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CONVERGENCE PROPERTIES OF THE GIBBS SAMPLER
FOR PERTURBATIONS OF GAUSSIANS1

BY YALI AMIT

University of Chicago

The exact second eigenvalue of the Markov operator of the Gibbs
sampler with random sweep strategy for Gaussian densities is calculated.
A comparison lemma yields an upper bound on the second eigenvalue for
bounded perturbations of Gaussians which is a significant improvement
over previous bounds. For two-block Gibbs sampler algorithms with a

Ž Ž Ž1.. Ž Ž2...perturbation of the form x g x q g x the derivative of the second1 2
eigenvalue of the algorithm is calculated exactly at x s 0, in terms of
expectations of the Hessian matrices of g and g .1 2

1. Introduction. Monte-Carlo simulations are widely used today in
many statistical applications, most commonly for simulating the posterior
distribution in a Bayesian framework. One of the first examples of the use of

Ž .these methods can be found in Geman and Geman 1984 , in the context of
Ž .image restoration. An extensive bibliography can be found in Geman 1991 .

Other examples in the context of higher level image analysis can be found in
Ž . Ž .Knoerr 1988 and Grenander, Chow and Keenan 1991 . In Besag and Green

Ž . Ž .1993 and Smith and Roberts 1993 a host of other applications of these
methods in the context of hierarchical Bayesian models is described.

In all these examples the question arises as to the rate of convergence of
the Markov chain. There is no unified theory to answer this question,
especially in the case of continuous densities on Rn, and currently many
different approaches are being attempted for the different types of simulation
methods. One direction of research uses Doeblin type bounds on bounded sets
together with geometric drift conditions or some form of Lyapounov functions
to obtain rather general results on exponential convergence for continuous

n Ž .densities on R ; see Mengersen and Tweedie 1996 for the Metropolis
Ž .algorithm and Rosenthal 1995 for the Gibbs sampler. These results are then

applied to certain special cases and yield bounds on the rate of convergence in
variational norm distance. Another approach analyzes a discretized version of
the problem using general discrete state space Markov chain techniques; see

Ž .Frieze, Kannan and Polson 1994 .
Finally there are attempts to use spectral analysis to obtain rates of

convergence in the L sense, where the Markov chain operator is considered2
as a bounded operator in the Hilbert space of square integrable functions
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with respect to the target distribution. The largest eigenvalue of this operator
is always 1, the eigenfunctions being the constant functions. The question is

Ž .then what is the next largest eigenvalue in absolute value . The difference
between the two is often called the gap. This approach was initially applied

Ž . Žby Goodman and Sokal 1989 to the Gibbs sampler heat bath algorithm in
.the physics literature , for Gaussian distributions, and subsequently by Amit

Ž .1991 to bounded perturbations of Gaussians. For other treatments of Gauss-
Ž .ian distributions, see Amit and Grenander 1991 and Barone and Frigessi

Ž .1990 .
The elementary operation in the Gibbs sampler is sampling from condi-

tional distributions of some set of coordinates given the values on the
� 4complement. Given a partition T , T of the set I s 1, . . . , n , a typical step1 2 n

will simulate from the conditional distribution of X given X s x , whereT T T1 2 2

X has distribution f. This distribution is completely described by the condi-
Ž Ž . < .tional expectations E f X X s x for all functions f in the Hilbert spaceT T2 2

Ž n .L R , f . These conditional expectations are orthogonal projections. Typi-2
cally the Gibbs sampler sweeps through the coordinates one by one in some

Ž Ž . < .fixed order: sequential sweep strategy. Writing P f s E f X X s x ,i Ž i. Ž i.
Ž . � 4where i s I y i , the entire sweep corresponds to the Markov chainn

operator L s P P ??? P , namely, a product of projections. Observe thatseq n ny1 1
� Ž n . Ž . Ž .4P is the projection onto the space S s f g L R , f : f x s f x . Alter-i i 2 Ž i.

natively, the choice of coordinates can be done at random: random sweep
strategy. In this case the operator corresponding to each step is L sran
Ž . n1rn Ý P , namely, an average of projections.is1 i

The family of continuous densities which can be analyzed using spectral
analysis and perturbation methods is limited at this point to perturbations of
Gaussians. However in some cases where these methods apply, the bounds
are much more precise than those derived using the Doeblin techniques. Take

Ž .for example the bivariate normal model from Rosenthal 1995 with m s 0.
The rate obtained using the minorization techniques is over 0.95. On the
other hand, the spectral gap for the Gibbs sampler operator is exactly 0.5 as

wŽ . xcan be seen from Amit 1991 , Lemma 2 , and assuming the initial distribu-
tion is a density, the variational norm distance also converges as C ? 0.5k.

Perturbed Gaussian models are very common in statistical applications
where the data cannot be directly modeled as a Gaussian process or field,
rather as a nonlinear function of a Gaussian process. These could be called
hidden Gaussian models in analogy with the hidden Markov models which
are extensively used in statistics and engineering. We illustrate this with an
example from image analysis.

