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FITTING A BIVARIATE ADDITIVE MODEL BY
LOCAL POLYNOMIAL REGRESSION

By Jean D. Opsomer1 and David Ruppert2

Iowa State University and Cornell University

While the additive model is a popular nonparametric regression
method, many of its theoretical properties are not well understood, es-
pecially when the backfitting algorithm is used for computation of the
estimators. This article explores those properties when the additive model
is fitted by local polynomial regression. Sufficient conditions guaranteeing
the asymptotic existence of unique estimators for the bivariate additive
model are given. Asymptotic approximations to the bias and the variance
of a homoscedastic bivariate additive model with local polynomial terms of
odd and even degree are computed. This model is shown to have the same
rate of convergence as that of univariate local polynomial regression.

1. Introduction. Nonparametric regression methods are a flexible and
growing class of models in the statistician’s toolbox. They allow researchers to
evaluate data without having to postulate a shape for the relationship between
the response variable and the covariate(s). Unfortunately, nonparametric re-
gression methods become more cumbersome to implement when the number
of covariates increases, and the ability to visually inspect estimated relation-
ships is often lost when there are more than two covariates. An elegant solu-
tion to these problems is provided by the additive model, originally suggested
by Friedman and Stuetzle (1981) and popularized by Hastie and Tibshirani
(1990). The additive model assumes that the conditional expectation function
of the dependent variable Y can be written as a sum of smooth terms in the
covariates X1; : : : ;XD:

E�Y�X = �x1; : : : ; xD�� =m�x1; : : : ; xD� =m1�x1� + · · · +mD�xD�:(1)

The backfitting algorithm proposed by Buja, Hastie and Tibshirani (1989)
and the related fitting procedure in S-PLUS [see Chambers and Hastie (1992)]
have made the additive model a popular choice for multivariate nonparametric
fitting.

Compared to the development of practical applications, the understanding
of the theoretical properties of the additive model has lagged. Stone (1985)
showed in the case of additive splines that the optimal rate of convergence
achievable by additive model estimators is independent of the number of co-
variates, and Burman (1990) proposed a cross-validation method for select-
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ing the number of knots. Other authors have proven existence results in the
context of smoothing splines [Wahba (1986), Gu, Bates, Chen and Wahba
(1989), and Chen (1993)] and interpolated regressograms [Härdle and Hall
(1993)]. More recently, a paper by Linton and Nielsen (1995) describes a fitting
procedure for bivariate additive models based on local linear regression and
marginal integration, and they showed that their procedure also achieves the
same Op�n−2/5� rate of convergence for the additive model as for the univari-
ate local linear estimator. In the case of additive modeling through backfitting,
the theoretical investigations are greatly complicated by the fact that the es-
timators are defined as the solution of an iterative algorithm. Only when two
covariates are present are explicit expressions for the estimators available.
As Linton and Nielsen (1995) note, however, “these expressions appear quite
intractable.”

Buja, Hastie and Tibshirani (1989) provide sufficient conditions that guar-
antee the convergence of the backfitting algorithm or, equivalently, the ex-
istence of the estimators. These conditions are only generally satisfied for
regression splines and parametric terms, but not by kernel regression or lo-
cal polynomial regression. This is unfortunate, because local polynomial re-
gression has recently been shown to possess many desirable theoretical and
practical properties [e.g., Cleveland and Devlin (1988), Fan, Gasser, Gijbels,
Brockmann and Engel (1993), and Ruppert and Wand (1994)] and its combina-
tion with backfitting has proven to be very popular for fitting additive models
in S-PLUS.

In this article, we will explore two important theoretical issues concerning
the bivariate additive model, in the context of backfitted estimators using local
polynomial regression:

1. What are sufficient conditions guaranteeing convergence of backfitting?
2. What are the asymptotic properties of the estimators?

In another paper [Opsomer and Ruppert (1995)], these results are used to
develop a fully automated plug-in bandwidth selection method.

The rest of the article will proceed as follows. In Section 2, the bivariate
additive model estimators are defined. In Section 3, sufficient conditions for
the existence of unique estimators are discussed. Section 4 derives conditional
asymptotic bias and variance expressions when the local polynomials are of
odd degree. Section 5 extends the results to local regression of even degree.

2. Definition of the estimators. Let �X1;Z1;Y1�; : : : ; �Xn;Zn;Yn� be
a set of independent and identically distributed R3-valued random variables.
We assume the following model:

Yi = α+m1�Xi� +m2�Zi� + εi;

where the εi are independent and identically distributed with mean 0 and
variance σ2. To ensure identifiability of the functions m1 and m2, we include
the intercept α and assume E�m1�Xi�� = E�m2�Zi�� = 0.



188 J. D. OPSOMER AND D. RUPPERT

We introduce some notation. Let Y = �Y1; : : : ;Yn�T and similarly for X and
Z, and we write the vectors of additive functions at the observation points
as m1 = �m1�X1�; : : : ;m1�Xn��T, m2 = �m2�Z1�; : : : ;m2�Zn��T. For any con-
stant d, d is the n-valued vector �d; : : : ; d�T. Let sT1; x; s

T
2; z represent the equiv-

alent kernels for the local polynomial regression at x and z. In the case of x,
this equivalent kernel can be written as

sT1; x = eT1 �XT
xWx Xx�−1XT

xWx;

where eT1 = �1;0�,

Wx = diag
{

1
h1
K

(
X1 − x
h1

)
; : : : ;

1
h1
K

(
Xn − x
h1

)}

for some kernel function K and bandwidth h1 and

Xx =




1 �X1 − x� · · · �X1 − x�p1

:::
:::

: : :
:::

1 �Xn − x� · · · �Xn − x�p1


;

where p1 is the order of the local polynomials for fitting m1 [see Ruppert and
Wand (1994)]. A similar expression holds for sT2; z. Let S1 and S2 represent the
smoother matrices whose rows are the equivalent kernels at the observations
X and Z, respectively:

S1 =




sT1;X1

:::

sT1;Xn


; S2 =




sT2;Z1

:::

sT2;Zn


:

We define the vector of fitted values at the observation points as

m̂ = â+ m̂1 + m̂2;

in which α̂ = Ȳ, and m̂1 and m̂2 are the solutions to the set of estimating
equations

[
I S ∗1

S ∗2 I

][
m̂1

m̂2

]
=
[

S ∗1
S ∗2

]
Y;

where S ∗1 = �I − 11T/n�S1 and similarly for S ∗2 . As discussed in Hastie and
Tibshirani (1990), this adjustment of the smoothers, which they refer to as
centering, is necessary to ensure uniqueness of the solutions to the estimating
equations (if they exist), by requiring

∑n
i=1m1�Xi� =

∑n
i=1m2�Zi� = 0. In

practice, the estimating equations are solved using the backfitting algorithm,
but in the bivariate case they also have the explicit solution

m̂1 = �I− �I− S ∗1 S ∗2 �−1�I− S ∗1 ��Y ≡W1Y;

m̂2 = �I− �I− S ∗2 S ∗1 �−1�I− S ∗2 ��Y ≡W2Y;
(2)
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provided the inverses exist. For m̂, the explicit estimator expression is

m̂ = �11T/n+2I−�I−S ∗1 S ∗2 �−1�I−S ∗1 �−�I−S ∗2 S ∗1 �−1�I−S ∗2 ��Y ≡WY:(3)

3. Existence. We will specify a set of circumstances under which the es-
timators in (2) and (3) are guaranteed to exist. Let f�x; z� represent the joint
density of Xi and Zi, with fX�x� and fZ�z� the corresponding marginal den-
sities. For the kernel function K, we write the moments of K as µj�K� =∫
ujK�u�du for any j and let R�K� =

∫
K�u�2 du.

