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The setting is a stationary, ergodic time series. The challenge is to
construct a sequence of functions, each based on only finite segments of
the past, which together provide a strongly consistent estimator for the
conditional probability of the next observation, given the infinite past.
Ornstein gave such a construction for the case that the values are from a
finite set, and recently Algoet extended the scheme to time series with
coordinates in a Polish space.

The present study relates a different solution to the challenge. The
algorithm is simple and its verification is fairly transparent. Some exten-
sions to regression, pattern recognition and on-line forecasting are men-
tioned.

1. Introduction. In this section, we give a brief overview of the situa-
tion with respect to nonparametric inference under the most lenient mixing

Ž .conditions. Impetus for this line of study follows Roussas 1969 and Rosen-
Ž .blatt 1970 , who extended ideas in the nonparametric regression literature

for i.i.d. variables to give a theory adequate for showing, for example, that for
� 4X a real Markov sequence, under Doeblin-like assumptions, the obviousi
kernel forecaster is an asymptotically normal estimator of the conditional

Ž < .expectation E X X s x . In the 1980’s, there was an explosion of works0 y1
which showed consistency in various senses for nonparametric autoregression
and density estimators under more and more general mixing assumptions
w Ž . Ž . Ž .e.g., Castellana and Leadbetter 1986 , Collomb 1985 , Gyorfi 1981 and¨

Ž .x Ž .Masry 1986 . The monograph by Gyorfi, Haerdle, Sarda and Vieu 1989¨
gives supplemental information about nonparametric estimation for depen-
dent series.

Such striving for generality stems from the inconvenience of mixing condi-
tions; satisfactory statistical tests are not available. Some recent develop-
ments have succeeded in disposing of these conditions altogether. In the
Markov case, aside from some smoothness assumptions, it is enough that an
invariant law exist to get the usual pointwise asymptotic normality of kernel

w Ž .xregression Yakowitz 1989 . In the case of Harris recurrence but no invari-
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ant law, one can still attain a.s. pointwise convergence of a nearest-neighbor
regression algorithm in which the neighborhood is chosen in advance and
observations continue until a prescribed number of points fall into that

w Ž .xneighborhood Yakowitz 1993 .
wPushing beyond the Markov hypothesis, by a histogram estimate Gyorfi,¨

Ž .x wHaerdle, Sarda and Vieu 1989 or a recursive-type estimator Gyorfi and¨
Ž .xMasry 1990 , one can infer the marginal density of an ergodic stationary

time series provided only that there exist an absolutely continuous transition
wdensity. Here the limit may have been attained; it is now known Gyorfi,¨

Ž . Ž . xHaerdle, Sarda and Vieu 1989 and Gyorfi and Lugosi 1992 , respectively¨
that without the conditional density assumption, the histogram estimator
and the kernel and recursive kernel estimates for the marginal density are
not generally consistent.

Ž .The situation with respect to auto regression is more inclusive for ergodic,
stationary sequences. In a landmark paper, following developments by Orn-

Ž .stein 1978 for the case that the time-series values are from a finite set, for
wŽ . xtime series with values in a Polish space, Algoet 1992 , Section 5 has

Ž < .provided a data-driven distribution function construction F x X , X , . . .n y1 y2
which a.s. converges in distribution to

< < yP X F x X , X , . . . s P X F x X ,Ž . Ž .0 y1 y2 0

y Ž .where X s X , X , . . . .y1 y2
The goal of the present study is to relate a simpler rule, the consistency of

which is easy to establish. In concluding sections, it is noted that as a result
of these developments, one has a consistent regression estimate in the
bounded time-series case, and implications to problems of pattern recognition
and on-line forecasting are mentioned. It is to be conceded that our algorithm,
as well as those of Algoet and Ornstein, can be expected to require very large
data segments for acceptable precision.

