
The Annals of Statistics
1996, Vol. 24, No. 2, 902]905

SOME COUNTEREXAMPLES CONCERNING SUFFICIENCY
AND INVARIANCE

BY R. H. BERK, A. G. NOGALES AND J. A. OYOLA

Rutgers University, Universidad de Extremadura and Universidad
de Extremadura

Some conditions which are usually found in the literature on suffi-
ciency and invariance are considered, with counterexamples given to
clarify the relationship between these conditions.

Ž . wLet V, AA, PP be a statistical experiment i.e., PP is a family of probability
Ž .xmeasures on the measurable space V, AA , and let G be a group of bijective

Ž .and bimeasurable maps of V, AA onto itself leaving the family PP invariant,
that is, gP g PP, ; P g PP, ; g g GG, where gP is the probability measure on AA

Ž . Ž y1 .defined by gP A s P g A , A g AA. If P g PP, two events B, C g AA are said
Ž . Ž .to be P-equivalent and we shall write B ; C if P B ` C s 0; these eventsP

Ž .are said to be equivalent we write B ; C if they are P-equivalent for all
�P g PP. The null sets are the events equivalent to B. Let AA s A g AA:I

4 �gA s A, ; g g GG be the s-field of G-invariant sets and let AA s A g AA:A
4gA ; A, ; g g G be the s-field of PP-almost-G-invariant sets.

For two sub-s-fields BB, CC of AA we shall write BB ; CC if for every B g BB
;

there exists C g CC such that B ; C; BB and CC will be said to be equivalent
Ž .or PP-equivalent and we shall write BB ; CC if BB ; CC and CC ; BB. The

; ;

sub-s-fields BB and CC are said to be independent if they are P-independent
for every P g PP. A privileged dominating probability for the statistical experi-

Ž . Ž .ment V, AA, PP is a probability measure Q on V, AA of the form Q s
` � 4Ý a P such that P < Q for all P g PP, P : n g N ; PP, Ý a s 1 andns1 n n n n n

a G 0, ; n. It is well known that a privileged dominating probability existsn
when the experiment is dominated. AA will always be a sufficient sub-s-fieldS

� Ž . 4of AA. The s-fields AA s A g AA : ' B g AA , P A ` B s 0, ; P g PP andSI I S
� Ž . 4AA s A g AA : ' B g AA , P A ` B s 0, ; P g PP are also considered inS A A S
Ž .Berk 1972 .

Let BB, CC, DD be three sub-s-fields of AA; for P g PP, the s-fields BB and C
are said to be P-conditionally independent given DD, and we shall write

<BBQ CC DD, ifP

< < <E I DD ; E I DD ? E I DD ,Ž . Ž . Ž .P B l C P P B P C
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<for every B g BB and C g CC. It is well known that BBQ CC DD if and only ifP

< <E I BB k DD ; E I DD ; C g CC ,Ž . Ž .P C P P C

where BB k DD is the smallest s-field containing BB and DD. The s-fields BB
and CC are said to be conditionally independent given DD, and we shall write

< <BBQCC DD, if BBQ CC DD, ; P g PP. Other known concepts not defined here mayP
Ž .be found in Lehmann 1986 , for example.

Ž .The classical paper Hall, Wijsman and Ghosh 1965 investigates under
which conditions the s-field AA l AA is sufficient for AA : it is shown that thisS I I
is the case if g AA s AA , ; g g G and AA l AA ; AA l AA . The interestingS S S I S A

Ž .analogous problem for almost-invariance is considered in Berk 1972 , where
it is shown that AA is sufficient for AA if g AA ; AA , ; g g G. A synonymousS A A S S
condition is that AA is equivalent to the s-field induced by an almost-equiv-S

w Ž .xariant statistic see Lemma 2 of Berk 1972 and is satisfied if AA is minimalS
Ž .sufficient. It should be noted that the notations AA resp., AA are used inSI S A

Ž .Hall, Wijsman and Ghosh 1965 to denote the intersection of AA and AAS I
Ž .resp., AA .A

In this paper some concepts and examples are given to clarify certain
results of the papers cited above.

Let us introduce a weaker notion of equivalence between s-fields as
follows: given two sub-s-fields BB and CC of AA we will say that BB and CC are
weakly- PP-equivalent if they are P-equivalent for all P g PP. A s-field will be
said to be weakly- PP-trivial if it is weakly-PP-equivalent to the trivial s-field.

Ž .Using this weaker notion of triviality, a correct version of proposition i of
Ž .Theorem 4 of Berk 1972 is as follows: The s-fields AA and AA are indepen-S A

dent if and only if they are conditionally independent given AA and AA isS A S A
weakly- PP-trivial. The following counterexample shows a nontrivial group for

� 4which AA is not PP-equivalent to B, V .SI

� 4EXAMPLE 1. Let V s 1, 2, 3, 4 , let AA be the s-field of all subsets of V and
� 4 � 4let PP s P, Q , where P is the uniform distribution on 2, 3, 4 and Q is the

probability measure concentrated at the point 1. The smallest s-field AAS
� 4 � 4 Ž .containing the events 1 and 2 is sufficient for the experiment V, AA, PP .