Ž .In Amit, Grenander and Piccioni 1991 a Gaussian random vector field
describes the prior on displacements of the pixel lattice, but is only observed
indirectly through the deformed template image which is produced by the
displacements and which is also degraded by additive independent Gaussian

Ž . Ž .noise. If T x is the template image, D x is the observed image and
Ž . Ž . Ž .U x , U x the random vector field at pixel x, the model assumes that D x1 2

Ž Ž .is normally distributed with variance s and mean given by T x q U x ,1 1
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Ž ..x q U x , that is, the value of the template at the displaced location of x.2 2
The posterior distribution will have the form

1 2 2
exp y LU x q LU xŽ . Ž .Ž . Ž .Ý 1 2Z x

1 2y T x q U x , x q U x y D x ,Ž . Ž . Ž .Ž .Ý 1 1 2 22s x

where L is a finite difference approximation to some differential operator.
The quadratic term imposes a Gaussian smoothness prior on the displace-
ment field U. Given an observed image D, inference is then made with
respect to the underlying displacement field U. This could also be thought of
as a hidden Gaussian model. An underlying Gaussian process drives the
system but is not directly observed, rather through some nonlinear transfor-
mation. The resulting posterior distribution in these models has the form of a
perturbed Gaussian. If the nonlinear transformation has bounded range the
perturbation is bounded. These types of bounded perturbations were analyzed

Ž .in Amit 1991 for the sequential updating scheme.
Ž .The goal of this paper is twofold. First the results of Amit 1991 are

extended to the random updating scheme. For the Gaussian distribution the
projections are analyzed in terms of the Hermite polynomial basis, to yield
the exact gap for the Markov chain operator. Then a lower bound on the gap
for the perturbed distribution is obtained using a comparison lemma on the
gaps of the two operators. These results are similar in flavor to those of

Ž .Diaconis and Saloff-Coste 1993 for analyzing various types of random walks
on groups. Certain cases lend themselves to precise spectral analysis essen-
tially borrowing from the theory of special functions and group representa-
tion theory; then other cases are analyzed using general comparison lemmas.
The lower bound obtained in the comparison lemma in the random updating
scheme is much larger than the one achievable in the comparison lemma for

Ž .the deterministic updating scheme analyzed in Amit 1991 .
The second component of this paper involves the asymptotic analysis of the

gap for small perturbations. When the additive perturbation in the exponent
is multiplied by a parameter x , an explicit formula is derived for the

Ž .derivative of the gap in x at x s 0 the Gaussian . Here the perturbation is
not assumed to be bounded. This calculation does not yield an explicit
estimate on the rate of convergence; however, it can indicate whether the gap
is expected to increase or decrease.

The two-block Gibbs sampler involves partitioning the coordinates into two
disjoint sets T , T , and successively simulating from the conditional distribu-1 2
tion of one set of variables given the other. If the perturbation has the form
Ž Ž . Ž ..x g x q g x , then it is shown in Section 3 that the first derivative of1 T 2 T1 2

the second eigenvalue of the operator corresponding to the two-block Gibbs
sampler algorithm, as a function of x , at x s 0, is given in terms of
expectations involving the Hessians of g and g . In particular if both are1 2
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convex, the derivative is negative implying that the gap increases and the
convergence rate increases. It is interesting to note that in the two-block case
the rate of convergence is precisely the square of the maximal correlation
between the two sets of coordinates, or variables.

In general the two-block method is no more feasible than direct simulation
of the entire distribution. In some cases, however, the coordinates of x Ž1. s xT1

are mutually independent given the values of x Ž2. s x and vice versa. ThenT2

block updating is equivalent to the ordinary sequential sweep provided all the
coordinates in x Ž1. are updated first and then those of x Ž2..

Similar calculations are carried out for the random updating scheme, when
Ž .the perturbation is of the form xÝ g x ; in other words, a fixed function gi i

applied to each coordinate separately. This type of perturbation appears in all
the image analysis applications described above.

Ž .2. Rates for the random sweep strategy. In Amit 1991 the Gibbs
sampler algorithm was analyzed for the sequential sweep strategy, namely,
when the coordinates are visited in a fixed order. The same can be done for
the random sweep strategy as will be presented in this section.

Ž .Let X x be the kth step of the Markov chain starting at x. For anyk
Ž n .function f g L R , f , the Hilbert space of square integrable functions with2

respect to f, define

n

Lf x s L f x s Ef X x s 1rn P f x .Ž . Ž . Ž . Ž . Ž .Ž . Ýran 1 i
is1

Ž Ž .. kŽ . kThen Ef X x s L x , and the question is how fast does L f converge tok
Ž .f f , the integral of f with respect to the density f. All Markov chain

5 5Monte-Carlo schemes have the property that L F 1 and L1 s 1, where 1 is
the constant function 1. In the present setting L is an average of projections
and therefore all eigenvalues are between 0 and 1. The question is then what
is the second largest eigenvalue of L.

Gaussian case. First let f be the density of a multivariate normal with
mean 0 and inverse covariance matrix Q. We assume without loss of general-
ity that Q has all ones on the diagonal. Let K be the symmetric square root
of the matrix Q. Since the diagonal elements of Q have been assumed to be
all 1, each row of the matrix K is a unit vector. Let K Ž i. denote the projection
in Rn onto the vector space spanned by the ith row of K and let T Ž i. s
I y K Ž i..

