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ON BOOTSTRAP ACCURACY WITH CENSORED DATA1

BY KANI CHEN AND SHAW-HWA LO

HKUST and Columbia University

In survival analysis with censored data, we consider three closely
related survival function estimators: the Kaplan]Meier, Nelson and mo-
ment estimators. We derive the Edgeworth expansions for these three
estimators with Studentization. Edgeworth expansions for the correspond-
ing bootstrap statistics are also given. It is found that the bootstrap
approximation is better than the normal approximation for the Student-
ized Kaplan]Meier and Nelson estimators, but not so for the Studentized
moment estimator. With these results, we construct bootstrap-based con-
fidence intervals with better coverage probabilities. We also include some
simulations which show strong agreement with our theoretical findings.

1. Introduction. Lifetime data with incomplete observations often arise
in biometry and reliability theory. In some medical studies, each subject is
followed from an entrance time to an exit time, and whether the exit is due to
death or other reasons is recorded. With this type of right-censored data, the

Ž . Ž .product-limit estimator of Kaplan and Meier 1958 K-M estimator has been
generally accepted as the estimator of the underlying survival function.
Inference with the K-M estimator that appeared in the literature mainly
relies on its asymptotic normality, which was first established in Breslow and

Ž . Ž .Crowley 1974 and later extended in Gill 1983 . For example, the asymptotic
normality of the K-M estimator can be used to build a confidence interval for
the survival function at some fixed time t, and the confidence band for the
survival curve can be constructed based on the fact that the K-M process,

wwith appropriate Studentization, converges to a Brownian bridge see, e.g.,
Ž . Ž .xHall and Wellner 1980 and Gill 1983 .

As an alternative to the normal approximation, the bootstrap method was
Ž .proposed in Efron 1981 to approximate the distribution of the K-M estima-

w Ž . Ž .tor. It was shown later e.g., in Lo and Singh 1986 and Akritas 1986 ,
xamong others that the bootstrap gives a correct first order asymptotic

approximation of the K-M process and its quantile process. However, to our
knowledge there has been no report in the literature that the bootstrap
provides a better approximation and hence derives better confidence intervals
for survival function than those constructed based on the normal approxima-
tions.
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It is well known that under certain regularity conditions, the bootstrap
approximation is better than the normal approximation for a broad class of
Studentized statistics. The case of sample mean was first observed in

Ž .Abramovitch and Singh 1985 and more general cases dealing with smooth
Ž .functions of sample mean can be found in Hall 1988 . Similar results were

Ž .also obtained in Helmers 1991 for Studentized U-statistics. In summary, it
Žis generally believed that the bootstrap of Studentized statistics or, more

.generally, pivotal statistics leads to confidence intervals with better coverage
probabilities. In contrast to Studentized statistics, the bootstrap of statistics
without Studentization has an error, usually of order ny1r2, which is no
better than the normal approximation in terms of order. For more discussions

Ž . Ž .of this issue, the readers are referred to Helmers 1991 and Hall 1992 .
The question that naturally arises in survival analysis is whether the

bootstrap approximation for the Studentized K-M estimator is better than the
normal approximation. The purpose of this article is to address this problem.
Our findings indicate that the answer is indeed positive. We show that the
difference between the distribution function of the Studentized K-M estima-

Ž y1r2 .tor and that of its bootstrap analogue is o n almost surely. From this
result we prove that the bootstrap offers a confidence interval with better
coverage probability than the normal approximation does. To support our
results we present some simulations with small sample size and heavy
censorship. The simulations strongly support our theoretical findings. In
addition to the Studentized K-M estimator, we also study the closely related

wNelson estimator also called Nelson]Aalen estimator; see, e.g., Altshuler
Ž .x w Ž . Ž .x1970 and the moment estimator cf. Prentice 1978 and Cuzick 1985 , as
well as the estimators of the corresponding cumulative hazard functions.
Furthermore, the explicit formulas of the Edgeworth expansions of the
Studentized statistics are obtained in all three cases.

It is noted that the whole analysis involved in deriving these results
cannot be perceived as a special case of what seems to be the belief that
the bootstrap approximation is better for Studentized statistics. In fact, the
results obtained in this paper are, to a certain extent, surprising. First, the
bootstrap of the Studentized moment estimator of the survival function is no
better than the normal approximation, while the bootstrap of the Studentized
Nelson and K-M estimators do perform better. These three asymptotically
equivalent estimators have quite different behavior in their effects of the
bootstrap. Second, the K-M estimator is a natural generalization of the
empirical survival function when data are complete: the bootstrap accuracy of
the Studentized K-M estimator is expected to conform with that of the
Studentized empirical survival function. It turns out that the former is
second order accurate and the latter is only first order accurate. The reason
for this is that the empirical distribution is the average of iid Bernoulli
variables whose distribution is obviously latticed. The bootstrap with Studen-
tization reported in the literature is restricted to the cases of nice statistics,

wsuch as sample means or U-statistics and their smooth functions cf. Helmers
Ž . Ž .x1992 ; Hall 1988, 1992 . However, the K-M estimator and the moment
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estimator, taking product forms and complicated by Studentization, have
irregular behavior in bootstrap accuracy and hence require a rather delicate
treatment. As a result, the Edgeworth expansions for the Studentized K-M
estimator and its bootstrap cannot be directly derived. In fact, representing
the Studentized K-M estimator as a sum of iid variables plus an error term

wdoes not provide us enough tools to tackle the problem cf. Lo and Singh
Ž .x1986 . The approaches we adopt to encounter the difficulties are to first
write the target statistic as a U-statistic plus smaller remainder terms. We
then derive the Edgeworth expansions of this U-statistic and employ various
exponential inequalities to control the orders of the remainder terms and
show their negligibility. In this way, we derive the Edgeworth expansions for
the Studentized Nelson estimator. The expansions of the Studentized K-M
and moment estimators are obtained by observing the fact that the differ-
ences multiplied by n among the three estimators are asymptotic constants.
The expansion for the bootstrap of the Studentized Nelson estimator, though
more complicated, bears the same idea and is performed in a similar fashion.
To deal with the bootstrap of the Studentized K-M estimator, we consider a
smoothed version of the bootstrap. This allows us to obtain the expansions for
the bootstrap of the three Studentized estimators and thus conclude their
bootstrap approximations.

In Section 2 we present Edgeworth expansions for several Studentized
statistics, including the estimator of the cumulative hazard function, the
K-M, the Nelson and the moment estimator of the survival function. In
Section 3, we derive the Edgeworth expansions for the corresponding boot-
strap statistics. By comparison of the coefficients of the expansions, we
conclude that the bootstraps of the Studentized K-M and Nelson estimators
are better than the normal approximations, while the bootstrap for the
Studentized moment estimator is not. The result is then extended to address
the issue of coverage probabilities of confidence intervals in Section 4. Finally
we give an example of simulations with small sample but rather heavy
censorship. The example shows strong agreement with the theoretical find-
ings presented in this paper. Some of the proofs are deferred to the Appendix.

Before we move on to the next section, we introduce some notations and
relevant estimates as follows.

Ž .Let X , Y , i s 1, . . . , n, be iid pairs of nonnegative random variables,i i
with X independent of Y for each i. Let F and G denote the distributioni i
functions of the X and Y populations, respectively. The distribution function
F is known as the survival distribution and G is known as the censoring
distribution. We denote by F and G the survival functions of X and Y,

Ž .respectively i.e., F s 1 y F and G s 1 y G . Let d denote the usual indica-i
tor function of the censoring, that is, d s 1 if X F Y and d s 0 if X ) Y .i i i i i i

Ž .The observed data consist of Z , d , 1 F i F n, where Z s X n Y for 1 Fi i i i i
i F n.

