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FITTING TIME SERIES MODELS TO
NONSTATIONARY PROCESSES1

BY R. DAHLHAUS

Universitat Heidelberg¨
A general minimum distance estimation procedure is presented for

nonstationary time series models that have an evolutionary spectral
representation. The asymptotic properties of the estimate are derived
under the assumption of possible model misspecification. For autoregres-
sive processes with time varying coefficients, the estimate is compared to
the least squares estimate. Furthermore, the behavior of estimates is
explained when a stationary model is fitted to a nonstationary process.

1. Introduction. Stationarity has always played a major role in the
theoretical treatment of time series procedures. For example, the spectral
density is defined for stationary processes and the important ARMA model is
a stationary time series model. Furthermore, the assumption of stationarity
is the basis for a general asymptotic theory: it guarantees that the increase of
the sample size leads to more and more information of the same kind which is
basic for an asymptotic theory to make sense.

ŽOn the other hand, many series show a nonstationary behavior e.g., in
. Žeconomics or sound analysis . Special techniques such as taking differences

.or the consideration of the data on small time intervals have been applied to
make an analysis with stationary techniques possible.

If one abandons the assumption of stationarity, the number of possible
models for time series data explodes. For example, one may consider ARMA
models with time varying coefficients. In that case the time behavior of the
coefficients may again be modeled in different ways. Therefore, we try to
consider in this paper a general class of nonstationary processes together
with a general estimation method which is a generalization of Whittle’s

w Ž .xmethod for stationary processes Whittle 1953 .
w Ž .Whittle’s method cf. Dzhaparidze 1986 , Azencott and Dacunha-Castelle

Ž .x1986 is based on minimization of the function
p1 I lŽ .T

L u s log f l q dl,Ž . Ž .HT u½ 54p f lŽ .yp u

Ž . Ž .where f l is the model spectral density and I l is the periodogram. Theu T
Ž . Ž .Whittle estimate is asymptotically efficient and L u is up to a constant anT

Ž .approximation to the Gaussian likelihood function. Since L u may beT
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interpreted to within an additive constant as a distance between the para-
Ž . Ž .metric spectral density f l and the nonparametric estimate I l , theu T

Whittle estimate is a minimum distance estimate. In the case where the
Ž .model is misspecified, minimization of L u therefore leads to an estimate ofT

the parameter with the best approximating parametric spectral density. This
best approximating parameter also minimizes the asymptotic Kullback]Leib-
ler information divergence. For autoregressive processes, the Whittle esti-
mate is identical to the Yule]Walker estimate. If a data taper is applied in
the calculation of the periodogram, then the estimate also has good small

w Ž .xsample properties cf. Dahlhaus 1988 . Asymptotic normality of the Whittle
estimate also holds for non-Gaussian processes. However, this requires iden-
tifiability of the model which basically only holds for linear processes.

In this paper we generalize the method of Whittle to processes that only
Ž .show locally a stationary behavior cf. Definition 2.1 . We replace the peri-

Ž . Ž . Žodogram I l in L u by a local version and integrate over time cf. SectionT T
.3.1 . The resulting estimate again is efficient.
If the model is misspecified, the estimate again may be regarded as an

Žestimate for the best approximating model ‘‘best’’ in the sense of distances
between spectral densities or in the sense of the Kullback]Leibler informa-

.tion divergence}cf. Section 3 . We prove asymptotic normality also in the
misspecified case. In particular, we can describe the behavior of the estimate

Žif a stationary model is fitted and the true process is nonstationary Sec-
.tion 5 .

Although we use a spectral density approach, our goal is not the estima-
tion of the spectral density. We are mainly interested in parametric inference
for nonstationary time series models that may be defined purely in the time
domain, for example, autoregressive processes with time varying coefficients.
Such models are studied in detail in Section 4. In particular, we give the
estimation equations for such models and study the relation of our estimate
to the least squares estimate.

Section 6 contains some practical considerations and a simulation example
and Section 7 has concluding remarks.

2. Asymptotic theory and locally stationary processes. One of the
difficult problems to solve when dealing with nonstationary processes is how
to set up an adequate asymptotic theory. Asymptotic considerations are
needed in time series analysis to simplify the situation, since it is usually
hopeless to make calculations for a finite sample size.

However, if X , . . . , X are observations from an arbitrary nonstationary1 T
process, then letting T tend to infinity, that is, extending the process into the
future, will not give any information on the behavior of the process at the
beginning of the time interval. We therefore need a different asymptotic
concept.

Suppose for example that we observe

X s a t X q « with « iid NN 0, s 2Ž . Ž .t ty1 t t
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for t s 1, . . . , T. Inference in this case means inference for the unknown
Ž . w x Ž .function a t on the interval 1, T . We have information on a t on the grid

� 41, 2, 3, . . . , T . Analogously to nonparametric regression, it seems natural to
Ž .set down the asymptotic theory in a way that we ‘‘observe’’ a t on a finer grid

Ž .but on the same interval ; that is, we observe the process

t
2.1 X s a X q « for t s 1, . . . , TŽ . t , T ty1, T tž /T

Ž w x.where a is now rescaled to the interval 0, 1 .
To define a general class of nonstationary processes which includes the

above example, we may try to take the time varying spectral representation

pt t
2.2 X s m q exp ilt A , l dj lŽ . Ž . Ž .Ht , T ž / ž /T Typ

Ž .similar to the analogous representation for stationary processes . However, it
Ž .turns out that equation 2.1 has not exactly but only approximately a

Ž . Ž .solution of the form 2.2 . We therefore only require that 2.2 holds approxi-
mately, which leads to the following definition.

Ž .DEFINITION 2.1. A sequence of stochastic processes X t s 1, . . . , T ist, T
called locally stationary with transfer function A0 and trend m if there exists
a representation

pt
02.3 X s m q exp ilt A l dj l ,Ž . Ž . Ž . Ž .Ht , T t , Tž /T yp

where the following holds.

Ž . Ž . w x Ž .i j l is a stochastic process on yp , p with j l s j yl andŽ .
k

cum dj l , . . . , dj l s h l g l , . . . , l dl . . . dl ,� 4Ž . Ž . Ž .Ý1 k j k 1 ky1 1 kž /js1

� 4 Ž .where cum ??? denotes the cumulant of kth order, g s 0, g l s 1,1 2
< Ž . < Ž . ` Ž .g l , . . . , l F const for all k and h l s Ý d l q 2p j is the pe-k 1 ky1 k jsy`

riod 2p extension of the Dirac delta function.
Ž . w xii There exists a constant K and a 2p-periodic function A: 0, 1 = R ª C

Ž .with A u, yl s A u , l andŽ .
t

0 y12.4 sup A l y A , l F KTŽ . Ž .t , T ž /Tt , l

Ž . Ž .for all T ; A u, l and m u are assumed to be continuous in u.

The smoothness of A in u guarantees that the process has locally a
stationary behavior. Later we will require additional smoothness properties
for A, namely differentiability in both components.

w xIn the following s and t always denote time points in the interval 1, T
w xwhile u and v are time points in the rescaled interval 0, 1 , that is, u s trT.
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Ž .EXAMPLES. i Suppose Y is a stationary process with spectral representa-t
tion

p

Y s exp ilt A l dj lŽ . Ž . Ž .Ht
yp

w xand m, s : 0, 1 ª R are continuous. Then
t t

X s m q s Yt , T tž / ž /T T
0 Ž . Ž . Ž . Ž .is locally stationary with A l s A trT, l s s trT A l . If Y is ant, T t

Ž . Ž .AR 2 -process with complex roots close to the unit circle, then Y shows at
periodic behavior and s may be regarded as a time varying amplitude
function of the process X . If T tends to infinity more and more cycles of thet, T

w xprocess with u s trT g u y « , u q « , that is, with amplitude close to0 0
Ž .s u are observed.0
Ž .ii Suppose « is an iid sequence andt

` t
X s a « .Ýt , T j tyjž /Tjs0

Then X is locally stationary witht, T
`

0A l s A trT , l s a trT exp yil j .Ž . Ž . Ž . Ž .Ýt , T j
js0

Ž . Ž .iii Autoregressive processes with time varying coefficients cf. Section 4
wŽ . xare locally stationary. This was proved in Dahlhaus 1996a , Theorem 2.3 .

Ž . 0 Ž . Ž .However, in this case we only have 2.4 instead of A l s A trT, l .t, T

The above definition does not mean that a fixed continuous time process is
discretized on a finer grid as T tends to infinity. Instead it is an abstract
setting for asymptotic statistical inference which means that with increasing
T more and more data of each local structure are available. If m and A0 do
not depend on t and T, then X does not depend on T as well, and we obtain
the spectral representation of an ordinary stationary process. Thus, the
classical asymptotic theory for stationary processes is a special case of our
approach.

Letting T tend to infinity no longer means looking into the future. Never-
theless, a prediction theory within this framework is still possible. One may,

wfor example, assume that X is observed for t F Tr2 i.e., on the timet, T
Ž .xinterval 0, 1r2 and one tries to predict the next observations. A result on

the local prediction error similar to Kolmogorov’s formula for stationary
wŽ . xprocesses has been proved in Dahlhaus 1996a , Theorem 3.2 .

Nonstationary processes with a time varying spectral representation were
Ž .first investigated in detail by Priestley 1965, 1981, 1988 . The above defini-

tion of local stationarity may be regarded as a framework allowing for
rigorous asymptotic considerations for such processes. A deeper justification
of this definition and a comparison with the approach of Priestley may be

wŽ . xfound in Dahlhaus 1996c , Section 3 .
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Ž . < Ž . < 2By f u, l [ A u, l we denote the time varying spectral density of our
wŽ . xprocess. In Dahlhaus 1996a , Theorem 2.2 we show under smoothness

conditions on A that

`1
f u , l s lim cov X , X exp yils ,Ž . Ž .Ž .Ý w uTysr2x , T w uTqsr2x , T2pTª` ssy`

Ž . w 0 Ž . Ž . 0 Ž .where X is defined by 2.3 with A l s A 0, l for t - 1 and A l ss, T t, T t, T
Ž .A 1, l for t ) T}with respect to l the above convergence is in quadratic

xmean . This means that if there exists a spectral representation of the form
Ž . Ž . < Ž . < 22.3 with a smooth A u, l then A u, l is uniquely determined from the

Ž .triangular array there may exist several other nonsmooth representations .
Ž .In this paper we do not discuss estimation of f u, l , although parameter

Ž .estimates also lead to spectral density estimates cf. Section 6 . Neumann and
Ž .von Sachs 1996 have used the above setting for investigating wavelet

Ž . Ž .estimates of f u, l . Kernel estimates are discussed in Dahlhaus 1996c .
Ž .Riedel 1993 considered smoothing of the log-periodogram. He also used a

rescaling of the time domain in his asymptotic considerations which implic-
itly corresponds to a time-rescaling in the spectral representation.

