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Université de Paris VII

Density estimation is a commonly used test case for nonparametric

estimation methods. We explore the asymptotic properties of estimators

based on thresholding of empirical wavelet coefficients. Minimax rates of

convergence are studied over a large range of Besov function classes Bσpq
and for a range of global L′

p error measures, 1 ≤ p′ <∞. A single wavelet

threshold estimator is asymptotically minimax within logarithmic terms

simultaneously over a range of spaces and error measures. In particular,

when p′ > p, some form of nonlinearity is essential, since the minimax

linear estimators are suboptimal by polynomial powers of n. A second

approach, using an approximation of a Gaussian white-noise model in a

Mallows metric, is used to attain exactly optimal rates of convergence for

quadratic error (p′ = 2).

1. Introduction. The recent appearance of explicit orthonormal bases

based on multiresolution analyses has exciting implications for nonparametric

function estimation. Unlike the traditional Fourier bases, wavelet bases offer

a degree of localization in space as well as frequency. This enables develop-

ment of simple function estimates that respond effectively to discontinuities

and spatially varying degrees of oscillations in a signal, even when the obser-

vations are contaminated by noise.

This paper applies these heuristics to probability density estimation: es-

timate a probability density function f�x� on the basis of X1; : : : ;Xn, inde-

pendent and identically distributed observations drawn from f. Because of its

simplicity, this important practical problem has also served as one of the basic

test situations for the theory of nonparametric estimation. An overview of tra-

ditional methods and a part of the vast literature on theory and application

of density estimation is given by Devroye and Györfi (1985), Silverman (1986)

and Scott (1992). The first use of wavelet bases for density estimation appears

in papers by Doukhan and Leon (1990), Kerkyacharian and Picard (1992) and

Walter (1992).

Let us suppose that the (inhomogeneous) wavelet basis is derived from

�φj1; k
= 2j1/2φ�2j1x− k�; k ∈ Z� and �ψjk = 2j/2ψ�2jx− k�; k ∈ Z; j ≥ j1�,

whereφ�x� and ψ�x� are the scaling function and mother wavelet, respectively.
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The probability density f has formal expansion

f�x� ∼
∑

k

αj1k
φj1k

�x� +
∑

j≥j1

∑

k

βjkψjk�x�:(1)

Since wavelet estimators are a form of orthogonal series estimate, one begins

by forming empirical wavelet coefficients

α̂j1; k
= n−1

n
∑

i=1

φj1k
�Xi�; β̂jk = n−1

n
∑

i=1

ψjk�Xi�:(2)

The key advantages of wavelet estimators follow from the effects of even

very simple nonlinearities involving coordinatewise thresholding:

δs�x; λ� = sgn x�x− λ�+; δh�x; λ� = xI��x� > λ�;

where the subscripts refer to “soft” and “hard” thresholding, respectively. The

estimators we consider in this paper are obtained by thresholding empirical

coefficients:

β̃jk = δ�β̂jk; λj�; δ = δs; δh;(3)

and using β̃jk along with α̂j1k
in (1) to form the estimate f̂n. Here we use

either soft or hard thresholding as dictated by technical convenience—from

simulation experience in other contexts, one expects that soft thresholding will

better suppress noise artifacts, while hard thresholding will better preserve

the visual appearance of peaks and jumps.

We look at global error measures for estimating the whole density, evalu-

ating the mean Lp′ error

Rn�f̂; f� = E��f̂n − f��
p′

p′ = E
∫

�fn�x� − f�x��p
′
dx for 1 ≤ p′ <∞

and

Rn�f̂; f� = E�fn�x� − f�x��∞ for p′ = ∞:

For the most part, we consider 1 ≤ p′ ≤ ∞, which includes the important

special cases p′ = 1 and 2, which are of interest, respectively, for their prop-

erties of invariance and mathematical simplicity. We look at the worst case

performance over a variety of functional spaces:

Rn�f̂y F � = sup
f∈F

E��f̂n − f��
p′

p′;

where F will usually be a subset of densities with fixed compact support and

bounded in the norm of one of the Besov spaces Bσpq. Our main point is that

the same form of estimator, based on simple thresholding of the wavelet coef-

ficients, achieves nearly optimal performance, in terms of rates of convergence

over a variety of global error measures and over a variety of function spaces.