One of the important issues in the theoretical derivations in this and follow-
ing sections is whether or not an observation �Xi;Zi� is close to the boundary
of its domain. Using the notation of Ruppert and Wand (1994), we can formal-
ize this by defining

Dx;h1
= �tx �x+ h1t� ∈ supp�fX�� ∩ supp�K�:

We then say that x is an interior point if and only if Dx;h1
= supp�K�. Oth-

erwise, x is a boundary point. Another way to understand this distinction
is depicted in Figure 1: for a given bandwidth value h1, x1 is a boundary
point, because there are values of x for which K��x− x1�/h1� 6= 0 outside of
supp�fX� = �a; b�, while x2 is an interior point, because all values for which
K��x− x2�/h2� 6= 0 are inside that support. Analogous definitions hold for
Dz;h2

and z. We define the boundary moments of K with respect to x as

µj�K;x� =
∫
Dx;h1

ujK�u�du;

where the dependency on h1 will be suppressed for notational simplicity, and
similarly for R�K;x�. Clearly, if x is an interior point, µj�K;x� = µj�K� and
R�K;x� = R�K�. Let Np represent the �p+1�×�p+1� matrix whose �i; j�th
element is equal to µi+j−2�K� and Mp�u� be the same as Np, but with the first
column replaced by �1; u; : : : ; up�T. As in Ruppert and Wand (1994), define the
kernel

K�p��u� = ��Mp�u��/�Np��K�u�:

Fig. 1. Graphical representation of a boundary point �x1� and an interior point �x2� for a kernel
function K and supp�fX� = �a; b�.
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For the boundary moments, we define the matrices Np�x� and Mp�u;x� ex-
actly as above, but with the µj�K� replaced by µj�K;x�. We also define the
boundary kernel

K�p��u;x� = ��Mp�u;x��/�Np�x���K�u�I�u∈Dx;h1
�:

If x is not at the boundary of supp�f�, K�p��u;x� = K�p��u�. Analogous defi-
nitions hold for the other covariate z.

We make the following assumptions.

Assumption 1. The kernel K is bounded and continuous, it has compact
support and its first derivative has a finite number of sign changes over its
support. Also, µj�K� = 0 for all odd j and µp1+1�K�p1��; µp2+1�K�p2�� 6= 0.

Assumption 2. The densities f, fX and fZ are bounded and continuous,
have compact support and their first derivatives have a finite number of sign
changes over their supports. Also, fX�x� > 0, fZ�z� > 0 for all �x; z� ∈ supp�f�
and

sup
x; z

∣∣∣∣
f�x; z�

fX�x�fZ�z�
− 1

∣∣∣∣ < 1:(4)

Assumption 3. As n→∞, h1; h2 → 0 and nh1/ log n;nh2/ log n→∞.

The following two lemmas show that, under these assumptions, the matrix
inverses in the estimators (2) and (3) are well defined for local polynomials of
any degree p1 and p2 “for sufficiently large n.” Strictly speaking, the lemmas
only prove the existence of the estimator m̂1, but it is clear that the results
also hold for m̂2 and m̂. The proofs are given in Appendix A.

Lemma 3.1. Under Assumptions 1–3, the following asymptotic approxima-
tions hold uniformly over all elements of the matrices:

S ∗1 = S1 − 11T/n+ o�11T/n� a.s.,

S ∗1 S ∗2 = T ∗12 + o�11T/n� a.s.,

where T ∗12 is a matrix whose �i; j�th element is

�T ∗12�ij =
1
n

f�Xi;Zj�
fX�Xi�fZ�Zj�

− 1
n
:

Lemma 3.2. If Assumptions 1–3 hold, then �I − T ∗12� is invertible for all n
and

P�there exists N such that �I− S ∗1 S ∗2 � is invertible for all n ≥N� = 1.

When �I− S ∗1 S ∗2 �−1 exists,

�I− S ∗1 S ∗2 �−1 = �I− T ∗12�−1 + o�11T/n� a.s.

= I+O�11T/n� a.s.

uniformly over all elements of the matrices.
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Remark 3.1. The restriction (4) in Assumption 2 ensures that �T ∗12�r < 1,
where �A�r denotes the maximum row sum matrix norm of the square matrix
Ax �A�r = max1≤i≤n

∑n
j=1 �Aij� [Horn and Johnson (1985)]. The main reason

for selecting this norm was convenience, and it is clear that any other norm
� · � which ensures that �I − T ∗12� is invertible whenever �T ∗12� < 1 would be
equally appropriate. To assess the restrictiveness of (4), let us evaluate its ef-
fect on the bivariate normal distribution with censored support. For simplicity,
assume that the mean of the distribution is at the center of the range for both
covariates and that the standardized ranges (i.e., range divided by standard
deviation) are the same in both dimensions. Let r represent this standardized
range for both covariates. We can then rewrite (4) as

sup
−r/2≤x; z≤r/2

∣∣∣∣
1√

1− ρ2
exp

(
− ρ

2�1− ρ2��ρx
2 − 2xz+ ρz2�

)
− 1

∣∣∣∣ < 1:(5)

Figure 2 displays the values of the correlation coefficient ρ for which (5) is
satisfied as a function of the standardized range r. Clearly, there is a trade-
off between the ranges of Xi and Zi (in units of their standard deviations)

Fig. 2. Allowable values for the correlation between covariates following a censored normal dis-
tribution �unshaded region�.
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and the correlation. For instance, for a range of 3 standard deviation units,
the correlation can take on values −0:37 ≤ ρ ≤ 0:37. While this may seem
quite restrictive, it is important to realize that the constraint (4) is a sufficient
condition for the existence of the estimators, not a necessary one. Note also
that when the ranges of Xi and Zi are very small relative to their standard
deviation, that is, when the distribution is almost uniform, the amount of
allowable correlation approaches �−0:9;0:9�.

Remark 3.2. Assumptions 1–3 are also somewhat stronger than ones usu-
ally made for local polynomial regression. Specifically, the kernel function and
the density of the covariates have additional “smoothness” restrictions, and the
maximum rate at which the bandwidths h1; h2 approach 0 is slightly slower.
The purpose behind these restrictions is to allow us to use the uniform con-
vergence results of Pollard (1984) in the proof of Lemma 3.1. They will not
significantly affect the applicability of the results, since many commonly used
kernels (including the Epanečnikov kernel) easily satisfy these conditions, and
since the optimal rates of h1; h2 are fractional powers of n and therefore un-
affected by the presence of the log n term in Assumption 3.

