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MARKOV CHAINS FOR MONTE CARLO TESTS OF
GENETIC EQUILIBRIUM IN MULTIDIMENSIONAL

CONTINGENCY TABLES

BY LAURA C. LAZZERONI1 AND KENNETH LANGE2

Stanford University and University of Michigan

Hardy]Weinberg equilibrium and linkage equilibrium are fundamen-
tal concepts in population genetics. In practice, testing linkage equilib-
rium in haplotype data is equivalent to testing independence in a large,
sparse, multidimensional contingency table. Testing Hardy]Weinberg and
linkage equilibrium simultaneously on multilocus genotype data intro-
duces the additional complications of missing information and symmetry
constraints on marginal probabilities. To avoid unreliable large-sample
approximations for sparse contingency tables, one can use exact tests like
Fisher’s classical test that condition on observed marginal totals. Unfortu-
nately, computing p-values for exact tests is often infeasible because of
the large number of tables consistent with the marginal totals of an
observed table. We develop here Markov chains for sampling from the
appropriate conditional distributions for testing genetic equilibrium. These
chains compare favorably with a parallel, independent-sampling method
that we present. For n haplotype observations on J loci, the Markov

wŽ . xchains converge to their stationary distributions in J y 1 n ln n r2 q
Ž .O n steps and can be an efficient tool for estimating p-values. Our

theoretical treatment of these results involves strong stationary stopping
times, order statistics, large deviations and the embedding of Poisson
processes. We include some general results on the application of strong
stationary times to bounding the precision and bias of sample average
estimators.

1. Introduction. The concepts of Hardy]Weinberg equilibrium and
w Ž .xlinkage equilibrium are central in population genetics theory Crow 1988 .

These independence assumptions for genotype and haplotype frequencies
simplify analyses such as gene mapping calculations, forensic applications of

w Ž .xDNA fingerprinting and genetic counselling Weir 1990 . Such analyses
routinely incorporate the product rules for genotype and haplotype frequen-
cies implied by genetic equilibrium. Fortunately, the allele frequencies re-
quired for these calculations can be estimated more easily and precisely than
either genotype or haplotype frequencies. Despite these simplifications, ge-
netic disequilibrium also has its uses. For instance, it can point to the
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association of particular alleles with an increased risk of disease, reveal
wpopulation substructure or serve as a guide in positional cloning Weir

Ž .x1990 . Thus, tests of genetic equilibrium are of fundamental importance in
population genetics.

Methods for testing genetic equilibrium have the added bonus of extending
to contingency tables in other application areas. When haplotype information
is available, testing linkage equilibrium is equivalent to testing independence
in a J-way contingency table. When haplotype information is missing,
Hardy]Weinberg and linkage equilibrium can be tested simultaneously. The
observed genotype structure then imposes special symmetry constraints on
the marginal probabilities of the underlying contingency table. In either
genetic setting, the contingency tables encountered in practice tend to be
large and sparse. Because expected cell counts are low and many nuisance
parameters must be estimated for such tables, p-values of tests based on

wtraditional large-sample approximations can be unreliable Elston and
Ž . Ž . Ž .xForthofer 1977 , Emigh 1980 , Agresi 1992 .

In theory, exact tests can be constructed by conditioning inference upon
w Ž . Ž . Ž .xmarginal counts Haldane 1954 , Louis and Dempster 1987 , Agresi 1992 .

Although this strategy eliminates nuisance parameters, it may fail because of
the difficulty in evaluating conditional likelihoods determined by large num-
bers of cells subject to complicated marginal constraints. A useful alternative
to deterministic computation is to use Monte Carlo methods to sample from

w Ž .xthe conditional distribution Verbeek and Kroonenberg 1985 . When the
number of genes represented in the sample is large, independent Monte Carlo

wsampling for tests of genetic equilibrium is cumbersome Guo and Thompson
Ž .x1992 . It may then be more efficient to use dependent samples generated by

Ž .a Markov chain. Guo and Thompson 1992 suggest a Metropolis algorithm
for generating samples suitable for testing Hardy]Weinberg equilibrium at a

Ž .single locus. Diaconis and Sturmfels 1996 discuss a general method for
constructing Markov chains on contingency tables. Finally, Kolassa and

Ž .Tanner 1994 use the Gibbs sampler to sample from an approximation to the
conditional distribution.

This paper develops Markov chains for estimating p-values of exact tests
for Hardy]Weinberg and linkage equilibrium in multilocus data. Each Markov
chain is designed so that its stationary distribution coincides with the null
sampling distribution of the corresponding multidimensional contingency
table conditioned on its margins. One advantage of our approach is that
explicit bounds can be constructed for the variation distance of the chains
from stationarity. Our analysis shows that the chains converge rapidly to
their stationary distributions and require little work per step to execute.
Rapid convergence is necessary for the chains to be competitive with a
parallel, independent-sampling method that we also describe. The more
quickly a Markov chain circulates through its state space, the lower the
correlation of its sampled states and the smaller the number of required steps
to achieve the same statistical precision attainable under independent

w Ž .xsampling Hastings 1970 .
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Section 2 reviews some genetics terminology and introduces the concepts of
Hardy]Weinberg and linkage equilibrium. Section 3 presents the general
form of the data and the distributions to be used for conditional inference.
Our description of the multilocus genotype distribution and its moments is
new. In Section 4, we introduce two Markov chains for sampling from the
conditional haplotype and genotype distributions and describe a related
independent-sampling method. By embedding these Markov chains in a
simpler uniform chain, in Section 5, we are able to deduce that the embedded
chains have the correct stationary distributions for testing genetic equilib-
rium. In Section 6, we review how the tail probability of a strong stationary
stopping time can be used to bound the variation distance of a Markov chain
from stationarity. We present some new general results relating stationary
times to the precision and bias of sample average estimators derived from
running a chain.

In Section 7, we define for the uniform chain a strong stationary stopping
Ž .time based on Matthews’s 1988 strong uniform time for a sequence of

random transpositions. In computing the expected value of the stopping time
and bounding its tail probability, we encounter some interesting mathematics
involving order statistics, embedding in Poisson processes and large-deviation
estimates for sums of independent geometric random variables. Our analysis

wŽdemonstrates that the haplotype chain reaches stationarity in J y
. x Ž .1 n ln n r2 q O n steps, where n is the sample size and J is the number of

loci or factors. In contrast, we show that the genotype chain reaches station-
Ž .arity in Jn ln n q O n steps. Section 8 discusses a practical application to

real data. Our timed comparisons suggest that the Markov chain methods
can be substantially more efficient than independent sampling.

2. Genetics background. Genes occur at sites, called loci, arranged
sequentially along chromosomes. The variants of a gene at a locus are called
alleles. It is helpful to think of loci as analogous to the factors of a contin-
gency table and alleles at each locus as analogous to the levels of that factor.

Ž .For j s 1, . . . , J and k s 1, . . . , K j , we will write a for allele k at locus jjk
Žand p for the relative frequency of allele a in the population. Note thatjk jk

subsequently we use ‘‘frequency’’ as shorthand for ‘‘relative frequency’’ or
.‘‘proportion.’’ The autosomes, which include all chromosomes except the X

and Y sex chromosomes, occur in homologous pairs. Thus, an individual’s
genotype at autosomal locus j consists of a pair of alleles a and a and isjk jk 9

written as a ra with k F k9. Alleles a and a are codominant ifjk jk 9 jk jk 9

individuals with the three genotypes a ra , a ra and a ra can bejk jk jk jk 9 jk 9 jk 9

unambiguously distinguished. The first and last of these genotypes are
homozygous, consisting of two copies of one allele; the middle genotype is
heterozygous, consisting of one copy each of two alleles. We will confine our
attention to autosomal loci with codominant alleles. When necessary, the
terms ‘‘single-locus genotype’’ and ‘‘multilocus genotype’’ will be used to
distinguish between genotypes at a single locus or at a set of loci, respec-
tively. A haplotype consists of the alleles at a set of loci transmitted to a child
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by one of his parents. Each individual naturally inherits one maternal and
one paternal haplotype. It is convenient, for our purposes, to assume that the
genes defining a haplotype reside at the ordered loci 1, . . . , J on a single
chromosome. This suggests the notation a a ??? a for a haplotype1k Ž1. 2 k Ž2. J k Ž J .
with allele a at each locus j.jk Ž j.