Here, near optimality means that the rates are best possible except possi-

bly for terms logarithmic in sample size. The significance of this universality
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of near optimality is discussed in much greater detail in Donoho, Johnstone,

Kerkyacharian and Picard (1995).

Concerning the scale of Besov spaces Bσpq, for the purposes of this section,

let us note only that it includes the traditional norms used in statistical the-

ory, namely the Hilbert–Sobolev (Hσ
2 = Bσ22) and Hölder (Cσ = Bσ∞∞; 0 <

σ /∈ N ). For more general Sobolev spaces, and the interesting special case of

functions of bounded total variation, we have the inclusions

Bσp1 ⊂Hσ
p ⊂ Bσp∞; B111 ⊂ TV ⊂ B11∞:

Nemirovskii, Polyak and Tsybakov (1985) and Nemirovskii (1985) have

shown that, over certain spaces in this scale, no linear estimate can attain

even the optimal polynomial rate of convergence. For example, over balls in

the total variation norm, and for global L2 error, the minimax rate among lin-

ear estimators is O�n−1/2�, whereas the minimax rate among all estimators

is O�n−2/3�. Thus the Besov scale includes a sufficiently broad range of phe-

nomena to make the near-optimality results for wavelet thresholding estima-

tors interesting. Furthermore, Besov spaces have very specific and interesting

properties in functional estimation and approximation theory that we recall

in the Appendix.

In Section 3 we investigate the behavior of linear estimators in the context

of Besov spaces. We prove, in terms of the rate of convergence of Lp′ -norms,

that, when p′ > p, the linear estimators perceive Lp-smoothness only via

Sobolev embedding into an Lp′ -smoothness class corresponding to a lower

smoothness and hence leading to a nonoptimal rate of convergence.

Theorem 2 in Section 4 establishes lower bounds for optimal rates of es-

timation over Bσpq among all estimators. Two cases emerge, which we shall

call “dense” and “sparse,” according as ε = σp−�p′−p�/2 is greater than 0 or

less than or equal to 0. These lower bounds are derived by considering pertur-

bations of a fixed density, where the perturbations are combinations of basis

functions drawn from an appropriate resolution level. The terms dense and

sparse refer to the number of basis functions used to form the perturbation—

for example, in the less smooth case when ε < 0, a single basis function is

employed. It follows from these lower bounds that when p′ > p linear estima-

tors cannot achieve the optimal rate of convergence.

To establish upper bounds for specific wavelet threshold estimators, we use

two different approaches. The first (Section 5) consists of a direct evaluation

of the Lp′ losses for p′ ≥ p over densities in Bσpq with support in a fixed

interval. Theorem 3 shows that the estimator TW defined using thresholds

λj =K
√

j/n attains the optimal rate to within logarithmic terms, and attains

the exactly optimal rate in the “sparse” case.

Section 6 takes a second approach: approximate the density model by a

Gaussian white-noise model and then use results for threshold estimators in

the white-noise model derived by Donoho and Johnstone (1996). The Gaussian

approximation is done coordinatewise (which is sufficient in the setting of

Besov spaces), using the Mallows metric. This approach is at present carried

out only for quadratic loss. However, with appropriate choice of thresholds, it
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does show that wavelet estimators attain the exactly optimal rate. This is in

contrast to the approach using thresholds λj = K
√

j/n (Section 4), which in

the “dense” case (including quadratic loss), yields rates that are suboptimal by

a logarithmic factor. Furthermore, it has been suggested by Nussbaum (1995)

that a variant of the white-noise approximation seems likely to be able to deal

with more general Lp′ losses.

This Gaussian approximation technique does not actually simplify the

structure of the proof: it rather shifts many of the steps into the Gaussian

white-noise setting. In this sense, the direct evaluation method provides an

alternative approach; indeed, it could also be used in the white-noise model.

Section 7 concludes with an adaptivity result, Theorem 5, which emphasizes

that a single, simple estimator can come within logarithmic terms of optimality

simultaneously over a wide range of Lp′ losses and Besov classes. In fact, one

simply uses thresholds λj =K
√

j/n over a range

n1/�1+2r0� ≤ 2j ≤ n/ log n;

where r0 + 1 is the regularity of the wavelet.

Some of the results of this paper were announced without proof in John-

stone, Kerkyacharian and Picard (1992).