3. Fitting parametric models to locally stationary processes. In
this section we discuss the fitting of a locally stationary model with time
varying spectral density f , u g Q ; R P to observations X , . . . , X . Asu 1, T T , T
motivated in the introduction, we obtain the parameter estimate by mini-
mization of a generalization of the Whittle function where the usual peri-

Ž .odogram is replaced by local periodograms over possibly overlapping data
segments.

Ž . w . Ž .Let h: R ª R be a data taper with h x s 0 for x f 0, 1 and for N even ,

Ny1 s
Xd u , l s d u , l s h X exp yils ,Ž . Ž . Ž .ÝN N w uT xyNr2qsq1, Tž /Nss0

Ny1 ks
H l s h exp yils ,Ž . Ž .Ýk , N ž /Nss0

1 2
I u , l s d u , l .Ž . Ž .N N2p H 0Ž .2, N

Ž .Thus, I u, l is the periodogram over a segment of length N with midpointN
w xuT . The shift from segment to segment is denoted by S; that is, we

Ž . Žcalculate I over segments with midpoints t [ S j y 1 q Nr2 j sN j
. Ž .1, . . . , M where T s S M y 1 q N, or, written in rescaled time, at time

points u [ t rT. We now setj j

M p1 1 I u , lŽ .N j
LL u s log f u , l q dlŽ . Ž .Ý HT u j½ 54p M f u , lŽ .yp u jjs1



R. DAHLHAUS6

and

û s arg min LL u .Ž .T T
ugQ

The use of a data taper which tends smoothly to zero at the boundaries has
Ž .two benefits: first, it reduces leakage as in the stationary case . Second, it

reduces the bias due to nonstationarity by downweighting the observations at
the boundaries of the segment. It is interesting to see that the taper does not
lead to an increase of the asymptotic variance for overlapping segments
Ž .Theorem 3.3 . Furthermore, some estimates are even approximately inde-

Ž .pendent of the taper cf. Theorem 4.2 and the discussion after that theorem .
Ž .The above motivation of the function LL u is heuristic. We now give aT

Ž .stronger justification for the particular form of LL u . Suppose f is the trueT
probability density of the observations X , . . . , X and f the true spectral1, T T , T

density. Analogously, let f and f be the corresponding densities of ouru u

model. If f and f are Gaussian distributions with mean zero then we haveu

wŽ . xshown in Dahlhaus 1996a , Theorem 3.4 that the asymptotic Kullback]
Leibler information divergence is

p1 1 f u , l f u , lŽ . Ž .1 u
lim E log frf s log q y 1 dl duŽ . H Hf u ½ 5T 4p f u , l f u , lTª` Ž . Ž .0 yp u

p1 f u , lŽ .1
s log f u , l q dl du q const,Ž .H H u½ 54p f u , lŽ .0 yp u

where the constant is independent of the model spectral density. Therefore,
we may regard

p1 f u , lŽ .1
LL u [ log f u , l q dl duŽ . Ž .H H u½ 54p f u , lŽ .0 yp u

Ž .as a distance between the true process with spectral density f u, l and the
Ž .model with spectral density f u, l . The best approximating parameter valueu

from our model class then is

u [ arg min LL u .Ž .0
ugQ

If the model is correct, that is, f s f U , then it is easy to show that u s u U.u 0
Ž . Ž .The function LL u is now obtained from LL u by replacing the unknownT

true spectral density f by the nonparametric estimate I . We conjecture thatN
Ž . wLL u is an approximation to the exact Gaussian likelihood function as inT

Ž . .the stationary case; cf. Azencott and Dacunha-Castelle, 1986 , Chapter XIII .
ˆ ˆŽThis means that u is an approximate Gaussian MLE the benefits of u overT T

.the exact MLE are discussed at the end of Section 4 .
ˆWe now prove convergence of u to u in the case where the mean isT 0

w Ž . xknown i.e., we assume m u ' 0 . The situation of an unknown mean is
treated in Theorem 3.6 and Remark 3.7. A key step in the proof is the use of
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the more general central limit theorem, Theorem A.2 which is of independent
interest.

Ž .ASSUMPTION 3.1. i We observe the realization X , . . . , X of a locally1, T T , T
0 Ž .stationary process with true transfer function A and mean m u . The true

Ž . < Ž < 2 Ž .spectral density is f u, l s A u, l with A as in Definition 2.1. A u, l is
Ž .Ž .differentiable in u and l with uniformly bounded derivative ­r­ u ­r­l A;

g is continuous.4
Ž .ii As a model we fit a class of locally stationary processes with spectral

Ž . p Ž .density f u, l , u g Q ; R , Q compact. The f u, l are uniformly boundedu u

Ž . Ž . 2 Ž .from above and below. The components of f u, l , =f u, l and = f u, lu u u

w x w x Žare continuous on Q = 0, 1 = yp , p = denotes the gradient with respect
. y1 2 y1to u . =f and = f are differentiable in u and l with uniformly boundedu u0 0

Ž .Ž . Ž . y1 Ž .Ž . y1derivative ­r­ u ­r­l g, where g s ­r­u f or g s ­r­u ­r­u f .i u i j u0 0
Ž .iii u exists uniquely and lies in the interior of Q.0
Ž . 1r4 1r2iv N, S and T fulfill the relations T < N < T rln T and S s N or

SrN ª 0.
Ž . Ž . w xv The data taper h: R ª R with h x s 0 for all x f 0, 1 is continuous

on R and twice differentiable at all x f P where P is a finite set and
< YŽ . <sup h x - `.x f P

The assumptions on N, S and h are discussed below Theorem 4.2, in
Section 6 and in Remark A.3.

Ž .THEOREM 3.2. Suppose that Assumption 3.1 holds with m u ' 0. Then

û ª uT 0

in probability.

PROOF. Below we prove that

3.1 sup LL u y LL u ª 0Ž . Ž . Ž .T
u

ˆŽ . Ž . Ž .in probability. Since LL u is minimized by u we have LL u F LL u and0 T T T 0
ˆ ˆ ˆŽ . Ž . Ž . Ž .LL u F LL u which implies LL u ª LL u and therefore also u ª u in0 T T 0 T 0

Ž . wŽ . xprobability. To prove 3.1 we follow the idea of Hannan 1973 , Lemma 1
Ž . Ž .y1and approximate the function g u, l s f u, l by the Cesaro sum of itsu u

Fourier series

L < < < <1 ll m
ŽL.g u , l [ 1 y 1 yŽ . Ýu 2 ž / ž /L L2pŽ . ll , msyL

=g ll , m exp yi2p u ll y ilmŽ . Ž .û
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< Ž . ŽL.Ž . <with L such that sup g u, l y g u, l F « . We obtainu u u

< <sup LL u y LL uŽ . Ž .T
u

M p1 1
y1F O M q « I u , l q f u , l dlŽ . � 4Ž . Ž .Ý H N j j4p M ypjs1

L < < < <1 ll m
< <q 1 y 1 y sup g ll , mŽ .ˆÝ u3 ž / ž /L L16p ull , msyL

M p1
= exp yi2p u ll y ilmŽ .Ý H jM ypjs1

I u , l y f u , l dl .� 4Ž . Ž .N j j

< <By using Lemmas A.8 and A.9 the ??? term converges for all ll and m to
Ž . Ž . Ž .zero in probability, while 1rM Ý H I u , l dl converges to HH f u, l dl du.N j

This proves the result. I

Ž .THEOREM 3.3. Suppose that Assumption 3.1 holds with m u ' 0. Then we
have

y1 y1ˆ'T u y u ª NN 0, c G V q W GŽ .Ž .Ž .T 0 DD h

with

p1 1 y12G s f u , l y f u , l = f u , l dl duŽ . Ž . Ž .Ž .H H u u0 04p 0 yp

p1 X1
q = log f u , l = log f u , l dl du,Ž . Ž .Ž . Ž .H H u u0 04p 0 yp

p1 1 2 y1 y1XV s f u , l =f u , l =f u , l dl du,Ž . Ž . Ž .H H u u0 04p 0 yp

p p1 1 Xy1 y1W s f u , l f u , m =f u , l =f u , mŽ . Ž . Ž . Ž .H H H u u0 08p 0 yp yp

=g l, yl, m dl dm du,Ž .4

and c s H rH 2 if S s N and c s 1 if SrN ª 0.h 4 2 h

PROOF. We obtain with the mean value theorem

ˆ 2 Ž i. ˆ=LL u y =LL u s = LL u u y uŽ . Ž .Ž . Ž .½ 5T T T 0 T T T 0ii i

Ž i. ˆ ˆ< < < < Ž .with u y u F u y u i s 1, . . . , p . If u lies in the interior of Q, weT 0 T 0 T
ˆ ˆŽ .have =LL u s 0. If u lies on the boundary of Q, then the assumption thatT T T

ˆ< <u is in the interior implies u y u G d for some d ) 0; that is, we obtain0 T 0
ˆ ˆ'Ž < Ž . < . Ž < < .P N =LL u G « F P u y u G d ª 0 for all « ) 0. Thus, the resultT T T 0
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follows if we prove:

i =2 LL u Ž i. y =2 LL u ª 0;Ž . Ž .Ž .T T T 0 p

ii =2 LL u ª G ;Ž . Ž .T 0 p

'iii T =LL u ª NN 0, c V q W .Ž . Ž . Ž .Ž .T 0 DD h

We have

p1 1 y1
=LL u s I u , l y f u , l =f u , l dlŽ . � 4Ž . Ž . Ž .ÝHT N j u j u j4p M ypj

and

p1 1 y10 s =LL u s f u , l y f u , l =f u , l dl du.Ž . Ž . Ž . Ž .� 4H H0 u u0 04p 0 yp

Therefore

' pT 1 y1'T =LL u s I u , l y f u , l =f u , l dlŽ . Ž .� 4Ž . Ž .ÝHT 0 N m j u j04p M ypj

'T
q O ž /M

Ž .which, by Theorem A.2, implies iii . Furthermore

p1 1 y12 2= LL u s I u , l y f u , l = f u , lŽ . Ž . Ž . Ž .Ž .�ÝHT N u u4p M ypj

y1X

y=f u , l =f u , l dl.Ž . Ž . 4u u

Ž . Ž .The smoothness conditions and Lemmas A.8 and A.9 imply i and ii . I

Ž .3.4. COROLLARIES AND REMARKS. i If the model class contains the true
model, then we have f s f. In this situation G, V and W simplify. Inu0

particular, we have V s G.
Ž . Ž . Ž .ii If g l, yl, m s 0 for example if the process is Gaussian then4

W s 0. If in addition f s f and c s 1, thenu h0

y1ˆ'T u y u ª NN 0, G .Ž .Ž .T 0 DD

wŽ . xIn Dahlhaus 1996a , Theorem 3.6 we prove that G is the limit of the Fisher
ˆ Ž .information matrix. Thus, u is Fisher efficient in this situation.T

Ž . Ž .iii If the model is stationary all f do not depend on u then Theorem 3.3u

gives the asymptotic distribution also in the case where the true underlying
Ž .process is nonstationary cf. Section 5 .