A population is said to be in Hardy]Weinberg equilibrium with respect
to locus j when the genotypes at that locus have population frequencies
satisfying

2 p p , for all k - k9,jk jk 9

Pr a ra sŽ .jk jk 9 2½ p , for all k s k9.Ž .jk

Under Hardy]Weinberg equilibrium, the two alleles transmitted to a ran-
dom, noninbred person by his mother and father are independent and identi-

w Ž .xcally distributed Cavalli-Sforza and Bodmer 1971 . Inbreeding occurs when
the parents are related. We further define Hardy]Weinberg equilibrium with
respect to a set of loci to mean that the two haplotypes transmitted to a
random, noninbred person by his mother and father are independent and
identically distributed. Linkage equilibrium is in effect for a set of loci
when haplotypes for those loci have population frequencies satisfying the
independence rule

J

Pr a a ??? a s p .Ž . Ł1k Ž1. 2 k Ž2. J k Ž J . jk Ž j.
js1

The Hardy]Weinberg proportions often give a good description of observed
genotype frequencies. In an infinitely large, randomly mating population,
genotype frequencies reach Hardy]Weinberg equilibrium at an autosomal
locus in a single generation. This mathematical result presupposes no selec-
tion, mutation or migration and identical initial allele frequencies in the two

w Ž .xsexes Cavalli-Sforza and Bodmer 1971 . A population will also eventually
reach linkage equilibrium under the same circumstances. However, this will
take much longer than a single generation if the loci of the haplotype are

w Ž .xclosely spaced along a chromosome Lange 1993 . For this reason, violations
of linkage equilibrium are more common than violations of Hardy]Weinberg
equilibrium.

3. Distributions. For testing Hardy]Weinberg and linkage equilibrium,
we will consider two types of data that can be obtained from a simple random
sample of a population. The observations will consist either of haplotypes or
of multilocus genotypes. We will use i to describe a particular arrangement of
alleles comprising a distinct haplotype or multilocus genotype. Each arrange-
ment i corresponds to a unique cell in a contingency table. If ni denotes the
number of observations of haplotype i for haplotype data or of multilocus
genotype i for genotype data, then n s Ý ni is the total number of observa-i
tions. Let r i be the number of copies of allele k at locus j appearing in typejk
i. For haplotype data, r i s 1 or 0, depending on whether i possesses allele kjk
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at locus j or not. For genotype data, r i s 2 if i is homozygous for allele k atjk
locus j; r i s 1 if i is heterozygous with one copy of allele k at locus j; andjk
r i s 0 if i does not possess allele k at locus j. Clearly, n s Ý r i ni is thejk jk i jk
total number of copies of allele k at locus j in the sample. Finally, for
genotype data, if we let hi be the number of heterozygous loci in type i, then
n s Ý hini is the total number of heterozygous single-locus genotypesh i
observed in the data.

Haplotype data used for testing linkage equilibrium of J loci form a
standard J-way contingency table. When the conditions for genetic equilib-
rium noted above are met, the n haplotypes from a random sample of nr2
unrelated, noninbred individuals are independent. Given the genotype of an
individual, his two haplotypes can sometimes be inferred from available

w Ž .xfamily data Goradia, Lange, Miller and Nadkarni 1992 . For instance, if he
has genotype a ra at locus 1 and his mother has genotype a ra , then11 12 11 11
he must have inherited allele a from his mother and allele a from his11 12
father. However, ambiguity can arise even when data is available on both
parents. If the child and his parents all share the common genotype a ra ,11 12
then additional information from other loci and other family members is

wneeded to determine which allele came from which parent Goradia, Lange,
Ž .xMiller and Nadkarni 1992 . Sperm-typing can also be used to identify

w Ž .xhaplotypes in males Lazzeroni, Arnheim, Schmitt and Lange 1994 .
Under linkage equilibrium, the probability of haplotype i is

r ii jkp s p ,Ž .Ł Ł jk
j k

� i4and the cell counts n follow a multinomial distribution with parameters
Ž � i4. � 4n, p . The marginal allele totals n at any locus j likewise follow ajk

Ž � 4.multinomial distribution with parameters n, p . These marginal totalsjk
are independent from locus to locus. Conditional on the observed allele totals,
the distribution of the cell counts is

inn ir jkŁ Ł Ł pŽ .i i j k jkž /� 4n
i <� 4 � 4Pr n n sŽ .jk n n jkŁ Ł pŽ .j k jk� 4nž /jk

n
iž /� 4n

s
n

Ł j � 4nž /jk

1Ž .

and does not depend on the unknown population allele frequencies. Lange
Ž .1993 demonstrates how to compute the moments of this generalization of
the multivariate hypergeometric or Fisher]Yates distribution.

When the data consists of multilocus genotypes and information on sur-
rounding family members is absent, the maternal or paternal origins of an
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individual’s alleles at heterozygous loci cannot be identified, and it is impossi-
ble to determine the underlying haplotypes. The resulting collapsing of
genotype counts can best be illustrated in the single-locus setting. The
complete data for a single locus could be arranged, if it were available, to
form a square contingency table with columns and rows labeled, respectively,
by the alleles transmitted by the mothers and the alleles transmitted by the
fathers. If, as is ordinarily assumed, the two sexes have equal allele frequen-
cies, the marginal probabilities of row j and column j would be the same. In
contrast the observed genotype data are not ordered by parent and form an
upper triangular table derived from the complete table by folding it along its
main diagonal. Each off-diagonal count in this new table is the sum of two
off-diagonal counts in the complete table.

Given Hardy]Weinberg and linkage equilibrium at a set of loci, the
probability of multilocus genotype i is

i r ii h jk2 p s 2 p .Ž . Ž .Ł Ł jk
j k

Ž .The multilocus genotype probability 2 incorporates a factor of 2 for each
heterozygous single-locus genotype encountered. Consistent with indepen-
dence, pi reduces to the product of the probabilities of the constituent single-
locus genotypes. As before, allele totals at the various loci follow independent
multinomial distributions. Conditional upon these observed allele totals, the
distribution for the multilocus genotypes of a random sample from a popula-
tion in genetic equilibrium is

inn ii rh jkŁ 2 Ł Ł pŽ .i i j k jkž /� 4n
i <� 4 � 4Pr n n sŽ .jk 2n n jkŁ Ł pŽ .j k jk� 4nž /jk

n nh2iž /� 4n
s .

2n
Ł j � 4nž /jk

3Ž .

Ž .This generalizes the single-locus distribution first described by Levene 1949 .
It is noteworthy that allele frequencies again disappear in the conditional
distribution.

Ž .To compute moments under the distribution 3 , let

mu s u u y 1 ??? u y m q 1Ž . Ž .

� i4be a falling factorial, and let m be a collection of nonnegative integers
indexed by the genotypes i. Setting m s Ý mi, m s Ý r i mi and m si jk i jk h
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i i � i4 � i4Ý h m , the falling factorial moment of the n corresponding to the m cani
be found by the computation

imiE nŽ .Ł
i

n! Ł Ł n !i j k jkmi nhs n 2Ž .Ý Ł i JŁ n ! 2n !i Ž .iV

mm mjk hn Ł Ł n 2 n y m ! Ł Ł n y m !Ž . Ž . Ž .j k jk j k jk jk n ymh hs 2ÝJ Ji i2 m Ł n y m !Ž . 2n y 2m !Ž .iV*2nŽ .

4Ž .

mm mjk hn Ł Ł n 2Ž .j k jks ,J2 m2nŽ .
where V is the sample space and V* is that subspace of V with ni G mi for

i m iŽ . Ž .all i. Equation 4 follows since Ł n ' 0 on the complement of V*, andi
the summation over V* involves all probabilities of the multilocus genotype

� 4distribution with marginal allele counts n y m .jk jk
It is interesting that expected genotype counts under the conditional

distribution differ from those estimated under the multinomial distribution
� 4using the standard maximum likelihood estimates n r2n of the allelejk

frequencies. For a single locus, we can drop locus subscripts and compute

¡ n n y 1Ž .k k
n , k9 s k ,

2n 2n y 1Ž .a r a ~k k 9E n sŽ . n nk k 9
2n , k9 / k .¢ 2n 2n y 1Ž .