Ž . Ž . Ž . Ž .Let H t s P Z G t, d s 1 and H t s P Z G t be the subsurvival1 1 1 1
Ž .and survival functions of the observations, respectively, and let L t s

tyH dH rH be the cumulative hazard function of the X population. Let0 1
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ˆ ˆ ˆŽ . Ž . Ž .H ? , H ? and L ? be the corresponding sample analogue of the above three1

functions, that is,
n n1 1ˆ ˆH t s I Z G t , d s 1 , H t s I Z G tŽ . Ž . Ž . Ž .Ý Ý1 i i in nis1 is1

and

ˆ )dH r dt 1 i i
L̂ t s y s ,Ž . ÝH ˆ n0 iH

� 4 � 4where r s a j; Z s Z , n s a j; Z G Z and ) runs over all i such thati j i i j i
Z F t.i

With these notations, the K-M estimator, the moment estimator and the
ˆ ˆ ˆNelson estimator, denoted by F, F and F , can be expressed asM N

d i) riˆ1.1 F t s 1 y ,Ž . Ž . Ł ž /ni

d i) riˆ1.2 F t s 1 yŽ . Ž . ŁM ž /n q 1i

and
ˆ ˆ1.3 F t s exp yL t ,Ž . Ž . Ž .Ž .N

Ž̂ . Ž .respectively. The variance of F t estimated via the Greenwood 1926 for-
2 2Ž̂ . Ž .mula is F t s t rn, whereĜ

) nd ri i21.4 s t s .Ž . Ž .ˆ ÝG n n y rŽ .i i i

2 2 2 2ˆ ˆ ˆLikewise, one can use F s rn and F s rn to estimate the variances of Fˆ ˆN G M G N
ˆand F , respectively.M

2 2 t y2Ž . Ž .Notice that s t is an estimator of s t s yH H dH . It can also beĜ 0 1
t y1ˆ ˆ ˆŽ Ž . Ž .. Ž .written as yH H s H sq dH s . In our proofs we shall often use the0 1

2Ž .sample analogue of s t , that is,

t2 y2ˆ ˆs t s y H dH .Ž .ˆ H 1
0

2. The Edgeworth expansions for the Studentized estimators. We
assume throughout the paper that:

F and G are continuous; t is a fixed positive number
2.1Ž . such that F t G t ) 0 and G t ) 0.Ž . Ž . Ž .

Ž . Ž .The above assumption is reasonable. If G t s 0 and F t ) 0, the asymp-
wtotic normality of the Studentized K-M estimator does not hold cf. Chen and
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Ž .x Ž .Ying 1996 . On the other hand, the case with F t s 0 is obviously not of
interest to us. In order to obtain the Edgeworth expansion for the Studen-
tized K-M estimator, it is therefore natural to restrict our attention to the

Ž . Ž .estimation of the survival function at a fixed time t with F t G t ) 0. The
Ž .assumption G t ) 0 is necessary for the second order accuracy of the boot-

strap. Without this assumption the K-M estimator at time t reduces to the
empirical survival function, which has quite different expansion and boot-
strap accuracy.

REMARK. The validity of the expansion of the sum of iid variables or
U-statistics typically requires Cramer’s condition plus other moment condi-´

Ž .tions. In the current case, the assumption 2.1 is strong enough to warrant
all the expansions in this paper. Thanks to this assumption, the U-statistics
we consider in this paper are bounded and the distributions of their kernels
are continuous. Therefore the Edgeworth expansions are valid.

The presentation of this section is arranged as follows. We first derive the
Edgeworth expansion for the Studentized cumulative hazard estimator by

Ž .expressing it as sum of two statistics u and g Proposition 1 . The expansion3
of u and the negligibility of g are shown in Lemmas 1 and 2 in the3

ŽAppendix. The statistic u has a special form, and the technique to handle it
.is also used in the proof of Theorem 1. Since the Nelson estimator is just the

exponential function of the cumulative hazard estimator, the result in Propo-
sition 1 is inherited to show the Edgeworth expansion for the Studentized
Nelson estimator in Theorem 1. We then prove that the differences among
the Nelson estimator, the K-M estimator and the moment estimator are
asymptotically constant on the order of ny1. The expansions for the Studen-
tized K-M and moment estimators are easily derived in light of the parallel
result obtained in Theorem 1.

Because t is fixed throughout the paper, for simplicity we shall write the
ˆwfunction value at time t as the function itself without confusion e.g., L '

ˆŽ .x Ž .L t . We shall also denote a function of z , d as a function of z only. Fori i i
ŽŽ .. Ž .example, f z , d will be expressed as f z .i i i

Ž .PROPOSITION 1. Under the assumption in 2.1 , one can write

1r2 ˆn L y LŽ .
P - xž /ŝ2.2Ž . G

s F x q ny1r2f x k x 2 q k q o ny1r2Ž . Ž . Ž .Ž .1 2

uniformly in x, where F and f are the distribution function and density
function of the standard normal distribution, respectively, and k and k are1 2
constants depending on F, G and t only.
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ˆŽ . Ž .PROOF. Recall the definitions of L t and L t given in the previous
section. We can write

L̂ t y L tŽ . Ž .
ˆdH dHt t1 1s y qH Hˆ H0 0H

ˆ ˆ ˆd H y H H y H H y Hž /1 1t t t ˆs y q dH q d H y HH H H ž /1 1 12 2H H H0 0 0

2 2ˆ ˆH y H H y HŽ . Ž .t t ˆy dH y d H y HH H ž /1 1 13 3H H0 0

3Ĥ y HŽ .t ˆq dHH 13 ˆ0 H H

2.3Ž .

2ˆ ˆ ˆ ˆdH H H Ht t t t1 ˆs y2 q 2 dH q dH y dHH H H H1 1 12 2 3H H H H0 0 0 0

2 3ˆ ˆH y H H y HŽ . Ž .t tˆ ˆy d H y H q dHH Hž /1 1 13 3 ˆH0 0 H H
1

s h z , z q g ,Ž .Ý i j2n 1Fi-jFn

where

2d 12d 1 1j w z F t x ti w z F t x w z G s xji ih z , z s q q 2 dH sŽ . Ž .Hi j 12H z H z H sŽ . Ž . Ž .0i j

1 1w z G s xt t w z G s xj iq 2 dH s q d1Ž .H H1 w z G s , d s1x2 2 j jH s H sŽ . Ž .0 0
2.4Ž .