2. Besov spaces and wavelets. In this section, we recall definitions and

set notation for later use. Some equivalent definitions of Besov spaces, which

shed further light on their relevance to density estimation, are reviewed in

the Appendix.

2.1. Multiresolution analysis and wavelets. Let us recall [cf. Meyer (1990)]

that one can construct a function φ such that:

1. The sequence �φ�x−k�; k ∈ Z� is an orthonormal family of L2�R�. Let V0

be the subspace spanned.

2. For all j ∈ Z, Vj ⊂ Vj+1 if Vj denotes the space spanned by �φjk; k ∈ Z�,

where φjk = 2j/2φ�2jx− k�.

Then we have
⋂

j∈ZVj = �0� and, furthermore, if φ ∈ L2�R� and
∫

φ = 1,

L2�R� = ⋃

j∈ZVj and φ is called the multiscale function of the multiresolution

analysis �Vj�j∈Z. Various regularity properties can be required of φ: we shall

here assume that:

3. φ is of class C
r, φ and every derivative up to order r is rapidly decreasing.

In this case, the analysis is said to be regular.

In fact, we will assume in succeeding sections that, in addition, φ is compactly

supported in an interval �−A; +A� [e.g., Daubechies’ families; see Daubechies

(1992)].

Under these conditions, define the space Wj by

Vj+1 = Vj ⊕Wj:
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There exists a function ψ (the “wavelet”) such that:

1. �ψ�x− k�; k ∈ Z� is an orthonormal basis of W0;

2. �ψjk; k ∈ Z; j ∈ Z� is an orthonormal basis of L2�R�, where ψjk =
2j/2ψ�2jx− k�;

3. ψ has the same regularity properties as φ.

In addition, we have the decomposition

L2�R� = Vj0
⊕Wj0

⊕Wj0+1 ⊕ · · · :

That is, for all f ∈ L2�R�,
f =

∑

k∈Z

αj0k
ψj0k

+
∑

j≥j0

∑

k∈Z

βjkψjk;

where

αjk =
∫

f�x�φjk�x�dx; βjk =
∫

f�x�ψjk�x�dx:

2.2. Besov spaces. We give here the definition of Besov spaces in terms

of wavelet coefficients. This is convenient as it gives a description in terms of

sequence spaces. In Section A.1 we list a survey of other characterizations

of Besov spaces connecting them and explaining their role in approximation

theory and nonparametric statistics.

Let φ satisfy conditions (1), (2) and (3) with r > σ , let E be the associated

projection operator onto Vj and Dj = Ej+1 − Ej. Besov spaces depend on

three parameters σ > 0, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ and are denoted Bσpq.

Say that f ∈ Bσpq if and only if the norm

Jσpq�f� = ��E0�f���Lp�R� +
(

∑

j≥0

�2jσ ��Djf��Lp�R��q
)1/q

<∞

(with the usual modification for q = ∞). Using now the decomposition of f:

E0f =
∑

k∈Z

α0kφ0k;

Djf =
∑

k∈Z

βjkψjk;

we may also say that f ∈ Bσpq if and only if the equivalent norm

J′
σpq�f� = ��α0·��lp +

(

∑

j≥0

�2j�σ+1/2−1/p���βj·��lp�
q

)1/q

<∞

[we have set ��βj·��lp = �∑k∈Z �βjk�p�1/p]. Abusing the notation slightly, we

will also write ��β��σpq for the above sequence norm applied to coefficients

��αjk�; �βjk��. Set also Bσpq�M� = �β: ��β��σpq ≤M�.

(Note that the Lp Sobolev spaces have a different characterization in terms

of sequences [e.g., Frazier, Jawerth and Weiss (1991)].)
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This second definition is equivalent to the previous one as a consequence of

the following lemma (which will also be useful in the sequel).

Lemma 1 [Meyer (1990)]. Let g be such that conditions (1) and (3) hold.

Let θ�x� = θg�x� =
∑

k∈Z �g�x − k�� and ��θ��p = �
∫ 1

0
�θ�x��p dx�1/p. Let f�x� =

∑

k∈Z λk2j/2g�2jx− k�. If 1 ≤ p ≤ ∞ and p1 satisfies 1/p+ 1/p1 = 1; then

c12j�1/2−1/p���λ��lp ≤ ��f��Lp ≤ c22j�1/2−1/p���λ��lp;

where c1 = 1/��θ��1/p1

1 ��θ��1/p∞ and c2 = ��θ��p.