4. Conditional mean-squared error properties. As shown in Theo-
rem 4.1 of Ruppert and Wand (1994), if the degree p of the local polynomial
is even, the estimator has asymptotic bias of order Op�hp+2� in the interior,
which is the same order as the estimator computed by local polynomial regres-
sion of (odd) degree p + 1. The asymptotic bias of the former estimator also
contains an additional term. For these reasons, several authors [e.g., Fan and
Gijbels (1994)] have argued that odd-degree local polynomials are preferable
to even-degree ones. In this section, we will therefore restrict our attention to
the case where p1 and p2 are odd. We will briefly discuss the situation where
p1 and p2 are even in Section 5.

Let

Dpm1 =




dpm1�X1�
dxp

:::

dpm1�Xn�
dxp




and

E�m�p�1 �Xi��Z� =




E�m�p�1 �X1��Z1�
:::

E�m�p�1 �Xn��Zn�




and analogously for Dpm2 and E�m�p�2 �Zi��X�. Also, let tTi ;vj represent the
ith row and jth column of �I − T ∗12�−1, respectively, and let eTi represent the
ith unit vector.
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In addition to Assumptions 1–3 from Section 3, we also need the following
assumption.

Assumption 4. The �p1+1�th derivative ofm1 and the �p2+1�th derivative
of m2 exist and are continuous and bounded.

In the theorem and corollaries that follow, we will only show the results for
α̂; m̂1 and m̂. It is clear that the results for m̂2 can be found by interchanging
Xi and Zi and the subscripts 1 and 2 in those for m̂1.

Theorem 4.1. Suppose that Assumptions 1–4 hold. For the observation
points �Xi;Zi�; i = 1; : : : ; n, the conditional bias and variance of α̂ and
m̂1�Xi� can be approximated by

E�α̂− α�X;Z� = α+Op

(
1√
n

)
;

E�m̂1�Xi� −m1�Xi��X;Z�

= 1
�p1 + 1�!h

p1+1
1 µp1+1�K�p1�;Xi�m

�p1+1�
1 �Xi�

+ 1
�p1 + 1�!h

p1+1
1 µp1+1�K�p1��

(
�tTi − eTi �Dp1+1m1 −E�m

�p1+1�
1 �Xi��

)

− 1
�p2 + 1�!h

p2+1
2 µp2+1�K�p2��

(
tTi E�m

�p2+1�
2 �Zi��X� −E�m

�p2+1�
2 �Zi��

)

+Op

(
1√
n

)
+ op�hp1+1

1 + hp2+1
2 �

and

Var�α̂� = σ
2

n
;

Var�m̂1�Xi��X;Z� = σ2R�K�p1�;Xi�
nh1

fX�Xi�−1 + op
(

1
nh1

)
:

The conditional bias and variance of m̂�Xi;Zi� are

E�m̂�Xi;Zi� −m�Xi;Zi��X;Z�

= 1
�p1 + 1�!h

p1+1
1

(
µp1+1�K�p1�;Xi�m

�p1+1�
1 �Xi� + µp1+1�K�p1��

×
(
�tTi − eTi �Dp1+1m1 − vTi E�m

�p1+1�
1 �Xi��Z�

))

+ 1
�p2 + 1�!h

p2+1
2

(
µp2+1�K�p2�;Zi�m

�p2+1�
2 �Zi� + µp2+1�K�p2��

×
(
�tTi − eTi �Dp2+1m2 − vTi E�m

�p2+1�
2 �Zi��X�

))

+ op�hp1+1
1 + hp2+1

2 �
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and

Var�m̂�Xi;Zi��X;Z�

= σ2
(
R�K�p1�;Xi�

nh1
fX�Xi�−1 +

R�K�p2�;Zi�
nh2

fZ�Zi�−1
)

+ op
(

1
nh1
+ 1
nh2

)
:

Corollary 4.1. If the observation point �Xi;Zi� lies in the interior of
supp�f�, the conditional bias and variance of m̂1�Xi� are approximated by

E�m̂1�Xi� −m1�Xi��X;Z�

= 1
�p1 + 1�!h

p1+1
1 µp1+1�K�p1��

(
tTi D

p1+1m1 −E�m
�p1+1�
1 �Xi��

)

− 1
�p2 + 1�!h

p2+1
2 µp2+1�K�p2��

(
tTi E�m

�p2+1�
2 �Zi��X� −E�m

�p2+1�
2 �Zi��

)

+Op

(
1√
n

)
+ op�hp1+1

1 + hp2+1
2 �

and

Var�m̂1�Xi��X;Z� = σ2R�K�p1��
nh1

fX�Xi�−1 + op
(

1
nh1

)
:

The conditional bias and variance of m̂�Xi;Zi� are

E�m̂�Xi;Zi� −m�Xi;Zi��X;Z�

= 1
�p1 + 1�!h

p1+1
1 µp1+1�K�p1

�
(
tTi D

p1+1m1 − vTi E�m
�p1+1�
1 �Xi��Z�

)

+ 1
�p2 + 1�!h

p2+1
2 µp2+1�K�p2��

(
vTi D

p2+1m2 − tTi E�m
�p2+1�
2 �Zi��X�

)

+ op�hp1+1
1 + hp2+1

2 �

and

Var�m̂�Xi;Zi��X;Z� = σ2
(
R�K�p1��
nh1

fX�Xi�−1 +
R�K�p2��
nh2

fZ�Zi�−1
)

+ op
(

1
nh1
+ 1
nh2

)
:

A convenient error criterion that only uses the fitted values at the obser-
vation points is provided by the conditional mean averaged squared error
(MASE), discussed by Härdle, Hall and Marron (1988). The MASE of m can
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be written as

MASE�h1; h2�X;Z� =
1
n

n∑
i=1

E��m̂�Xi;Zi� −m�Xi;Zi��X;Z�2�

= 1
n

n∑
i=1

�E�m̂�Xi;Zi� −m�Xi;Zi��X;Z��2

+ 1
n

n∑
i=1

Var�m̂�Xi;Zi��X;Z�

and its asymptotic approximation is easily constructed from the previous re-
sults. To simplify the notation, let

θ11�r� =
1
n

n∑
i=1

(
tTi D

rm1 − vTi E�m
�r�
1 �Xi��Z�

)2
;

θ22�r� =
1
n

n∑
i=1

(
vTi D

rm2 − tTi E�m
�r�
2 �Zi��X�

)2

and

θ12�r; s� =
1
n

n∑
i=1

(
tTi D

rm1 − vTi E�m
�r�
1 �Xi��Z�

)(
vTi D

sm2 − tTi E�m
�s�
2 �Zi��X�

)
:

Corollary 4.2. The conditional MASE for the bivariate additive model is
approximated by

MASE�h1; h2�X;Z�

=
(
µp1+1�K�p1��
�p1 + 1�!

)2

h
2p1+2
1 θ11�p1 + 1� +

(
µp2+1�K�p2��
�p2 + 1�!

)2

h
2p2+2
2 θ22�p2 + 1�

+
µp1+1�K�p1��
�p1 + 1�!