� 4Let G s I, g , g , where I is the identity map on V, g is the permutation1 2 1
Ž . Ž .1, 3, 4, 2 and g s 1, 4, 2, 3 . We have that AA s AA is the smallest s-field2 A I

� 4including 1 and AA and AA are independent, but AA s AA s AA is notA S SI S A A
� 4PP-equivalent to B, V .

REMARK 1. It is not difficult to show that, replacing the independence of
AA and AA by the stronger condition of independence of AA and AA for aS A S A

Ž 4 � 4privileged dominating probability, AA ; B, V , and hence AA ; B, V . WeS A SI
show here that independence for a privileged dominating probability implies
independence when one of the s-fields involved is sufficient, as follows. Let Q
be such a privileged dominating probability. For A g AA , by independence,A
Ž . Ž < .Q A is a version of Q A AA , which, by sufficiency, is a common version ofS
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Ž < .the conditional probabilities P A AA , P g PP. Hence, for A g AA , B g AA andS A S
P g PP, we have

< <P A l B s P A AA dP s Q A AA dPŽ . Ž . Ž .H HS S
B B

1Ž .
s Q A dP s Q A P B .Ž . Ž . Ž .H

B

Ž . Ž . Ž .On taking B s V we obtain P A s Q A this shows that AA is ancillaryA
Ž .and then 1 shows the independence of AA and AA . We note in passing thatS A

the preceding provides a converse to the well-known theorem of Basu,
namely, any statistic independent of a sufficient statistic for a privileged
dominating probability is ancillary. Example 1 also shows that this proposi-
tion is not true if we only assume independence.

We are now concerned with the relationship between the independence of
AA and AA and the equivalence of AA and AA . A correct version of anS A S A SI

Ž .assertion of Berk 1972 states that the independence of AA and AA impliesS A
that AA is weakly-PP-equivalent to AA . In fact, it implies the weak PP-trivial-S A SI
ity of AA . The condition AA ; AA is fulfilled if AA and AA are independentS A S A SI S A
for a privileged dominating probability. It should be noted that while AA ; AAA I
implies that AA ; AA , it does not imply the stronger condition that AA l AAS A SI S A

Ž .; AA l AA as is shown in Example 1 of Landers and Rogge 1973 .S I
The following counterexample shows that the independence of AA and AAS A

is not a sufficient condition to have AA ; AA . For the choice of the group ofS A SI
transformations in the two examples below, we make use of an idea due to

Ž .Berk 1970 .

EXAMPLE 2. Let E and E be disjoint intervals of R, V s E j E , and1 2 1 2
� 4let AA be the Borel s-field of V. Let PP s U , U , where U is the uniform1 2 i

distribution on E , i s 1, 2. The smallest s-field AA containing E and E isi S 1 2
Ž .sufficient and complete for the experiment considered. Let G be the group of

all bijective maps of V onto itself moving at most a finite subset of V. We
� 4have that AA s AA s B, V , AA s AA and AA is the smallest s-field includingI SI A S A

AA and the null sets. Hence AA is not equivalent to AA . Nevertheless, AAS SI S A S
and AA are independent.A

Ž . Ž .A correct restatement of part ii of the theorem in Berk 1972 is as
follows: under the assumption of weak-PP-equivalence of AA k AA and AA, theS I
independence of AA and AA implies the weak PP-equivalence of AA and AA .S A A I
The next counterexample shows that we need not have equivalence of AA andA
AA , even if AA k AA ; AA.I S I

w x w xEXAMPLE 3. Let V s 0, 4 = 0, 4 , let NN be the set of null Borel sets on V
w x w x w x w xwith respect to the Lebesgue measure, A s 1, 2 = 1, 2 , A s 2, 3 = 2, 31 2

w x w x w x w xand AA be the smallest s-field containing NN, 0, 2 = 0, 2 , 2, 4 = 2, 4 and
w x w x1, 3 = 1, 3 . We shall write U , i s 1, 2, for the restriction to AA of thei
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� 4uniform distribution on A and PP s U , U . Let G be the group of alli 1 2
transformations on V moving at most a finite subset of V and leaving the set
w x w x w x1, 3 = 1, 3 invariant. Hence AA is the smallest s-field including 1, 3 =I
w x w x w x1, 3 , and AA s AA. The smallest s-field AA containing 0, 2 = 0, 2 andA S
w x w x Ž .2, 4 = 2, 4 is sufficient for the experiment V, AA, PP , is independent of AAA

w x w xand satisfies AA ; AA k AA . However, AA ¤ AA , since the event 2, 3 = 2, 3 isS I A I
not equivalent to any event of AA .I

Ž .REMARK 2. It is also claimed in Berk 1972 that under the hypothesis of
conditional independence of AA and AA given AA and AA ; AA k AA , theS A S A S I
propositions AA ; AA and AA ; AA are equivalent. The proof given thereA I S A SI
requires the not-easily-checked condition ‘‘ AA is sufficient for AA ;’’ this condi-I A

Ž .tion and, hence, AA ; AA is clearly satisfied in the dominated case. AnotherA I
condition guaranteeing that AA is sufficient for AA is that the group actsI A

Ž � 4.transitively on the family PP this means that PP s gP: g g G as is shown
Ž .in Lemma 2 of Berk and Bickel 1968 . The condition AA ; AA k AA can beS I

replaced by AA ; AA k AA .A S I;
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