Remarks.

1. Well-known particular cases of the Besov spaces include the Hilbert–

Sobolev spaces Hσ = Bσ22, the set of bounded σ-Lipschitz functions

Bσ∞∞; 0 < σ < 1, and the Zygmund class B1∞∞.

2. Using the J or J′ norms, the Sobolev embeddings are easily obtained:

Bσ ′pq′ ⊂ Bσpq for σ ′ > σ or for σ ′ = σ and q′ ≤ q;
Bσpq ⊂ Bσ ′p′q for p′ > p; σ ′ = σ − 1/p+ 1/p′:

In particular, for σ − 1/p > 0; q > 1; Bσpq ⊂ Bσ ′∞∞ is included in the

space of bounded continuous functions. Furthermore, the same is true for

σ − 1/p ≥ 0 and Bσp1.

3. We will also need the inclusion [cf. Meyer (1990) and Peetre (1975)]

B0p′p′∧2 ⊂ Lp′; p′ ≥ 1, where B0p′q is defined through the J′
σpq norm by

putting σ = 0.

4. In Section 8.1 we list a survey of other characterizations of Besov spaces,

explaining their important role in approximation theory and statistics.

5. The spaces of densities we use are defined by

Dσpq�M� =
{

f:
∫

f = 1; f ≥ 0; J′
σpq�f� ≤M

}

;

Dσpq�M; T� = �f ∈ Dσpq�M�: suppf ⊂ �−T; +T��:

3. Linear estimators. In order to compare the classes of linear and non-

linear estimators, we begin first with the class CL of linear estimators, defined

by the representation

f̂L�X1; : : : ;Xn; x� =
n
∑

1

Ti�Xi; x�;

where Ti�·; ·� are arbitrary measurable functions. An important class of exam-

ples arises as follows. Let X1; : : : ;Xn be n i.i.d. random variables with com-

mon density f and empirical distribution function Fn = n−1
∑n
i=1 I�Xi ≤ x�.

Given a function E�x; y�, let Ej�x; y� = 2jE�2jx; 2jy�, and consider the

linear estimator

Êj�n� =
∫

Ej�n��x; y�dFn�y�:
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Two cases are of particular interest:

E∗�x; y� = κ�x− y�;(4)

E#�x;y� =
∑

k∈Z

φ�x− k�φ�y− k�:(5)

E∗ corresponds to the classical kernel estimate and E#
j to a projection esti-

mator on the space Vj derived from the scale function φ of a multiresolution

analysis. Linear estimators have the following distinguishing property. If f, g

are two probability densities and α ∈ �0; 1�, then

Eαf+�1−α�gf̂L = αEff̂L + �1 − α�Egf̂L:

The following results will show that the rate of convergence of linear pro-

cedures may be strictly slower than that of nonlinear ones. This phenomenon

is associated with a difference between the order of integration, p′, in the

loss function and the order, p, in the regularity constraints. It has already

been observed in the related context of regression [Nemirovskii (1985) and

Donoho and Johnstone (1996)] and estimation over `p balls [Donoho and John-

stone (1994)]. In the case of density estimation, we have the following results,

beginning first with linear estimators. In the sequel, we denote the risk by

�Ef��f̂n − f��
p′

p′�1/p′
even in the case p′ = ∞ where it signifies Ef��f̂n − f��∞.

In the following result, we shall also need a domination condition in the

case 1 ≤ p′ < 2. Let ω ∈ Lp/2�R� be an even function, nondecreasing on R
+

and set

Np = �f: ∃ a: f�x− a� ≤ ω�x��:

Theorem 1. Let 1 ≤ p; q ≤ ∞; p′ ≥ p; 1 ≤ p′ < +∞; σ > 1/p.

RL
n = inf

f̂n∈CL
sup

f∈Dσpq�M�

(

Ef��f̂n − f��
p′

p′

)1/p′

:

In the case 1 ≤ p′ < 2; the set Dσpq�M� is replaced by Dσpq�M� ∩Np′ .