1 1w z G s x w z G s , z G s xt tj i jq d1 y 2 dH sŽ .H Hw z G s , d s1x 12 3i iH s H sŽ . Ž .0 0

and

ˆ ˆ ˆ ˆ2 dH 2 H 1 dH 1 Ht t t t1 1
g s y q dH q y dHH H H H1 12 2 3n n n nH H H H0 0 0 0

2.5Ž .
2 3ˆ ˆH y H H y HŽ . Ž .t tˆ ˆy d H y H q dH .H Hž /1 1 13 3 ˆH0 0 H H
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Ž . Ž Ž . < Ž ..Define g z s E h z , z z , d . Then1 1 2 1 1

2d 1 1 1t t1 w z F t x w z G s x w z G s x1 1 1g z s q 2 dH s q dH sŽ . Ž . Ž .H H1 1 12 2H z H s H sŽ . Ž . Ž .0 01

d 1 1t1 w z F t x w z G s x1 1y y 2 dH sŽ .H 12H z H sŽ . Ž .01

2.6Ž .

d 1 1t1 w z F t x w z G s x1 1s q dH s .Ž .H 12H z H sŽ . Ž .01

Now write

ˆdH dHt t1 12 2s y s s y qˆ H H 22ˆ H0 0H2.7Ž .
n1

s f z q g say ,Ž . Ž .Ý i 1n is1

where

d 1 1 dHt t1 w z F t x w z G s x 11 1f z s q 2 dH s y ,Ž . Ž .H H1 12 3 2H z H s HŽ . Ž .0 01

2ˆ ˆ ˆH y H H y H H q 2 HŽ .Ž .t tˆ ˆg s 2 d H y H y dH .H Hž /1 1 1 13 2 3ˆH0 0 H H

It follows that

s s 2 y s 2 s 2 y s 2 2s 2 y s 2 y ssŽ . Ž .ˆ ˆ ˆ ˆ
s 1 y y2 2s 2sˆ 2s s s q sŽ .ˆ ˆ

2n1 g s y s s q 2sŽ . Ž .ˆ ˆ1s 1 y f z y qŽ .Ý i2 2 22ns 2s 2sŝis1

2.8Ž .

n1
s 1 y f z q g ,Ž .Ý i 222s n is1

where

2
g s y s s q 2sŽ . Ž .ˆ ˆ1

2.9 g s y q .Ž . 2 2 22s 2sŝ
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Ž . Ž . Ž .From 2.3 , 2.7 and 2.8 , we have

1r2 ˆ 1r2n L y L n 2 sŽ .
s h z , z q 2gŽ .Ý i j2ž /s 2s snˆ ˆi-j

1r2 nn 2 1
s h z , z 1 y f zŽ . Ž .Ý Ýi j i2 2ž /ž /2s n 2nsi-j is12.10Ž .

n1r2g 2 n1r2g2q h z , z qŽ .Ý i j2ž /2s sn ˆi-j

s u q g ,3

where

1r2 nn 2 1
u s h z , z 1 y f z ,Ž . Ž .Ý Ýi j i2 2ž /ž /2s n 2nsi-j is1

g n1r2 2 n1r2g2
g s h z , z q .Ž .Ý3 i j2ž /2s sn ˆi-j

2.11Ž .

Lemmas 1 and 2 in the Appendix give the Edgeworth expansion of u and the
negligibility of g . Therefore using the delta method, we conclude that3

1r2 ˆn L y LŽ .
P - xž /ŝ

s P u q g F xŽ .3

2.12Ž .

s F x q ny1r2f x k x 2 q k q o ny1r2Ž . Ž . Ž .Ž .1 2

Ž .uniformly in x. Now we have proved 2.2 with s replaced by s there. Toˆ ˆG
Ž .show 2.2 , write

1r2 ˆ 1r2 ˆ 1r2 ˆn L y L n L y L n L y L sŽ . Ž . Ž . ˆ
s q y 1ž /s s s sˆ ˆ ˆ ˆG G

and it suffices to show

ŝ
y2r3 y1r22.13 P y 1 ) n s o n .Ž . Ž .ž /ŝG

Notice that

2 2 ˆs s y s 1 dH s 1Ž .ˆ ˆ ˆ tG 1y 1 F s FH2 2 2ˆ ˆ ˆs s nsˆ ˆ ˆ 0G G G H s H sq nH tqŽ . Ž . Ž .
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and we have

ŝ
y2r3 y1r3 ylˆ2.14 P y 1 ) n F P H tq F n s o nŽ . Ž . Ž .ž /ž /ŝG

Ž .for arbitrary l ) 0. This establishes 2.13 and the proof is complete. I

Ž .REMARK. The explicit formulas of k and k are given in A.4 in the1 2
Appendix. They are functions of the population distribution F, G and time t
only.

Now we are ready to derive the Edgeworth expansion for the Studentized
Nelson estimator.

Ž .THEOREM 1. Under the assumption in 2.1 , one can write

1r2 ˆn F y Fž /N
P F x

ˆ� 02.15Ž . F ŝN G

s F x q ny1r2f x k x 2 q k q o ny1r2Ž . Ž . Ž .˜ ˜Ž .1 2

uniformly in x, where k s yk q sr2 and k s yk .˜ ˜1 1 2 2

Ž . Ž .PROOF. In view of 2.13 and the delta method, it suffices to show 2.15
with s replaced by s on the left-hand side. By Taylor expansion, we canˆ ˆG
write

1r2 ˆ 1r2 ˆn F y F n L y L 1 jŽ . 2ž /N ˆ ˆs y 1 q L y L q L y L ,Ž . Ž .ž /s 2 6ˆ ˆF ŝN

ˆ ˆ< < < Ž . <where j satisfies j y 1 F exp L y L y 1 . From the expression of L y L in
Ž .2.3 , we can further write

1r2 ˆ 1r2 1r2nˆ ˆn F y F n L y L 1 n L y LŽ . Ž .ž /N
s y 1 q g z yŽ .Ý iž /s 2n sˆ ˆ ˆis1F ŝN

n1 1 g j 2ˆ= w z , z y g z q q L y L ,Ž . Ž . Ž .Ý Ýi j i2 2ž /2 62n 2ni-j is1

Ž . Ž . Ž . Ž . Ž . Ž Ž . < Ž ..where w z , z s h z , z y g z y g z . Since g z s E h z , z z , di j i j i j i i j i i
Ž . ŽŽ 2 . Ž ..2 Ž y2 .and Eg z s 0, we conclude E 1r2n Ý w z , z s O n andi i- j i j

ŽŽ 2 . n Ž ..2 Ž y2 .E 1r2n Ý g z s O n . In view of Lemma 2 in the Appendix andis1 i
1r2 ˆŽ .the Edgeworth expansion of n L y L rs , one can show the second term inˆ

the right-hand side above is clearly negligible. For the first term, we notice
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1r2 ˆŽ . Ž .that n L y L rs s u q g , g is negligible Lemma 2 , and u can beˆ 3 3
written as

1r2 y1n 1n h̃ z , z y E g z f zŽ . Ž . Ž .Ž .Ý i j 1 12ž / ž /22s nsi-j

˜w Ž .xplus some negligible terms Lemma 1; h is a function defined in A.2 . Hence
it suffices to show

1r2 y1 nn 1 1n ˜L ' y h z , z y E g z f z 1 q g zŽ . Ž . Ž . Ž .Ž .Ý Ýi j 1 1 i2ž / ž / ž /22s 2nnsi-j is1

Ž .has the same Edgeworth expansion as the right-hand side of 2.15 . Now L
can be further written as a U-statistic L plus four negligible terms in a1
similar fashion as we express u in Lemma 1. The U-statistic L can be1
expressed as

1r2 y1n n ˜L s y h z , z q g z g zŽ . Ž . Ž .Ý1 i j i jž / ž22s i-j

1 s 2

y E g z f z q .Ž . Ž .Ž .1 12 /nns

Ž .From Theorem 1.2 of Bickel, Gotze and van Zwet 1986 , we have¨

P L F x s F x q ny1r2f x k x 2 q k q o ny1r2Ž . Ž . Ž . Ž .˜ ˜Ž .1 1 2

uniformly in x, where k s yk q sr2 and k s yk . The proof is thus˜ ˜1 1 2 2
complete. I

The following theorem gives the Edgeworth expansion of the Studentized
K-M estimator.

Ž .THEOREM 2. Under the assumption in 2.1 , one can write

1r2 ˆn F y FŽ .
P F x

ˆ� 02.16Ž . FŝG

s F x q ny1r2f x k x 2 q k q sr2 q o ny1r2Ž . Ž . Ž .˜ ˜Ž .1 2

uniformly in x.