As a final general comment, we note that the assumption of ergodicity may
Ž .be relaxed somewhat. Thus in view of Sections 7.4 and 8.5 of Gray 1988 , one

sees that a nonergodic stationary process has an ergodic decomposition. With
probability 1, a realization of the time series falls into an invariant event on
which the process is ergodic and stationary. Then one may apply the develop-
ments of this study to that event as though it were the process universe. Thus
the analysis here also remains valid for stationary nonergodic processes. Our
analysis is restricted to the case that the coordinates of the time series are
real, but it is evident that the proofs extend directly to the vector-valued case.

wŽ . xIn view of Theorem 2.2 of Billingsley 1968 , page 14 it will be clear that the
formulas and derivations to follow also hold if the X ’s are in a Polish space.i

� 42. Estimation of conditional distributions. Let X s X denote an
real-valued doubly infinite stationary ergodic time series. Let

Xy1 s X , X , . . . , XŽ .yj yj yjq1 y1
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be notation for a data segment into the j-past, where j may be infinite. For a
Borel set C one wishes to infer the conditional probability

< y < y1P C X s P X g C X .Ž . Ž .0 y`

The algorithm to be promoted here is iterative on an index k s 1, 2, . . . .
Ž < y.For each k, the data-driven estimate of P C X requires only a segment of

Ž . yfinite but random length of X . One may proceed by simply repeating the
estimation process for k s 1, 2, . . . , until a given finite data record no longer
suffices for the demands of the algorithm. The goal of the study will be to
show that a.s. convergence can be attained; that is, our estimation is strongly
consistent in the topology of weak convergence.

The estimation algorithm is now revealed in the simple context of binary
sequences, and afterwards we show alterations necessary for more general
processes.

Ž .Define the sequences l and t recursively k s 1, 2, . . . . Set l s 1ky1 k 0
and let t be the time between the occurrence of the patternk

B k s X , . . . , X s Xy1Ž . Ž .yl y1 ylky 1 ky1

at time y1 and the last occurrence of the same pattern prior to time y1.
More precisely, let

t s min t ) 0: Xy1yt s Xy1 .� 4k yl yt ylky 1 ky1

Set

l s t q l .k k ky1

Ž .The observed vector B k a.s. takes a value having positive probability; thus,
Ž .by ergodicity, with probability 1 the string B k must appear infinitely often

y2 Ž < y. Ž .in the sequence X . One denotes the kth estimate of P C X by P C andy` k
defines it to be

1
1 P C s 1 X .Ž . Ž . Ž .Ýk C yt jk 1FjFk

Here 1 is the indicator function for C.C
For the general case, we use a sub-s-field structure motivated by Algoet

wŽ . x � 41992 , Section 5.2 , which is more general. Let PP s A , i s 1, 2, . . . , mk k , i k
Ž .be a sequence of finite partitions of the real line by finite or infinite right

Ž .semiclosed intervals such that s PP is an increasing sequence of finitek
s-algebras that asymptotically generate the Borel s-field. Let G denote thek
corresponding quantizer,

G x s A if x g A .Ž .k k , i k , i

Ž .The role of the feature vector in 1 is now played by the discrete quantity

B k s G X , . . . , G X s G Xy1 .Ž . Ž .Ž .Ž . Ž .k yl k y1 k ylky 1 ky1
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Now

t s min t ) 0: G Xy1yt s G Xy1 .½ 5Ž . Ž .k k yl yt k ylky 1 ky1

Ž .Again, ergodicity implies that B k is almost surely to be found in the
Ž y2 .sequence G X , and with this generalization of notation, the kth estimatek y`

Ž < y. Ž .of P C X is still provided by formula 1 .
As in Algoet’s construct, the estimate P is calculated from observations ofk

random size. Here the random sample size is l . To obtain a fixed sample sizek
t ) 0 version, let k be the maximum of integers k for which l F t. Sett k

ˆ2 P C s P C .Ž . Ž . Ž .yt k t

� 4THEOREM 1. Under the stationary ergodic assumption regarding X andn
Ž . Ž .under the estimator constructs 1 and 2 described above,

< y3 lim P ? s P ? X a.s.,Ž . Ž . Ž .k
kª`

and
ˆ y<4 lim P ? s P ? X a.s.,Ž . Ž . Ž .yt

tª`

in the weak topology of distributions.