Thus, fewer homozygotes and more heterozygotes are expected under the
conditional distribution than under the estimated multinomial distribution.
In contrast, the conditional expected haplotype counts agree with the esti-
mates obtained from the multinomial distribution.

4. Markov chains for sampling. To estimate the p-value of an exact
hypothesis test in this setting, one can run a Markov chain whose limiting
distribution coincides with the conditional null distribution of the cell counts.
The estimated p-value is simply the proportion of states encountered by the
chain for which the value of the test statistic exceeds or matches its observed

Ž .value. Following Besag and Clifford 1989 , the same transition matrix can be
used to construct an alternative Markov chain whose states under the null
hypothesis are exchangeable with the observed table. This yields an exact

Ž .p-value that is analogous to that proposed by Barnard 1963 for Monte Carlo
tests based on an independent sample. In the sequel we adopt the first
approach. However, the second implementation, while not equivalent to the
first, is equally viable.
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The states of our chains are tables of cell counts consistent with the
observed marginal allele totals. For the haplotype chain, we consider the

Ž .following transition mechanism. At each step, one of the loci or factors
� 4 Ž .j g 1, . . . , J y 1 is selected with probability 1r J y 1 . Two parents are

then selected randomly with replacement from the n chromosomes in the
current table. One child is created from the first parent’s genes at all loci
j9 / j and from the second parent’s gene at locus j. The second child receives
the remaining gene at each locus. The parents are then replaced by their
children, and the cell counts corresponding to the parent and child haplotypes
are updated accordingly. All other cell counts are unchanged. In effect, the

Ž .alleles or levels assigned to the two parents have been exchanged at
the selected locus. If at a given step the same parent is selected twice, the
Markov chain remains in place.

We can visualize the haplotype chain by arranging the n initial chromo-
somes in the data to form the rows of an n = J rectangular tableau, not to be
confused with the table of cell counts of the chain. Thus, the allele at locus j
of chromosome i appears in column j of row i of the tableau. The transition
mechanism of the haplotype chain can be rephrased by selecting a column
Ž .locus at random from the first J y 1 columns of the tableau. The last

Žcolumn is left intact. After a column has been selected, two rows chro-
.mosomes are selected at random with replacement. Then the corresponding

two alleles in the selected column are exchanged. If the same row is selected
twice, this exchange leaves the tableau unchanged. To each rearrangement of
the tableau, there corresponds a contingency table with the appropriate
marginal counts. This table is created by counting for each of its cells the
number of rows in the tableau with the appropriate haplotype.

In contrast, at each step of the genotype chain, one of the loci j in
� 41, . . . , J is selected with probability 1rJ. Two parents are selected randomly
with replacement from the n individuals in the current table. If the parents
are distinct, then one gene is randomly extracted from the genotype at locus j
of each parent. At each locus except j, the first child receives the genotype of
the first parent, and the second child receives the genotype of the second
parent. At locus j, the two selected genes are exchanged so that the first child
receives the unselected gene of the first parent and the selected gene of the
second parent. The second child receives the remaining two genes at locus j.
The parents are replaced by their children and the corresponding cell counts
updated. For example, at a single locus, two parents of genotype a ra canjk jk 9

be removed and replaced by one child each of genotypes a ra and a ra .jk jk jk 9 jk 9

The count corresponding to the common parental genotype is decremented by
2 and both child genotypes counts are incremented by 1. If at a given step the
same parent is selected twice, there is again no movement of the chain.

The genotype chain can be described in terms of a tableau with 2n rows
and J columns created two adjacent rows at a time by laying down succes-
sively a pair of chromosomes for each of the n people of the genotype chain.
The transition mechanism of the genotype chain is almost identical to the
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transition mechanism of the haplotype chain. The only differences now are
that the number of rows is doubled and that sampling from column J is
permitted. The last column is included as a choice because rows are paired,
and alleles originally paired at the last locus must be scrambled. When
double sampling of a person occurs, the underlying exchange within the two
rows produces no detectable change at the genotype level. For each arrange-
ment of the tableau, the corresponding contingency table is constructed by
taking each pair of rows, reading off a multilocus genotype and then counting
the multilocus genotypes of the various kinds.

The haplotype and genotype chains can be contrasted with Markov chains
Ž .proposed for single-locus genotype data by Guo and Thompson 1992 and for

Ž .standard contingency tables by Diaconis and Sturmfels 1996 . At any given
step of these chains, cells are selected to participate in a transition with equal
probability. As a consequence, these chains have a uniform limiting distribu-
tion on the set of tables consistent with the marginal totals. Other limiting
distributions can be obtained by adding a Metropolis decision rule that
accepts only some of the proposed transitions. In computer implementation of
these chains, operations are defined in terms of the cells of the table, and
memory requirements depend on the number of cells. In the haplotype and
genotype chains used in this paper, cells are selected with probabilities
proportional to the current cell counts. As we will show, the limiting distribu-

Ž . Ž .tions are given by the Fisher]Yates distributions 1 and 3 , respectively.
Operations are defined in terms of the observations, and memory require-
ments depend on the sample size. This is advantageous for sparse tables.

The tableau formulation of the haplotype and genotype chains can also be
used in an obvious way to generate independent Monte Carlo samples from

Ž . Ž .either distribution 1 or 3 . For haplotypes, the n genes at each locus can be
w Ž .xrandomly permuted using a standard method Nijenhuis and Wilf 1978

carried out independently at each of the first J y 1 loci. This requires
Ž .Ž .J y 1 n y 1 random choices to generate an independent tableau. For
genotypes, the 2n genes at each of the J loci must be randomly and

Ž .independently permuted, requiring J 2n y 1 random choices per inde-
pendent tableau. Given the properties of the embedding map described in
Section 5, these independently sampled tableaus generate independently
sampled contingency tables with the correct distributions. This procedure

Ž .extends the technique described by Boyett 1979 for two-way tables and by
Ž .Guo and Thompson 1992 for single-locus genotypes.

5. Embedding of Markov chains. The limiting distributions of the
haplotype and genotype chains are appropriate for permutation tests of
genetic equilibrium. In this section, we show that these limiting distributions
are the same as the null sampling distributions of the cell counts conditional
on the marginal allele totals described in Section 3. Our arguments will make
it clear that the independent Monte Carlo algorithms also correctly sample
these null distributions.
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To demonstrate that the haplotype and genotype chains have the limiting
Ž . Ž .Fisher]Yates distributions 1 and 3 , respectively, it suffices to show

that each chain is irreducible, aperiodic and satisfies the detailed balance
condition

m q s m qu uv v vu

w Ž .xfor all states u and v Kelly 1979 . Here m is the required stationary
distribution and q is the transition probability from u to v. We will addressuv
these issues indirectly by embedding each chain in a ‘‘uniform’’ chain having
the uniform distribution as its unique stationary distribution. Both the
haplotype and genotype chains will be embedded in such a way that their
stationary distributions can be obtained by simple counting arguments.

One Markov chain can be embedded in another by constructing a map
f : C ª C9 from the state space C of the original chain onto the state space C9
of the embedded chain. This map partitions the states C into equivalence

Ž . Ž . Ž .classes under the equivalence relation x ; y when f x s f y . If R s ruv
denotes the matrix of transition probabilities of the original chain, then it is
natural to define the transition probabilities of the embedded chain by

q s r .Ýf Žu. f Žv . uw
w;v

For the embedding to be probabilistically consistent, it is necessary that

5 r s rŽ . Ý Ýuw x w
w;v w;v

for all x ; u. A distribution n on the original chain induces a distribution m
on the embedded chain according to

6 m s n .Ž . Ýf Žu. w
w;u

Mindful of these conventions, we have the following general results.

PROPOSITION 1. The embedded Markov chain is irreducible if the original
Markov chain is irreducible and aperiodic if the original chain is aperiodic. If
the original chain is reversible with stationary distribution n , then the
embedded chain is reversible with induced stationary distribution m given

Ž .by 6 .