µp2+1�K�p2��
�p2 + 1�! h

p1+1
1 h

p2+1
2 θ12�p1 + 1; p2 + 1�

+ σ2 1
n

n∑
i=1

(
R�K�p1��
nh1

fX�Xi�−1 +
R�K�p2��
nh2

fZ�Zi�−1
)

+ op
(
h

2p1+2
1 + h2p2+2

2 + 1
nh1
+ 1
nh2

)
:

If X and Z are independent, the preceding results can be simplified signifi-
cantly. The expression for θ11�r� becomes

θ11�r� =
1
n

n∑
i=1

(
m
�r�
1 �Xi� −E�m

�r�
1 �Xi��

)2

and similarly for θ22�r�. Since θ12�r; s� = Op�1/n� in this case, the term can
be ignored.
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Corollary 4.3. If X and Z are independent, the conditional bias and vari-
ance of α̂ and m̂1�Xi� in the interior of supp�f� can be approximated by

E�α̂− α�X;Z� = α+Op

(
1√
n

)
;

E�m̂1�Xi� −m1�Xi��X;Z�

= 1
�p1 + 1�!h

p1+1
1 µp1+1�K�p1��

(
m
�p1+1�
1 �Xi� −E�m

�p1+1�
1 �Xi��

)

+Op

(
1√
n

)
+ op�hp1+1

1 + hp2+1
2 �

and

Var�α̂� = σ
2

n
;

Var�m̂1�Xi��X;Z� = σ2R�K�p1��
nh1

fX�Xi�−1 + op
(

1
nh1

)
:

For m̂�Xi;Zi�,
E�m̂�Xi;Zi� −m�Xi;Zi��X;Z�

= 1
�p1 + 1�!h

p1+1
1 µp1+1�K�p1��

(
m
�p1+1�
1 �Xi� −E�m

�p1+1�
1 �Xi��

)

+ 1
�p2 + 1�!h

p2+1
2 µp2+1�K�p2��

(
m
�p2+1�
2 �Zi� −E�m

�p2+1�
2 �Zi��

)

+ op�hp1+1
1 + hp2+1

2 �;

Var�m̂�Xi;Zi��X;Z� = σ2
(
R�K�p1��
nh1

fX�Xi�−1 +
R�K�p2��
nh2

fZ�Zi�−1
)

+ op
(

1
nh1
+ 1
nh2

)

and the conditional MASE is

MASE�h1; h2�X;Z�

=
(
µp1+1�K�p1��
�p1 + 1�!

)2

h
2p1+2
1 θ11�p1 + 1� +

(
µp2+1�K�p2��
�p2 + 1�!

)2

h
2p2+2
2 θ22�p2 + 1�

+ σ2 1
n

n∑
i=1

(
R�K�p1��
nh1

fX�Xi�−1 +
R�K�p2��
nh2

fZ�Zi�−1
)

+ op
(
h

2p1+2
1 + h2p2+2

2 + 1
nh1
+ 1
nh2

)
:
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Remark 4.1. Theorem 4.1 shows that the additive model fitted by local
polynomial regression of degree p1 = p2 = p and computed through backfit-
ting has the same Op�n−�p+1�/�2p+3�� rate of convergence as univariate local
polynomial regression. However, there are a number of interesting differences
between the asymptotic bias of the terms of the additive model and that of
the (nonadditive) local polynomial regression estimator. In the case of m̂1, the
bias contains a term based on the curvature of m1,

− 1
�p1 + 1�!µp1+1�K�p1��h

p1+1
1 �tTi E�m

�p1+1�
1 �Xi��Z� −E�m

�p1+1�
1 �Xi���;

another term based on the curvature of m2,

− 1
�p2 + 1�!µp2+1�K�p2��h

p2+1
2 �tTi E�m

p2+1
2 �Zi��X� −E�mp2+1

2 �Zi���

and a third term caused only by the centering adjustment of S ∗1 , Op�1/
√
n�

(but note that the first two terms are also centered around their means). Only
the first of these terms has an equivalence in univariate local polynomial
regression. As shown in Corollary 4.3, the m2 curvature term disappears if X
and Z are independent, so that the asymptotic bias of m̂1 no longer depends
on m2. The term Op�1/

√
n� is not related to the dependence between X and Z.

As shown in the proof of Theorem 4.1 (below), this centering bias of m̂1�Xi�
and m̂2�Zi� cancels out with the bias of α̂, so that this term does not appear in
the bias of m̂�Xi;Zi�. Another difference with local polynomial regression is
that the asymptotic bias at a point �Xi;Zi� not only depends on the curvature
of m1 and m2 at that point, but is a weighted average of the curvature at all
the observation points, with the weights determined by the matrix �I−T ∗12�−1.
This difference again disappears when X and Z are independent.

Remark 4.2. If X and Z are independent, Corollary 4.3 shows that m̂ has
another interesting property. Suppose, for simplicity, that we are fitting the ad-
ditive model by local polynomial regression of degree p. This additive model is
unbiased as long as the unknown functions m1 and m2 are polynomials of de-
gree less than or equal to p+1. This differs from nonadditive local polynomial
regression of degree p, which is only unbiased when the unknown function
itself is of degree less than or equal to p. This effect is due to the centering
adjustment, which replaces m�p+1�

1 �Xi� in the nonadditive local polynomial
regression bias by �m�p+1�

1 �Xi� − E�m
�p+1�
1 �Xi���. It is easy to see that the

“centered” derivatives are indeed 0 for polynomials up to degree p+ 1.

Remark 4.3. Unlike the bias, the asymptotic variance terms are identical
to those found in univariate local polynomial regression; that is, the asymp-
totic variance of the estimator of m1 does not depend on the simultaneous
estimation of m2. This somewhat surprising result is reminescent of what
happens in a two-way ANOVA design with an equal number of observations
in each cell, where the effect for one factor can be estimated without adjust-
ing for the other factor. The reason for this apparent independence is that any
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product of the two smoothers S ∗1 S ∗2 is of order Op�11T/n�, as shown in Lemma
3.1, and hence is of smaller order than the leading variance terms. This result
holds regardless of the dependence between X and Z, as long as restriction (4)
is satisfied.