Ž . nFor a multi-index of nonnegative integers a s a , . . . , a g Z and a g1 n q
n a a1 an Ž . Ž . Ž .R , let a s a ??? a and a!s a ! ??? a !. Let HH x s h x ??? h x ,1 n 1 n a a 1 a n1 nw Ž .xwith h the kth order Hermite polynomial see, e.g., Cramer 1946 . Using´k

standard properties of Hermite polynomials it follows that the family of
nˆ 'Ž Ž ..functions HH s HH Kx r a ! , a g Z , forms an orthonormal basis ofa a q
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Ž n . nL R , f . For a g R let f denote the generating function parameterized2 a
by a given by

2< <a HH KxŽ .aa² :f x s exp a, Kx y s a .Ž . Ýa 2 a !a

A simple computation involving completing the square yields

<P f s f x f x x dxŽ . Ž . Ž .Hi a a i Ž i. i

221 1< < ² :s exp y a q Ka q Ka, x y Ka Qx .Ž . Ž . Ž .i i i2 2

Write D for the matrix which is all zeros except for 1 at the ith place on thei
diagonal. Then D2 s D and KD K s K Ž i.. We obtaini i i

21 1< < ² : ² : ² :P f s exp y a q D Ka, D Ka q a, Kx y D Ka, D Qx .Ž .i a i i i i2 2

< <2 ² :Writing the second term as KD Ka and the last term as a, KD KKxi i
yields

P f s f Ž i. .Ž .i a T a

Consequently,

n n1 1
Ž i.L f s f s fŽ . Ý Ýa a T an nis1 is1i

for all a g Rn or

nHH Kx 1 HH KxŽ . Ž .aa aa Ž i.L a s T a .Ž .Ý Ý Ýž /ž /a ! n a !a a is1

The coefficients of aa must match on both sides of the equality, thus
ˆproviding an explicit expression of the image of each basis element HH undera

L. The coefficient of aa on the right-hand side is computed as follows.
< < aLet k s a s a q ??? qa . The term a will appear only for those multi-1 n

< < Uindexes b such that b s k. Let « denote the sequence of k elements from
� 4 U1, . . . , n with a 1s, . . . , a ns. Let d denote the corresponding sequence1 n
for b. Any distinct permutation « of «U denotes an order of choosing the

a Ž Ž i. . b afactors of a from the k factors of T a . The coefficient of a on the
right-hand side is therefore

n1
Ž i. Ž i.
U UT ??? T ,Ý Ý d « d «1 1 k kn « is1

where « runs over all k!ra! distinct permutations of «U. In fact, substituting
any permutation d of d U in the above expression will yield the same result,
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since Ý loops over all distinct permutations of «U. There are k!rb ! such«

distinct permutations of d U so we can write

n' '1 a ! b !
Ž i. Ž i.ˆ ˆL HH x s T ??? T HH x .Ž . Ž .Ž . Ý Ý Ýa d « d « b1 1 k kž /n k!< < is1 « , db : b sk

ˆ < <Consequently the subspace H spanned by all HH such that b s k isk b

invariant under L and the matrix corresponding to the operator L in that
subspace is obtained from normalized block sums of entries of the tensor

n1 mkŽ i.TT s T ,Ž .Ýk n is1

Ž .2 Ž .where k! r a!b ! is the number of entries in the block. This implies that the
largest eigenvalue of L in H is bounded by the largest eigenvalue of TT ask k
shown by the following lemma.

LEMMA 1. Let A be a positive definite r = r matrix. Let S , . . . , S be a1 q
� 4 < <partition of 1, . . . , r and let S denote the cardinality of S . Define B to bek k

the q = q matrix defined as

1
B s A .Ýk l i j< 5 <S S' igSk l k

jgSl

Then the maximum eigenvalue of B is less than the maximum eigenvalue of A.

PROOF. The largest eigenvalue of B is given as

sup v tBv s sup v B vÝ k k l l
< < < <v s1 v s1 k , l

q qvgR vgR

v vk ls sup AÝ Ý i j< < < <S S' '< <v s1 k , l igS k lkqvgR jgSl

s sup utAu,
r< <u gF

where F r is the subset of unit vectors in R r obtained from unit vectors in Rq

< < < <by replicating the kth coordinate S times multiplied by the factor 1r S .'k k
The last term in the equality above is bounded by the largest eigenvalue of A.

I

The spaces H are mutually orthogonal. The space H is simply the spacek 0
of constant functions and corresponds to the eigenvalue 1. The space H is1
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the n dimensional space of linear functions, and the matrix of the restriction
of L to H is precisely1

n n n1 1 1
Ž i. Ž i. Ž i.<L s TT s T s I y K s I y KÝ Ý ÝH 11 n n nis1 is1 is1

n1 1
s I y KD K s I y Q.Ý in nis1

Ž .This implies that the largest eigenvalue in H is 1 y 1rn l , where l is1 m m
the smallest eigenvalue of Q.

Observe that

n1 mly1Ž i. Ž i.TT s TT m I y I y K m K .Ž .Ýl ly1 n is1

The second term is an average of tensor products of projections and is
therefore a nonnegative operator. Since TT m I has the same eigenvalues asly1
TT , the largest eigenvalue of TT is less than or equal that of TT . Thus thely1 l ly1
largest eigenvalue of L which is less than 1 is obtained in H and is therefore1
the largest eigenvalue of I y Qrn, which is 1 y l rn, where l is them m
smallest eigenvalue of Q. The following theorem summarizes the foregoing
text.