PROOF. To verify irreducibility, note that if an s-step transition probabil-
ity satisfies r Ž s. ) 0 in the original chain, then qŽ s. ) 0 in the embeddeduv f Žu. f Žv .
chain as well. Aperiodicity follows by the same argument since if the greatest

� Ž s. 4common divisor of the set s: r ) 0 is 1, then the greatest common divisoruu
� Ž s. 4of the set s: q ) 0 is also 1. Finally, if n satisfies detailed balance,f Žu. f Žu.
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then the computation

m q s n qÝ Ýf Žu. f Žu. f Žv . w u xž / ž /
w;u x;v

s n qÝ Ýw w x
w;u x;v

s n qÝ Ý x x w
w;u x;v

s n qÝ Ýx x w
x;v w;u

s m qf Žv . f Žv . f Žu.

shows that m also satisfies detailed balance. I

Corresponding to the haplotype chain, we can define a uniform chain by
pretending that a distinct label is attached to each of the Jn genes of the
chain. This change makes all existing chromosomes unique and forces all cell
counts of the haplotype table to equal either 0 or 1. Under the conditional

� i4haplotype distribution, it follows that each state n of the uniform chain has
the same probability

n
iž /� 4n 1yJs n! .Ž .
n

Ł j � 4nž /jk

In the tableau formulation of the uniform chain, each transition involves a
random transposition of two of the n distinct genes within one of the first
J y 1 columns. Verification of irreducibility, aperiodicity and reversibility is
trivial for the uniform chain. Irreducibility follows because it is possible to
achieve any combination of permutations of the genes within the first J y 1
columns of the tableau by an appropriate sequence of exchanges. Aperiodicity
follows because the chain remains in place whenever the same row is selected
twice for an exchange. Finally, the uniform chain satisfies detailed balance
for the uniform distribution because the transition probabilities r s r areuv vu
symmetric. This follows because whenever two parental chromosomes have
been mated and replaced, then mating the resulting child chromosome at the
same locus restores the chain to its previous state.

For the haplotype chain, the initial row position of a gene in the tableau
constitutes the unique label that follows the gene as it is transferred from one
row to another while remaining within the same column. The embedding map
f aggregates and counts chromosomes sharing common haplotypes based on
the allele types, not the unique labels. To check that the haplotype chain is
consistently embedded in the uniform chain, suppose that x ; u in the
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uniform chain. Because an outcome in the haplotype chain corresponding to a
transition in the uniform chain is completely determined by the selected locus
and the haplotypes of the selected pair of parental chromosomes, the number

� i4of such parental pairs in the uniform chain leading to a set of counts n is
the same whether we start from state x or state u. Thus, the consistency

Ž .condition 5 holds.
The counting argument for recovering the stationary distribution of the

haplotype chain from the stationary distribution of the uniform chain is
� i4equally straightforward. Consider a set of counts n in the haplotype chain.

nŽ .These haplotypes can be assigned to rows in the uniform tableau in i� 4n

ways. Within each such assignment, there are Ł J Ł n ! permutations ofjs1 k jk
the genes of the various allele types among the available positions for each
allele type. Because we consider only those arrangements satisfying the fixed
arrangement of genes at locus J, there are a total of

n JŁ Ł n !i js1 k jkž /� 4n

n!

� i4states of the uniform chain corresponding to the state n of the haplotype
chain. Thus, we recover the conditional haplotype distribution

n nJŁ Ł n !i ijs1 k jkž / ž /� 4 � 4n n
im s s .�n 4 Jy1 nn! n!Ž . JŁ js1 � 4nž /jk

The genotype chain can be embedded similarly in a uniform chain in which
the initial row number of a gene again acts as a label that follows the gene as
it is transferred from row to row. Each transition consists of the random
transposition of two of the 2n genes within one of the J columns. Now the
embedding map f aggregates and counts individuals sharing common geno-
types based on allele types rather than unique labels. A consistent embedding
is achieved because two equivalent states in the uniform chain always involve
the same number of potential selections leading to a given set of genotype
counts. To recover the stationary distribution of the genotype chain, consider

� i4a typical set of genotype counts n . These genotypes can be assigned to pairs
nŽ .of rows in the uniform tableau in ways. Given the genotype assigned toi� 4n

a pair of rows, the two alleles at each heterozygous locus can be assigned to
the two available rows in two ways. Homozygous loci entail no such choice. If
there are n heterozygotes among the n original genotypes, then there areh

n nhŽ .2 ways of assigning the 2n rows in the tableau. Finally, within eachi� 4n

such assignment, there are Ł J Ł n ! permutations of the genes of thejs1 k jk
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various types among the available positions for each allele type. It follows
that the stationary distribution is correctly given by

n n Jh2 Ł Ł n !i js1 k jkž /� 4n
im s�n 4 J2n !Ž .

n nh2iž /� 4n
s .

2n
JŁ js1 � 4nž /jk

6. Convergence rates and stationary times. We now estimate how
fast the haplotype and genotype chains approach their stationary distribu-
tions from any arbitrary state using a strong stationary stopping time. Let ms

be the distribution of either the embedded haplotype or genotype chain at
step s, and let m be its stationary distribution. Define n s and n similarly for
the corresponding uniform chain. One way of quantifying convergence of the
embedded chain is to use the variation distance between ms and m. This is
defined by any of three equivalent expressions

1s s5 5 < <m y m s m w y m wŽ . Ž .Ý2
w

1 ss sup g w dm w y g w dm wŽ . Ž . Ž . Ž .H H2
5 5g s1

7Ž .

ss sup m D y m D ,Ž . Ž .
D

Ž .where w is any state of the chain, g w is any real-valued function satisfying
5 5 < Ž . <the stated equality, g is the supremum of g w over all w and D is any

w Ž .xsubset of states Aldous and Diaconis 1986 . We define the variation dis-
5 s 5tance n y n of the uniform chain similarly.

Because the original Markov chain is embedded in the uniform chain, the
Ž .third definition of variation distance in 7 implies

5 s 5 5 s 5m y m F n y n .
5 s 5Furthermore, n y n can be bounded by defining a strong stationary stop-

Ž .ping time U for the uniform Markov chain. Let W s w , w , . . . be a sample1 2
path of the uniform chain. A stopping time U has the property that if
Ž . Ž . Ž U U .U W s s, then U W* s s for all other sample paths W* s w , w , . . .1 2

satisfying wU s w , . . . , wU s w . If in addition1 1 s s

<Pr W s w U F s s n w ,Ž .Ž .s s s

then U is said to be strongly stationary. It is straightforward to show
w Ž .xDiaconis 1988 that

5 s 58 n y n F Pr U ) s .Ž . Ž .



MARKOV CHAINS ON CONTINGENCY TABLES 151

Before constructing specific strong stationary times, we establish their
value in bounding the precision and bias of sample mean estimators.

� 4PROPOSITION 2. Consider a stationary Markov chain W having station-r
ary distribution m and equipped with a strong stationary time U such that

<9 Pr W s w U F r , W s w s m wŽ . Ž .Ž .r r 0 0 r

and such that

<10 Pr U s r W s wŽ . Ž .0 0

Ž . Ž .does not depend on w . If the random sequences X s g W and Y s h W0 r r r r
have finite variances s 2 and s 2, respectively, then the correlation between Xx y r
and Y satisfiesrqs

11 Corr X , Y F Pr U ) sŽ . Ž . Ž .r rqs

Ž . my 1for all s G 0. Hence, the variance of the sample mean S s 1rm Ý Xm rs0 r
satisfies

s 2
x

12 Var S F 2 E U y 1 .Ž . Ž . Ž .m m

Ž .PROOF. By the stationarity assumption, it suffices to take r s 0 in 11 . If
Z s 1 , it follows from the identity�U ) s4

< <m w s Pr W s w Z s 0 Pr Z s 0 q Pr W s w Z s 1 Pr Z s 1Ž . Ž . Ž .Ž . Ž .s s s s s

<s m w q Pr W s w Z s 1 y m w Pr Z s 1Ž . Ž . Ž .Ž .s s s s

Ž < . Ž . Ž .that Pr W s w Z s 1 s m w whenever Pr Z s 1 ) 0. Conditioning on Zs s s
therefore yields

