extensive use of large deviation results. We give them here.
Ž . Ž .Let z be a random sequence. We will say in the sequel that zn ng N n ng N

obeys a large deviations principle if the sequence of its distributions obeys a
Ž .large deviations principle. Let Q be the probability distribution on MM U ofn q

w Ž .x n mnn n defined by 1.3 when R is endowed with F . Then we have then n q
Ž .following large deviations principle for n :n ng N

Ž . Ž . Ž .THEOREM 3.4. For any subset B of MM U , let L B [ inf J m . As-mg B F
Ž . Ž .sume that Assumption H1 holds. Then for every Borel subset A of MM U ,

1
y L int A F lim inf log Q AŽ . Ž .Ž . nnnªq`

3.7Ž .
1

F lim sup log Q A F yL A .Ž . Ž .nnnªq`

This theorem is proved by applying the following abstract large deviation
result. Let X be the dual space of a Banach space X 9. We endow X with the

² :weak-) topology so that X9 is the dual of X. In this subsection, ? , ? will be
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the dual product between X9 and X. If Q is a probability measure on X, we
define its log-Laplace transform as

² :; f g X 9, H f [ log exp f , x Q dx .Ž . Ž .HQ
X

Ž .Let now Q be a family of probability distributions on X and leth h) 0
H [ H be their log-Laplace transforms. We shall need the followingh Qh

assumptions.

Ž . Ž .ASSUMPTION H4 . There exists a function l h from R to R and aq q
� 4function H from X 9 to R j q` such that H is convex, lower semicontinu-

Ž . Žous and, if D H is the domain of H that is, the set of points of X 9 where H
. Ž .is finite , D H contains an open neighborhood of 0. Function H satisfies

1
; f g int D H , lim H l h f s H f ,Ž . Ž . Ž .Ž . Ž .hl hhªq` Ž .3.8Ž .

lim l h s q`.Ž .
hªq`

Ž .ASSUMPTION H5 . For every R ) 0, there exists a compact set J of XR
such that

1
c3.9 lim sup log Q J F yR .Ž . Ž .h Rl hŽ .hªq`

Ž . Ž . Ž .ASSUMPTION H6 . If f is a boundary point of D H , where H f is finite,
Ž Ž .. Ž .then there exists a sequence of points f in int D H such that H fn n

Ž .converges to H f .

Ž .Observe that, because D H contains an open set, H is continuous in
Ž Ž .. w Ž . xint D H see Ekeland and Temam 1976 , Proposition 2.5, page 12 .

Ž . �² : Ž .4DEFINITION 1. I x [ sup f, x y H f , x g X, denotes the Legen-f g X 9

Ž .dre transform of H and D I is its domain.

Ž .DEFINITION 2. For every set A included in X, we define L A [
Ž .inf I x .x g A

Ž . Ž .ASSUMPTION H7 . For every open set A such that L A is finite and for
Ž .all positive h, there exists x in D I l A such that:

Ž . Ž . � 4 Ž Ž ..i  I x s f , with f g int D H ;
Ž .ii I is strictly convex at x;
Ž . Ž . Ž .iii I x F L A q h.

Ž . wWhere  I x denotes the subdifferential of I at point x see Definition 5.1
Ž . xof Ekeland and Temam 1976 , page 20 . Under these assumptions, the
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sequence Q obeys a large deviations principle; that is, we have the followingh
proposition:

Ž . Ž . Ž . Ž .PROPOSITION 3.5. Suppose that Assumptions H4 , H5 , H6 and H 7
hold. Then, for every Borel subset A of X,

1
y L int A F lim inf log Q AŽ . Ž .Ž . hl hhªq` Ž .

1
F lim sup log Q A F yL A .Ž . Ž .hl hŽ .hªq`

3.10Ž .

The proof of this proposition follows the proof of Theorem 1.1 of Baldi
Ž .1988 , with minor modifications, due to the fact that our assumptions are

Ž .weaker than those used by Baldi on the boundary of D H . We shall omit the
details.