Ž .PROOF. To begin with, assume that, for some m, C g s PP . The firstm
chore is to show that, a.s.,

< yP C ª P C X .Ž . Ž .k

For k ) m we have that

< yP C y P C XŽ . Ž .k

1
y1<s 1 X y P X g C G XŽ .Ý ž /C yt yt jy1 ylž /j j jy1k 1FjFm

k y m 1Ž . y1<q 1 X y P X g C G XŽ .Ý ž /C yt yt jy1 ylž /j j jy1k k y mŽ . m-jFk

1
y1 y< <q P X g C G X y P C XŽ .Ý ž /yt jy1 ylž /j jy1k 1FjFk

k y mŽ .
s P1 q P2 q P3 .k k kk

Obviously,
P1 ª 0 a.s.k

Toward mastering P2 , one observes that P2 is an average of boundedk k
Ž Ž y1 ..martingale differences. To see this, note that s G X , j s 0, 1, . . . , isj yl j

Ž . Ž Ž y1 ..monotone increasing and that 1 X is measurable on s G X forC yt j ylj j

j ) m. The convergence of P2 can be established by Levy’s classical result,´k
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namely, the Cesaro means of a bounded sequence of martingale differences`
converge to zero almost surely. For a version suited to our needs, see, for

wŽ . xexample, Stout 1974 , Theorem 3.3.1 . One may even obtain rates for P2k
Ž .through the use of Azuma’s 1967 exponential bound for martingale differ-

ences.
We have yet to prove that

P3 ª 0 a.s.k

By Lemma 1 in the Appendix,

< y1 < y1P X g C G X s P X g C G X .ž / ž /yt jy1 yl 0 jy1 ylž / ž /j jy1 jy1

Using this we get

1
y1 y< <P3 s P X g C G X y P C XŽ .Ý ž /k yt jy1 ylž /j jy1k 1FjFk

1
y1 y< <s P X g C G X y P C X .Ž .Ý ž /0 jy1 ylž /jy1k 1FjFk

By assumption,

s B j s Xy ,Ž . Ž .Ž .
which implies that

s G Xy1 s Xy .Ž .ž /j ylž /j

Consequently by the a.s. martingale convergence theorem we have that

< y1 < yP X g C G X ª P C X a.s.,Ž .ž /0 j ylž /j

w Ž .xand thus, by the Toeplitz lemma cf. Ash 1972 ,

P3 ª 0 a.s.k

Ž x Ž .Let D denote the countably infinite set of x ’s for which y`, x g s PP fork
sufficiently large k. By assumption, D is dense in R. Define

xF x s P y`, x .Ž . ŽŽ .k k

Also, set

< yxF x s P y`, x X .Ž . ŽŽ .
By the preceding development we have the almost-sure event H such that,
on H for all x g D,

5 F x ª F x .Ž . Ž . Ž .k

Ž . Ž .Since D is dense in R, we have 5 on H and for all continuity points of F ? ,
Ž . Ž . Ž .and 3 is proved. The convergence 4 is an obvious consequence of 3 . I
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3. Estimation of autoregression functions. The next result uses
estimators

1
6 R s XŽ . Ýk yt jk 1FjFk

and
1ˆ7 R s X .Ž . Ýyt yt jkt 1FjFk t

< <COROLLARY 1. Assume that for some number D, a.s., X F D - `. Under0
� 4the stationary ergodic assumption regarding X and under the estimatorn

Ž . Ž .constructs 6 and 7 described above,

< y8 lim R s E X X a.s.,Ž . Ž .k 0
kª`

and

ˆ y<9 lim R s E X X a.s.Ž . Ž .yt 0
tª`

PROOF. Define the function

D , if x ) D ,
f x sŽ . x , if yD F x F D ,½ yD, if x - yD.