< < <Cov X , Y s Cov E X Z , E Y Z q E Cov X , Y ZŽ . Ž . Ž . Ž .0 s 0 s 0 s

<s Cov X , Y Z s 1 Pr Z s 1Ž .Ž .0 s

Ž . Ž .by virtue of property 9 . The correlation inequality 11 then follows from
1r2 1r2< < <Cov X , Y Z s 1 F Var X Z s 1 Var Y Z s 1Ž . Ž . Ž .0 s 0 s

s s s .x y

Ž .Inequality 11 then implies that
my1 my1 my1ys1

Var S s Var X q 2 Cov X , XŽ . Ž . Ž .Ý Ý Ým r r rqs2m rs0 ss1 rs0

2 my1s s
F 1 q 2 1 y Pr U ) sŽ .Ý ž /m msq1

2 my1 my1s 2
s 2 Pr U ) s y 1 y s Pr U ) s .Ž . Ž .Ý Ým mss0 ss1
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Ž . wThe variance bound 12 now follows from the well-known identity Feller
Ž . x1968 pages 265]266

`

E U s Pr U ) s . IŽ . Ž .Ý
ss0

Because a strong stationary time is typically defined without reference to
Ž . Ž .the initial state of the Markov chain, properties 9 and 10 are usually

satisfied. When the chain is stationary as required in Proposition 2, S is anm
Ž . Ž .unbiased estimator of H g w dm w . In the next proposition we drop the

assumption of stationarity and investigate the bias of S .m

� 4PROPOSITION 3. Let W be a Markov chain with strong stationary time Ur
and stationary distribution m. Then the absolute bias of the estimator S sm
Ž . my 1 Ž . Ž . Ž . Ž .1rm Ý 1 W of m D is bounded above by E U rm. If we replace 1 wrs0 D r D

Ž . 5 Ž .5by an arbitrary function g w with g w s c, then the absolute bias of S ism
Ž .bounded above by 2cE U rm.

Ž .PROOF. Let m be the distribution of W . In view of inequality 8 and ther r
Ž .third definition of variation distance in 7 , the bias of S satisfiesm

my11
Bias S F m D y m DŽ . Ž . Ž .Ým rm rs0

my11
F Pr U ) rŽ .Ým rs0

E UŽ .
F .

m

Ž .The claimed bias inequality for an arbitrary bounded function g w follows in
Ž .similar manner from the second definition of variation distance in 7 . I

7. Stationary times for the Markov chains. For the haplotype
chain, we will prove that the expected value of the stationary time U for the
underlying uniform chain satisfies the explicit bound

n y 1 1
E U F J y 1 ln n q g yŽ . Ž . Ž .

2 4

2 2J y 2 p n n ln n
q q q hn(' 24 22 J y 3

13Ž .

ln n
q O ,ž /n
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where g f 0.577 is Euler’s constant, g s ln 2 q g q 1 f 2.27 and

ln 2 q g 11 y p 2

h s q f 0.73.
2 12

The right tail probability of U exhibits the sharp cutoff behavior

ln n q g
Pr U G J y 1 n c qŽ . ž /2

6c ln n
F 1.81 J y 1 exp y 1 q OŽ . ž / ž /5 n

14Ž .

for every constant c ) 0. For the genotype chain, we have the corresponding
bounds

1 1
E U F J n y ln n q g 9 yŽ . Ž .ž /2 4

2 2J y 1 p n
q q n ln n q h9n(' 62 J y 1

15Ž .

ln n
q O ž /n

and
ln n q g 9

Pr U G 2 Jn c qž /2

6c ln n
F 1.81J exp y 1 q O .ž / ž /5 n

16Ž .

Here, g 9 s g q ln 2 f 2.96 and h9 s h q ln 2 f 1.42.
To define a strong stationary stopping time for the uniform chain, we

imagine placing a check mark on one of the genes during certain transitions.
For the sake of concreteness, we consider the uniform chain corresponding to
the haplotype chain. Obvious modifications of our arguments work for the
genotype chain. At a transition involving locus j, a gene in column j is
checked if certain conditions are met. Let U be the step when the last genej
at locus j is checked. Then U s max U defines a stopping time. Wej- J j

Ž .borrow rules for checking genes from Matthews 1988 , who defines a strong
stationary time for a random permutation of n objects generated by a
sequence of random transpositions. Which of Matthews’s rules are in effect

u vdepends on the number of genes i previously checked at a locus. Let x be
u vthe least integer greater than or equal to x. When i - nr3 and both the

first and the second gene currently selected at locus j are unchecked, then
u vthe first gene is checked. Once nr3 genes have been checked, a second rule

with two subrules prevails. First, if an unchecked gene is selected for ex-
change with itself or with a previously checked gene, then the unchecked
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gene is checked. If checking does not take place by this mechanism, it can
occur by an alternative one. Arrange all unchecked genes and all ordered
pairs of checked genes in two lists. The first list has n y i elements and the
second list i2 elements. If the kth pair of genes from the second list is
selected, then check the kth gene from the first list. Note in this regard that

2 u vi G n y i provided n ) 3 and i G nr3 . With i genes currently checked at
locus j, Matthews’s rules imply that an additional gene at locus j will be
checked with probability

2¡ n y i nŽ .
, for i - ,2 3J y 1 nŽ .~p si 2 i q 1 n y i nŽ . Ž .

, for i G .2¢ 3J y 1 nŽ .

Ž .Matthews 1988 shows that when the last gene has been checked at locus j
according to these rules, then the permutation of the labels in column j will
be uniformly distributed with respect to the labels in the last column J.
Subsequent random transpositions at locus j or at other loci do not alter this
fact. Although the gene-checking times at the various loci are dependent, the
resulting permutations at the loci are independent. At the last checking step
U, all arrangements of the genes at loci 1, . . . , J y 1 with respect to the genes
at the last locus are equally likely, and U is a strong stationary time.

We now examine the stochastic behavior of the strong stationary stopping
time for the uniform chain. Let U be the number of steps after gene i atji
locus j is checked until gene i q 1 at locus j is checked. Then U s Ýny1 Uj is0 ji
defines the total waiting time until all genes are checked at locus j. The
intralocus checking times U are independent and geometrically distributedji
with success probability p . If q s 1 y p , then U has expected value 1rpi i i ji i
and variance q rp2.i i

An upper bound to the expected value of U s max U ,j- J j

17 E U F E U q J y 2 Var U ,'Ž . Ž . Ž . Ž . Ž .1 1

is available from the theory of order statistics for possibly dependent vari-
w Ž .xables David 1981 . If the U were independent, continuous randomj

variables, the superior bound

Var UŽ .1
18 E U F E U q J y 2Ž . Ž . Ž . Ž .(1 2 J y 3

w Ž .xwould apply David 1981 . One can construct an independent set of closely
related waiting times by embedding the uniform chain in a Poisson process in
such a way that the events of the Poisson process correspond to the steps of

w Ž .xthe chain Blom and Holst 1991 . The Poisson process can be constructed by
first constructing J y 1 independent Poisson processes having common in-

Ž .tensity 1r J y 1 . Each event in process j generates an exchange at locus j.