Ž . Ž .Let us now prove Theorem 3.4. Here, X [ MM U , X 9 [ C U , h [ n,
Ž .l h [ n and we have

; fgC U , H f s E exp f x dn xŽ . Ž . Ž . Ž .Hn Q nn
U

n f xŽ .is exp c .Ý ž /nis1

Ž . Ž Ž .. Ž .Define, for all real continuous functions f on U, H f s H c f x dP x .U
Proof of the theorem proceeds by a verification of assumptions of Proposition
3.5 and will be omitted. We just give the explicit form of the Legendre

˜transform of H. Let J be the Legendre transform of H:F

˜;m g MM U , J m s sup f x dm x y c f x dP x .Ž . Ž . Ž . Ž . Ž . Ž .Ž .H HF ž /U UŽ .fgC U

˜We prove that J coincides with the functional J defined in Section 2.1.F F

PROPOSITION 3.6. If m is a positive bounded measure on U with Radon-
Nikodym decomposition m s gP q s , then

as U q G g s J m ,Ž . Ž . Ž .FJ̃ m sŽ .F ½ q`, otherwise.

PROOF. To compute the Legendre transform of H, we shall make use of
Ž .Theorem 5 of Rockafellar 1971 . Indeed its assumptions hold here: U is

Ž . Ž .compact, P V / 0 provided that V is a nonempty open subset of U and ii
Ž . Ž .D c s y`, a . We may apply the conclusion

sup f x dm x y c f x dP xŽ . Ž . Ž . Ž .Ž .H Hž /U UŽ .fgC U

dm dm
s g dP q r du ,H Hž / ž /dP duU U
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where s is the singular part of m with respect to P, u is any measure in
Ž . w Ž .MM U such that s < u and r is the recession function see Rockafellar 1970 ,

x wŽ . xpage 66 of g . Using Theorem 8.5 of Rockafellar 1970 , page 66 , it is easy to
see that

a x , if x ) 0,
r x sŽ . 0, if x s 0,½ q`, if x - 0.

q ˜Ž . Ž . Ž .Now g t s q` for t - 0, so that if m f MM U , J m s q`. Moreover, ifF
qŽ .m g MM U , then

dm dm
J̃ m s g dP q r du s G g q as U . IŽ . Ž . Ž .H HF ž / ž /dP duU U

Ž . Ž .REMARKS. i The domain D J is the set of positive measures for whichF
Ž .the P-absolutely continuous part, say fP, satisfies G f - q`.

Ž .ii The function g is strictly convex and the total mass of a measure is a
linear function. The points where J is strictly convex are then obviously theF
P-absolutely continuous positive measures.

3.4. Proof of Theorem 2.3. First of all, we shall denote the conditioning
� 4 Ž .set Hf dn g CC by EE . For f g C U , we haven n

bay, CC MEM, CC
mnf x dn x y f x dn x s E W EEŽ . Ž . Ž . Ž .ˆH Hn ` F n n

U U

`
mn < <F F W ) t EE dt� 4� 4H n n

0

Ž . Ž MEM CC .Ž .with W [ H f x d n y n x . We will now show that A [n U n ` n
` mn�� < < 4 4H F W ) t ¬ EE dt tends to 0 when n tends to infinity.0 n n

STEP 1. Let
n

nQ [ z , . . . , z g R : 1rn z f x g int CC l KK .Ž . Ž . Ž . Ž .Ýn 1 n q i i l½ 5
is1

Ž .Using Lemma 1 of Dacunha-Castelle and Gamboa 1990 , we have that for n
mnŽ .large enough F Q ) 0. Then, for large enough n and for any t ) 0, wen

have
mn < <F W ) t l EE� 4Ž .n nmn < <F W ) t EE s .� 4n n mnF EEŽ .n

Ž . ŽSTEP 2. Apply now the large deviations principle for n Theoremn ng N

.3.4 :
1

mnlim inf log F EE G yL int SS CCŽ . Ž .Ž .Ž .nnnª`

and
1

mn < <lim sup log F W ) t l EE F yL B l SS CC� 4 Ž .Ž .Ž .n n tnnª`
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with

q MEM, CCB [ n g MM U : f x d n y n x G t .Ž . Ž . Ž .Ž .Ht `½ 5
U

Ž Ž Ž ... Ž Ž ..Using the semicontinuity of J , it is easy to see that L int SS CC s L SS CC ,F
Ž Ž .. Ž MEM, CC . MEM, CCand Theorem 2.2 gives L SS CC s J n . Moreover, because n isF ` `

Ž .the unique minimum point of J on SS CC , we have, for any positive real t,F
Ž MEM, CC . Ž Ž ..J n - L B l SS CC . Thus, for any positive t, there exists « ) 0 suchF ` t

that

3.11 J n MEM, CC - y2« q L B l SS CC .Ž . Ž .Ž .Ž .F ` t

Now, for this choice of « , 'n , ;n G n ,1 1

mn MEM, CC< <log F W ) t EE F nJ n q n« y nL B l SS CC .� 4 Ž .� 4 Ž .Ž .n n F ` t