PROOF. We shall first show

2Fs y1r2 y1r2ˆ ˆ2.17 P F y F q ) n log n s o n .Ž . Ž . Ž .Nž /2n

� 4To this end, following the notation in Section 1, let r s a j; z s z andi j i
� 4 Un s a j; z G z ; Ý means summation over all z such that z F t. Thei j i i i
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ˆŽ . Ž .continuity of F and G entails P r s 1 s 1. Let h s 8 if nH tq G 2; s `i
otherwise. Now write

2 ) ) )s 1 d dˆ i iˆ ˆlog F y log F q s d log 1 y q qÝ Ý ÝN i 2ž /2n n n 2ni i i

) d hiF h F .Ý 3 2 3ˆ3ni 3n H tŽ .

2.18Ž .

The first inequality appearing above is due to Taylor expansion. It is easy to
see that

2ŝ y1 y1r2ˆ ˆ2.19 P log F y log F q ) n log n s o n .Ž . Ž . Ž .Nž /2n

Applying Taylor expansion again, we have

2ˆ ˆF y F ŝN y1 y1r22.20 P q ) n log n s o n .Ž . Ž . Ž .ˆ 2n� 0FN

Ž < 2 2 < y1r2Ž .y1 . Ž y1r2 . Ž .Since P s y s ) n log n s o n is proved in A.7 , the resultˆ
Ž . Ž . Ž .2.17 follows from 2.15 and 2.20 . The theorem is an easy consequence of
Ž . Ž .2.17 , 2.15 and the delta method. We omit the details. I

The Edgeworth expansion for the Studentized moment estimator can be
derived similarly. Following the previous notations, write

2ŝˆ ˆlog F y log F yM N 2n
) ) )1 d di is d log 1 y q yÝ Ý Ýi 2ž /n q 1 n 2ni i i

) ) ) ) )d d d d di i i i iF y q y y q hÝ Ý Ý Ý Ý2 2 3n q 1 n 2n 3n2 n q 1Ž .i i i ii

) )d d 2 q hi iF q h F .Ý Ý2 32 2 3ˆ3n2n n q 1Ž . i 3n H tŽ .i i

Similarly, we have

2Fs y1 y1r2ˆ ˆ2.21 P F y F y ) n log n s o n .Ž . Ž . Ž .M Nž /2n

We thus proved the following theorem.
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Ž .THEOREM 3. Under the assumption 2.1 , one can write

1r2 ˆn F y F sž /M y1r2 2 y1r2P F x s F x q n f x k x q k y q o nŽ . Ž . Ž .˜ ˜1 2ž /2ˆ� 0F ŝM G

uniformly in x.

Ž . Ž .REMARK. From 2.17 and 2.21 , the K-M estimator and the moment
2estimator are asymptotically different from the Nelson estimator by Fs r2n

2and yFs r2n. As a result, the differences of the Edgeworth expansions for
Ž . Ž .these three estimators with Studentization are f x sr2 or f x s on the

order of ny1r2.

3. The Edgeworth expansions for the bootstrap statistics. In this
section we study the issue of bootstrap approximations. Recall that the
bootstrap sample is obtained by simple random sample with replacement

�Ž . 4 �Ž U U . 4from the set of observations Z , d , i s 1, . . . , n . Let Z , d , i s 1, . . . , ni i i i
denote the bootstrap sample. We shall put a sign * on each statistic or
function associated with the bootstrap sample. For example, PU is the
probability measure on the bootstrap sample space,

n n1 1
U U U U Uˆ ˆH s s I Z G s, d s 1 , H s s I Z G sŽ . Ž . Ž . Ž .Ý Ý1 i i in nis1 is1

and

d U1 U 1 Ut1 w z F t x w z G s x1 1U U ˆg z s q dH s ,Ž . Ž .H1 1U 2ˆ ˆ0H z H sŽ . Ž .1

U Uˆ ˆ� Ž . w .4 � Ž . w .4and so forth. Now H s , s g 0, ` and H s , s g 0, ` are empirical1
ˆ ˆ� Ž . w .4 � Ž . w .4processes with parent distributions H s , s g 0, ` and H s , s g 0, ` ,1

respectively.
The following theorem shows the bootstrap accuracy for the Studentized

cumulative hazard estimator and for the Studentized Nelson estimator.

Ž .THEOREM 4. Under the assumption in 2.1 , we have, for any d ) 0 and
l ) 0,

U1r2 ˆ ˆn L y LŽ .
UP sup P - xUž /sž ˆx G

1r2 ˆn L y LŽ . y1r2yP - x ) d nž /s /Ĝ

3.1Ž .

s o nylŽ .
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and
U1r2 ˆ ˆn F y FN Nž /UP sup P - x

U Uˆ� 0x� F ŝN G

1r2 ˆn F y Fž /N y1r2yP - x ) d n
ˆ� 0 0F ŝN G

3.2Ž .

s o nyl .Ž .

It is noted that the second order accuracy of bootstrap presented in the
above formulation implies second order accuracy in the sense of almost sure
convergence or, more loosely, in probability convergence. In fact, by choosing
d small and l ) 1, we have, from the Borel]Cantelli lemma,

U1r2 1r2ˆ ˆ ˆn L y L n L y LŽ .Ž .
U y1r2sup P - x y P - x s o nŽ .U ž /ž /s sˆ ˆx G G

and

U1r2 1r2ˆ ˆ ˆn F y F n F y FN Nž / ž /NU y1r2sup P - x y P - x s o nŽ .
U Uˆ ˆ� 0� 0x F s F sˆ ˆN G N G

almost surely. Similar results also hold for the Studentized K-M estimator
following Theorem 5. The formulation of bootstrap accuracy that we choose to
present in the theorems is necessary for a rigorous proof of second order
accuracy of the bootstrap-based confidence intervals.

PROOF OF THEOREM 4. Given l ) 0, it follows from the convergence of
Ž c. Ž yl .empirical process that there exists a set EE with P EE s o n such thatn n

uniformly on EE ,n

ˆ ˆ3.3 sup H s y H s s o 1 and sup H s y H s s o 1 .Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 1
sG0 sG0

w . � 4Let SS s 0, ` = 0, 1 . Recall the definition of the functions f , g, h and w
in Section 2. It is easy to see, uniformly on EE , we haven

Usup f z y f z s o 1 ,Ž . Ž . Ž .
Ž .z , d gSS

Usup g z y g z s o 1 ,Ž . Ž . Ž .
Ž .z , d gSS

Usup h z , z y h z , z s o 1 ,Ž . Ž . Ž .˜ ˜
Ž .z , d gSS

˜Ž .z , d gSS˜

3.4Ž .

Usup w z , z y w z , z s o 1Ž . Ž . Ž .˜ ˜
Ž .z , d gSS

˜Ž .z , d gSS˜
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and

U U U U Uk l m k l mE f z g z w z , z y E f z g z w z , zŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 1 1 2 1 1 1 23.5Ž .
s o 1Ž .