MARKOV CHAINS ON CONTINGENCY TABLES 155

The superposition process formed by considering the events over all J y 1
loci gives the requisite Poisson process with unit intensity. If Y is thej
waiting time in the superposition process until the completion of checking at
locus j, then the Y are independent and identically distributed. Further-j
more, Y s ÝUj X , where X is the exponential waiting time from eventj is1 i i

Ž .i y 1 to event i of the superposition process. By construction E X si
Ž .Var X s 1. Exploiting the correspondence between the step U s max Ui j- J j

and the time Y s max Y , we havej- J j

U

E Y s E E X U s E U .Ž . Ž .Ý iž /
is1

Since the Y are independent and identically distributed, this allows us toj
Ž .invoke inequality 18 with Y random variables replacing U random vari-

ables. However,

E Y s E UŽ . Ž .j j

ny1 1
s Ý piis0

n y 1 1 ln n
s J y 1 ln n q g y q O ,Ž . Ž . ž /2 4 n

Ž .using the asymptotic value 25 from the Appendix. Similarly,

< <Var Y s E Var Y U q Var E Y UŽ . Ž . Ž .j j j j j

s E U q Var UŽ . Ž .j j

ny1 1
s Ý 2piis0

p 2 n2 n ln n2s J y 1 q q hn q O ln n ,Ž . Ž .ž /24 2

Ž .using the asymptotic value 26 from the Appendix. Combining these results
Ž . Ž . Ž .with inequality 18 yields inequality 13 , which to order O ln n can be

rewritten as

n J y 2 p n
E U F J y 1 ln n q g q q O ln n .Ž . Ž . Ž . Ž .' '2 2 J y 3 24

Ž .In contrast, combining the same asymptotic values with inequality 17 leads
to the inferior bound

n p n'E U F J y 1 ln n q g q J y 2 q O ln n .Ž . Ž . Ž . Ž .'2 24

Thus, Poissonization of the U results in a second-order correction that can bej
substantial for moderately sized problems.
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To find the tail probability of U we develop some large-deviation estimates
for sums of geometrically distributed random variables. Our point of depar-
ture is the moment-generating function

` p exp tŽ .ijy1p q exp jt sŽ .Ý i i 1 y q exp tŽ .ijs1

wof the geometric random variable U . Applying Bernstein’s inequality Senji
Ž .xand Singer 1993 , we find the tail probability bound

Pr U G c J y 1 n q E UŽ . Ž .j j

ny1 p exp tŽ .iF exp yc J y 1 nt exp ytE UŽ . Ž .Ł ji 1 y q exp tŽ .is0 i

ny1 p exp t 1 y 1rpŽ .i is exp yc J y 1 ntŽ . Ł p y q exp t y 1Ž .is0 i i

exp yt Ýny1 q rpŽ .Ž .is0 i is exp yc J y 1 ntŽ . ny1Ł 1 y q rp exp t y 1� 4Ž . Ž .is0 i i

w xfor any t g 0, 1 and c ) 0. From the inequality

1
219 F exp x q xŽ . Ž .

1 y x

w xfor x g 0, 3r5 , we then conclude that

Pr U G c J y 1 n q E UŽ . Ž .j j

F exp yc J y 1 ntŽ .
2ny1 ny1q q qi i i 2

= exp yt q exp t y 1 q exp t y 1Ž . Ž .Ž . Ž .Ý Ý ž /½ 5p p pi i iis0 is020Ž .
s exp yc J y 1 ntŽ .

2ny1 ny1q qi i2
= exp exp t y 1 y t q exp t y 1 .Ž . Ž .Ž . Ž .Ý Ý ž /p pi iis0 is0

Ž .Inequality 19 is proved in the Appendix along with the necessary bounds

q 3i t21 e y 1 FŽ . Ž .
p 5i

Ž . Ž .for all i and the relevant t indicated below. In view of equations 25 and 26
Ž .in the Appendix, we can estimate the two sums appearing in inequality 20

by
ny1 qi

22 s O n ln nŽ . Ž .Ý piis1
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and
2ny1 ny1 ny1 ny1q 1 1i s y 2 q 1Ý Ý Ý Ý2ž /p ppi iiis1 is1 is1 is123Ž .

2 2 2J y 1 p nŽ .
s q O n ln n .Ž .

24

w Ž . xWe next make the crucial choice t s 6r 5 J y 1 n . For all nontrivial cases,
w xJ G 2 and n G 2, ensuring that t g 0, 1 . Since

6 6 1
exp s 1 q q O ,2ž /5 J y 1 n 5 J y 1 n nŽ . Ž .

Ž . Ž . Ž .it follows from equations 20 , 22 and 23 that

26c 3p ln n
Pr U G c J y 1 n q E U F exp y exp q OŽ . Ž .j j ž / ž /5 50 n

23p 6c ln n
s exp exp y 1 q Ož / ž /ž /50 5 n

6c ln n
f 1.81 exp y 1 q O .ž / ž /5 n

Ž . Ž . Ž . Ž .Because E U s J y 1 n ln n q g r2 q O ln n ,j

n
Pr U G J y 1 cn q ln n q gŽ . Ž .½ 52

Jy1 ln n
F Pr U G J y 1 n c q O q E UŽ . Ž .Ý j j½ 5ž /njs1

6c ln n ln n
F 1.81 J y 1 exp y q O 1 q OŽ . ž / ž /5 n n

Ž .for c ) 0, which is equivalent to inequality 14 .
For the genotype chain, there are J columns, each of length 2n, that must

be permuted and we get similar results by substituting J and 2n for J y 1
and n, respectively, in the proofs and in the results for the haplotype chain.
Thus, for the genotype chain

1 1 ln n
E Y s J n y ln n q ln 2 q g y q O ,Ž .Ž .j ž / ž /2 4 n

2 2p n
2Var Y s J q n ln n q 2h q ln 2 n q O ln n ,Ž . Ž .Ž .j 6

Ž . Ž .and similar reasoning to the above yield inequalities 15 and 16 .
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8. A numerical example. We illustrate the use of the above Markov
chains on chromosome 11 data collected on 24 Utah pedigrees. By considering

Ž .children and grandchildren, Weir and Brooks 1986 reconstructed 8-locus
haplotypes on 92 founders of these pedigrees. After deletion of two loci with a
substantial number of missing observations and two individuals untyped at
some remaining loci, the data consist of 180 haplotypes from 90 individuals.
The six pertinent loci have 2, 2, 10, 5, 3 and 2 alleles, respectively.

Our tests are based on the x 2 statistic

2i in y E nŽ .
2x s Ý iE nŽ .i

24Ž .
2inŽ .

s y nÝ iE nŽ .i

Ž i.with the proviso that expected counts E n are computed under the condi-
Ž .tional null distribution. Li 1955 first suggested using conditional expecta-

tions in the context of genotype data. Because closed-form expressions can be
Ž 2 . Ž . 2found for the expectation E x see the Appendix , the x statistic is

especially valuable for evaluating the success of the various algorithms.
Updating this statistic is simplified by the fact that if mi s ni " a, then the
difference in the contribution of these two values of cell i to the x 2 statistic is

2 2 2 2i i i in m n n " aŽ . Ž . Ž . Ž .
y s yi i i iE n E n E n E nŽ . Ž . Ž . Ž .

.2 ani y a2

s .iE nŽ .

The p-value of an observed statistic x 2 is by definition the probabilityobs
Ž 2 2 . 2Pr x G x for an independent sample x from the null distribution.obs

Ž . Ž .Fortunately p-values for the conditional null distributions 1 and 3 do not
depend on unknown allele frequencies. Since a p-value is an expectation, the

wstandard ergodic theorem for finite state Markov chains Karlin and Taylor
Ž .x Ž 2 2 .1975 justifies estimating Pr x G x by taking a sample average of theobs
indicator functions of the events x 2 G x 2 over many steps of the appropri-obs
ate chain.

Ž 2 .To estimate p-values and the expectation E x , we chose the initial state
of the Monte Carlo chains in two different ways. The observed Markov chain
Ž .OMC starts from the observed table. Although this tactic yields biased
estimates, bias diminishes as the total number of steps m ª `. The inde-

Ž .pendent Markov chain IMC begins with an independent table drawn from
the conditional null distribution. IMC estimates are unbiased because each
table of the IMC chain is marginally distributed according to the stationary

Ž .distribution. Independent Monte Carlo samples IND were also generated by
the algorithm described in Section 4.
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If Hardy]Weinberg equilibrium did not prevail for this set of loci, a test of
linkage equilibrium could still be performed after randomly choosing one
haplotype from each of the 90 individuals. Hardy]Weinberg equilibrium
guarantees that the 180 haplotypes form an independent sample. Biologi-
cally, it is likely that most violations of Hardy]Weinberg for the set as a
whole can be detected as violations of Hardy]Weinberg equilibrium for at
least one locus within the set. In these data, none of the single-locus genotype
x 2 tests is significant. A test of linkage equilibrium was accordingly per-
formed on the 180 six-locus haplotypes. The p-value of the observed x 2 sobs
1517 would be essentially 0 if the traditional large-sample approximation
were appropriate for this sparse contingency table with 1200 s 2 = 2 = 10 =
5 = 3 = 2 cells. Each Monte Carlo method was independently implemented
100 times in Microsoft Fortran on a 486r66 DX2 personal computer. Each$

2run produced one estimate p of the p-value and one estimate E x of theŽ .ˆ
Ž 2 .expectation E x . To make the methods comparable in terms of computer

time, the number of samples per run for each method was set so that each
run would take about one minute of computing time, ignoring setup opera-
tions common to all of the methods. $

2Table 1 gives the average of the estimates p and E x over all 100 runs,Ž .ˆ
and the observed standard deviations of these estimates. The average p forˆ
all three methods is 0.13, sharply contradicting the large-sample result. The
OMC method shows no obvious bias in estimating the theoretical expectation$

2 2Ž .E x s 1182. The standard deviations of the estimates p and E x sug-Ž .ˆ
gest that both Markov chain methods are more efficient than independent
sampling. Although the number of Markov chain iterations is much larger
than the number of independent samples, this is compensated by the approxi-
mately 685 Markov chain iterations possible in the time it takes to generate a
single independent sample.