THEOREM 1. The second largest eigenvalue of the operator L corresponding
to the random updating Gibbs sampler for the Gaussian distribution f is

Ž . Ž .1 y 1rn l or GAP L s l rn, where l is the smallest eigenvalue of them m m
inverse covariance matrix. The corresponding normalized eigenfunction is
Ž . ² :B x s l b, x where b is an eigenvector of Q corresponding to l .' m m

Perturbations. Let f be any density for which the gap of the random
updating Gibbs sampler operator L is known. Consider now a perturbed

˜ Ž . Ž .density f s rrZ f, where r is a function such that 0 - c - r x F C. Let
n ˜ n ˜Ž . Ž .S s L R , f and S s L R , f . Similarly define S , i s 1, . . . , n, as above2 2 i

˜ ˜ ˜and S the corresponding subspaces of S, with P the corresponding projec-i i
tions. Since r is bounded away from zero and infinity, the elements in S and
˜ ˜S are the same; similarly for S and S for i s 1, . . . , n.i i

˜ ˜Ž .LEMMA 2 Comparison lemma . Let L, L denote the operators in S, S,
respectively, of the Gibbs sampler with random updating scheme for the

˜ ˜Ž . Ž . Ž .densities f, f. Then GAP L G crC GAP L .

PROOF. Observe that

² :GAP L s inf f , I y L f ,Ž . Ž . S
Ž .fgS : f f s0

< <f s1S
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˜Ž .and similarly for GAP L . The proof consists of a simple sequence of inequali-
ties.

˜Ž . < <For any f such that f f s 0 and f s 1,S̃

n1˜ ˜f , I y L f s f , I y P f² :Ž . ¦ ;Ž .Ý˜ i ˜S Sn is1

n1 2˜ ˜s f x y P f x f x dxŽ . Ž . Ž .Ž .Ý H in is1

nc 1 2˜G f x y P f x f x dxŽ . Ž . Ž .Ž .Ý H iZ n is1

nc 1 2G f x y P f x f x dxŽ . Ž . Ž .Ž .Ý H iZ n is1

c
² :s f y f f , I y L f y f fŽ . Ž . Ž .Ž . Ž . SZ

c 2G GAP L f x y f f f x dxŽ . Ž . Ž . Ž .Ž .HZ
c 2 ˜G GAP L f x y f f f x dxŽ . Ž . Ž . Ž .Ž .HC
c 2˜ ˜G GAP L f x y f f f x dxŽ . Ž . Ž . Ž .Ž .HC
c

s GAP L .Ž .
C

The second inequality follows from the fact that P is an orthogonal projec-i
˜tion, in S, onto S , and P f g S . The third inequality follows from thei i i

definition of the gap. I

COROLLARY A. If f is a Gaussian density as in Theorem 1, then

c lm˜GAP L G . IŽ .
C n

Ž .For the sequential updating scheme, Theorem 3 of Amit 1991 states that
< <for f s 1S̃

ny1 ny1˜< <L f F 1 y crC det Q ; exp y crC det QŽ . Ž . Ž . Ž .˜ Ž .Sseq

for large n. This bound refers to a sweep through all n coordinates and so
should be compared to n steps of the random updating strategy, namely,

n
crC l cŽ . mn˜< <L f F 1 y ; exp y l .S̃ran mž /ž /n C
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Since the diagonal elements of Q are all 1, the determinant is bounded by 1
Ž .the geometric mean of the eigenvalues is bounded by the arithmetic mean .
Hence the presence of an exponentially small term in the exponent of the first
bound implies that in general it will be much larger than the second bound.
This is not to say that the random updating scheme converges faster, merely
that the obtainable bounds are better.

3. Derivative of the gap for a two-block Gibbs sampler. Let f be a
positive continuous density. In the two-block Gibbs sampler the coordinates
are divided into two subsets x Ž1. and x Ž2.. The conditional distribution of x Ž2.

is simulated given the values of x Ž1. and then vice versa. For simplicity
Ž1. Ž . Ž2. Ž . Ž .assume x s x , . . . , x and x s x , . . . , x , and let S , S ; L f be1 l lq1 n 1 2 2

the subspaces of functions depending on x Ž1. and x Ž2., respectively. The
operator corresponding to the two-block Gibbs sampler is simply the product
L s P P of the two projections on the two spaces. Restricted to S , thef 1 2 1
operator L has the kernelf

Ž1. Ž1. Ž1. < Ž2. Ž2. < Ž1. Ž2.1 K x , y s f y y f y x dy .Ž . Ž . Ž . Ž .Hf

The second eigenvalue of this operator is precisely the cosine squared of the
angle between these two spaces or alternatively the square of the maximal
correlation between the two sets of coordinates:

² : < <G s sup f , P P f ; f s 1, f f s 0, f g S� 4Ž .1 1 2 1 1 1 1 1

² :2 < < < <s sup f , f ; f s f s 1, f f s f f s 0, f g S , f g SŽ . Ž .� 41 2 1 2 1 2 1 1 2 2

s cos2 S , S s s 2 ,Ž .1 2

where G is the second eigenvalue and s is the maximal correlation coeffi-
cient.