Ž . Ž .for any fixed nonnegative integers k, l and m. Now 3.4 and 3.5 immedi-
ately give

EU f U k zU gU l zU wU m zU , zUŽ . Ž . Ž .Ž .1 1 1 2
3.6Ž .

s E f k z g l z w m z , z q o 1Ž . Ž . Ž . Ž .Ž .1 1 1 2

uniformly on EE .n
Ž .To show 3.1 , we mimic the proof of Proposition 1 in Section 2. We first

prove

U1r2 ˆ ˆn L y LŽ .
U U Uy1r2 2sup P - x y F x y n f x k x q kŽ . Ž . Ž .1 2Už /3.7Ž . ŝx

s o ny1r2Ž .
U wuniformly on EE , where k is the bootstrap analogue of k , j s 1, 2. Noten j j

U U Ž .that k and k depend on the samples z , d , 1 F i F n, but not bootstrap1 2 i i
U U Ut tˆ ˆ ˆ ˆˆ ˆx Ž .samples. Recall that L s H dH rH and L s H dH rH. From 2.10 , we0 1 0 1

1r2 Û ˆ UŽ .may rewrite n L y L rs asˆ
1r2 Û ˆn L y LŽ .

U U3.8 s u q g ,Ž . 3Uŝ

where u U and g U are the bootstrap analogues of u and g , respectively. The3 3
Ž . Ž .result 3.7 is proved in view of 3.8 and Lemma 3 in the Appendix.

Ž . Ž . U UTo complete the proof of 3.1 , we need to show 3.7 still holds if k , k1 2
and s U are replaced by k , k and s U, respectively. To this end, we firstˆ ˆ1 2 G

Ž .notice that k and k defined in A.4 in the Appendix have similar form to1 2
Ž . U Ž .those that appeared in 3.6 . Therefore uniformly on EE , k s k q o 1 andn 1 1

U Ž .k s k q o 1 . Second, we write2 2

U U 2s s 1ˆ ˆ U Uˆ ˆy 1 F y 1 F sup H s y H sqŽ . Ž .U U 2 Uˆs sˆ ˆ sG0G nH tqG Ž .
1

Us sup r ,iUˆ 1FiFnnH tqŽ .
U � U 4 � U U4where r s a j: z s z , 1 F i F n. Notice that r , . . . , r has a multino-i j i 1 n

Ž .mial distribution MM n; 1rn, . . . , 1rn , and it follows that

j1nU U U U1r6 1r6 y1r2P sup r G n F nP r G n F n s o n .Ž .Ž . Ýi 1ž / ž /ž /j n1r61FiFn jGn
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ˆŽ . Ž . Ž . Ž .Since H tq s H tq q o 1 uniformly on EE and H tq ) 0, we haven
U U y1r6 y1r2ˆŽ Ž . . Ž .P H tq F n s o n uniformly on EE . Thereforen

Uŝ y1U y1r2P y 1 ) n log nŽ .Už /ŝG

U U U U1r6 y1r6ˆF P sup r G n q P H tq F nŽ .ž /iž /
1FiFn

s o ny1r2Ž .

Ž . Uuniformly on EE . Using the delta method, 3.7 still holds with s replacedˆn
U Ž . Ž .by s . The proof of 3.1 is thus complete. The proof of 3.2 is similar andĜ

hence is omitted. I

REMARK. We point out here, that in proving Theorem 4, only the conver-
gence of the empirical distributions and a rather loose bound on the rate of
the convergence are used.

Our next objective is to derive the Edgeworth expansion for the bootstrap
of the Studentized K-M estimator and moment estimator. Because of the
presence of ties in the bootstrap sample, we cannot directly copy the proofs of

w Ž . Ž .Theorems 2 and 3. The validity of 2.18 relies on the fact that P r s 1 s 1,i
due to the continuity of the distribution functions F and G, but evidently

U Ž U . xP r s 1 is wrong. We shall turn to another approach which might be of1
independent interest. The main idea may be briefly explained as follows.
Instead of sampling from the empirical observations, we consider a slightly
smoothed bootstrap procedure that samples from a continuous distribution
which is close to the empirical distribution. As noted in the above remark, the

Ž . Ž .bootstrap accuracy obtained in 3.1 and 3.2 should also hold for this
smoothed bootstrap. Now we can avoid the ties in this smoothed bootstrap
sample and follow the proofs of Theorem 2 to identify the asymptotic differ-
ences among the bootstraps of the three estimators of survival function.
Interesting enough, we find that the K-M estimator under the empirical
measure equals the Nelson estimator under the smoothed bootstrap measure.
Thus we can use the bootstrap accuracy for the Studentized Nelson estima-
tor to show the bootstrap accuracy for the Studentized K-M and moment
estimators.

The construction of a smoothed version of the bootstrap is conceptually
simple. Instead of assigning probability 1rn to each observation, we assign
probability 1rn to a small interval containing that observation. To be more

1 Ž <specific, let « be a small positive number such that « - min zn n 1F i- jF n i2
< < < < < yn .y z , z y t , z y t , n . This guarantees that the small intervals centeredj i j

Žon each z with radius « are all disjoint. Note that t is fixed and F and Gi n
� < <4 .are both continuous. This implies min z y t ) 0 with probability 1. Leti i

�Ž X X. 4z , d , i s 1, . . . , n be the smoothed bootstrap sample sampled from ai i
Ž . n wX Xpopulation with density function 1r2n« Ý 1 as a functionn is1 w < z yz < F « , d sd xi n i
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Ž X X .xof z , d . It can be seen that this population, depending on the observations
�Ž . 4Z , d , i s 1, . . . , n , is very close to the empirical distribution. We shall puti i

Ž . �Ž X X. 4a prime 9 on each statistic or function associated with z , d , i s 1, . . . , n .i i
Let

1 1
X X X X Xˆ ˆH s s a j; z G s, d s 1 , H s s a j; z G s ,� 4 � 4Ž . Ž .1 j j jn n
X X X X X X XH s s P z G s, d s 1 and H s s P z G s .Ž . Ž . Ž . Ž .1 1 1 1

Clearly

X Xy1 y1ˆ ˆ< < < <sup H s y H s F n and sup H s y H s F n .Ž . Ž . Ž . Ž .1 1
sG0 sG0

Ž .Recall EE in 3.3 . We have uniformly on EE ,n n

X Xsup H s y H s s o 1 and sup H s y H s s o 1 .Ž . Ž . Ž . Ž . Ž . Ž .1 1
sG0 sG0

One then follows the proof of Theorem 4 line by line and concludes that
X X1r2 ˆn L y LŽ .X y1r2 2 y1r2sup P - x y F x y n f x k x q k s o nŽ . Ž . Ž .Ž .X 1 2ž /ŝx G

and
X X1r2 ˆn exp yL y exp yLŽ .Ž .Ž .Xsup P - x

X Xˆž /exp yL sŽ . ˆx G

y1r2 2 y1r2y F x y n f x k x q k s o nŽ . Ž . Ž .˜ ˜Ž .1 2

3.9Ž .

uniformly on EE . Note thatn

XdHt 1X X Xˆ ˆF s exp yL , L s y ,Ž . HN XH0

d
X

d
X

i i) )1 1
X Xˆ ˆF s 1 y and F s 1 y ,Ł ŁX XMž / ž /n n q 1i i

X � X X 4 X Xwhere n s a j; z G z and the product runs over all z such that z F t.i j i i i
Ž .From 3.9 , with the absence of ties in this smoothed bootstrap sampling, we

can use Taylor expansion and mimic the proof of Theorems 2 and 3 to show

X X1r2 ˆn F y exp yLŽ .ž /Xsup P - x
X Xˆ� 0x F ŝG

3.10Ž .
s

y1r2 2 y1r2y F x y n f x k x q k q s o nŽ . Ž . Ž .˜ ˜1 2ž /2
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and

X X1r2 ˆn F y exp yLŽ .ž /MXsup P - x
X Xˆ� 0x F ŝM G

3.11Ž .
s

y1r2 2 y1r2y F x y n f x k x q k y s o nŽ . Ž . Ž .˜ ˜1 2ž /2

uniformly on EE .n
U < X < �Ž U U .Now define Z s Z . If Z y Z F « for some 1 F j F n, then Z , d ,i j i j n i i