Remark 4.4. We compare these asymptotic bias and variance results with
those of Linton and Nielsen (1995) for the case p1 = p2 = 1. If we use fZ as
the weighting function q in their result, the theorem of Linton and Nielsen
(1995) can be rewritten as

E�m̂1�Xi� −m1�Xi��X;Z�
= 1

2µ2�K�h2
1m
′′
1�Xi� + 1

2µ2�K�h2
2E�m′′2�Zi�� + op�h2

1 + h2
2�;

Var�m̂1�Xi��X;Z� = σ2R�K� 1
nh1

EZ�fX�Z�Xi�Z�−1� + op
(

1
nh1

)
:

Both expressions ignore the boundary effects, so that Corollary 4.1 provides
the relevant comparison. The rates of convergence for the bias and the vari-
ance are the same. The major differences in the bias are due to the effect in
our results of the matrix �I−T ∗12�−1, which makes the bias at Xi dependent on
the curvature at all other observation points, and of the centering adjustment,
which they do not account for. An interesting difference between the estima-
tors occurs when X and Z are independent. It seems quite natural to expect
from additive model estimators that, when the covariates are independent,
the asymptotic bias for estimating one of the component functions does not
depend on the behavior of the other function. As explained in Remark 4.1, the
backfitting estimator indeed has this property, while the Linton–Nielsen esti-
mator does not, as can readily be seen from the above bias expression. Unless
the bias effects of the component functions happen to offset each other, this
is likely to result in increased bias relative to the backfitting estimator. The
comparison for the asymptotic variances is more straightforward, and, inter-
estingly, the asymptotic variance of the backfitted estimators can be shown to
be smaller than that of the “marginal integration” estimators, unless X and Z
are independent. This is easily proven by noting that, in general,

EZ�fX�Z�Xi�Z�−1� ≥ fX�Xi�−1

by Jensen’s inequality for the function h�x� = 1/x. Since h is strictly convex,
we get strict inequality unless fZ�X�Xi�z� = fX�Xi� for almost all z. Thus,
we get strict inequality for all Xi values in a set of positive probability unless
X and Z are independent.

Proof of Theorem 4.1. We first prove the theorem for the case p1 = p2 =
1. To simplify the notation, we suppress the fact that the bias and the variance
we are approximating are conditional on X and Z.
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For α̂, it is easy to see that

E�α̂� = α+ m̄1 + m̄2 = α+Op

(
1√
n

)
:

In the case of m̂1, we have

E�m̂1� =
(
I− �I− S ∗1 S ∗2 �−1�I− S ∗1 �

)
�a+m1 +m2�;(6)

and we will apply the same Taylor expansion approximations as in Theo-
rem 2.1 of Ruppert and Wand (1994). Let

Qm1
�x� =




�X1 − x�2
:::

�Xn − x�2



∂2m1�x�
∂x2

and

Q1 =




sT1;X1
Qm1
�X1�

:::

sT1;Xn
Qm1
�Xn�


;

and similarly for Qm2
�z� and Q2. Letting h2

1 ≡ h2
11, we can write

S2m2 =m2 + 1
2Q2 + op�h2

2�
and hence

�I− S ∗1 S ∗2 �−1�I− S ∗1 �m2 =m2 + 1
2�I− S ∗1 S ∗2 �−1S ∗1 Q2 + op�h2

2�:
Similarly,

�I− S ∗1 S ∗2 �−1�I− S ∗1 �m1 = m̄1 − 1
2�I− S ∗1 S ∗2 �−1Q ∗1 + op�h2

1�;

where Q ∗1 = �I − 11T/n�Q1. Plugging these results into expression (6), we
write the bias vector for m̂1 as

E�m̂1 −m1� = 1
2�I− S ∗2 S ∗1 �−1�Q ∗1 − S ∗1 Q2� +Op

(
1√
n

)
+ op�h2

1 + h2
2�:(7)

The bias of m̂2 and m̂ can be computed analogously. Note that the terms m̄1
and m̄2 will cancel in the expectation of m̂, so that the approximation term
Op�1/

√
n� will not appear in that case.

The asymptotic bias in Theorem 2.2 of Ruppert and Wand (1994) can be
rewritten as

sT1; xQm1
�x� = h2

1µ2�K;x�m′′1�x� + op�h2
1�:

By letting M1 = diag�µ2�K;X1�; : : : ; µ2�K;Xn��, we have therefore

Q1 = h2
1M1D

2m1 + op�h2
1�
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and

Q ∗1 = Q1 − µ2�K�h2
1E�m′′1�Xi�� + op�h2

1�:(8)

Because
∫
��µ2�K;x� − µ2�K��m′′1�x��fX�x�dx = Op�h1�;

the matrix of boundary moments M1 is replaced by µ2�K�I in the latter term.
Similar expressions hold for Q2 and Q ∗2 . Next, using the fact that

�N�x�−1�11µ�K;x� + �N�x�−1�12µ1�K;x� = 1;

one can compute

sT1; x M2D
2m2 = µ2�K�E�m′′2�Zi��x� + op�1�

and hence

S1Q2 = µ2�K�h2
2E�m′′2�Zi��X� + op�h2

2�
and

S ∗1 Q2 = S1Q2 − µ2�K�h2
2E�m′′2�Zi�� + op�h2

2�:(9)

Plugging in results (8) and (9), as well as Lemma 3.2 into the bias vector
(7), we obtain

E�m̂1 −m1�

= 1
2
h2

1

(
�I− T ∗12�−1M1D

2m1 − µ2�K�E�m′′1�Xi��
)

− 1
2
h2

2µ2�K�
(
�I− T ∗12�−1E�m′′2�Zi��X� −E�m′′2�Zi��

)

+Op

(
1√
n

)
+ op�h2

1 + h2
2�

= 1
2
h2

1

(
M1D

2m1 + µ2�K���I− T ∗12�−1 − I�D2m1 − µ2�K�E�m′′1�Xi��
)

− 1
2
h2

2µ2�K�
(
�I− T ∗12�−1E�m′′2�Zi��X� −E�m′′2�Zi��

)

+Op

(
1√
n

)
+ op�h2

1 + h2
2�:

The computations for the bias of m̂ are entirely analogous.
With W1 defined as in (2), the variance of m̂1�Xi� is

Var�m̂1�Xi�� = σ2eTi W1WT
1 ei

= σ2{1− 2eTi �I− S ∗1 S ∗2 �−1�I− S ∗1 �ei
+ eTi �I− S ∗1 S ∗2 �−1�I− S ∗1 ��I− S ∗1 �T�I− S ∗1 S ∗2 �−Tei

}
:

(10)
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Similar computations as in the proof of Lemma 3.1 lead to

�S ∗1 �ii =
1
nh1

fX�Xi�−1�N�Xi�−1�11K�0� −
1
n
+ op

(
1
n

)

= 1
nh1

fX�Xi�−1�N�Xi�−1�11K�0� + op
(

1
nh1

)

and show that, when we multiply S ∗1 by a matrix of order O�11T/n�, the
resulting product is o�11T/nh1�.

For the matrix S ∗1 S ∗T1 , note first that

S ∗1 S ∗T1 = S1ST1 − 11T/n+ op�11T/n� = S1ST1 + op
(

11T

nh1

)
:

Letting ≈ denote equality up to order �1+op�1��, the �i; j�th element of S1ST1
is

�S1ST1 �ij ≈
1
n2

n∑
k=1

fX�Xi�−1fX�Xj�−1�N�Xi�−1�11�N�Xj�−1�11

×Kh1
�Xk −Xi�Kh1

�Xk −Xj�

+ 1
n2

n∑
k=1

1
h1
fX�Xi�−1fX�Xj�−1�N�Xi�−1�12�N�Xj�−1�11

×Kh1
�Xk −Xi��Xk −Xi�Kh1

�Xk −Xj�

+ 1
n2

n∑
k=1

1
h1
fX�Xi�−1fX�Xj�−1�N�Xi�−1�11�N�Xj�−1�12

×Kh1
�Xk −Xi�Kh1

�Xk −Xj��Xk −Xj�

+ 1
n2

n∑
k=1

1

h2
1

fX�Xi�−1fX�Xj�−1�N�Xi�−1�12�N�Xj�−1�12

×Kh1
�Xk −Xi��Xk −Xi�Kh1

�Xk −Xj��Xk −Xj�:

When i = j,

�S ∗1 S ∗T1 �ii =
1
nh1

fX�Xi�−1R�K;Xi� + op
(

1
nh1

)
:

Let us write H�u� for the function uK�u�. The elements of S ∗1 S ∗T1 not on the
diagonal are equal to

�S ∗1 S ∗T1 �ij ≈
1
nh1

fX�Xi�−1�N�Xi�−1�11�N�Xj�−1�11K ∗K
(
Xj −Xi

h1

)

+ 1
nh1

fX�Xi�−1�N�Xi�−1�11�N�Xj�−1�12K ∗H
(
Xj −Xi

h1

)
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+ 1
nh1

fX�Xi�−1�N�Xi�−1�12�N�Xj�−1�11H ∗K
(
Xj −Xi

h1

)

+ 1
nh1

fX�Xi�−1�N�Xi�−1�12�N�Xj�−1�12H ∗H
(
Xj −Xi

h1

)
− 1
n
;

so that Op�1/n�
∑n
j=1�S ∗T1 S ∗1 �ij = op�1/nh1�. Plugging these results and

Lemma 3.2 into the terms of (10), we find

Var�m̂1�Xi�� = σ2R�K;Xi�
nh1

fX�Xi�−1 + op
(

1
nh1

)
:

With W as defined in (3), we can write the variance of m̂�Xi;Zi� as

Var�m̂�Xi;Zi�� = σ2eTi WWTei

= σ2{5/n+ 4− 4eTi �I− S ∗1 S ∗2 �−1�I− S ∗1 �ei
− 4eTi �I− S ∗2 S ∗1 �−1�I− S ∗2 �ei
− 2eTi �I− S ∗1 S ∗2 �−1�I− S ∗1 �11T/nei

− 2eTi �I− S ∗2 S ∗1 �−1�I− S ∗2 �11T/nei

+ 2eTi �I− S ∗1 S ∗2 �−1�I− S ∗1 ��I− S ∗2 �T�I− S ∗2 S ∗1 �−Tei

+ eTi �I− S ∗1 S ∗2 �−1�I− S ∗1 ��I− S ∗1 �T�I− S ∗1 S ∗2 �−Tei

+ eTi �I− S ∗2 S ∗1 �−1�I− S ∗2 ��I− S ∗2 �T�I− S ∗2 S ∗1 �−Tei
}
:

(11)

After computations entirely analogous to those in Lemma 3.1, we find that
the �i; j�th element of S ∗1 S ∗T2 is

�S ∗1 S ∗T2 �ij = �T ∗12�ij + o
(

1
n

)
= o

(
1
nh1

)
a.s.;

so that

Var�m̂�Xi;Zi�� = σ2
{
R�K;Xi�
nh1

fX�Xi�−1 + R�K;Zi�
nh2

fZ�Zi�−1
}

+ op
(

1
nh1
+ 1
nh2

)
:

The generalization to arbitrary odd p1; p2 is straightforward. Let Q�p1+1�
1

and Q�p2+1�
2 represent the higher order generalizations corresponding to Q1

and Q2 for the local linear case, and let M1; p1
= diag�µp1+1�K�p1�;X1�; : : : ;

µp1+1�K�p1�;Xn��. To compute the bias of m̂1, we note that (6)–(7) still hold af-
ter replacing the 1

2Q1 and 1
2Q2 by �1/�p1 + 1�!�Q�p1+1�

1 and �1/�p2 + 1�!�Q�p2+1�
1 ,

respectively, and adjusting the orders of the approximations from h2
1 and h2

2 to
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h
p1+1
1 and hp2+1

2 . Equations (8) and (9) can be generalized analogously. There-
fore,

E�m̂1 −m1� =
1

�p1 + 1�!h
p1+1
1

(
M1; p1

Dp1+1m1

+ µp1+1�K�p1����I− T ∗12�−1 − I�Dp1+1m1

− µp1+1�K�p1��E�m
�p1+1�
1 �Xi��

)

− 1
�p2 + 1�!h

p2+1
2 µp2+1�K�p2��

(
�I− T ∗12�−1E�m�p2+1�

2 �Zi��X�

−E�m�p2+1�
2 �Zi��

)

+Op

(
1√
n

)
+ op�hp1+1

1 + hp2+1
2 �:

The bias of m̂ is computed analogously.
For the variance, we note that (10) and (11) still hold. Using approximation

(15), it is easy to compute that

�S ∗1 �ii =
1
nh1

fX�Xi�−1�Np1
�Xi�−1�11K�0� + op

(
1
nh1

)
;

�S ∗1 S ∗T1 �ii =
1
nh1

fX�Xi�−1R�K�p1�;Xi� + op
(

1
nh1

)
;

with all other terms in (10) of order op�1/nh1�, so that

Var�m̂1�Xi�� = σ2R�K�p1�;Xi�
nh1

fX�Xi�−1 + op
(

1
nh1

)
:

A similar derivation leads to the desired expression for Var�m̂�Xi;Zi��. 2

5. Extension to local polynomials of even degree. We now consider
the case when both of the degrees p1 and p2 are even. Let

Cp1
�z� = E�µp1+1�K�p1�;Xi�m

�p1+1�
1 �Xi��z�

and similarly for Cp2
�x�. We define the matrices FX = diag�f′X�X1�/fX�X1�;

: : : ; f′X�Xn�/fX�Xn��, and similarly for FZ. M1; p1
is defined in the proof of

Theorem 4.1, and M2; p2
is the corresponding matrix for the second covariate.

We also replace Assumptions 3 and 4 by the following assumptions.

Assumption 3′. As n → ∞; h1; h2 → ∞ and nh1/ log n;nh2/ log n;
nh1h2/ log�n� → ∞.

Assumption 4′. The �p1+2�th derivative of m1 and the �p2+2�th deriva-
tive of m2 exist and are continuous and bounded.

We only state the asymptotic bias and variance of m̂1�Xi�. The proof of the
following theorem can be found in Opsomer (1995).
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Theorem 5.1. Assume that p1 and p2 are even and that Assumptions 1, 2,
3′ and 4′ hold. For the observation points �Xi;Zi�; i = 1; : : : ; n, the conditional
bias and variance of m̂1�Xi� can be approximated by

E�m̂1�Xi� −m1�Xi��X;Z�

= h
p1+1
1

�p1 + 1�!
(
tTi M1; p1

Dp1+1m1 −E�Cp1
�Zi��

)

+ hp1+2
1

(
µp1+2�K�p1�;Xi�

(
f′X�Xi�
fX�Xi�

m
�p1+1�
1 �Xi�
�p1 + 1�! +

m
�p1+2�
1 �Xi�
�p1 + 2�!

)

+ µp1+2�K�p1���t
T
i − eTi �

(
FX

Dp1+1m1

�p1 + 1�! +
Dp1+2m1

�p1 + 2�!