Ž . Ž Ž1. Ž2..The gap for the Gaussian, x s 0. Let f x s f x , x be the density of
a Gaussian with mean zero and inverse covariance

I C1
Q s ,tž /C I2

Ž . Ž .where I is an l = l identity matrix and I is a n y l = n y l identity1 2
matrix. The perturbation in the exponent is assumed to have the form
Ž Ž Ž1.. Ž 2 ..x g x q g x , where g and g are bounded from below, so that1 2 1 2

1
Ž1. Ž2. Ž1. Ž2. Ž1. Ž2.2 f x , x s exp yx g x q g x f x , x .Ž . Ž . Ž . Ž . Ž .Ž .x 1 2c
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The marginals of the Gaussian density f on x Ž1. and x Ž2. are denoted
Ž Ž1.. Ž Ž2..f x , and f x , respectively. The inverse of Q is given by

y1 y1t tI y CC yC I y C CŽ . Ž .1 2y1Q s y1 y1t t t� 0yC I y CC I y C CŽ . Ž .1 23Ž .
F yCF1 2s ,tž /yC F F1 2

Ž t .y1 Ž t .y1where F s I y CC and F s I y C C . For notational convenience1 1 2 2
we also write D s CC t and D s C tC.1 2

Ž .Applying 1 we get

R x Ž1. , yŽ1. ' K x Ž1. , yŽ1.Ž . Ž .0 f

1 1 y1Ž1. Ž1. Ž1. Ž1.s ? exp y y y D x , I q D y y D xŽ .¦ ;Ž .1 1 1 1Z 2

Ž .for some normalizing constant Z. In Amit 1991 it is shown that the second
Ž .eigenvalue G 0 of the block Gibbs sampler algorithm for the Gaussian2

density f is precisely the largest eigenvalue l of D . The correspondingM 1
Ž1. ² Ž1.:eigenfunctions are linear in x , namely, of the form v, x , where D v s1

l v. Assuming l is a simple eigenvalue of D with corresponding eigenvec-M M 1
tor v, then it is also a simple eigenvalue of the block Gibbs sampler operator.
Since v is also an eigenvector of F , which is the covariance matrix of the1

Ž l Ž Ž1...marginal of f on the first l coordinates, normalizing in L R , f x we get2
Ž Ž1.. Ž .1r2² Ž1.:the normalized eigenfunction B x s 1 y l v, x .M

The derivative at x s 0. For the perturbed density let K denote thefx
x Ž l Ž Ž1...kernel of L restricted to the subspace S s L R , f x , wheref 1 2 xx

Ž1. Ž1.exp yx g x f xŽ . Ž .1Ž1. Ž2. Ž2. Ž1. Ž2.<f x s exp yx g x f x x dx .Ž . Ž . Ž .Hx 2c

In order to fix everything in the same space we use the unitary map U of
x Ž l Ž Ž1... Ž l Ž Ž1...S s L R , f x onto S s L R , f x defined by1 2 x 1 2

1r2 Ž1. 1r2r xŽ .xŽ1. Ž2. Ž2. Ž1. Ž2. Ž1.<Uf x s r x f x x dx f x ,Ž . Ž . Ž .Ž .H x1r2c

Ž Ž i.. Ž Ž Ž i...where r x s exp yx g x . The similarity transformation obtainedx i
through U yields R s UL Uy1 on S with kernelx f 1x

r1r2 x Ž1. r1r2 yŽ1.Ž . Ž .x xŽ1. Ž1.R x , y sŽ .x 1r2Ž2. Ž2. Ž1. Ž2. Ž2. Ž2. Ž1. Ž2.< <Hr u f u x du Hr v f v y dvŽ . Ž .Ž . Ž .Ž .x x

r yŽ2.Ž .x Ž1. Ž2. Ž2. Ž1. Ž2.< <= f y y f y x dy .Ž . Ž .H Ž1. Ž1. Ž2. Ž1.<Hr w f w y dwŽ . Ž .x
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Ž .Let G x denote the second eigenvalue of the Gibbs sampler for the2
density f , which is also the second eigenvalue of the symmetric operator Rx x

² :on H . By the discussion above, B, R B s l at x s 0. The derivative of1 x M
² : X Ž .B, R B in x at x s 0 yields G 0 , under the appropriate stability condi-x 2

w Ž .tions which are addressed in the Appendix. See Kato 1976 , Theorem 2.6,
xpage 445. In other words,

Ž1. Ž1. R x , yŽ .xX Ž1. Ž1. Ž1. Ž1.4 G 0 s B x B y dy f x dx .Ž . Ž . Ž . Ž .Ž .H H2 1ž /x 0

Now
Ž1. Ž1.R x , y 1Ž .x Ž1. Ž1. Ž2.s q x q q y q r yŽ . Ž . Ž .Ž .H ž /x 20

= Ž1. < Ž2. Ž2. < Ž1. Ž2.f y y f y x dy ,Ž . Ž .
where

Ž1. Ž1. Ž2. Ž2. < Ž1. Ž2.q x s yg x q g u f u x duŽ . Ž . Ž . Ž .H1 2

and

Ž2. Ž2. Ž1. Ž1. < Ž2. Ž1.r y s yg y q g w f w y dw .Ž .Ž . Ž . Ž .H2 1

Ž .Substituting this in 4 we get

l
X 1Ž1. Ž1. Ž1. Ž1.G 0 s 1 y l v v x y y g x q g yŽ . Ž . Ž . Ž .Ž .Ý H2 M a b a b 1 12

a, bs1

1 Ž2. Ž2. Ž2. Ž1.q g u q g v y g y q g wŽ . Ž . Ž .Ž .Ž .2 2 2 12

5Ž .

= F uŽ2. , vŽ2. , wŽ1. , x Ž1. , yŽ1. , yŽ2. duŽ2. dvŽ2. dwŽ1. dx Ž1. dyŽ1. dyŽ2. ,Ž .
where

Ž2. Ž2. Ž1. Ž1. Ž1. Ž2. Ž2. < Ž1. Ž2. < Ž1. Ž1. < Ž2.F u , v , w , x , y , y s f u x f v y f w yŽ .Ž . Ž . Ž .
= Ž1. < Ž2. Ž2. < Ž1. Ž1.f y y f y x f x .Ž .Ž . Ž .