Ž .iv Alternatively, we get the asymptotic distribution if a nonstationary
model is fitted to a stationary process.
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Ž .v If both the model and the true process are stationary, then the above
limit-distribution becomes the same as for the classical MLE and the Whittle

w Ž .xestimate cf. Hosoya and Taniguchi, 1982 . We therefore have proved effi-
Žciency also for a new estimate minimum distance fit to segment spectral

.estimates in the classical stationary situation.

Ž .3.5 REMARK Model selection . In a practical application, the problem of
Ž .model selection arises. For example, we might wish to compare an AR 2 -model
Ž .where the coefficients are polynomials in time with a stationary AR p model

of higher order. We will not solve this problem satisfactorily in this paper.
wHowever, we now give a heuristic derivation of the AIC criterion Akaike

Ž .x1974 in this situation. The criterion is used in the example of Section 6.
ˆŽ .As a criterion of the quality of our fit we take E LL u , that is, we estimateT

the expected Kullback]Leibler information divergence between the model
Ž . Ž .and the true process up to a constant . A quadratic expansion of LL u

ˆŽ .around u and LL u around u gives0 T T

X
1 2ˆ ˆ ˆ3.2 LL u f LL u q u y u = LL u u y uŽ . Ž . Ž .Ž . Ž . Ž .T 0 T 0 0 T 02

and
X

1 2ˆ ˆ ˆ ˆLL u f LL u q u y u = LL u u y u .Ž . Ž . Ž . Ž . Ž .T 0 T T T 0 T T T 02

2 2 ˆŽ . Ž . Ž . Ž .Since E LL u f LL u , = LL u s G and = LL u ª G with G as in Theo-T 0 0 0 T T p
ˆŽ .rem 3.3, we may now estimate E LL u byT

1
y1ˆ ˆ ˆ ˆLL u q E u y u G u y u f LL u q tr G V q W� 4Ž .Ž . Ž . Ž . Ž .T T T 0 T 0 T T T

if SrN ª 0

with V, W and G as in Theorem 3.3. If the model is Gaussian and correctly
Ž .specified f s f , then W s 0 and V s G, leading tou0

pˆf LL u q ,Ž .T T T

ˆŽ Ž . Ž . .which is the AIC the AIC usually is 2 LL u q 2 prT q const.T T

Apart from the crucial assumption f s f there is another problem: in-u 0

spection of the proof of Lemma A.8 shows that

1 1 N
E LL u y LL u s 0 q q ln N ,Ž . Ž .T 0 0 2ž /M TN

which is of a higher order than prT. To get rid of this problem it may be
ˆŽ .helpful to look only at the difference of LL u for different models as inT T

Ž .Findley 1985 .
If a stationary model is fitted, the above considerations still hold. However,

Ža stationary model usually is fitted with a different empirical likelihood e.g.,
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the ‘‘exact’’ stationary Gaussian likelihood function or with the stationary
. Ž .Whittle function . Those likelihoods will in general not converge to LL u if

the true distribution of the process is nonstationary. However, for Yule]
Walker estimates it follows from the proof of Theorem 5.1 that

1 I lŽ .T
log f l q dlŽ .H u½ 54p f lŽ .u

Ž . Ž Ž .converges to LL u also for nonstationary processes where I l is theT
. Ž .ordinary periodogram . Thus, for AR k -processes and Yule]Walker esti-

mates we may take the usual

1 s 2 1 k q 1ˆk
log q q

2 2p 2 T

ˆŽ .and compare it to the above LL u q prT for a nonstationary fit.T T
Ž . Ž .Heuristically, the term LL u in 3.2 may be regarded as a bias term0

Ž .between the true f and the fitted f while the second is the variability ofûT ˆŽ .the estimate. Thus, minimizing the criterion LL u q prT means balancingT T
Žthese two terms e.g., for a higher model order, the first term usually becomes

.smaller while the second gets larger .
A careful investigation of the problems arising in model selection goes

beyond the scope of this paper. In particular, such an investigation would
require different asymptotics where the model order is allowed to increase
with the sample size. Another aspect is that nonstationary models usually

Žhave a more complicated parameter structure for example, time varying
.AR-models are no longer nested; cf. Section 6 .

Ž .We now discuss the situation where the mean function m u is unknown
Ž .and estimated by m trT at points u s trT. Letˆ

1 2m Xym< <I u , l [ d u , l ,Ž . Ž .N N2p H 0Ž .2, N

M m
p1 1 I u , lŽ .N j

LL u , m s log f u , l q dl,Ž . Ž .Ý HT u j½ 54p M f u , lŽ .yp u jjs1

ˆ ˜u [ arg min LL u , m and u [ arg min LL u , m .Ž . Ž .ˆT T T T
ugQ ugQ

ˆThe asymptotic properties of u follow from Theorems 3.2 and 3.3.T

THEOREM 3.6. Suppose that Assumption 3.1 holds and in addition that

1r2t t N
3.3 m y m s oŽ . ˆ pž / ž / ž /ž /T T T
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and

t t t y 1 t y 1 y1r23.4 m y m y m y m s o NTŽ . Ž .ˆ ˆ Ž .p½ 5 ½ 5ž / ž / ž / ž /T T T T

uniformly in t. Then

˜ ˆ'T u y u ª 0,ž /T T p

˜ ˆthat is, u is consistent and has the same asymptotic distribution as u .T T

The result is proved in the Appendix.

REMARK 3.7. If the trend function is parametric with parameter t , then
Ž . Ž . Ž . Ž .conditions 3.3 and 3.4 are fulfilled for m u s m u , for example, where tˆ ˆt̂

is the least squares estimate. For a kernel estimate m with bandwidth b weˆ T
need a bandwidth b 4 T 1r2. This means that the segment length of theT
local periodogram is not long enough for the mean estimate.

4. Fitting autoregressive models with time varying coefficients. In
this section we discuss autoregressive models with time varying coefficients.

Ž . Ž .Such models have been studied before by Subba Rao 1970 , Grenier 1983 ,
Ž . Ž .Hallin 1978 , Kitagawa and Gersch 1985 and Melard and Herteleer-de´

Ž .Schutter 1989 , for example. For simplicity we assume throughout this
section that the mean of the process is zero. Let X be a solution of thet, T
system of difference equations

p t t
4.1 a X s s « for t g Z,Ž . Ý j tyj , T tž / ž /T Tjs0

Ž .where a u ' 1 and the « are independent random variables with mean0 t
Ž . Ž .zero and variance 1. We assume that s u and the a u are continuous on Rj

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .with s u s s 0 , a u s a 0 for u - 0; s u s s 1 ; a u s a 1 forj j j j

Ž .u ) 1 and differentiable for u g 0, 1 with bounded derivatives. The exis-
Ž .tence of such a process X has been proved by Kunsch 1995 ; see also¨t, T

Ž . wŽ . xMiller 1968 . In Dahlhaus 1996a , Theorem 2.3 we prove that X ist, T
locally stationary with spectral density

y22 Ps uŽ .
f u , l s a u exp il j .Ž . Ž . Ž .Ý j2p js0

Ž . Ž u Ž . u Ž ..The estimation equations. Suppose now that a u s a u , . . . , a uu 1 p
2Ž . Žand s u depend on a finite dimensional parameter they may be, e.g.,u

. Ž .polynomials in time . With the above form of the spectrum f u, l andu

Ž Ž . .Kolmogorov’s formula cf. Brockwell and Davis 1987 , Theorem 5.8.1 we
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obtain after some straightforward calculations,
M1 1 1

2LL u s log s u qŽ . Ž .ÝT u j 2½2 M s uŽ .u jjs1

X
= S u a u q C uŽ . Ž . Ž .Ž .N j u j N j

y1
=S u S u a u q C uŽ . Ž . Ž . Ž .Ž .N j N j u j N j

X y1qc u , 0 y C u S u C uŽ . Ž . Ž .Ž .N j N j N j N j 5
with

p

c u , j s I u , l exp il j dlŽ . Ž . Ž .HN N
yp

Ny1 s ty1sH 0 h h X X ,Ž . Ý2, N wT u xyNr2qsq1, T wT u xyNr2qtq1, Tž / ž /N Ns, ts0
sytsj

X
C u s c u , 1 , . . . , c u , p and S u s c u , i y j .� 4Ž . Ž . Ž . Ž . Ž .Ž . i , js1, . . . , pN N N N N

w Ž . Ž .The analogous relation holds for LL u with 1rM Ý replaced by the integralj
Ž . Ž . xover time and I u, l replaced by the true spectrum f u, l .N

ˆA nice explanation of the nature of the estimate u can be obtained fromT
Ž .the following heuristics. The Yule]Walker estimate of a u in the segment of

length N with midpoint u is
y1a u s yS u C uŽ . Ž . Ž .ˆN N N

2Ž . Ž .y1with asymptotic variance proportional to s u S u , and
X y12s u s c u , 0 y C u S u C uŽ . Ž . Ž . Ž . Ž .N̂ N N N N

4Ž .with asymptotic variance 2s u . If the model is reasonably close to the true
12 2 2Ž . Ž . Ž . Ž .process we can expect s u s s u . Since log x s x y 1 y x y 1 qˆ ˆû N 2T

ŽŽ .2 . Ž .o x y 1 , we therefore obtain for LL u in a neighborhood of the minimum.T

M1 1 y1 24 2 2LL u f 2s u s u y s uŽ . Ž . Ž . Ž .ˆ ˆ� 4 Ž .ÝT N j u j N j2 M js1

M1 1 X y12q a u y a u s uŽ . Ž . Ž .ˆ ˆŽ .Ý u j N j N j2 M js14.2Ž .
ˆ=S u a u y a uŽ . Ž . Ž .ˆŽ .N j u j N j

M1 1 1
2q log s u q .Ž .ˆÝ N j2 M 2js1

ˆ Ž .Therefore, u is approximately obtained by a weighted least squares fit ofT

Ž . 2Ž . wa u and s u to the Yule]Walker estimates on the segments note thatu u
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the Yule]Walker estimate with data taper has good small sample properties
Ž .x Ž .}cf. Dahlhaus 1988 . If the parameters separate, that is, u s t , n with

Ž . Ž . 2Ž . 2Ž .a u s a u and s u s s u , we can estimate t and n separately.u t u n

The above representation justifies the use of graphical tools for model
selection and diagnostics on a plot of the Yule]Walker estimate over time.