Then

R s xP dx s f x P dxŽ . Ž . Ž .H Hk k k

< y < y < yª f x P dx X s xP dx X s E X X ,Ž . Ž . Ž . Ž .H H 0

because of Theorem 1 and the fact that convergence in distribution implies
the convergence of integrals of the bounded continuous function f with

w Ž .x Ž .respect to the actual distributions Billingsley 1968 . Thus the proof of 8 is
ˆŽ .complete. The proof of 9 follows in the same way; just put P in place ofyt

P . Ik

ˆ yŽ < .The estimates R converge almost surely to E X X and are uniformlyyt 0
ˆ y1< Ž < . < Ž .bounded so R y E X X ª 0 also in mean. Motivated by Bailey 1976 ,yt 0 yt

ˆ ˆ tŽ . Ž .consider the estimator R v s R T v , which is defined in terms oft yt
ˆŽ . Ž .X , . . . , X in the same way as R v was defined in terms of0 ty1 yt

ˆŽ . Ž .X , . . . , X T denotes the left shift operator . The estimator R may beyt y1 t
viewed as an on-line predictor of X . This predictor has special significancet
not only because of potential applications, but additionally because Bailey

ˆŽ .1976 proved that it is impossible to construct estimators R such thatt
ˆ ty1Ž < .always R y E X X ª 0 almost surely. An immediate consequence oft t 0

Corollary 1 is that convergence in probability is verified, that is, the shift
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ˆtransformation T is measure preserving; hence convergence R yyt
y1 1 ˆ ty1 1Ž < . Ž < .E X X ª 0 in L implies convergence R y E X X ª 0 in L and in0 yt t t 0

probability.

4. Pattern recognition. Consider the two-class pattern recognition
problem with d-dimensional feature vector X and binary-valued label Y .0 0

y Ž y1 y1 .Let DD s X , Y be the data. In conventional pattern recognition prob-y` y`

Ž . ylems X , Y and DD are independent, so the best possible decision based on0 0
Ž y. �Ž .4X and based on X , DD are the same. Here assume that X , Y is a0 0 i i

doubly infinite stationary and ergodic sequence. The classification problem is
Ž y.to decide on Y for given data X , DD in order to minimize the probability0 0

of misclassification. The Bayes decision g* is the best possible one. Let
Ž y. Ž .h X , DD be the a posteriori probability of Y s 1 regression function :0 0

y < y < yh X , DD s P Y s 1 X , DD s E Y X , DD .Ž . Ž . Ž .0 0 0 0 0

1y yŽ . Ž .Then g* X , DD s 1 if h X , DD G and 0 otherwise. For an arbitrary0 0 2
1y yŽ . Ž .approximation h s h X , DD , set g s g X , DD s 1 if h G and 0k k 0 k k 0 k 2

w Ž . xotherwise. Then it is easy to see cf. Devroye and Gyorfi 1985 , Chapter 10¨
that

< y y < y0 F P g / Y X , DD y P g* X , DD / Y X , DDŽ .Ž . Ž .k 0 0 0 0 010Ž .
< y <F 2 h y h X , DD .Ž .k 0

Ž .The estimation is a slight modification of 1 . Define the sequences l andky1
Ž .t recursively k s 1, 2, . . . . Set l s 1 and let t be the time between thek 0 k

occurrence of the pattern

B k s G X , Y , . . . , G X , Y , G XŽ . Ž . Ž .Ž .Ž .k yl yl k y1 y1 k 0ky 1 ky1

at time 0 and the last occurrence of the same pattern in DDy. More precisely,

t s min t ) 0: G Xyt s G X 0 , Yy1yt s Yy1 .½ 5Ž . Ž .k k yl yt k yl yl yt ylky 1 ky1 ky1 ky1