Observe that F is the density of a normal distribution in all the variables
with inverse covariance matrix written in block form

¡ t ¦I 0 0 C 0 02

t0 I 0 0 C 02

0 0 I 0 0 C2QQ s ,
C 0 0 I q D 0 C1 1

0 C 0 0 I q D C1 1

t t t¢ §0 0 C C C I q 2 D2 2
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and covariance matrix

¡ 2 t t t ¦F D F yC D F yC F yC D F D F2 2 2 1 1 1 1 1 2 2

2 t t tD F F yC D F yC D F yC F D F2 2 2 1 1 1 1 1 2 2

yCD F yCD F F D F D F yCF2 2 2 2 1 1 1 1 1 2y1QQ s .
yCF yCD F D F F D F yCF2 2 2 1 1 1 1 1 2

yCD F yCF D F D F F yCF2 2 2 1 1 1 1 1 2

t t t¢ §D F D F yC F yC F yC F F2 2 2 2 1 1 1 2

X Ž . Ž .The calculation of G 0 as given in 5 reduces to calculating moments of2
Gaussians.

For any d dimensional multivariate Gaussian Z and any polynomial g on
R r define

2 2Ž2.5 5g s E g Z q  g Z ,Ž . Ž .Ý abž /
a, b

Ž2.Ž .where  g are the second derivatives of g. Let HH Z , i s 1, 2, denote theab
5 5 Ž2.closure of the space of polynomial functions in ? . This space contains all

5 5 Ž2.twice continuously differentiable functions with finite ? norm.

Ž .LEMMA 3. Let the random variables X, Y, Z , . . . , Z , be multivariate1 r
Ž . Ž2.Ž .Gaussian with mean zero and let Z s Z , . . . , Z . For any g g HH Z ,1 r

r

6 EXYg Z s EXY ? Eg Z q EXZ ? EYZ ? E  g Z .Ž . Ž . Ž . Ž .Ž .Ý i j i j
i , js1

Ž . n1 n rPROOF. First let g z , . . . , z s z ??? z . Since the only nonzero cumu-1 r 1 r
lants of Gaussians are second order, moments of multivariate Gaussians can
be expressed in terms of a sum of products of covariances, where the sum
extends over all partitions into pairs, of the variables, and a variable is
counted as many times as the corresponding power. See, for example,

wŽ . Ž .x wŽ .Ibragimov and Rozanov 1978 , Chapter I, 5.10 or McCullagh 1987 ,
xSection 2.3 . We obtain

E XYg Z s E XY q 2 n n E XZ E YZŽ . Ž . Ž .Ž . Ž .Ý Ý Ýi j i j
i-j ij

r

q n n y 1 E XZ E YZ ,Ž . Ž . Ž .Ý Ýi i i i
is1 ii

Ž .where Ý is the sum of products of covariances over all partitions of g Z into
Ž .pairs and Ý is the sum over all partitions into pairs of g Z with onei j

i-variable omitted and one j-variable omitted, which are the same no matter
which ones are omitted. Finally Ý is the sum over all partitions into pairs ofi i
Ž .g Z with two i-variables omitted, which again are the same no matter which

ones are omitted.
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This can be rewritten as

E XYg Z s E XY Eg Z q 2 E XZ E YZ E  g ZŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ý i j i j
i-j

r

q E XZ E YZ E  g Z ,Ž . Ž . Ž .Ž .Ý i i i i
is1

which leads to the required result for monomials.
From linearity the result applies to any polynomial. By the density of the

polynomials in HH Ž2., the result follows for all functions in this space. I

REMARK. The same result holds if X or Y are equal to Z for somei
i s 1, . . . , r.

X Ž .We are now in position to calculate G 0 . Let f be a Gaussian with inverse2
covariance matrix

I C1
Q s .tž /C I2

Ž . Ž .with I an l = l identity matrix and I an n y l = n y l identity matrix.1 2

THEOREM 2. If CC t has a simple largest eigenvalue l with normalizedM
eigenvector v and if

I y 2CC t 0 C1

t0 I y 2CC CG s 1� 0t t tC C I y 3C C2

is positive definite, then for any two functions g , g g HH Ž2. that are bounded1 2
from below, the derivative at x s 0 of the second eigenvalue of L is given byfx

G
X 0 s yl v tR x Ž1. vf x Ž1. dx Ž1.Ž . Ž . Ž .H2 M 1

7Ž .
y v tCR x Ž2. C t vf x Ž2. dx Ž2. ,Ž . Ž .H 2

where R , R are the matrices of second derivatives of g , g , respectively.1 2 1 2

wŽ .PROOF. The stability of the perturbation, as required by Kato 1976 ,
xTheorem 2.6, page 445 , under the assumption that G is positive definite is

proved in the Appendix. Let U Ž2., V Ž2., W Ž1., X Ž1., Y Ž1. and Y Ž2. be Gaussian
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Ž .random vectors jointly distributed according to F. Apply Lemma 3 to 5 to
get