If we ignore haplotype information, we can refit the same data using the
genotype chain. The now much larger 3 = 3 = 54 = 14 = 6 = 3 contingency
table has 90 individuals distributed over 122,472 cells. Both the observed

2 Ž 2 .statistic x s 134,823 and its expectation E x s 122,454 are dramati-obs
Ž .cally larger than for the haplotype table; note that we are using Li’s 1955

convention for expected values in the definition of x 2. Again the p-value of

TABLE 1
Monte Carlo results for chromosome 11 haplotype data

Avg.
Avg. $ Seconds Iterations2E x( ) per run per runp̂Method

6OMC 0.1333 " 0.0039 1179 " 16 59.81 2.740 = 10
6IMC 0.1337 " 0.0035 1182 " 14 59.87 2.740 = 10

IND 0.1332 " 0.0057 1180 " 22 59.98 3999



L. C. LAZZERONI AND K. LANGE160

the observed statistic would be essentially 0 if the large-sample approxima-
tion were appropriate. However, inferring the presence of linkage disequilib-
rium, Hardy]Weinberg disequilibrium, or both for these data would be
grossly misleading since all three Monte Carlo methods yield an average p ofˆ
0.14 as displayed in Table 2. Although the OMC method again shows no$

2obvious bias in estimating E x , the observed standard deviations of p andŽ . ˆ$
2E x are proportionately much larger than for the haplotype chains. This isŽ .

consistent with the smaller number of iterations possible per minute for the
genotype chain. The genotype algorithms are slower because it is harder to
recover genotype counts from the tableau than it is to recover haplotype
counts. The disproportionate toll that this difficulty takes on independent
sampling is clear; now 2159 Markov chain iterations are possible in the time
required to generate a single independent sample. Possibly the same effect is
showing up in the substantially smaller standard deviations under the
Markov chain methods compared to independent sampling.

The empirical results for this example provide stronger support for the
Markov chain methods than is available from the rough upper bounds
provided by our theoretical analysis. For instance, the expected number of

Ž .steps E U until reaching stationarity is 4125 for the haplotype chain and
5071 for the genotype chain. Based on the numbers of iterations, given in
Tables 1 and 2, Proposition 3 only ensures that the bias in the OMC-
estimated p-values is no greater than 0.0015 and 0.0034, respectively. Simi-
larly, Proposition 2 only guarantees that the ratio of the standard deviations
of the IMC and IND estimators is no greater than 3.47 for equal computing
times in the haplotype analysis. The empirical ratios of 0.62 for p and 0.64 forˆ$

2E x reverse this unfavorable impression of the IMC method. For theŽ .
genotype analysis, the theoretical bound on the ratio of standard deviations is
2.17, while the empirical ratios are 0.44 and 0.73, respectively.

Finally, as the current data show, some individuals will usually be un-
typed at some loci. We have simplified our presentation by discarding cases
and loci with missing data. This is, of course, undesirable when there is
substantial missing data. If we want to retain all of the data, then it is still
possible to employ our sampling methods if the data are missing completely

TABLE 2
Monte Carlo results for chromosome 11 genotype data

Avg.
Avg. $ Seconds Iterations2E x( ) per run per runp̂Method

6OMC 0.1428 " 0.0044 122,526 " 14,042 59.75 1.490 = 10
6IMC 0.1433 " 0.0054 122,299 " 20,674 59.81 1.490 = 10

IND 0.1418 " 0.0124 116,405 " 28,464 59.82 690
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at random. The appropriate modification to the algorithms is simply to
perform all transpositions or permutations only within those rows of the
tableau for which the currently selected locus is observed. Of course, the
definitions of the test statistics must be modified to accommodate missing
data.

9. Discussion. Many recent advances in computational statistics rely on
Markov chain methods such as the Gibbs sampler and the Metropolis algo-
rithm to sample from complicated marginal distributions. Our example
demonstrates that even when independent sampling methods are feasible,
Markov chain algorithms can be more efficient. For this to occur, a Markov
chain must either converge rapidly to its equilibrium or involve little work
per step. The chains suggested here achieve an advantageous balance of these
two criteria.

Besides serving as a fertile field of application, genetics has been for us a
source of inspiration in designing chains useful for testing independence in
multidimensional contingency tables. Genetics leads one naturally to think in
terms of the arrangement of genes along a chromosome and the exchange of
genes between chromosomes. This biological framework suggests the tableau
incorporated in the uniform chain. Embedding the Markov chains in a
uniform chain greatly simplifies our theoretical analysis. This simplification
may exact a price since more complicated, but faster, stopping rules could
possibly be designed that take into account the specific allele totals.

APPENDIX

nI1( ) nI1( 2.A.1. Sums ÝÝÝÝÝ 1 rrrrr p and ÝÝÝÝÝ 1 rrrrr p . In this section, we showis 0 i is 0 i
that

ny1 1 n y 1 1 ln n
25 s J y 1 ln n q g y q OŽ . Ž . Ž .Ý ž /p 2 4 niis0

and
ny1 2 21 p n n ln n226 s J y 1 q q hn q O ln n ,Ž . Ž . Ž .Ý 2 ž /24 2piis0

Ž . Ž 2 .where g s ln 2 q g q 1 and h s ln 2 q g r2 q 11 y p r12. The asymp-
Ž . Ž .totic expansions 25 and 26 are used in Section 7 to derive the expectation,

variance and tail probability bound of the stopping time.
To evaluate the sum Ýny1 1rp , first choose an integer 0 F b F 2 so thatis0 i

Ž . u vn q b r3 s nr3 . Then

n y br2 3b 1
ln s y q O .2ž / ž /n q b 2n n
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wFrom the well-known asymptotic expansion of the harmonic series Graham,
Ž .xKnuth and Patashnik 1989

n 1 1 1
s ln n q g q q O ,Ý 2ž /i 2n nis1

where g f 0.577 is Euler’s constant, we therefore deduce

ny1 1
Ý i q 1 n y iŽ . Ž .u vis nr3

ny11 1 1
s qÝ ž /n q 1 i q 1 n y iŽ . Ž .is nqb r327Ž .

Ž . Ž .nqb r3 2 nyb r3n1 1 1 1
s y qÝ Ý Ýž /n q 1 i i iŽ . is1 is1 is1

1 1 1 q 6b ln n
s ln n q d y ln n q d q q O ,Ž . 2 3ž / ž /n 4n n

where d s ln 2 q g .
wSimilarly, the Euler]Maclaurin expansion Graham, Knuth and Patashnik

Ž .x1989

n 21 p 1 1 1
28 s y q q OŽ . Ý 2 2 3ž /6 ni 2n nis1

implies

Ž . 22nyb r3 1 p 3 9 1
s y q q OÝ 2 2 3ž /6 2n y bi n2 2n y bŽ .is1

p 2 3 9 y 6b 1
s y q q O .2 3ž /6 2n 8n n

Therefore,

u v Ž .nr3 y1 2 nyb r3n1 1 1
s yÝ Ý Ý2 2 2i in y iŽ .is0 is1 is129Ž .