Set

l s t q l .k k ky1

Ž .The observed vector B k a.s. takes a value of positive probability; thus by
Ž .ergodicity B k has occurred with probability 1. One denotes the kth esti-

Ž y.mate of h X , DD by h , and defines it to be0 k

1
11 h s Y .Ž . Ýk yt jk 1FjFk

COROLLARY 2. Under the stationary ergodic assumption regarding the
�Ž .4 Ž .process X , Y and under the estimator construct 11 described above,n n

< y y < y12 P g / Y X , DD ª P g* X , DD / Y X , DD a.s.Ž . Ž .Ž . Ž .k 0 0 0 0 0



NONPARAMETRIC INFERENCE 377

Ž . Ž .PROOF. Because of 10 , we get 12 from

h ª h X , DDy a.s.,Ž .k 0

the proof of which is similar to the proof of Theorem 1. I

REMARK. It is also possible to construct a version of this estimate with
Ž . Ž .fixed sample size t ) 0 in the same way as in 2 and 7 .

APPENDIX

In the sequel, we use the notation of Section 2.

� 4LEMMA 1. Under the stationary ergodic assumption regarding X , forn
j s 1, 2, . . . ,

< y1 < y1P X g C G X s P X g C G X .ž / ž /yt jy1 yl 0 jy1 ylž / ž /j jy1 jy1

PROOF. First of all, note that, by definition,

s G Xy1 s FFž /jy1 yl jy1ž /jy 1

s s G Xy1 s by1 , l s m ; by1 , m s 1, 2, . . . ,� 4Ž .ž /jy1 ym ym jy1 ym

where by1 is an m-vector of sets from the finite partition PP .ym jy1
Note also that

B s G Xy1 s by1 , l s m� 4Ž .jy1 ym ym jy1

Ž .are the countably many generating atoms of FF , so we have to show thatjy1
for any atom B the following equality holds:

� 4P B l X g C s P B l X g C ;� 4 Ž .ž /yt 0j

l is a stopping time, B is an m-dimensional cylinder set, which meansjy1
y1 Žthat b determines whether l / m in which case B s B and theym jy1

.statement is trivial or l s m, and thenjy1

B s G Xy1 s by1 .� 4Ž .jy1 ym ym

For j s 1, 2, . . . , let

t s min 0 - t : G Xy1qt s G Xy1 .˜ ½ 5ž / ž /j j yl qt j yljy 1 jy1
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Now

ylT B l t s l , X g C� 4j yl

yl y1 y1 y1yl y1s T G X s b , G X s G X ,� Ž . Ž . Ž .jy1 ym ym j ymyl j ym

y1yt y1G X / G X , 0 - t - l , X g C 4Ž . Ž .j ymyt j ym yl

s G Xy1ql s by1 , G Xy1 s G Xy1ql ,� Ž . Ž . Ž .jy1 ymql ym j ym j ymql

G Xy1ytql / G Xy1ql , 0 - t - l , X g C 4Ž . Ž .j ymytql j ymql 0

s G Xy1ql s by1 , G Xy1 s G Xy1ql ,� Ž . Ž . Ž .jy1 ymql ym j ym j ymql

G Xy1qt / G Xy1ql , 0 - t - l , X g C 4Ž . Ž .j ymqt j ymql 0

s G Xy1 s by1 , G Xy1 s G Xy1ql ,� Ž . Ž . Ž .jy1 ym ym j ym j ymql

G Xy1qt / G Xy1 , 0 - t - l , X g C 4Ž . Ž .j ymqt j ym 0

s B l t s l , X g C ,� 4j̃ 0

where T denotes the left shift operator.
By stationarity, it follows that

P B l X g C� 4ž /yt j

`

s P B l t s l , X g C� 4Ž .Ý j yl
ls1

`
yls P T B l t s l , X g C� 4Ý Ž .j yl

ls1
`

s P B l t s l , X g C� 4˜Ž .Ý j 0
ls1

� 4s P B l X g C ,Ž .0

and the proof of Lemma 1 is complete. I
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