4i s 1, . . . , n is clearly the ordinary bootstrap sample sampled uniformly over
�Ž . 4the observations Z , d , 1 F i F n . With some easy calculations we havei i

X X X XU U Uˆ ˆ ˆ ˆ ˆexp yL s F , F s F , F s F and s s s .Ž . ˆ ˆM M G G

Ž . Ž .In view of this key relationship, 3.10 and 3.11 , we have

U1r2 ˆ ˆn F y FŽ .Usup P - x
U Uˆ� 0x F ŝG

3.12Ž .
s

y1r2 2 y1r2y F x y n f x k x q k q s o nŽ . Ž . Ž .˜ ˜1 2ž /2

and

U1r2 ˆ ˆn F y FMž /Xsup P - x
U Uˆ� 0x F ŝM G

3.13Ž .
s

y1r2 2 y1r2y F x y n f x k x q k y s o nŽ . Ž . Ž .˜ ˜1 2ž /2

uniformly on EE .n
Ž .Now a comparison of the Edgeworth expansions in 3.12 with that in

Theorem 2 gives the following result.

Ž .THEOREM 5. Under the assumption in 2.1 , we have, for arbitrary num-
bers d ) 0 and l ) 0,

U1r2 1r2ˆ ˆ ˆn F y F n F y FŽ .Ž .U y1r2P sup P - x y P - x ) d n
U Uˆ ˆ� 0� 0x� 0F s Fsˆ ˆG G

s o nyl .Ž .
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To obtain the Edgeworth expansion for the bootstrap of the Studentized
moment estimator, note that the Studentized statistics in the left-hand side

U1r2 ˆŽ . Žof 3.13 is only slightly different from our target statistic n F yM
U Uˆ ˆ. Ž . Ž . Ž .F r F s . In fact, it follows from 2.17 and 2.21 thatˆM M G

2Fs y1 y1r2ˆ ˆ3.14 P F y F y ) 2 n log n s o n .Ž . Ž . Ž .Mž /n

Ž . Ž .Again applying the delta method together with 3.13 and 3.14 , we deduce
the following theorem.

Ž .THEOREM 6. Under the assumption in 2.1 , with probability 1,

U1r2 1r2ˆ ˆ ˆn F y F n F y FM Mž / ž /MUP - x y P - x
U Uˆ ˆ� 0� 0F s F sˆ ˆM G M G

s f x s ny1r2 q o ny1r2Ž . Ž .
uniformly in x.

Theorems 4, 5 and 6 give the results on the asymptotic bootstrap accuracy
for the Studentized statistics as we promised in Section 1. These results
indicate that bootstrapping the Studentized K-M and Nelson estimators offer
better alternatives than the commonly used normal approximations. The
message is especially important and valuable when data are of moderate size
or censoring is heavy so that the normal approximation could be inadequate.
This issue together with the issue of coverage probabilities will be addressed
in the next section.

4. The bootstrap accuracy for confidence intervals. In this section
we demonstrate how to construct confidence intervals with better coverage
probabilities. We also give an example with small sample size and heavy
censorship. The simulations reported in the example show strong agreement
with out theoretical findings and suggestions. The confidence intervals dis-
cussed in this section are all based on Studentized statistics.

To highlight the point, we shall focus our attention on the confidence
intervals constructed with the K-M estimator. Similar conclusions hold for
the Nelson estimator as well. Consider, for instance, the one-sided level 1 y a
confidence intervals of the survival function. The normal-based confidence
interval can be written as

y1r2ˆ ˆI ' y`, F y z Fs n ,ˆ1ya a Gž /
y1Ž .where z s F a , and the bootstrap-based confidence interval isa

y1r2ˆ ˆJ ' y`, F y q Fs n ,ˆ ˆ1ya a Gž /
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where q is the a-quantile of the distribution of the bootstrap statisticâ
U U U U1r2 ˆ ˆ ˆŽ . Ž .n F y F r F s under P . More specifically, q is the largest q whichˆ ˆG a

satisfies
U1r2 ˆ ˆn F y FŽ .UP F q F a .

U Uˆ� 0F ŝG

�Ž . 4Clearly q depends on the sample Z , d ; 1 F i F n . It is easy to see thatâ i i

y1r2 2 y1r2P F t g I s 1 y a q n f z k z q k q o n .Ž . Ž . Ž .˜ ˜Ž . Ž .1ya a 1 a 2

Therefore, the normal-based confidence interval has an error of coverage
probability on the order of ny1r2. On the other hand, the bootstrap-based

Ž y1r2 .confidence interval has an error of coverage probability of o n , as proved
in the following theorem. We shall also show that the bootstrap approxima-
tion of the quantiles is also better than the normal approximation. More

Ž .specifically, let q be the 1 y a -quantile of the distribution of the target1ya
y1r2 y1r2ˆ ˆŽ . Ž . Ž .statistic n F y F r Fs . Then it is clear that z s q q O n .Ĝ 1ya 1ya

Ž y1r2 .However, as we shall show q s q q o n almost surely.1̂ya 1ya

REMARK. When the distribution of target statistic is symmetric on the
order of ny1r2, the bootstrap-based two-sided equal-length confidence inter-
val is no better than the normal-based two-sided confidence interval in terms

w Ž . xof coverage probabilities see, e.g., Hall 1992 for a detailed discussion .
However, the errors of lower and upper limits of the bootstrap-based confi-

Ž y1r2 .dence intervals are o n and those of normal-based confidence intervals
Ž y1r2 .are O n . If we consider the coverage probabilities of nonsymmetric

confidence intervals, the bootstrap-based intervals are usually better.

The following theorem summarizes the bootstrap accuracy in estimation of
quantiles and the coverage probabilities of one-sided confidence intervals

Ž .THEOREM 7. Under the assumption in 2.1 , we have

4.1 q s q q o ny1r2Ž . Ž .â a

almost surely and
y1r24.2 P F t g J s 1 y a q o nŽ . Ž . Ž .Ž .1ya

for fixed 0 - a - 1.

PROOF. The proof is based on standard delta method. Let « be an arbi-
Ž c.trary positive number. From Theorem 5, we consider a set EE with P EE sn n

Ž yl .o n and l ) 1 such that

U1r2 1r2ˆ ˆ ˆn F y F n F y FŽ .Ž .U y1r24.3 sup P - x y P - x F d nŽ .
U Uˆ ˆ� 0� 0x F s Fsˆ ˆG G
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on EE for some d , 0 - d - « . Let x s q q « ny1r2. Sincen a

1r2 ˆn F y FŽ . y1r2 y1r2 y1r2P - q q « n s a q f z « n q o n ,Ž . Ž .a aˆ� 0FŝG

Ž .it follows from 4.3 that

U1r2 ˆ ˆn F y FŽ .U y1r2 y1r2 y1r2P - q q « n ) a q f z « y d n q o nŽ . Ž . Ž .a a
U Uˆ� 0F ŝG

uniformly on EE . Because d - « , the right-hand side of the above inequality isn
larger than a for large n. Therefore we conclude that on EE , q F q q « ny1r2ˆn a a

for large n. Likewise we can also show q G q y « ny1r2 on EE for large n.â a n
Ž .Since « can be arbitrarily small, 4.1 follows from the Borel]Cantelli lemma.