There exist constants Ci such that

C1n
−σ ′/�1+2σ ′� ≤ RL

n ≤ C2n
−σ ′/�1+2σ ′�;

where σ ′ = σ − 1/p+ 1/p′.
The same result is true replacingDσpq�M� byDσpq�M; T� and n by n/�log n�

in the case p′ = ∞.

Proof. For the lower bound, we present the details of the proof in the

Appendix and give only the idea here. The minimax risk is bounded below by

the maximum risk over an `p ball at a particular resolution level j. For p′ ≥ p,

the least favorable points for linear estimates over `p balls are “spikes”—such

as the elements of a fixed Pj as introduced in the proof of Theorem 2 [compare

Donoho and Johnstone (1994), Section 8, in the Gaussian case]. The lower

bound is obtained by randomizing over the elements of Pj.
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For the upper bound, it suffices to exhibit an estimator attaining the

right rate of convergence, for example, the “linear wavelet estimator” [cf.

Kerkyacharian and Picard (1992)]

f̂n;j =
∑

k∈Z

α̂jk2j/2φ�2jx− k�;

where α̂jk = n−1
∑n
i=1φjk�Xi�. We recall that, since φ has compact support,

the summation in k is finite and φ has regularity r > σ .

Proposition 1. Suppose π ≥ 1; τ < r and f ∈ Dτπq�M� [respec-

tively, Dτπq�M� ∩ Nπ if 1 ≤ π < 2 or Dτπq�M; T� if π = ∞]. If j�n� =
�log2�n�log n�−I�π=∞��1/�1+2τ��; there exists a constant C3 such that

�Ef��f̂n;j�n� − f��ππ�1/π ≤ C3�n�log n�−I�π=∞��−τ/�1+2τ�:

This result for π <∞ is proved in Kerkyacharian and Picard (1992). When

f is compactly supported the same argument easily extends to the case π = ∞
replacing moment bounds by large-deviation inequalities [see (17) below]. The

upper bound in Theorem 1 is now a consequence of Proposition 1 and the

Sobolev embeddings (see Section 2) Bσpq ⊂ Bσ ′p′q for p′ ≥ p, σ − 1/p =
σ ′ − 1/p′, in which we take π = p′ and τ = σ ′.

4. Lower bounds. The corresponding lower bound for nonlinear estima-

tors reveals an “elbow” in the rates of convergence. Indeed, let

α = min

(

σ

1 + 2σ
;
σ − 1/p+ 1/p′

1 + 2σ − 2/p

)

; ε = σp− p′ − p
2

:(6)

We note that

α =
{

σ/�1 + 2σ�; ε ≥ 0;

σ ′/�1 + 2σ − 2/p�; ε ≤ 0;
(7)

and also that

�p′ − p�/2 + ε�1 − 2α� = αp′ if ε ≥ 0;

�p′ − p�/2 + εα/σ ′ = αp′ if ε ≤ 0:
(8)

Theorem 2. Let 1 ≤ p, q ≤ ∞, p′ ≥ p, σ > 1/p.

Rn = inf
f̂

sup
f∈Dσpq�M�

(

Ef��f̂n − f��
p′

p′

)1/p′

[the infimum being taken over all estimators, taking their values in a space

containing Dσpq�M�]. There exists a constant C4 such that

Rn ≥











C4

(

log n

n

)α

; ε ≤ 0;

C4n
−α; ε > 0:
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Remarks.

1. As will be shown in the next two sections, the lower bound of Theorem 2

is sharp, at least in the cases (p′ ≥ p, 1 < σp < �p′ − p�/2) and (p = 2,

σ > 1/p). Also, in all the cases covered by Theorem 3, it is correct up to

logarithmic terms.

2. We note two special phenomena. First, an “elbow” appears in the rate of

convergence: the “usual” rate (σ/�1+2σ�) applies only if σ is large enough—

in other cases, the rate is σ ′/�1+ 2σ − 2/p�. Second, a log term appears in

the low regularity cases.

3. Comparison with Theorem 1 now shows that linear estimates have subop-

timal rates of convergence for p′ > p (if also p′ ≥ 1, σ > 1/p).

4. It is interesting to remark that for Lp′ -loss, linear estimators “perceive”

the underlying density Lp-smoothness class via the Sobolev embedding

into an Lp′ -smoothness class, with necessarily lower smoothness if p < p′

(see Section 2). This phenomenon, which underlies the nonoptimality of

linear estimators, has earlier been worked out for p = 2 using a theory of

“quadratic convexity” [Donoho, Liu and MacGibbon (1990)] and also con-

sidering the maximal functional class associated with a fixed minimax rate

of convergence for linear estimators [Kerkyacharian and Picard (1993)].