l
X Ž1. Ž1. Ž1.G 0 s 1 y l v v x y yg xŽ . Ž . Ž .Ý H2 M a b a b 1

a, bs1

Ž1. Ž2. Ž2.qg w q g u y g yŽ . Ž . Ž .1 2 2

= F uŽ2. , vŽ2. , wŽ1. , x Ž1. , yŽ1. , yŽ2. duŽ2. dvŽ2. dwŽ1. dx Ž1. dyŽ1. dyŽ2.Ž .
t tt Ž1. Ž1. Ž1. Ž1. Ž1.s v yE X X E R X E X YŽ . Ž . Ž .18Ž .
t tŽ1. Ž1. Ž1. Ž1. Ž1.qE X W E R W E W YŽ . Ž . Ž .1

t tŽ1. Ž2. Ž2. Ž2. Ž1.yE X Y E R Y E Y YŽ . Ž . Ž .2

t tŽ1. Ž2. Ž2. Ž2. Ž1.qE X U E R U E U Y v.Ž . Ž . Ž .2

The first equality follows from the symmetry between x Ž1. and yŽ1. and the
symmetry between uŽ2. and vŽ2.. In the second equality we have used the fact

Ž .that the first terms coming from the right-hand side of 6 cancel because the
covariance of X Ž1. is the same as that of W Ž1. and similarly for U Ž2. and Y Ž2..

Ž .Substituting the covariances in 8 and using the fact that CF s F C and2 1
Ž Ž ..F v s 1r 1 y l v, D v s l v, we obtain1 M 1 M

X t Ž1. t Ž2. tG 0 s 1 y l yv E R X D F v y v CF E R Y C vŽ . Ž . Ž . Ž .Ž .Ž2 M 1 1 1 2 2

s yl v tE R X Ž1. v y v tCE R Y Ž2. C t vŽ . Ž .Ž . Ž .M 1 29Ž .

s yl v tR x Ž1. vf x Ž1. dx Ž1. y v tCR x Ž2. C t vf x Ž2. dx Ž2. .Ž . Ž . Ž . Ž .H HM 1 2

I

REMARK. If Q has the more general form

A C
Q s ,tž /C B

˜ y1r2 y1r2 ˜the same type of result holds. Set C s A CB and let f be the
Gaussian density with inverse covariance

˜I C1Q̃ s .
t˜ž /C I2

Ž n . Ž Ž1. Ž2.. Ž y1r2 Ž1. y1r2 Ž2..For f g L R , f define Uf x , x s f A x , B x . It is easily2
n n ˜Ž . Ž .verified that U is a unitary map from L R , f onto L R , f which maps2 2

˜ ˜H onto H and H onto H . Thus the spectral properties of the two-block1 1 2 2
˜Gibbs sampler algorithm for f are the same as those for f, which is of the

form assumed in Theorem 2.
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COROLLARY 1. If g and g are convex, R and R are positive definite so1 2 1 2
X Ž .that G 0 - 0 and the speed of convergence increases for small x .2

Ž . Ž Ž1. Ž2..REMARK. A general convex perturbation of the form g x s g x , x ,
Ž Ž1.. Ž Ž2..which is not of the form g x g x , will not necessarily increase the1 2

speed of convergence. For example, take

I 1 q a CŽ .1tg x s x x .Ž . tž /1 q a C IŽ . 2

Then f would be Gaussian with covariancex

1 q x I 1 q x q xa CŽ . Ž .1
.tž /1 q x q xa C 1 q x IŽ . Ž . 2

The two-block Gibbs sampler algorithm for this density would have a second
eigenvalue given by the spectral radius of

21 q x q xaŽ .
tCC ,21 q xŽ .

which is greater than the spectral radius of CC t. Therefore this convex
perturbation decreases the speed of convergence.

COROLLARY 2. If all the one-dimensional marginals of f are the same and
Ž i. Ž i .g x s Ý g x , i s 1, 2, for some univariate function g, theni a a

G
X 0 s y2l gY x f x dx .Ž . Ž . Ž .H2 M 1 1 1

Ž .PROOF. Under the assumptions, R are both diagonal and 7 becomesi

X < <2 < t <2 Y
G 0 s yl v y C v g x f x dxŽ . Ž . Ž .Ž .H2 M 1 1 1

s y2l gY x f x dx . IŽ . Ž .HM 1 1 1

Ž Ž1..COROLLARY 3. If C is square and circulant, then the two marginals f x
Ž Ž2..and f x are the same, and if g s g , then1 2

G
X 0 s y2l v tR x Ž1. vf x Ž1. dx Ž1. .Ž . Ž . Ž .H2 M 1

Random sweep strategy. A similar calculation can be carried out for the
random sweep strategy. Again it is assumed that the diagonal entries of the
inverse covariance matrix are all 1, and that the perturbation is of the form

n Ž .Ý g x . Also as in Corollary 2 it is assumed that all the one-dimensionalis1 i
marginals are the same. Since the details are very similar to those above, we
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only provide a brief outline. The integral kernel for each of the n projections
Ž n .in L R , f is simply the conditional density2

<exp yx g x q g y f y xŽ . Ž .Ž .Ž . Ž .i i i Ž i.Ž i. <f y x s .Ž .x i Ž i. <H exp yx g t f t xŽ .Ž . Ž .i i Ž i.