A weighted least squares fit to a nonparametric estimate of the AR-coeffi-
cients weighted by the asymptotic inverse of the variance has been suggested

Ž . Ž .for time varying AR 1 processes by Young 1994 . He used the estimate as a
tool for fitting nonlinear time series models.

ˆ Ž .We now give an explicit formula for u if the a u are linear in u andT u
2Ž . Ž . Ž .s u is constant over time. Suppose that some functions f u , . . . , f u are1 K

w Ž . ky1.x Ž .given e.g., the polynomials f u s u and we fit the model a u sk j
K Ž . 2 Ž .XÝ b f u with s constant. Let b s b , . . . , b , . . . , b , . . . , b , thatks1 jk k 11 1 K p1 pK

Ž X 2 .X Ž . Ž . � Ž . Ž .4is, u s b , s . Let further F u be the matrix F u s f u f ui j i, js1, . . . , K

Ž . Ž Ž . Ž ..Xand f u s f u , . . . , f u . If A m B denotes the left direct product of the1 K
matrices A and B then direct calculations show that the parameters that

Ž .minimize LL u are given byT

y1M M1 1ˆ4.3 b s y F u m S u f u m C uŽ . Ž . Ž . Ž . Ž .Ý ÝT j N j j N jž / ž /M Mjs1 js1

and

M M1 1
X2 ˆ4.4 s s c u , 0 q b f u m C u ,Ž . Ž . Ž .ˆ Ž .Ý ÝT N j T j N jM Mjs1 js1

that is, we obtain a linear equation system similar to the Yule]Walker
equations. In case the model is incorrect, we obtain the same equations for

Ž X 2 . Ž .the parameter u s b , s , where 1rM Ý is replaced by the integral over0 0 0 j
time and S and C are replaced by the corresponding theoretical values. InN N

ˆ 2particular, the minimizing values u and u exist and are unique. If s is0 N
not modelled to be constant then the estimation equations are not linear.

Ž .If different submodels e.g., polynomials of different orders are fitted to
Ž . Ž . Ž .the a u for different j, the estimate is obtained as in 4.3 and 4.4 afterj

deleting the corresponding columns and rows in

M1
F u m S uŽ . Ž .Ý j N jM js1

and
M1

f u m C u .Ž . Ž .Ý j N jM js1

Least squares estimates. We now prove that a weighted least squares
Ž .estimate is an equivalent estimate for autoregressive models. Let f u, l su
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Ž 2Ž . . Ž .s u r2p k u, l whereu u

y2p
uk u , l s a u exp il jŽ . Ž . Ž .Ýu j

js0

u Ž .where a u ' 1,0

22 pT1 1 s trT 1 tŽ .u uL̃L u s log q a XŽ . Ý ÝT j tyj , T2 ž /½ 52 T 2p Ts trTŽ .utspq1 js0

and
˜ ˜u s arg min LL u .Ž .T T

ugQ

˜To derive the asymptotic properties of u we need the following lemma.T

LEMMA 4.1. Suppose X is a locally stationary process with meant, T
Ž . w xm u s 0 and uniformly bounded spectral density and f: 0, 1 ª R is differ-

entiable with bounded derivative. Suppose SrN ª 0. Then we have for all
fixed i, k, t and t g N ,0 1 0

Tyt 2M 11 1 t N S
f u c u , k y f X X sO qO .Ž . Ž .Ý Ýj N j tyi , T tqkyi , T p p 2ž / ž / ž /M T T T Njs1 tst0

Ž .If f s f and f and ­r­ u f are uniformly bounded in u , then theu u u

Ž .supremum over u of the above difference is also of order O NrT qp
Ž 2 2 .O S rN .p

Ž . Ž < < .PROOF. We have with Y [ X X and h s h srN h s q k rN ,j j, T jq < k < , T s

< <Ny1y kM M1 1 1
f u c u , k s f u h YŽ . Ž .Ž .Ý Ý Ýj N j j s SŽ jy1.qsq1M M H 0Ž .2, Njs1 js1 ss0

< <Ny1y kM1 1 S j y 1 q s q 1Ž .
s fÝ Ý ž /M H 0 TŽ .2, Njs1 ss0

N
=h Y q Os SŽ jy1.qsq1 p ž /T

< <Ty k1 t N
s f Y c q O ,Ý t t pž / ž /MS T Tts1

where
S

c s hÝt sH 0Ž .2, N sgSt

with

< < <� 4S s t y S j y 1 y 1 j s 1, . . . , M l 0, . . . , N y 1 y k .� 4Ž .t
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Ž . Ž .The smoothness properties of h together with h 0 s h 1 s 0 imply

S2

c s 1 q O uniformly in t .t 2ž /N

Therefore, the above expression is equal to
< < 2Ty k1 t N S

f Y q O q OÝ t p p 2ž / ž / ž /T T T Nts1

< <Ty t 211 t N S
s f X X q O q O . IÝ tyi , T tqkyi , T p p 2ž / ž / ž /T T T Ntst0

Ž .THEOREM 4.2. Suppose that Assumption 3.1 holds with m u ' 0 and S
fulfills TS4rN 4 ª 0. Then

˜ ˆ'T u y u ª 0ž /T T P

˜Ž .also in the misspecified case , that is, u has the same asymptotic distribu-T
ˆtion as u .T

PROOF. We only give a sketch. We have in the AR case

M 21 1 s uŽ .u j
LL u s logŽ . ÝT ½2 M 2pjs1

p1
u uq a u a u c u , ll y m .Ž . Ž . Ž .Ý ll j m j N j2 5s uŽ .u j ll , ms0

Lemma 4.1 therefore gives

˜sup LL u y LL u s o 1 ,Ž . Ž . Ž .T T p
u

which implies as in Theorem 3.2 that

ũ ª u .T p 0

In the same way we get

˜'T =LL u y =LL u s o 1Ž . Ž . Ž .Ž .T 0 T 0 p

and
2 2 ˜sup = LL u y = LL u s o 1 .Ž . Ž . Ž .T T p

u

˜ ˜By using the same Taylor expansion for u and LL as in the proof ofT T
Theorem 3.3 we now obtain the result. I

It is remarkable that Theorem 4.2 holds regardless of the choice of the data
taper and for most of the S and N. The effect of the choice of these
parameters can probably be seen only in higher order asymptotics. This
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ˆshows the low sensitivity of u with respect to the choice of S, N and h.T
Ž .Nevertheless, an adaptive selection procedure particularly for N would be

Ž .worthwhile see also Section 6 .
˜In the general case it is difficult to calculate u . However, in the ho-T

2Ž . 2 Ž 2 .moscedastic case s trT ' s , that is, u s s , t , we obtainu

2pT1 t
t4.5 t s arg min a XŽ . ˜ Ý ÝT j tyj , Tž /T Ttspq1 js0

and
2pT1 t

2 t̃ Ts s a X .˜ Ý ÝT j tyj , Tž /T Ttspq1 js0

t Ž .If the a are linear in t as in the polynomial case we therefore have a linearj
least squares problem.

ˆWe now compare the minimum distance estimate u to the least squaresT
approach in the heteroscedastic case. Suppose that the parameters separate,

Ž . u Ž . t Ž . 2Ž . 2Ž .that is, u s t , k where a u s a u and s u s s u . Thus, we havej j u k

s 2 uŽ .k
f u , l s k u , l .Ž . Ž .u t2p

Kolmogorov’s formula gives

p
2s uŽ .k

log f u , l dl s 2p log .Ž .H u 2pyp

Therefore,
p y1f u , l = f u , l dl s 0Ž . Ž .H u t u

yp

and
p p Xy12f u , l = f u , l dl s = log f u , l = log f u , l dl.Ž . Ž . Ž . Ž .Ž . Ž .H Hu t u t u t u

yp yp

Similarly,
p X

= log f u , l = log f u , l dl s 0.Ž . Ž .Ž . Ž .H t u k u
yp

w Ž .xIf the model is correctly specified f s f where u s t , k we thereforeu 0 0 00 ˆ Ž .obtain for the minimum distance estimate u s t , k from Theorem 3.3ˆ ˆT T T
that

y1'T t y t ª NN 0, V ,Ž .ˆ Ž .T 0 DD t 0

where
1

V s V u duŽ .Ht 0
0

and
p1 X

V u s = log f l, u = log f l, u dl.Ž . Ž . Ž .Ž . Ž .H t u t u0 04p yp
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We now study the behavior of the least squares estimate t as defined in˜T
Ž . Ž 2Ž .4.5 k may be estimated afterwards, for example, by some fit of s trT tok

.the estimated residuals at time point trT . The following theorem implies
that the LSE is less efficient in the heteroscedastic case. For simplicity we
restrict ourselves to the case where the model is correct.