Ž .To show 4.2 , write

1r2 ˆn F y FŽ .
P F t g J s P ) qŽ . ˆŽ .1ya aˆ� 0FŝG

1r2 ˆn F y FŽ . y1r2 y1r2F P ) q y « n q P q F q y « nˆŽ .a a aˆ� 0FŝG

s 1 y a q «f q ny1r2 q o ny1r2 .Ž . Ž .Ž .a

Since « can be arbitrarily small, we have proved that the right-hand side of
Ž . Ž y1r2 .4.2 is smaller than 1 y a q o n . The ‘‘bigger than’’ part can be proved

Ž .analogously and 4.2 follows. I

We now consider one example in connection with the theoretical results we
obtained so far in the bootstrap accuracy of confidence intervals. Let the
distribution function of lifetime F be an exponential distribution with param-

Ž . Ž .eter 1, that is, F x s 1 y exp yx for x ) 0, and let the distribution func-
Ž .tion of the censoring variable G be a uniform distribution over 0, 1 . Table 1

shows the coverage probabilities of one-sided confidence intervals constructed
based on both normal approximations and bootstrap approximations.

We consider only two fixed time points, t s 0.8 and t s 0.4. It is clear that
the former corresponds to a case with heavier censorship. The percentages of
censored observations are roughly 36% when t s 0.8 and 27% when t s 0.4,

t Ž . yx Žaccording to the formula H 1 y x e dx. Note that the observations have0
no effect on the estimators if they are larger than t, regardless of whether
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TABLE 1
UCoverage probabilities of confidence intervals

Time t s 0.8 Time t s 0.4

K-M Nelson Moment K-M Nelson Moment

Nominal N B N B N B N B N B N B

0.975 0.928 0.967 0.923 0.958 0.918 0.945 0.932 0.975 0.930 0.971 0.925 0.967
0.95 0.897 0.940 0.888 0.924 0.880 0.902 0.900 0.954 0.896 0.948 0.890 0.940
0.90 0.844 0.889 0.829 0.863 0.815 0.825 0.852 0.907 0.843 0.896 0.836 0.880
0.85 0.795 0.838 0.775 0.803 0.753 0.751 0.805 0.856 0.793 0.842 0.783 0.818
0.80 0.746 0.788 0.721 0.748 0.695 0.684 0.763 0.804 0.751 0.788 0.734 0.759
U‘‘N’’ stands for normal approximation; ‘‘B’’ stands for bootstrap approximation. Sample size
n s 20. The bootstrap approximations are based on 1000 repetitions.

.they are censored or not. Since t s 0.8 is close to 1, which is the upper bound
of the support of the censoring distribution, one expects to have rougher
normal approximations than the case when t s 0.4. Indeed, one can read
from Table 1 that all three ‘‘N’’ columns at time t s 0.4 are uniformly better
than the corresponding ‘‘N’’ columns at t s 0.8. On the other hand, in both
cases, the bootstrap-based K-M and Nelson estimators provide uniformly
better confidence intervals than the corresponding normal approximations.

It is fair to say, in the case of t s 0.8, the improvements of ‘‘B’’ over ‘‘N’’
are 80% for K-M at all nominal levels and over 60% for Nelson at all levels
except levels 0.85 and 0.80. In the case of t s 0.4, the improvements of ‘‘B’’
over ‘‘N’’ are even greater: over 90% for both K-M and Nelson at all nominal

wlevels. Note that the percentage of improvement is calculated based on the
normal-based error. For example, when t s 0.4 and K-M is used, the base
error is 0.975 y 0.932 s 0.043 at nominal level 0.975. The percentage of

Ž .improvement of ‘‘B’’ over ‘‘N’’ is thus 1 y 0.975 y 0.975 r0.043, which is
x100% improvement. On the contrary, one can also see from the table that the

bootstrap approximation of the Studentized moment estimator does not
always do a better job than the normal approximation. For example, when
t s 0.8 and nominal levels are 0.85 and 0.80, the normal-based confidence
intervals offer better coverage probabilities. This shows a good agreement

Ž .with our theory Theorem 6 in this paper.

APPENDIX

This Appendix consists of three lemmas.

Ž .LEMMA 1. Under the assumption in 2.1 , one can write

A.1 P u F x s F x q ny1r2f x k x 2 q k q o ny1r2Ž . Ž . Ž . Ž . Ž .Ž .1 2

Ž .uniformly in x, where u is defined in 2.11 .
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Ž . Ž . Ž . Ž .PROOF. Recall that w z , z s h z , z y g z y g z . Then one cani j i j i j
write

1r2 nn 2 1
u s h z , z 1 y f zŽ . Ž .Ý Ýi j i2 2ž /ž /2s n 2nsi-j is1

y1n nn y 1 2 1Ž . ns g z q w z , z 1 y f zŽ . Ž . Ž .Ý Ý Ýi i j i1r2 2ž / ž /2ž /n2n s 2nsis1 i-j is1

y1n y 1 1ns h z , z y g z f z q g z f zŽ . Ž . Ž . Ž . Ž .Ž .Ý i j i j j i1r2 2ž / ž22s n 2si-j

1
y E g z f zŽ . Ž .Ž .1 12 /ns

y1n y 1 nq g z f z q g z f zŽ . Ž . Ž . Ž .Ž .Ý i j j i3r2 3 ž /24n s i-j

nn y 1
y g z f z y E g z f zŽ . Ž . Ž . Ž .Ž .Ž .Ý i i i i5r2 32n s ks1

y1n y 1 ny w z , z f z q f zŽ . Ž . Ž .Ž .Ý Ž .i j i j3r2 3 ž /24n s i-j

y1nn y 1 n y 2Ž . Ž . n y 1y f z w z , zŽ . Ž .Ý Ýi k m5r2 3 ž /24n s ž /is1 k-m
k/i/m

1r2 y1n y 1 n 1n ˜s h z , z y E g z f zŽ . Ž . Ž .Ž .Ý i j 1 12ž / ž /2n 2s nsi-j

qI q II q III q IV say ,Ž .

where

1˜A.2 h z , z s h z , z y g z f z q g z f zŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .i j i j i j j i22s

Ž . Ž .and I, II, III and IV are defined accordingly. Since Ef z s 0 and Eg z s 0,i 1
it follows that

˜ <E h z , z z , d s g z .Ž . Ž . Ž .ž /i j i i i

n
y1

1r2 ˜Ž . Ž .Since n r2s Ý h z , z is a standardized U-statistic of degree 2,i- j i jž /2

which satisfies all the conditions of Theorem 1.2 in Bickel, Gotze and Van¨
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Ž . w Ž .Zwet 1986 notice that under the assumption in 2.1 , function g is bounded
Ž . xand the distribution of g z is continuous , we thus have1

1r2 y1n n ˜P h z , z F xŽ .Ý i jž /2ž /2s i-j

k
y1r2 2 y1r2s F x y f x n x y 1 q o nŽ . Ž . Ž . Ž .