)

− µp1+2�K�p1��E
(
f′X�Xi�
fX�Xi�

m
�p1+1�
1 �Xi�
�p1 + 1�! +

m
�p1+2�
1 �Xi�
�p1 + 2�!

))

− h
p2+1
2

�p2 + 1�!
(
tTi Cp2

�X� −E�Cp2
�Xi��

)

− hp2+2
2 µp2+2�K�p2��

(
tTi E

(
f′Z�Zi�
fZ�Zi�

m
�p2+1�
2 �Zi�
�p2 + 1�! +

m
�p2+2�
2 �Zi�
�p2 + 2�!

∣∣∣∣X
)

−E
(
f′Z�Zi�
fZ�Zi�

m
�p2+1�
2 �Zi�
�p2 + 1�! +

m
�p2+2�
2 �Zi�
�p2 + 2�!

))

+Op

(
1√
n

)
+ op�hp1+2

1 + hp2+2
2 �

and

Var�m̂1�Xi��X;Z� = σ2R�K�p1��
nh1

fX�Xi�−1 + op
(

1
nh1

)
:

Corollary 5.1. When X and Z are independent, the conditional bias of
m̂1�Xi� in the interior of supp�f� is

E�m̂1�Xi� −m1�Xi��X;Z�

= − h
p1+1
1

�p1 + 1�!E�Cp1
�Zi��

+ hp1+2
1 µp1+2�K�p1��

((
f′X�Xi�
fX�Xi�

m
�p1+1�
1 �Xi�
�p1 + 1�! +

m
�p1+2�
1 �Xi�
�p1 + 2�!

)

−E
(
f′X�Xi�
fX�Xi�

m
�p1+1�
1 �Xi�
�p1 + 1�! +

m
�p1+2�
1 �Xi�
�p1 + 2�!

))

+Op

(
1√
n

)
+ op�hp1+2

1 + hp2+2
2 �:
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Remark 5.1. If Xi is in the interior, the bias of m̂1�Xi� is of order
Op�hp1+2

1 +hp2+2
2 �. To see this, note that µp1+1�K�p1�� = 0 for even p1, so that

tTi M1; p1
Dp1+1m1 = Op�h1� and Cp1

�Zi� = Op�h1� for interior Xi. This order
is the same as that found in Theorem 4.1 of Ruppert and Wand (1994) for
nonadditive local polynomial regression, but the bias in Theorem 5.1 contains
several additional terms. If Xi is on the boundary, tTi M1; p1

Dp1+1m1 is the

leading term, so that the bias is of order Op�hp1+1
1 + hp2+2

2 �. If X and Z are
independent, most of the additional terms disappear, with the exception of
those due to centering, as shown in Corollary 5.1.

APPENDIX A

Proofs of lemmas.

Proof of Lemma 3.1. For simplicity, we prove the result for p1 = p2 = 1,
and then show how it can be extended to arbitrary p1 and p2. We first prove
that the approximations in the lemma hold in probability. Let A ≈ B denote
A = B�1+op�1�� componentwise for any matrices A;B of the same dimension.
Theorem 2.2 of Ruppert and Wand (1994) shows that, for any x,

(
1
n

XT
xWx Xx

)−1

≈ fX�x�−1A−1
1 N�x�−1A−1

1 ;(12)

where A1 = diag�1; h1�. We can therefore write the �i; j�th element of S1 as

�S1�ij ≈
1
n
fX�Xi�−1h−1

1 �N�Xi�−1�11K

(
Xj −Xi

h1

)

+ 1
n
fX�Xi�−1h−1

1 �N�Xi�−1�12K

(
Xj −Xi

h1

)(
Xj −Xi

h1

)
:

Using standard results from density estimation, it is straightforward to com-
pute that

�S ∗1 �ij = �S1�ij −
1
n
+ op

(
1
n

)
:(13)

In the case of S1S2, similar computations show that

�S1S2�ij

≈ 1
n2
fX�Xi�−1�N�Xi�−1�11

n∑
k=1

fZ�Zk�−1�N�Zk�−1�11

×Kh1
�Xk −Xi�Kh2

�Zj −Zk�

+ 1
n2
fX�Xi�−1�N�Xi�−1�11

n∑
k=1

fZ�Zk�−1�N�Zk�−1�12Kh1
�Xk −Xi�

× 1
h2
Kh2
�Zj −Zk��Zj −Zk�
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+ 1
n2
fX�Xi�−1�N�Xi�−1�12

n∑
k=1

fZ�Zk�−1�N�Zk�−1�11
1
h1
Kh1
�Xk −Xi�

× �Xk −Xi�Kh2
�Zj −Zk�

+ 1
n2
fX�Xi�−1�N�Xi�−1�12

n∑
k=1

fZ�Zk�−1�N�Zk�−1�12
1
h1
�Xk −Xi�

× 1
h2
Kh2
�Zj −Zk��Zj −Zk�

= 1
n

f�Xi;Zj�
fX�Xi�fZ�Zj�

+ op
(

1
n

)
:

Using (13) and this result, we immediately find

�S ∗1 S ∗2 �ij = �T ∗12�ij + op
(

1
n

)
:(14)

We now prove that (13) and (14) hold uniformly for all i; j and with op�1�
replaced by o�1�, using the theory from Chapter 2 of Pollard (1984) and two
technical results which are proven in Appendix B. Expression (12) involves
estimates of the moments of K up to order 2. By Assumptions 1 and 2 and
Lemma B.1, the classes of graphs of the translation classes

{
�· − x�tK

( · − x
h1

)
x x ∈ supp�fX�

}
for t = 0;1;2

have polynomial discrimination (see Appendix B for definitions of these terms).
Theorem II.37 of Pollard (1994) therefore guarantees that the approximation
(12) holds uniformly for all x ∈ supp�fX�. For (13), the translation classes are

{
fX�·�−1�N�·�−1�1tK

( · − x
h1

)( · − x
h1

)t−1

x x ∈ supp�fX�
}

for t = 1;2, and the same reasoning as above, combined with the fact that
(12) holds uniformly, can be used to show that the approximation (13) holds
uniformly over all i; j, proving the first part of the lemma.