Ž . Ž . Ž .THEOREM 4.3. Suppose Assumption 3.1 i ] iii holds with m u ' 0 and
f s f . Then we haveu0

'T t y t ª NN 0, U ,Ž .Ž .˜T 0 DD

where

y1 y1
1 1 12 4 2U s s u V u du s u V u du s u V u du .Ž . Ž . Ž . Ž . Ž . Ž .H H Hk k k½ 5 ½ 5 ½ 50 0 0

0 0 0

y1 y1 2Ž .We have U G V with U s V if and only if s u is constant.t t k0 0 0

PROOF. We only give a sketch. As in Theorem 4.2 we can show by using
' ˜ ˜Ž .Lemma 4.1 that T t y t ª 0 where t minimizes˜ ˜ ˜T T P T

M p1 I u , lŽ .N j˜̃LL t [ dlŽ . Ý HT M k u , lŽ .yp t jjs1

Ž . Ž .where S s 1 and N and h fulfill Assumption 3.1 iv and v . It is easy to show
that t minimizes0

f u , lp Ž .1 u 0˜̃LL t [ dl du.Ž . H H k u , lŽ .0 yp t

It now follows in exactly the same way as in the proofs of Theorem 3.2 and 3.3
that

t̃ ª t˜T P 0

and

y1 y1˜ ˜˜' ˜T t y t ª NN 0, G V G ,˜ Ž .Ž .T 0 DD

where

p1 11 1y12 2G̃ s f u , l = k u , l dl du s s u V u duŽ . Ž . Ž . Ž .H H Hu t t k0 0 04p 2p0 yp 0

and

p1 11 122 4Ṽ s f u , l = k u , l dl du s s u V u duŽ . Ž . Ž . Ž .Ž .H H Hu t t k20 0 04p 4p0 yp 0
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which proves the first part. The matrix

1 14 2s u V u du s u V u duŽ . Ž . Ž . Ž .H Hk k0 0
0 0

1 12s u V u du V u duŽ . Ž . Ž .� 0H Hk0
0 0

Ž .is nonnegative definite which leads with Theorem 12.2.21 5 of Graybill
Ž . y1 2Ž . y11983 to U G V . If s u is constant we have U s V . Conversely lett k t0 0 0

y1 Ž .U s V . Theorem 8.2.1 1 of Graybill implies that the matrix is singular,t 0
Ž X X.that is, there exists a vector x , y / 0 with

X1 2 2s u x q y V u s u x q y du s 0.Ž . Ž . Ž .H Ž . Ž .k k0 0
0

2Ž . Ž .Since V u is positive definite we have s u s yy rx which implies thek i i0

result. I

Thus, the least squares estimate is less efficient than the minimum
ˆdistance estimate u in the heteroscedastic case. It is heuristically clear thatT

a weighted least squares estimate will be fully efficient. However, such an
estimate has no computational advantages since the weights depend on the
unknown parameters and the estimation equations therefore are nonlinear.

Ž .A third candidate for estimation is the exact Gaussian maximum likeli-
w Ž .xhood estimate which is also efficient cf. Dahlhaus 1996b . Since a time

varying AR-model can be written in state space form the MLE can be
calculated by using the prediction error decomposition together with a nu-
merical optimization procedure. However, the system matrices in the state
space form are time varying, which leads to an extremely large computation
time. Therefore, the MLE is not a suitable candidate}in particular if differ-
ent models are fitted to the data in a model selection process.

The following procedure seems to be reasonable for autoregressive models
in a practical situation: for homoscedastic models one uses the linear equa-

Ž . Ž .tion system 4.3 and 4.4 together with the AIC as in Remark 3.5 for model
Ž .selection and a graphical investigation of the nonparametric estimate a u forˆ

diagnostic checking. An example is given in Section 6. For heteroscedastic
Ž .errors one may minimize the modified likelihood 4.2 which also leads to

Ž .linear estimation equations for models linear in the parameters . The final
estimate may be improved by a one-step MLE. Of course a detailed simula-
tion study is necessary to verify these suggestions.

ˆWe finally remark that the minimum distance estimate u can be com-T
puted for arbitrary locally stationary models while for the LSE and the state
space representation of the MLE a special form of the model is necessary.

5. Fitting stationary models to nonstationary processes. We now
Ž .discuss the situation where the fitted model is stationary, that is, f l su
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Ž .f u, l does not depend on u. In this situation we obtainu

p
11 H f u , l duŽ .0

LL u s log f l q dlŽ . Ž .H u½ 54p f lŽ .yp u

Ž .and therefore, for u s arg min LL u the equations0 u

p p1 y1 y1f u , l du =f l dl s f l =f l dl.Ž . Ž . Ž . Ž .H H Hu u u0 0 0ž /yp 0 yp

Ž .Thus u is that parameter for which f l approximates the time-integrated0 u
1 Ž .true spectrum H u, l du best.0

Ž .In the case of a stationary AR p -model, the above equations are the
Ž . Ž X 2 .Xtheoretical Yule]Walker equations, that is, we obtain for u s a , s0 0 0

Ž .Xwith a s a , . . . , a0 01 0 p

a s ySy1C and s 2 s c 0 q aX CŽ .0 0 0

with
p 1

c k s f u , l du exp ilk dl,Ž . Ž . Ž .H H½ 5
yp 0

X
C s c 1 , . . . , c p and S s c i y j .� 4Ž . Ž . Ž .Ž . i , js1, . . . , p

ˆ X 2 XŽ .For u s a , s we obtain the corresponding equationsˆ ˆT T T

ˆy1 ˆ 2 X ˆa s yS C and s s c 0 q a CŽ .ˆ ˆ ˆT T T T T T T

with
M Mp 1 1

c k s I u , l exp ilk dl s c u , k ,Ž . Ž .ˆ Ž . Ž .Ý ÝHT N j N j½ 5M Myp js1 js1

Xˆ ˆC s c 1 , . . . , c p and S s c i y j .� 4Ž . Ž . Ž .Ž .ˆ ˆ ˆ i , js1, . . . , pT T T T T

ˆ' Ž .The asymptotic distribution of T u y u is given in Theorem 3.3. Straight-T 0
forward calculations give in this case

1
c i y j 0Ž . i , js1, . . . , p02s

G s .1
0� 042s0

wThe simplification of the matrices V and W is only minor. Note that if the
Ž . Ž . Ž .true process is also stationary with f l / f l and g l, yl, m is constant,u 40

xthen W disappears}however, this does not hold in the nonstationary case.
ˆHowever, u is not the estimate one would usually use for stationaryT

Ž .models. For example, for AR-processes one would use tapered Yule]Walker
Ž .estimates, the Burg algorithm or Gaussian maximum likelihood estimates.

In the following theorem we prove that Yule]Walker estimates have the
ˆ Ž .same asymptotic behavior as u if the true process is possibly nonsta-T

tionary.
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Ž . Ž .THEOREM 5.1. Suppose the true process is of the form 2.3 with m u ' 0.
˜ 2Ž . Ž .Let u s a , s be the Yule]Walker estimate for a stationary AR p -model,˜ ˜T T

that is,

˜y1 ˜ 2 X ˜a s yS C , s s c 0 q a CŽ .˜ ˜ ˜ ˜T T T T T T T

Ty < k < ˜ X ˜Ž . Ž . Ž Ž . Ž .. � Žwith c k s 1rT Ý X X , C s c 1 , . . . , c p and S s c i y˜ ˜ ˜ ˜T js1 j jq < k < T T T T T

ˆ.4j . If u is as in Section 3 with S s 1 and N and a taper as ini, js1, . . . , p T

˜ ˆ' Ž .Assumption 3.1, then T u y u converges to zero in probability andT T

y1 y1˜'T u y u ª NN 0, G V q W GŽ .Ž .Ž .T 0 DD

with G as above and V, W as in Theorem 3.3.

PROOF. With u as above we have0

˜ ˜ ˜y S a q C s S a y aŽ .˜ž /T 0 T T T 0

and

ˆ ˆ ˆy S a q C s S a y a .Ž .ˆž /T 0 T T T 0

' Ž Ž . Ž ..Thus, it is sufficient to prove that T c k y c k tends to zero in proba-˜ ˆT T
Ž . Ž . M Ž .bility. Since c k s 1rM Ý c u , k , this follows from Lemma 4.1.T̂ js1 N j

Therefore, the first assertion is proved if we choose T 1r4 < N < T 1r2. The
asymptotic normality then follows from Theorem 3.3. I

For tapered Yule]Walker estimates, that is, the corresponding estimate
with

< <Ty k < <1 j j q k
c k s h h X XŽ .˜ ÝT 0 0 j jq < k <0 ž / ž /T TH 0Ž .2, T js1

ˆŽ .with a taper h that may be different from the taper h used in u , we0 T
˜expect the following result: u will no longer converge to u but toT 0

p
11 H h# u f u , l duŽ . Ž .0Xu s arg min log f l q dlŽ .H0 u½ 54p f lŽ .yp u

X1 2 y1 2 ˜'Ž . � Ž . 4 Ž . Ž .with h# u s H h v dv h u . We conjecture that T u y u is0 0 0 T 0

asymptotically normal with G, V, W as in Theorem 3.3 where H1 ??? du is0
1 Ž .always replaced by H h# u ??? du.0

A few remarks on the use of data tapers seem to be necessary. For
stationary time series, tapered estimates are less efficient than nontapered

westimates or equally efficient if the taper disappears asymptotically cf.
Ž .xDahlhaus 1988 . On the other hand, their small sample behavior is very

often much better, in particular the resolution problems of the nontapered
estimate are cured. In this paper, Theorem 5.1 says that the asymptotic
behavior of the nontapered Yule]Walker estimate is the same as of the

ˆ ˆŽ .tapered estimate u . However, for small samples, we conjecture that u willT T
be much better.
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6. A simulation example. We now briefly present a simulation example
ˆfor the estimate u in a misspecified situation. If we have a locally stationaryT

ˆprocess with smoothly varying characteristics, then it is likely that u leadsT
to reasonable results for a large sample size, since then the data within each
segment are close to a realization of a stationary process. The interesting
question now is how the estimate behaves for moderate or small sample sizes,
that is, whether the asymptotics together with the model of local stationarity
yields to a reasonable description also for small data sets.

Ž .We have generated T s 128 observations of a time varying AR 2 -process
Ž .4.1 with parameters as described below. Several models were fitted by using

Ž . Ž .equations 4.3 and 4.4 .
The choice of the data taper is different from stationary time series.

Theorem 3.3 says that there is no efficiency loss for overlapping segments.
Theorem 4.2 even means that all estimates are stochastically equivalent to
the least squares estimates, regardless of the taper. We have used the 100%

1Ž . w Ž .xTukey]Hanning taper h x s 1 y cos 2p x . This taper has, in addition to2

good bias properties with respect to leakage, also the advantage that the
observations at the edge of each segment are weighted down which makes
the estimate heuristically less sensitive against the instationarity within the
segments.