Ž . mn�� < < 4 4As n goes to infinity, using 3.11 we finally get lim F W ) t ¬ EE snª` n n
0. The Lebesgue convergence theorem allows us now to conclude that
lim A s 0. Inª` n

3.5. Proof of Theorem 2.4. Applying Theorem 3.4 and the contraction
w Ž . xprinciple Remark 1 in Varadhan 1984 , page 5 , the large deviations func-
Ž Ž . Ž .. Ž .tional for H f x dn x is inf J m . On the other hand, fromU n ng N m g SS Ž�Y 4. F

Ž .Theorem 2.2 and Theorem 3 of Rockafellar 1971 , we have that
Ž . Ž .inf J m s L Y , wheremg SS Ž�Y 4. F

k² : ² :L Y [ sup v , Y y c v , f x dP x , Y g R .Ž . Ž . Ž .Ž .H
k UvgR

The last assertion of the theorem is straightforward when we note that if Y
Ž . Ž . Ž .with Y s 1 is outside of KK, any m that satisfies H f x dm x s Y is1 U
signed. To prove the first and second assertions, we first study the behavior of

Ž . Ž . Ž .g . Let m [ H y dF y s c 9 0 . As g is a convex function and g 0 sRq
Ž� 4. Ž . Ž .ylog F 0 , g m s g m s 0, we have

w x � 43.12 ; yg 0, m , g y F ylog F 0 ,Ž . Ž . Ž .
w3.13 ; yg m , q` , g y F a y y m F a y.Ž . Ž . Ž ..

If Y is in KK, there exists a probability measure n on U such that
Ž . Ž . Ž . Ž .H f x dn x s Y and L Y F J n . NowU F

dn
J n s g x dP xŽ . Ž . Ž .HF ž /dPdnrdPFm

dn dn
q g x dP x q a n y P U ,Ž . Ž . Ž .H ž / ž /dP dPdnrdP)m
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Ž . Ž .so using 3.12 and 3.13 ,

� 4J n F ylog F 0 dP xŽ . Ž .Ž .HF
dnrdPFm

dn dn
q a dP x q a n y P U ,Ž . Ž .H ž /dP dPdnrdPGm

Ž . Ž� 4.so that L Y F ylog F 0 q a .
If Y is in the interior of KK, n can be chosen absolutely continuous with

respect to P and with positive continuous density. Hence, the inequality is
strict.

Ž . Ž .Finally, if Y is on the boundary of KK, any n such that H f x dn x s YU
w Ž .satisfies dnrdP s 0 n is supported by a level set V j , where j g LL0 q

² : xsatisfies j , Y s 0 , and the inequality becomes equality. I

3.6. Proof of Proposition 2.5. We can directly apply Theorem 3.5. The
proof follows the same line as the proof of Proposition 3.4. We just have to

Y Ž .calculate the large deviations functional J . Let f be an element of C UF
Ž . ² Ž .:such that ; x g U, f x q v9, f x - a . Then

1
ME Mlim log E exp n f x dn xŽ . Ž .HP nn ž /nnª` U

1
² :mns lim log E exp n f x q v , f x dn xŽ . Ž . Ž .Ž .HF n nžnnª` U

n

² :y c v , f xŽ .Ž .Ý n i /
is1

n n1 1
² : ² :s lim c f x q v , f x y c v , f xŽ . Ž . Ž .Ž . Ž .Ý Ýi n i n iž /n nnª` is1 is1

² : ² :s c f x q v*, f x y c v*, f x dP x .Ž . Ž . Ž . Ž .Ž . Ž .Ž .H
U

Ž . ² Ž .:On the other hand, if f is such that ' x g U, f x q v*, f x ) a , then

1
ME Mlim log E exp n f x dn x s `.Ž . Ž .HP nn ž /nnª` U

Consequently,

J Y m s sup f x dm xŽ . Ž . Ž .HF ½
UŽ .fgC U

² : ² :y c f x q v*, f x y c v*, f x dP xŽ . Ž . Ž . Ž .Ž . Ž .H 5
U
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s sup h x dm y c h x dP xŽ . Ž . Ž .Ž .H H½ 5
U UŽ .hgC U

² : ² :q c v*, f x dP x y v*, f x dm xŽ . Ž . Ž . Ž .Ž .H H
U U

² :² : ² :s J m y G c 9 v*, f x y v*, f x dm x q v*, Y . IŽ . Ž . Ž . Ž .Ž .Ž . HF
U
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