Similarly, we consider (14). In this case, the translation classes are

{
fZ�· − z��N�·�−1�1uK

( · − z
h2

)( · − z
h2

)u−1

K

( x − x
h1

)( x − x
h1

)t−1}

for t = 1;2, u = 1;2. Since these translation classes are generated by the prod-
uct of functions whose graphs have polynomial discrimination, Lemma 2.25 of
Pollard (1984) and Lemma B.2 ensure that the assumptions of Theorem 2.37
of Pollard (1984) are satisfied. The approximation (14) therefore also holds
uniformly over all i; j, completing the proof for the local linear case.
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The generalization to arbitrary degree local polynomials is straightforward.
The �i; j�th element of S1 is now

�S1�ij ≈
1
n
fX�Xi�−1

p1+1∑
k=1

�Np1
�Xi�−1�1kKh1

�Xj −Xi�
(
Xj −Xi

h1

)k−1

≈ 1
nh1

fX�x�−1K�p1�

(
Xj − x
h1

; x

)
;

(15)

so that again

�S ∗1 �ij = �S1�ij −
1
n
+ op

(
1
n

)
;

since µ�K�p�; x� = 1 for any x. As before, we can show that the classes of
graphs

�K�p1�

( · − x
h1

)
x x ∈ supp�fX��

have polynomial discrimination for any p1 using Pollard (1984) and the results
in Appendix B, so that this approximation also holds uniformly over all i; j.
The reasoning for S ∗1 S ∗2 is completely analogous. 2

Proof of Lemma 3.2. For any matrix A, write ρ�A� for the spectral radius
of A. Because of Assumption 2, we know that ρ�T ∗12� ≤ �T ∗12�r < 1 so that
�I− T ∗12� is invertible. By Lemma 3.1, it immediately follows that

P�∃ Nx ρ�S ∗1 S ∗2 � < 1 if n ≥N� = 1;

establishing the first part of the lemma.
Assume now that �I − S ∗1 S ∗2 �−1 exists. If we can show that o�11T/n��I −

T ∗12�−1 = o�11T/n�, then

�I− S ∗1 S ∗2 �−1 = �I− T ∗12�−1 + o�11T/n� a.s.

by the formula for the inverse of a sum of matrices [Horn and Johnson (1985),
page 19]. Since ρ�T ∗12� < 1, we can write

�I− T ∗12�−1 = I+
∞∑
p=1

T ∗
p

12 :

Using Assumption 2 again, it is easy to show by induction that, for all p,
maxi; j ��T∗

p

12 �ij� ≤ �1− ε�p/n for some ε > 0. Hence,

max
i; j

∣∣�I− T ∗12�−1 − I
∣∣ ≤ K

n

for all n and o�11T/n��I− T ∗12�−1 = o�11T/n� as desired. 2
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APPENDIX B

Results from empirical process theory. We briefly state some of the
definitions used in Pollard (1984). For a probability measure Q on S, a class of
functions F and ε > 0, define the covering number N�ε;Q;F � as the smallest
value of m for which there exist functions g1; : : : ; gm (not necessarily in F )
such that minjP�f − gj� ≤ ε for each f in F . The graph of a real-valued
function f on a set S, written gr�f�, is defined as the subset

gr�f� = ��s; t�x 0 ≤ t ≤ f�s� or f�s� ≤ t < 0�

of S×R. A class D of subsets of some space H has polynomial discrimination
if there exists a polynomial ρ�·� such that, from every set of N points in H,
the class picks out at most ρ�N� distinct subsets.

We define a translation class of functions on g as the class �g�· − x�� for
any function g on a set S ⊆ R. It will be convenient to set g�t� = 0 for
t 6∈ S, so that the domain of g�t− x� does not depend on x. The set of graphs
generated by the translation class on g will be written as Gg. We also define a
monotonicity change for a function g as (1) any point t0 for which g�t� changes
from monotone increasing to monotone decreasing (or vice versa) in an interval
�t0 − ε; t0 + ε� for some ε > 0, and (2) any set of points �t1; t2�, t1 6= t2, for
which g�t� = c for all t ∈ �t1; t2� for some c and g�t� changes from monotone
increasing to monotone decreasing (or vice versa) in an interval �t1−ε; t2+ε�
for some ε > 0. We prove two lemmas.

Lemma B.1. (i) Suppose that the function g�u� on S ⊆ R has a finite num-
ber of monotonicity changes. Then the set of graphs Gg has polynomial dis-
crimination in S× R.

(ii) If the function h�u� has the same properties as g, then the following sets
also have polynomial discrimination in S× Rx Ggh generated by the functions
�g�· − x�h�·�� and G ′gh generated by �g�· − x�h�· − x��.

Proof. Let us first look at the simplest possible case, where g does not
change sign and has no monotonicity changes. We assume, without loss of gen-
erality, that g≥0 and is increasing. From a set containing only two points, Gg

can never pick out both singletons, since, for any x1<x2, we have g�s−x1�≥
g�s − x2� for all s, so that gr�g�· − x2�� ⊆ gr�g�· − x1��. By Lemma 2.17 of
Pollard (1984), Gg therefore has linear discrimination.

Suppose now that g is monotone. We can write

g = g+ + g− ≡ gI�g>0� + gI�g≤o�
so that

gr�g�· − x�� = gr�g+�· − x�� ∪ gr�g−�· − x��:

By Lemma 2.15 of Pollard (1984), we conclude that Gg is also a polynomial
class in this case.
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Next, suppose that g has no sign changes but has exactly one monotonicity
change. Without loss of generality, let g ≥ 0. If the monotonicity changes
from decreasing to increasing, then the graphs of g can be written as the
union of graphs of two monotone functions. If the change is from increasing
to decreasing, we can write it as the intersection of two graphs of monotone
functions. Hence, Lemma 2.15 of Pollard (1984) can also be applied in this
case.

Finally, consider any function g with a finite number of monotonicity
changes. Begin by writing it as the sum of a positive and a nonnegative
function, say g+ and g−. The graphs of each of these can be written as the
finite union of graphs of functions with one monotonicity change as well as at
most two graphs of monotone functions. Hence, for g+,

gr�g+�· − x�� =
M+⋃
i=1

�gr�g+i1�· − x�� ∩ gr�g+i2�· − x���;

where some of the sets gr�g+ij�· − x�� can be empty sets for i = 1 and i =M+.
A similar expression holds for g−. Using Lemma 2.15 of Pollard (1984) again
proves result (i).

Result (ii) follows immediately from the fact that if the derivative of a func-
tion g has a finite number of sign changes, then so does the function itself. 2

Lemma B.2. Let G , R represent two classes of bounded, real-valued func-
tions on S and T, respectively. Suppose there exists constant Ag;Ar;wg;wr >
0 and the covering numbers of G , R satisfy

N�ε;P;G � ≤ Agε
−wg for 0 < ε < 1;

N�ε;P;R� ≤ Arε
−wr for 0 < ε < 1

for any probability measure P. Let f�u; t� = g�u�r�t�, the product function on
S×T. The covering numbers of the class F = �fx f = g × r; g ∈ G ; r ∈ R�
satisfy

N�ε;P;F � ≤ Afε
−wf for 0 < ε < 1

for some Af;wf.

Proof. Let G represent a function for which �g� ≤ G for all g ∈ G , and R
a similar function for R. Let Mg = max �G�;Mr = max �R�. We need to find
how many functions fi are required for each ε > 0, so that

min
fi
P�f− fi� < ε

for all f, or, equivalently, how many pairs of functions �gk; rl� are required,
so that

min
�gk; rl�

P�g × r− gk × rl� < ε
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for all �g; r�. Since

P�g × r− gk × rl� ≤MrP�g − gk� +MgP�r− rl�;
if we require that

min
gk

P�g − gk� <
ε

2Mr

;

min
rl
P�r− rl� <

ε

2Mg

;

the number of functions gk, rl required to achieve this are Ag�ε/2Mr�−wg and
Ar�ε/2Mg�−wr , respectively. Hence,

N�ε;P;F � ≤ Afε
−wf;

with Af = AgAr�2Mr�wg�2Mg�wr and wf = wg +wr. 2
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