The shift should in general be as small as possible}the theoretical results
hold even for S s 1. However, this choice is very computer intensive. In the

Žsimulation, we chose S s 2. For the segment length, we chose N s 16 i.e.,
.M s 57 . We also tried other parameters. The results turned out to be not

very sensitive to the choice of N, S and h which is in accordance with
ŽTheorem 4.2. Nevertheless, an adaptive choice of N could be beneficial see

.the remarks at the end of this section .
Ž . Ž .As the parameters of the true AR 2 -process we chose s u ' 1,

a u s y1.8 cos 1.5 y cos 4p u ,Ž . Ž .1

a u s q0.81,Ž .2

together with Gaussian innovations « , that is, for u fixed, the roots of thet
characteristics polynomial are

1
exp "i 1.5 y cos 4p u .Ž .

0.9
Figure 1 shows the observations. As could be expected from the above
parameters they show a periodic behavior with time varying period-length.
The left picture of Figure 2 shows the true time varying spectrum of the
process. We have fitted a time varying AR-model of order p to the data where
the coefficients were modeled as polynomials with different orders. Thus, we
have fitted the model

K j

ka u s b u , j s 1, . . . , pŽ . Ýj jk
ks0

s 2 s c
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FIG. 1. T s 128 realizations of a time varying AR-model.

to the data. The model orders p, K , . . . , K were chosen by minimizing the1 p
AIC criterion

p
2AIC p , K , . . . , K s log s p , K , . . . , K q 2 p q 1 q K T.ˆŽ . Ž . Ý1 p 1 p jž /

js1

Table 1 shows these values for p s 2 and different K and K . The values for1 2
other p turned out to be larger. Thus, a model with p s 2, K s 6, K s 01 2
was fitted.

The corresponding spectrum is the right picture of Figure 2. The difference
Ž .to the true spectrum is plotted in Figure 3. The function a u and its1

Ž . Žestimate are plotted in Figure 4. For a u we obtained 0.71 a constant wasˆ2
. Ž . 2fitted because of K s 0 while the true a u was 0.81. Furthermore, s sˆ2 2

1.71 while s 2 s 1.0.
The quality of the fit is remarkable. However, two negative effects can be

Ž .observed. The fit of a u becomes rather bad outside u s 0.063 and u s1 1 M
0.938. This is not surprising, due to the behavior of a polynomial and the fact

Ž .that the use of LL u as a distance only punishes bad fits inside the intervalT

FIG. 2. True and estimated spectrum of a time varying AR-process.
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TABLE 1
Values of AIC for p s 2 and different polynomial orders

K1 4 5 6 7 8 9K 2

0 0.929 0.888 0.669 0.685 0.673 0.689
1 0.929 0.901 0.678 0.694 0.682 0.698
2 0.916 0.888 0.694 0.709 0.697 0.712

FIG. 3. Difference of estimated and true spectrum.

Ž .FIG. 4. True and estimated time varying coefficient a u .1
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w xu , u . This end effect vanishes if one chooses K s 8 instead of K s 6. A1 M 1 1
Ž .better way seems to be to modify LL u and to include periodograms ofT

w Ž Ž . .xshorter lengths at the end points e.g., I Nr 4T , l . The second effect isNr2
that in the frequency representation the peak is underestimated. This bias is

Ž Ž .due to the non-stationarity of the process on the intervals u y Nr 2T , u qj j

Ž .x Ž . Ž .Nr 2T , where I u , l and c u , k are calculated. It is obvious that aN j N j
smaller N could decrease this bias while the variance of the estimate would
be increased. This demonstrates the benefits of an adaptive choice of N,
which we have not considered.

We finally remark that this example is typical. The same properties can be
observed for other realizations. Even for T s 64 the results turned out to be
quite good.

7. Concluding remarks. We have presented an asymptotic theory for
processes that have an evolutionary spectral representation. We have derived
the asymptotic behavior of minimum distance estimates in the spectral
domain and of least squares estimates for time varying autoregressive pro-
cesses. The results also hold when the model is incorrect, that is, when it does
not contain the true process.

The theory leads to a new estimate for various nonstationary models.
Simulations show that this estimate works quite well in practice. It is
attractive that the classical stationary ARMA model can be included as a

Ž .special case as for AR-models in the simulation example . Furthermore, the
ŽAIC criterion seems to work reasonably well in this situation although a

.strict theoretical justification is still missing . In particular, the AIC can be
Žused to decide between stationary and nonstationary models as in the
.example where the stationary model corresponds to K s K s 0 .1 2

The parameter estimates are minimum distance estimates in the spectral
domain. Since our distance function is an approximate Gaussian likelihood,
the results can in principle only apply to models whose parameters can be
identified from this distance function, that is, to time varying linear models.
Here are the limitations of the approach}although it may be possible to
derive similar results with other distance functions for nonlinear models.

ŽAs with any asymptotic theory, our approach simplifies the situation for
example, time varying AR-processes have locally the spectral density of a

.stationary AR-process . The benefit of this simplification is a framework for
such processes, which makes theoretical results for parameter estimates
possible. It is obvious that it is possible to study the behavior of other
estimates within this framework. Furthermore, one may look for modifica-

Žtions of the suggested procedures, for example, with better bias properties cf.
.Remark A.3 and better edge properties. For stationary models, our asymp-

totic theory is the same as the classical asymptotic theory.
On the other hand, one could argue that with the simplification important

features of a nonstationary process are lost, for example, the special form of
0 wA for a time varying AR-process cf. Melard and Herteller-de Schutter´t, T

Ž .x1989 . However, one may use this theory also to study some of these effects.
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For example, one could study the asymptotic properties of the modified
< 0 Ž . < 2 < Ž . < 2 Ž .estimator for AR-models with A l instead of A u, l in LL u andt, T

Ž .LL u .T

APPENDIX

A central limit theorem. This appendix contains the technical details
of the proof of Theorems 3.2 and 3.3. It basically consists of the proof of
Theorem A.2. This theorem is of independent interest; it has applications that
go beyond the scope of this paper.

Ž .Suppose S, M, N, t , u and I u, l are defined as in Section 3. Forj j n
w x w xf: 0, 1 = yp , p ª C we set

M p1
J f [ f u , l I u , l dlŽ . Ž . Ž .Ý HT j N jM ypjs1

and
p1

J f [ f u , l f u , l dl du.Ž . Ž . Ž .H H
0 yp

' Ž Ž . Ž ..To prove asymptotic normality for T J f y J f we need the followingT
assumptions.

Ž .ASSUMPTION A.1. i Let X be a locally stationary process with meant, T
Ž . Ž . Žm u s 0 as in Definition 2.1. Suppose that the functions A u, l from

. Ž . Ž .Definition 2.1 and f u, l j s 1, . . . , k are 2p-periodic in l and the peri-j
odic extensions are differentiable in u and l with uniformly bounded deriva-

Ž . Ž . Ž .tive ­r­ u ­r­l A f , respectively . g is continuous.j 4
Ž . 1r4ii The parameters N, S and T fulfill the relations T < N <

T 1r2rln T and S s N or SrN ª 0.
Ž . Ž . w xiii The data taper h: R ª R with h x s 0 for all x f 0, 1 is continuous

on R and twice differentiable at all x f P where P is a finite set and
< YŽ . <sup h x - `.x f P

THEOREM A.2. Suppose X , . . . , X are realizations of a locally station-1, T T , T

ary process and Assumption A.1 is fulfilled. Then

'T J f y J f ª j ,Ž . Ž . Ž .Ž .T j j DD jjs1, . . . , k js1, . . . , k

where j is a Gaussian random vector with mean zero and

p1 2cov j , j s 2p c f u , l f u , l q f u , yl f u , l dlŽ . Ž . Ž . Ž .Ž . � 4H Hi j h i j j
0 yp

p

q f u , l f u , ym f u , l f u , m g l, yl, m dl dm duŽ . Ž . Ž . Ž . Ž .HH i j 4
yp

Ž 1 Ž .4 . Ž 1 Ž .2 .2with c s H h u du r H h u du if S s N and c s 1 if SrN ª 0.h 0 0 h
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A.3. REMARKS. The conditions on N seem to be restrictive while the
Ž .assumption S F N is reasonable since it makes no sense to omit data .

'However, we regard it as remarkable that T consistency holds at all. Most
' Ž .of the restrictions on N result from the T -unbiasedness Lemma A.8 . This

can be made clear by some heuristics: with the periodogram over the first
segment we estimate f at time Nr2T. To conclude from this to f at zero
' 'T consistently, we need Nr T ª 0. On the other hand the bias of the

Ž . Ž y2 .periodogram with a data taper is O N which leads to the condition
2 y2' Ž .T rN ª 0. We conjecture that the rate O N cannot be improved with a

periodogram type estimator. A periodogram without taper would lead to a
y1 ' 'Ž .bias of O N and therefore to T rN ª 0 which contradicts Nr T ª 0.

'Thus, without taper it is not possible to achieve T -consistency at all. It is
noteworthy that the use of a data taper does not lead to an increase of the
variance if SrN ª 0. However, this is heuristically clear since in this case all

Ž .observations are used ‘‘equally often’’ as T ª ` . Note the similarity of the
wcovariance structure to an analogous result in the stationary case cf.

Ž . xBrillinger 1981 , Theorem 7.6.1 .

Theorem A.2 is proved by proving the convergence of the cumulants of all
Ž .orders Lemmas A.8, A.9 and A.10 . A key role in the proofs is played by the

q Žfollowing function. Let L : R ª R, T g R be the periodic extension withT
.period 2p of

< <T , a F 1rT ,
L a [Ž .T ½ < < < <1r a , 1rT F a F p .

Ž xLEMMA A.4. Let k, ll , S, M, S, T g N, a , b, n , m x g R and P [ yp , p .
We obtain the following with a constant K independent of T.