Ž n . Ž n .Using the unitary transformation from L R , f to L R , f given by2 2 x
1Ž . w Ž .xUf x s exp Ý g x , we obtain the corresponding integral kernel ini i2

2Ž n .L R , f given by
1 <exp y x g x q g y f y xŽ . Ž .Ž .Ž . Ž .i i i Ž i.2Ž i. Ž i.R x ; y s R x ; y s dt ,Ž . Ž .x x Ž i. i i<H exp yx g t f t xŽ .Ž . Ž .i i Ž i.

and the derivative in x at 0 of RŽ i. isx

1Ž i.˜ < <10 R x ; y s y g x q g y q g t f y x f t x dt .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .H i i i i Ž i. i Ž i. i2

Ž .From Theorem 1 the eigenfunction B x corresponding to the second largest
² :eigenvalue is l b, x , where l is the smallest eigenvalue of Q. As in' m m

Section 3, the derivative of the eigenvalue is given by

˜B x R x ; y B y dy f x dx ,Ž . Ž . Ž . Ž .H Hž /
˜ n ˜Ž i.Ž . Ž . Ž .where R x, y s 1rn Ý R x; y . Writing this integral explicitly leads tois1

various terms of the form addressed in Lemma 3. The calculation is lengthy
but straightforward and yields

˜B x R x ; y B y dy f x dxŽ . Ž . Ž . Ž .H H
11Ž .

1
Ys y 1 y l g x f x dx .Ž . Ž . Ž .Hm 1 1 1n

The 1rn factor disappears if one considers n steps at a time. Observe that
the derivative for the two-block Gibbs sampler given in Corollary 2 is in

t Ž .terms of l , which is the largest eigenvalue of CC s D , whereas l in 11M 1 m
is the smallest eigenvalue of the full inverse covariance matrix Q.

APPENDIX

Stability of the perturbation. Following are sufficient conditions un-
der which R is a stable perturbation.x

LEMMA A1. If

I y 2 D 0 C1 1

0 I y 2 D CG s 1 1

t t� 0C C I y 3D2 2

5 5is positive definite, then R y R ª 0 as x ª 0.x 0
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Ž Ž1. < Ž2.. Ž Ž2. < Ž1.. Ž Ž1. Ž2..PROOF. Since f y y f y x is a density in y , y for each x,
using the Cauchy]Schwarz inequality we have

< <2R f y R fx 0

2
Ž1. Ž1. Ž1. Ž1. Ž1. Ž1. Ž1. Ž1.s R x , y y R x , y f y dy f x dxŽ .Ž . Ž . Ž .Ž .H H x 0

Ž1. Ž1. Ž2. Ž1. Ž1. Ž2.<s T x , y , y y 1 f y f y yŽ . Ž . Ž .Ž .H HH j

12Ž .
=

2
Ž2. Ž1. Ž1. Ž2. Ž1. Ž1.<f y x dy dy f x dxŽ .Ž .

22 Ž1. Ž1. Ž2. Ž1. Ž2.< < <F f ? T x , y , y y 1 f y yŽ . Ž .Ž .HHH x

= Ž2. < Ž1. Ž1. Ž2. Ž1. Ž1.f y x dy dy f x dx ,Ž .Ž .
where

T x Ž1. , yŽ1. , yŽ2.Ž .x

s r1r2 x Ž1. r1r2 yŽ1. r yŽ2.Ž . Ž . Ž .x x x

1r2
Ž2. Ž2. Ž1. Ž2. Ž2. Ž2. Ž1. Ž2.< <= r u f u x du r v f v y dvŽ . Ž .Ž . Ž .H Hx xž /

y1

Ž1. Ž1. Ž2. Ž1.<= r w f w y dw .Ž . Ž .H x

Ž Ž1. Ž1. Ž2..Since T x , y , y ª 1 as x ª 0, the result will follow from a uniformx

integrability argument. Let

1 12 2Ž2. Ž2. Ž2. Ž1. Ž1.< < < <s s min r t exp y t dt , r t exp y t dt .Ž . Ž .Ž . Ž .H Hx x xl nyl' '2p 2p

Since
1 1 2Ž2. Ž1. Ž2. t Ž1.< < <f t t s exp y t q C tŽ . l 2'2p

1 2 2Ž2. t Ž1.< < < <G exp y t exp y C t ,l'2p

we have

Ž2. Ž2. < Ž1. Ž2. < t Ž1. <2 ² Ž1. Ž1.:r t f t t dt G s exp y C t s s exp y t , D tŽ . Ž . Ž . Ž .H x x x 1

and similarly

Ž1. Ž1. < Ž2. Ž1. < Ž2. <2 ² Ž2. Ž2.:r t f t t dt G s exp y Ct s s exp y t , D t .Ž . Ž . Ž . Ž .H x x x 2
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Consequently,
Ž1. Ž1. Ž2.T x , y , yŽ .x

1y3 Ž1. Ž1. Ž1. Ž1. Ž2. Ž2.² : ² : ² :F s exp x , D x q y , D y q y , 2 D y ,Ž .1 1 22

where s is a lower bound on s for x in a neighborhood of 0. Hence the upperx

bound is independent of x and all that remains is to prove that it is square
integrable with respect to

Ž1. < Ž2. Ž2. < Ž1. Ž1.f y y f y x f x .Ž .Ž . Ž .
However, by writing out these densities together with the integrand and
aggregating everything in the exponent, we get

1 Ž1. Ž1. Ž2.const exp y x , y , yŽ .H 2

=

Ž1.I y 2 D 0 C x1 1
Ž1. Ž1. Ž1. Ž2.0 I y 2 D C y dx dy dy ,1 1 � 0t t Ž2.� 0C C I y 3D y2 2

which is finite if G is positive definite. I
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