1 6b y 5 1
s q q O .2 3ž /2n 8n n
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Ž . Ž .It follows from expressions 27 and 29 together that

u v 2 2nr3 y1ny1 ny11 J y 1 n J y 1 nŽ . Ž .
s qÝ Ý Ý2p 2 i q 1 n y iŽ . Ž .n y iŽ .iis0 is0 u vis nr3

n 1 3 ln n
s J y 1 ln n q d q 1 y ln n q d q q OŽ . Ž . ž / ž /2 2 2 n

n y 1 1 ln n
s J y 1 ln n q g y q O ,Ž . Ž . ž /2 4 n

Ž .where g s d q 1 s ln 2 q g q 1. This proves equality 25 .
ny1 2 Ž .Next, we evaluate the sum Ý 1rp . Since expression 28 impliesis0 i

Ž . 2nqb r3 1 p 3 1
s y q O ,Ý 2 2ž /6 ni nis1

it also follows that

2ny1 1
Ý i q 1 n y iŽ . Ž .u vis nr3

2ny11 1 1
s qÝ2 ž /i q 1 n y in q 1Ž . Ž .is nqb r3

2ny11 1
s Ý2 ž /i q 1n q 1Ž . Ž .is nqb r3

21 1 1
q2 qž / ž / ž /i q 1 n y i n y i

30Ž .

Ž . Ž .nqb r3 2 nyb r3n1 1 1 1
s y qÝ Ý Ý2 2 2 2i i in q 1Ž . is1 is1 is1

ny1 1 1
q2 Ý ž / ž /i q 1 n y iŽ .is nqb r3

p 2 2 1 p 2 ln n
s q ln n q d q y q O .2 3 4ž /ž /4 66n n n

The expansion

n 1 1 1 1
4s p y q OÝ 4 3 4ž /90i 3n nis1
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implies
2u v Ž .nr3 y1 2 nyb r3n1 1 1

s yÝ Ý Ý2 4 4ž /i in y iŽ .is0 is1 is131Ž .
19 1

s q O .3 4ž /24n n

Ž . Ž .Finally, expressions 30 and 31 together yield

2 2u v 2 2nr3 y1ny1 ny11 J y 1 n J y 1 nŽ . Ž .
s qÝ Ý Ý2 2 2 i q 1 n y ip Ž . Ž .n y iŽ .iis0 is0 u vis nr3

2 2 219n p n n 1 p2s J y 1 q q ln n q d q y q O ln nŽ . Ž .ž /24 24 2 4 6

p 2 n2 n ln n2s J y 1 q q hn q O ln n ,Ž . Ž .ž /24 2

Ž 2 . Ž . Ž 2 .where h s dr2 q 11 y p r12 s ln 2 q g r2 q 11 y p r12. This proves
Ž .equality 26 .

( ) ( )A.2. Inequalities 19 and 21 . We next demonstrate the two in-
Ž . Ž .equalities 19 and 21 used to derive the tail probability bound.

Ž .First, to verify inequality 19 ,

1
2F exp x q x ,Ž .

1 y x

w xfor x g 0, 3r5 , take logarithms. This produces the equivalent inequality

x 2 x 3
232 x q q q ??? F x q x .Ž .

2 3

Ž .Inequality 32 holds because

x 3 3 3 x 3
2 21 q x q x q ??? F 1 q x q x q ???Ž .ž /3 4 5 3

x 3 1 x 2

s F
3 1 y x 2

w xis valid on the interval 0, 3r5 .
w Ž . xSecond, we show that if we let t s 6r 5 J y 1 n , then

q 3itw xe y 1 F
p 5i

for all i and n ) 1. For the uniform chain corresponding to the haplotype
wŽchain, the maximum of q rp occurs when p attains its minimum of 2r J yi i i
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. x1 n at i s n y 1. Thus,

q 1 y 2r J y 1 n J y 1 n y 2Ž . Ž .i
max s F .

p 2r J y 1 n 2i Ž .i

Because
` kt t

te y 1 s FÝ k! 1 y tks1

w Ž . xfor all 0 F t - 1, at the value t s 6r 5 J y 1 n we find that

q 6r 5 J y 1 n J y 1 n y 2Ž . Ž .itw xe y 1 F
p 1 y 6r 5 J y 1 n 2Ž .i

6 J y 1 n y 2 3Ž .
s F .

5 J y 1 n y 6 2 5Ž .
Ž .Thus, inequality 21 is satisfied for all n ) 1.

A.3. Expectation of the x 2 statistic. Finally, let us compute the ex-
2 Ž . Ž . Ž .pected value of the x statistic 24 under distributions 1 and 3 . Ignoring

Ž i.those cells i with expected count E n s 0, we have
2i in y E nŽ .

E Ý i½ 5E nŽ .i

2 2 2i i i iE nŽ . E n 2 E n E nŽ . Ž . Ž .
s q y qÝ i i i i½ 5E n E n E n E nŽ . Ž . Ž . Ž .i

33Ž .

2iE nŽ .
s q C y n ,Ý iE nŽ .i

where C is the total number of cells. In the haplotype case, we eliminate
those alleles with 0 representatives and compute

J

C s K j .Ž .Ł
js1

Ž .Using the expectations given by Proposition 4 of Lange 1993 ,
2 Jy12i 2Ž . Ž .K 1 K JE n w xŽ . Ł n r nŽ .ž /j jk Ž j.

s ???Ý Ý Ý Jy1i Ł n rnE nŽ . Ž .j jk Ž j.i Ž . Ž .k 1 s1 k j s1

Ž .K jJ1
s n y 1Ł Ý jk Ž j.Jy1n y 1 js1Ž . Ž .k j s1

J1
s n y K j .Ž .ŁJy1n y 1 js1Ž .
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The genotype case is more delicate. If we again eliminate those alleles
Ž .absent in the sample and let s j be the number of alleles at locus j

represented in the sample by a single copy, then it is possible to form
K jŽ .Ž . Ž . Ž .K j y s j different homozygous genotypes and different heterozygous

2

Ž .w Ž . x Ž .genotypes at locus j. This yields K j K j q 1 r2 y s j possible genotypes
at locus j and

J K j K j q 1Ž . Ž .
C s y s jŽ .Ł ½ 52js1

possible multilocus genotypes in all.
To compute the requisite expectations, consider a particular multilocus

Ž .genotype i having genotype a ra at locus j. According to formula 4 ,jk Ž j. jk Ž j9.

2J w xn n , if k9 j s k j ,Ž . Ž .jk Ž j.iE n sŽ . ŁJ2 ½ 2n n , if k9 j / k j ,Ž . Ž .js1 jk Ž j. jk 9Ž j.2nŽ .
42 ¡J w xn , if k9 j s k j ,Ž . Ž .n jk Ž j.2i ~E n sŽ . ŁJ 2 24 ¢js1 w x w x4 n n , if k9 j / k j .Ž . Ž .2nŽ . jk Ž j. jk 9Ž j.

Hence,

2 2i iE n E nŽ . Ž .
s ???Ý Ý Ýi iE n E nŽ . Ž .i Ž . Ž . Ž . Ž .k 1 Fk 1 9 k J Fk J 9

n y 1Ž .
s J22n y 2Ž .

2¡J n y 2 , if k j s k9 jŽ . Ž .jk Ž j.~= Ł Ý ¢2 n y 1 n y 1 , if k9 j / k jjs1 Ž . Ž .Ž . Ž .k j Fk 9 j jk Ž j. jk 9Ž j.

n y 1Ž .
s J22n y 2Ž .

Ž . Ž .K j K jJ

= n y 1 n y 1Ł Ý Ý jk Ž j. jk 9Ž j.½js1 Ž . Ž .k j s1 k 9 j s1

Ž .K j

y 3n y 5Ý jk Ž j. 5
Ž .k j s1
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2Ž .K jJ ¡ ¦n y 1Ž . ~ ¥s n y 1 y 6n q 5K jŽ .Ž .Ł Ý jk Ž j.J ¢ §2 js1 Ž .k j s12n y 2Ž .
Jn y 1Ž . 2s 2n y K j y 6n q 5K j .Ž . Ž .� 4ŁJ2 js12n y 2Ž .

In particular, for a single locus with K alleles of which s appear exactly once,
Ž . Ž . Ž . Ž .the above expected value 33 reduces to n y 1 K K y 1 r 2n y 3 y s.
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