Ž . Ž . w xa L a is monotone increasing in T and decreasing in a g 0, p .T
Ž . Ž .k ky1b H L a da F KT for all k G 1.P T
Ž . Ž .c H L a da F K ln T for T ) 1.P T
Ž . < < Ž .d a L a F K.T
Ž . Ž . Ž . Ž .e H L b y a L a q g da F KL b q g ln T.P T T T
Ž . Ž .k Ž . ll ŽŽ . .k Ž . ll Ž .k ŽŽ . . llf L n L m F L v y m r2 L m q L n L v y m r2 .T T T T T T
Ž . Ž . Ž . < <g L ca F K L a for ca F p .T C T
Ž . Ž . ll Ž Ž ..k Ž ll ky1 . � 4 � 4h H L a L S ayb daFK N M rS ln M ks1 ln S lls1 .P N M
Ž . Ž . Ž . Ž Ž .. Ž Ž ..i H L l y x L x y m L S a y x L S x y b dxP N N M M

Ž . Ž . Ž Ž ..F K NrS ln M ln S L l y m L S a y b .N M
Ž . Ž . Ž . Ž Ž .. Ž . Ž .j H L lyx L xym L S ayx dxFK NrS ln M ln SL lym .P N N M N

PROOF. The proofs are technical but straightforward. Some of them may
Ž . Ž .be found in Dahlhaus 1983, 1985 . Part f is proved by considering the cases

< < < < < < < < Ž . Ž . Ž .n G v y m r2 and m G v y m r2. Part e is a consequence of f and g .
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Ž .Part h is proved by splitting the integral into H ??? and H ??? s< a < F1r S < a < G1r S

Ž . Ž . Ž . Ž .Ý H ??? . Parts i and j then follow from f and h . Ij w jr S, Ž jq1.r S x

For a complex-valued function f we define
Ny1

H f ? , l [ f s exp yilsŽ . Ž . Ž .Ž . ÝN
ss0

Ž .and, for the data taper h x ,
?

kH l [ H h , l ,Ž .k , N N ž /ž /N
and

H l s H l .Ž . Ž .N 1, N

Direct calculation gives
p

H b y a H a y g da s 2p H b y g .Ž . Ž . Ž .H k , N ll , N kqll , N
yp

Ž .LEMMA A.5. Let N, T g N. Suppose h fulfills Assumption A.1 iii and
w xc : 0, 1 ª R is differentiable with bounded derivative. Then we have for 0 F

t F N,

? ? t N
X< <H c h , l s c H l q O sup c u L lŽ . Ž . Ž .N N Nž / ž /ž / ž / ž /T N T Tu

< < < X <s O sup c u L l q sup c u L l .Ž . Ž . Ž . Ž .N Nž /
uuFNrT

Ž .The same holds, if c ?rT is replaced on the left side by numbers c withs, T
< Ž . < Ž y1 .sup c y c srT s O T .s s, T

PROOF. Summation by parts gives

? ? t
H c h , l y c H lŽ .N Nž / ž /ž / ž /T N T

Ny1 s t s
s c y c h exp yilsŽ .Ý ½ 5ž / ž /ž /T T Nss0

Ny1 s s y 1 ?
s y c y c H h , lÝ s½ 5ž / ž /ž /ž /T T Nss0

N y 1 t ?
q c y c H h , l .N½ 5 ž /ž /ž / ž /T T N

Ž w Ž .We now have again with summation by parts cf. Dahlhaus 1988 , Lemma
x.5.4

?
H h , l F KL l F KL lŽ . Ž .s s Nž /ž /N
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uniformly in s F N which gives the result with the mean value theorem. I

We remark that Lemma A.5 also holds under weaker assumptions on the
Ž .data taper e.g., if h is of bounded variation .

LEMMA A.6. Let c be differentiable with bounded derivative and t sj

Ž . Ž .S j y 1 q Nr2, u s t rT with N, M, S and T as in Assumption A.1 ii .j j
Then

M
X< < < <c u exp ilSj F K sup c u q sup c u L Sl .Ž . Ž . Ž . Ž . Ž .Ý j Mž /

u ujs1

The proof is similar to the above proof.

Ž .LEMMA A.7. Suppose h fulfills Assumption A.1 iii . Then

2y1< <H l F KN L l .Ž . Ž .N N

wThe result is proved by using repeated summation by parts cf. Dahlhaus
Ž . x1988 , Lemma 5.4 .

LEMMA A.8. Suppose Assumption A.1 holds. Then

E J f s J f q o Ty1r2 .Ž . Ž . Ž .T

PROOF. We have

M p1 1
E J f s f u , l cum d u , l , d u , yl dl.Ž . Ž . Ž . Ž .Ž .Ý HT j N j N jM 2p H 0Ž .yp 2, Njs1

Since

p
0 0cum X , X s exp ig s y t A g A g dgŽ . Ž . Ž . Ž .Ž .Hs , T t , T s , T t , T

yp

the above expression is equal to
pM1 1 ?

0f u , l H A g h , l y gŽ .Ž .HHÝ j N t yNr2q1q ? , T ž /jž /M 2p H 0 NŽ .2, Njs1 yp

?
0=H A g h , g y l dg dl.Ž .N t yNr2q1q ? , T ž /jž /N

Application of Lemma A.5 and A.6 shows that this is equal to
p 2M < < p1 H l y g 1Ž .N 2

f u , l f u , l dg dl q O L l dl .Ž .Ž . Ž .HHÝ Hj j Nž /M 2p H 0 TŽ . yp2, Njs1 yp
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Ž . p Ž . Ž .Let g u, l s H f u, l q g f u, g dg . Since f and f are both differen-yp

Žtiable, g is twice differentiable in l with bounded second derivative partial
. Ž .integration . Thus the above expression is, with Lemmas A.4 b and A.7,

equal to
M 2< <p1 H l NŽ .N

g u , l dl q O ln NŽ .Ý H j ž /M 2p H 0 TŽ .yp 2, Njs1

M 4< <p1 L l NŽ .N2< <s g u , 0 q O l dl q O ln NŽ .Ý Hj 3 ž /ž /M TNypjs1

A.1Ž .

N
y1 y2s J f q O M q O N q O ln N . IŽ . Ž . Ž . ž /T

LEMMA A.9. Suppose Assumption A.1 holds. Then

T cov J f , J f s cov j , j q o 1Ž . Ž . Ž .Ž . Ž .T 1 T i i j

with j as in Theorem A.2.i

PROOF. We set i s 1 and j s 2.
pMT

T cov J f , J f s f u , l f u , mŽ . Ž . Ž .Ž . Ž .HHÝT 1 T 2 1 j 2 k2
2p MH 0Ž .Ž . j, ks1 yp2, N

= cum d u , l , d u , ymŽ .Ž .Ž .N j N k

=cum d u , yl , d u , mŽ .Ž .Ž .N j N k

qcum d u , l , d u , mŽ .Ž .Ž .N j N k

A.2Ž .

=cum d u , yl , d u , ymŽ .Ž .Ž .N j N k

qcum d u , l , d u , yl ,Ž . Ž .Ž N j N j

d u , m , d u , ym dl dm.Ž . Ž . .N k N k

We study the behavior of the three terms separately. The first term is with
similar arguments as in the proof of Lemma A.8:

p
?

0H A g h , l y gŽ .HH N t yNr2q1q ? , T 1 1ž /jž /Nyp

?
0= H A g h , ym q gŽ .N t yNr2q1q ? , T 1 1ž /kž /N

?
0= H A g h , yl y gŽ .N t yNr2q1q ? , T 2 2ž /jž /N

?
0= H A g h , m q gŽ .N t yNr2q1q ? , T 1 2ž /kž /N

= exp i g q g t y t dg dg ,Ž .� 4Ž .1 2 j k 2 1
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which, by using Lemma A.5, is equal to

p

A u , g A u , yg A u , g A u , ygŽ . Ž . Ž . Ž .HH j 1 k 1 j 2 k 2
yp

= H l y g H g y m H m q g H yg y lŽ . Ž . Ž . Ž .N 1 N 1 N 2 N 2

A.3Ž .

=exp i g q g t y t dg dgŽ .� 4Ž .1 2 j k 2 1

plus a remainder term R withj, k

M

f u , l f u , m RŽ .Ž .Ý 1 j 2 k j , k
j, ks1

p
N

F KM L l y g L g y m L m q gŽ . Ž . Ž .HH N 1 N 1 N 2T yp

A.4Ž .

=L yg y l L S g q g dg dgŽ . Ž .Ž .N 2 M 1 2 2 1

since, by Lemma A.6,

M

f u , l A u , g A u , g exp iS g q g j s O L S g q g .� 4Ž . Ž . Ž . Ž .Ž .Ž . ŽÝ 1 j j 1 j 2 1 2 M 1 2
js1

Ž . Ž .From Lemma A.4 j follows that A.4 is bounded by

N N 2KM ln M ln S ln NL l y m .Ž . Ž .NT S

Integration over l and m gives with the constants the upper bound
Ž .Ž . Ž . Ž . Ž .K NrT ln M ln S ln N which tends to zero. We now replace f u , l by1 j
Ž . Ž . Ž .f u , g and then f u , m by f u , g . Lemma A.6 gives1 j 1 2 k 2 k 1

M

f u , l y f u , g A u , g A u , g exp i g q g tŽ . Ž . Ž . Ž .Ž . Ž .Ž .Ý 1 j 1 j 1 j 1 j 2 1 2 j
js1

< <F K l y g L S g q gŽ .Ž .1 M 1 2

and therefore we obtain for the corresponding difference term the upper
bound

p
T

K L g y m L m q g L yg y lŽ . Ž . Ž .HHHH N 1 N 2 N 22 2M N yp

2
=L S g q g dg dg dl dmŽ .Ž .M 1 2 2 1

T NM ln2 N
2F K ln N ln S F K ln S ª 0,2 2 S NM N
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where the integration is done in the order l, g , m. Thus, the first term of2
Ž .A.2 is equal to

pMT
f u , g f u , g A u , g A u , ygŽ . Ž . Ž . Ž .HHÝ 1 j 1 2 k 1 j 1 k 12

MH 0� 4Ž . j, ks1 yp2, N

< < 2=A u , g A u , yg H g q gŽ . Ž . Ž .j 2 k 2 2, N 1 2

=exp i g q g t y t dg dg q o 1 .Ž . Ž .� 4Ž .1 2 j k 1 2

Ž . Ž . Ž .Similarly, we now replace A u , g by A u , yg and A u , yg byj 2 j 1 k 2
Ž .A u , g . Afterwards we substitute a s g q g , g s g and obtain withk 1 1 2 1
Ž . Ž . Ž .h u, g s f u, g f u, g for the above expression,i i