6

uniformly in x, where

1
y3 3k s s Eg z q 3E g z g z w z , z y g z f zŽ . Ž . Ž . Ž . Ž . Ž .1 1 2 1 2 1 22žž 2s

1
y g z f zŽ . Ž .2 12 / /2s

A.3Ž .

s sy3 Eg 3 z q 3E g z g z w z , z y 3E g z f z .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .1 1 2 1 2 1 1

Therefore,

1r2 y1n 1n ˜P h z , z y E g z f z F xŽ . Ž . Ž .Ž .Ý i j 1 12ž / ž /2ž /2s nsi-j

1r2 y1n E g z f zŽ . Ž .Ž .1 1n ˜s P h z , z F x qŽ .Ý i j 1r2 3ž /2ž /2s 2n si-j

s F x q ny1r2f x k x 2 q k q o ny1r2Ž . Ž . Ž .Ž .1 2

uniformly in x, where

1
3k s y Eg z q 3E g z g z w z , zŽ . Ž . Ž . Ž .Ž .Ž1 1 1 2 1 236s

y3E g z f z ,Ž . Ž .Ž . .1 1A.4Ž .
1

3k s Eg z q 3E g z g z w z , z .Ž . Ž . Ž . Ž .Ž .Ž .2 1 1 2 1 236s

To end the proof of this lemma, we need to show that the error terms I, II, III
and IV are asymptotically negligible. First, the functions f , g and w are all

Ž . Ž . Ž .bounded, and Ef z s Eg z s Ew z , z s 0. It is easy to check that1 1 1 2
2 Ž y2 . 2 Ž y2 . 2 Ž y2 . 2EI s O n , EII s O n and EIII s O n . The term EIV s
Ž y2 .O n follows from a careful calculation similar to that given in Callaret and

Ž .Veraverbeke 1981 . Using the Chebyshev inequality,

ny2
y1r2 y1r2< <P I q II q III q IV ) n log n F s o n .Ž . Ž .Ž . y1n log nŽ .

Ž .The proof of A.1 is complete by applying the delta method. I
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Ž .LEMMA 2. Under the assumption in 2.1 , one can write
y1r2 y1r2< <P g G n log n s o n ,Ž . Ž .Ž .3

Ž .where g is given in 2.11 .3

PROOF. We can write
1r2 y1 1r2n y 1 n n gn

g s g h z , z qŽ .Ý3 2 i jž /2n 2s ŝi-jA.5Ž .
n1r2g

s i q sayŽ . Ž .
ŝ

Choose a small « , 0 - « - 1r2. First, since h is a bounded function, a direct
application of Hoeffding’s inequality shows

1r2 y1n 1r2q«n y1r2P h z , z G log n s o n .Ž . Ž . Ž .Ý i jž /2ž /2s i-j

It follows that

1 1y1r2 y1y«y1r2 y1r2< <P i G n log n F P g G n log n q o n ,Ž . Ž . Ž . Ž .2ž / ž /2 c

Ž . Ž . Ž 2 .where g is defined in 2.9 . For the first term of 2.9 , yg r 2s , one may2 1
Ž .use the proof of Theorem 1 in Lo and Singh 1986 to obtain

g 11 y1y«y1r2 y1r2A.6 P y G n log n s o n .Ž . Ž . Ž .2ž /22s

w Ž . xOne can also treat g as a U-statistic to show A.6 . For the second term of1
Ž .2.9 , note that

< 2 2 < y1r2P s y s ) n log nŽ .ˆ
n1

y1r2 y1r2< <F P g ) n log n q P f z ) n log nŽ .Ž . Ý1 iž /n is1

A.7Ž .

s o ny1r2Ž .
Ž .by A.6 and Bernstein’s inequality. For n large enough, we have

2
s y s s q 2s 1Ž . Ž .ˆ ˆ y1y«y1r2P ) n log nŽ .2ž /22sŝ

22 2s y s s q 2s 1Ž . Ž .ˆ ˆ y1y«y1r2s P ) n log nŽ .22 2ž /2ss s q sŽ .ˆ ˆ
Ž .y 1q« r22 2 2 y1r4< <F P s y s ) s n log nŽ .ˆŽ .

s o ny1r2 ,Ž .



BOOTSTRAP WITH CENSORED DATA 593

Ž .where the last equality is due to A.7 . It then turns out that
1 y1r2 y1r2P i G n log n s o n .Ž . Ž . Ž .ž /2

Now it suffices to show
y1r2 y1r21 11r2 y1 y1r2< < < <P n g G n log n s P g G n log n s o n .Ž . Ž . Ž .Ž . Ž .2 2

Ž .Recall the definition of g given in 2.5 . First, one can employ the method in
Ž .the proof of Theorem 1 in Lo and Singh 1986 to show that the tail

probability inequality holds for the last two terms of g . Second, the first four
terms of g consist of the average of iid random variables with mean zero and
bounded variance multiplied by a factor ny1, and hence their second mo-
ments are of order ny3. The proof is complete using again the Chebyshev
inequality. I

Ž .LEMMA 3. Under the assumption in 2.1 , we have
U U U U2 y1r2sup P u - x y F x y k x q k f x nŽ . Ž . Ž .Ž .1 2

xA.8Ž .
s o ny1r2Ž .

and
y1r2U U y1r2< <A.9 P g ) n log n s o nŽ . Ž . Ž .Ž .3

Ž . U Uuniformly on EE , where EE is given in 3.3 , and u and g are the bootstrapn n 3
analogues of u and g , respectively.3

PROOF. Similar to the expression of u in Lemma 1, we may write
1r2 y1n y 1 n 1nU U U U U U U U U˜u s ? h z , z y E g z f zŽ . Ž . Ž .Ž .Ý i j 1 12ž / ž /2n 2s nsˆ ˆi-j

q IU q IIU q IIIU q IVU .
We first notice that the second moments of IU, IIU, IIIU and IVU all take form

Ž .like those that appeared in the left-hand side of 3.6 , and they are on the
order of ny2 . To be more specific, consider, for example, the term IU. Since
Ž . 2 U Ž U .23.6 holds uniformly on EE , by some calculations we know n E I sn

2 2 Ž . 2 U Ž U .2n EI q o 1 uniformly on EE . So for large n, n E I can be bounded byn
2n2EI2 on EE . The terms IIU, IIIU and IVU can be treated similarly. Then wen
can use the Markov inequality to show

y1r2U U U U U y1r2< < < < < < < <P I q II q III q IV ) n log n s o nŽ . Ž .Ž .
Ž .uniformly on EE . To prove A.8 , it remains to shown

1r2 y1n nU U U U˜P h z , z F xŽ .Ý i jž /2ž /2 ŝ i-jA.10Ž .
kU

y1r22s F x y f x x y 1 q oŽ . Ž . Ž . Ž .
6
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U Ž .uniformly on EE , where k is the bootstrap analogue of k given in A.3 . Itn
Ž .follows from 3.4 that

U˜ ˜sup h z , z y h z , z s o 1Ž . Ž . Ž .˜ ˜
Ž .z , d gSS

˜Ž .z , d gSS˜

˜Uuniformly on EE . Therefore h is a uniformly bounded function on EE over alln n
˜ Ž .n because h is bounded. Since g is bounded and g z is continuously1

i sg Ž z1. Ž .distributed, we have Ee - 1 for any s / 0. Again from 3.4 we know, for
any fixed a ) 0,

U U Usup E exp isg z y E exp isg z s o 1Ž . Ž . Ž .Ž . Ž .1 1
< <s Fa

uniformly on EE . Hence we have, for any fixed positive constants a - a ,n 1 2

U U Usup E exp isg z - 1 y c - 1Ž .Ž .1
a FsFa1 2

on EE for large n, where c is some constant depending on a , a and then 1 2
Ž . Ž .distribution of g z only. Now we can conclude A.10 based on the Edge-1

wworth expansion for U-statistics. For a proof of this, the readers are referred
Ž . xto, for example, Lemma 1.2 in Bickel, Gotze and van Zwet 1986 . Hence the¨

Ž .proof of A.8 is complete.
Ž .The proof of A.9 again relies on the uniform convergences on EE given inn

Ž . Ž .3.4 ] 3.6 . Thanks also to the results on the bootstrap of the K-M estimator
Ž .in Lo and Singh 1986 , the procedures in the proof of Lemma 2 can be

Ž .followed step by step to show A.9 . The details are omitted. I
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