Ny1 MpT r s
2 2h h h u , g h u , gŽ . Ž .Ý ÝH 1 j 2 k2 ž / ž /N NypMH 0� 4Ž . r , ss0 j, ks12, N

p

= exp ia r y s q iaS j y k da dg q o 1 .� 4Ž . Ž . Ž .H
yp

If S s N, this is equal to

Mp2p TH 0Ž .4, N
h u , g h u , g dg q o 1Ž . Ž . Ž .ÝH 1 j 2 j2

ypMH 0� 4Ž . js12, N

p2p H 14 2 y1s f u , g f u , g f u , g dg du q o M ,Ž . Ž . Ž . Ž .H H 1 22H 0 yp2

1 Ž .kwhere H s H h u du. If S F N, the above expression is equal tok 0

Mp2p T
h u , g h u , gŽ . Ž .ÝH 1 j 2 k2

ypMH 0� 4Ž . j, ks12, N
< <jyk -NrS

Ny1 r s
2 2= h h dg q o 1 .Ž .Ý ž / ž /N Nr , ss0

Ž .ryssS kyj

Straightforward calculations show that this is equal to

p1 22p f u , g f u , g f u , g dg du q o 1 .Ž . Ž . Ž . Ž .H H 1 2
0 yp

Ž .With the substitution m ª ym we see that the second term of A.2 converges
to the same expression with f u , yg instead of f u , g . An analogousŽ . Ž .2 2

Ž .derivative for the third term of A.2 leads to the result. I

LEMMA A.10. Suppose Assumption A.1 holds. Then

T ll r2 cum J f , . . . , J f s o 1 .Ž . Ž . Ž .Ž .T 1 T ll
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Ž x Ž .PROOF. Let P s yp , p , l s l , . . . , l ,1 ll

T ll r2 cum J f , . . . , J fŽ . Ž .Ž .T 1 T ll

yllll r2s T 2p MH 0� 4Ž .2, N

M ll

= f u , l cum d u , l d u , yl , . . . ,Ž . Ž . Ž .Ý ŁH žn j n N j 1 N j 1n 1 1½ 5llP ns1j , . . . , i s11 lly1

d u , l d u , yl l ll dl .Ž .Ž . Ž .N j ll N j llll ll

w Ž .Using the product theorem for cumulants cf. Brillinger 1981 , Theorem
x � 42.3.2 we have to sum over all indecomposable partitions P , . . . , P with1 m

< <P G 2 of the schemei

a b1 1
. .. . ,. .

a bll ll

Ž . Ž .where a and b stand for the position of d u , l and d u , yl ,i i N j i N j ii i

respectively. This sum will be denoted by Ý . The elements of a set P fromi p i
such a partition are assumed to be in a fixed order, so that the following

� 4 � 4definitions are reasonable. If P s c , . . . , c we set P [ c , . . . , c ,i 1 k i 1 ky1
ky1Ž .b [ b , . . . , b and b s yÝ b . Furthermore, let m be the size ofP c c c js1 ci 1 ky1 k j

Ž .the corresponding partition and b [ b , . . . , b . Using this notation, weP P1 m

Ž .obtain as in the proof of Lemma A.8 i for the above expression
M ll

yllll r2s T 2p MH 0 f u , l� 4Ž . Ž .Ý Ý ŁH2, N n j nn½ 5llP ns1llip j ??? j s11 ll P

ll ?
0= H A b h , l y bŽ .ŁH N t yNr2q1q ? , T a n až /j n nž /½ n2 llym NP ns1

?
0=H A b h , yl y bŽ .N t yNr2q1q ? , T b n bž /j n nž / 5n N

m ll
2 llym ll= g b exp i t b q b l db l dl .Ž . Ž .Ž .Ž .Ł Ý< P < P j a b½ 5n n n n nž /ns1 ns1

Ž 0 Ž . Ž . .As in Lemma A.9, we now replace successively all H A b h ?rN , l y bN t jnŽ . Ž .by the corresponding A u , b H l y b terms. We get, for example, as anj Nn

upper bound for the error with Lemma A.5,

ll r2 llT N
K M L l y b L yl y bŽ . Ž .Ý ŁH H N n a N n bll ll n n½ 5ll 2 lly1 TM N P P ns1ip

ll
2 llym ll= L S b q b l db l dl .Ž . Ž .Ž .Ž .Ł M a bn n½ 5

ns2
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The special structure of a partition is expressed in the structure of the
mcorresponding b. Every b , c g D P is contained inc ks1 k

ll

L l y b L yl y bŽ . Ž .Ł N n a N n bn n
ns1

exactly twice as an argument, once with positive and once with negative sign.
ll Ž .We therefore have Ý yb y b s 0 while every partial sum is differentns1 a bn n

from 0 by the indecomposability of the partition.
Ž .Integration over all l and afterwards over all b starting with b givesn a1

as an upper bound,

T ll r2 N N ll
ll lly1 lly1K M ln N ln M ln SŽ . Ž . Ž .ll ll lly1TM N S

T ll r2 N llF K ln N ln M ln S ª 0.Ž .lly1 TT

Similarly, the resulting main term is bounded by

ll r2 llT
K S L l y b L yl y b L S b q bŽ . Ž . Ž .Ž .ŁH Hi p N n a N n b M a bll ll n n n n½ 5ll 2 llymM N P P ns1

=l2 llym db l ll dlŽ . Ž .
T ll r2 N ll T ll r2

ll llF K M ln M ln S ln N F K ln M ln S ln N ª 0,Ž . Ž .ll ll lly1 lly1M N S T

which proves the result. I

˜PROOF OF THEOREM 3.6. Consistency of u follows with the proof ofT
Theorem 3.2 if we show that

sup LL u , m y LL u , m ª 0Ž . Ž .ˆT T p
u

that is, if we show

M p1
m mˆsup I u , l y I u , l f u , l dl ª 0,� 4Ž . Ž . Ž .Ý H N j N j u j pM ypu js1

Ž . Ž .y1where f u , l s f u , l . This will be proved below. A Taylor expansionu j u j
then gives

2˜ ˜' 'T =LL u , m y =LL u , m s = LL u , m T u y uŽ .ˆ ˆ ˆŽ . Ž .½ 5ž /T T T 0 T T 0

˜< < < <with u y u F u y u . As in the proof of Theorem 3.3, we obtain0 T 0
˜' Ž .T =LL u , m ª 0. In the proof of Theorem 3.3 we showed thatˆT T p

ˆ' 'T =LL u , m q G T u y u ª 0,Ž . Ž .T 0 T 0 p
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that is, the result follows if we prove that

' 'T =LL u , m y T =LL u , m ª 0Ž .Ž .ˆT 0 T 0 p

and
2= LL u , m ª G.ˆŽ .T p

Together with the proof of Theorem 3.3 the result therefore follows if we show
that

M p1
m mˆ'A.5 T I u , l y I u , l f u , l dl ª 0Ž . � 4Ž . Ž . Ž .Ý H N j N j u j p0M ypjs1

Ž . Ž .y1for f u, l s =f u, l andu u

M p1
m mˆA.6 sup I u , l y I u , l f u , l dl ª 0Ž . � 4Ž . Ž . Ž .Ý H N j N j u j pM ypu js1

Ž . Ž .y1 Ž . 2 Ž .y1for f u, l s f u, l and f u, l s = f u, l . The last expression isu u u u

equal to

M p1 y1
sup f u , l 2p H 0� 4Ž .Ž .Ý H u j 2, NM ypu js1

Xym mym̂ mym̂ Xym= d u , l d u , yl q d u , l d u , ylŽ . Ž . Ž . Ž .� N j N j N j N jA.7Ž .

mym mymˆ ˆqd u , l d u , yl dlŽ . Ž . 4N j N j

which by means of the Cauchy]Schwarz inequality is with
M p1 2y1 mym̂d [ 2p H 0 d u , l dl� 4Ž . Ž .Ý HT 2, N N jM ypjs1

bounded by
1r2M p1

m 1r2< <sup f u , l 2 I u , l dl d q d .Ž . Ž .Ý Hu N j T T½ 5ž /M ypu , u , l js1

Ž . M p @ m Ž . Ž .Since 1rM Ý H I u , l dl is bounded in probability Theorem A.2js1 yp N j
and

2M N1 t y Nr2 q s t y Nr2 q sj jy1
d s H 0 m y mŽ . ˆÝ ÝT 2, N ½ 5ž / ž /M T Tjs1 ss1

N
s o ,p ž /T

1r2' 'Ž . Ž .A.6 is proved. To prove A.5 we note that T d ª 0. Since T d ¢ 0 weT T
Ž .need a better estimate for the first and second term of A.7 . Summation
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y1 ty1' Ž Ž .4 Ž . Ž .by parts gives with c [ T 2p MH 0 , H l [Ý h srN =T 2, N t, N ss0
Ž .exp yils and t s t y Nr2,j j

M p1 y1 Xym mym̂'T f u , l 2p H 0 d u , l d u , yl dl� 4Ž .Ž . Ž . Ž .Ý H u j 2, N N j N j0M ypjs1

M Ny1 t q t q 1 t q t q 1j js c m y m̂Ý ÝT ½ 5ž / ž /T Tjs1 ts0

p
Xym= f u , l d u , l H yl y H yl dlŽ . Ž .� 4Ž . Ž .H u j N j tq1, N t , N0yp

M Ny1 t q t q 1 t q t q 1j js yc m y m̂Ý ÝT ½ 5ž / ž /T Tjs1 ts0

t q t t q tj jy m y m̂½ 5ž / ž /T T

p
Xym= f u , l d u , l H yl dlŽ .Ž . Ž .H u j N j t , N0yp

M t q N t q Nj jqc m y m̂ÝT ½ 5ž / ž /T Tjs1

p
Xym= f u , l d u , l H yl dl.Ž .Ž . Ž .H u j N j N , N0yp

Ž . Ž .Summation by parts implies H yl F KL l uniformly in t. We now cant, N N
prove by similar methods as in the proof of Lemma A.9 that

p
Xymvar f u , l d u , l H yl dl s O NŽ . Ž .Ž . Ž .H u j N j t , N0yp

XymŽ .uniformly in u and t. Since Ed u , l s 0 the whole expressions tends toj N j
Ž .zero in probability. The second term of A.7 is treated in the same way,

which proves the result. I
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