Proof of Theorem 2. We give only a brief sketch, as it is a slight mod-

ification of Nemirovskii’s method applied to the case of densities. A fuller

discussion of lower bounds [including sharper refinements for the case ε = 0

appears in Donoho, Johnstone, Kerkyacharian and Picard (1996)].

For small σ (i.e., ε ≤ 0, sparse case), we consider the set of vertices of (one

layer of) a pyramid

Pj = �g0 ± γψjk; k ∈Kj� for j ≥ 0;

where g0 is some infinitely differentiable density satisfying g0 ≥ c for x in

the interval �−A; A� containing the support of φ and ψ. Choose M so that

J′
σpq�g0� ≤M/2 and let Kj = �−�2j− 1�A+ 2lA, l = 0; : : : ; �2j− 1��, so that

ψjk and ψjk′ have disjoint supports for unequal k, k′ ∈ Kj. Finally, in order

that Pj be included in Dσpq�M�, choose γ such that 0 ≤ γ ≤ 0�jy σ; p; M�,
where

0�jy σ; p; M� = C

��ψ��∞
2−j/2 ∧ M

2
2−j�σ+1/2−1/p�:

The inequality follows by standard arguments using Fano’s lemma.

For the case of larger σ (i.e., ε ≥ 0, dense case), we consider the set of

vertices of a cube

Cj =
{

fε = g0 +
∑

k∈Kj

γεk ψjk; εk = ±1

}

;
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with

0 ≤ γ ≤ C2−j/2

��ψ��∞
∧ M

2
2−j�σ+1/2�;

and using now Assouad’s lemma, we obtain the required inequality. 2

5. Threshold wavelet estimators. Among nonlinear estimators, we

study a very special one: a truncated threshold wavelet estimator. Define

empirical coefficients α̂jk, β̂jk as in (2) and employ hard thresholding:

β̃jk =
{

β̂jk; if �β̂jk� > KC�j�n−1/2;

0; if �β̂jk� ≤KC�j�n−1/2:
(9)

Then the estimator TW associated with the functions j0�n�, j1�n�, C�j� and

K is

TW�x� = f̂n;j1
+ D̂j1; j0

=
∑

k∈Z

α̂j1k
φj1k

�x� +
j0
∑

j1

∑

k∈Z

β̃jkψjk�x�:(10)

Before considering the properties of this estimator, we pause for some moti-

vation. We have seen in preceding sections that the linear wavelet estimator,

LW (corresponding to j0 < j1, and hence no “detail” term D̂j1; j0
) cannot be

optimal if p < p′. This may be explained via the decomposition of the error

into bias and variance components. If LW uses level j�n�, it has bias of order

2−j�n�σ ′p′
, while the stochastic term is of order �2j�n�/n�p′/2. This leads to the

idea of beginning with a low-frequency estimator LW�j1�n��, with j1�n� cho-

sen low enough that the stochastic term has the right rate, and then adding

in certain “details” up to the higher order j0�n� in such a way that the bias

term also has the right order. (It is easily seen that, if p′ = p, it suffices to

choose j0 < j1, whereas, for p′ > p, it is necessary to take j0 > j1.)

It remains now to choose a way of refining the details, and this is done using

hard thresholding: a superefficiency procedure in the spirit of the Hodges–

Lehmann estimator near βjk = 0. This choice makes sense since the constraint

Dσpq�M� on the function “forces” most of the βjk to be small. We focus here on

the choice C�j� =
√

j. The first theorem describes the behavior of TW when p,

q, σ are known. An adaptivity result for unknown p, q, σ appears in Section 7.

As before, in the proof of Theorem 2 we use the index ε = σp− �p′ − p�/2
to distinguish “dense,” “critical” and “sparse” cases. In the statement below,

the notation 2j�n� ' g�n� means that j�n� is chosen to satisfy the inequalities

2j�n� ≤ g�n� < 2j�n�+1.

Theorem 3. Let σ−1/p > 0 and p∧1 ≤ p′ ≤ ∞. If C�j� =
√

j, there exist

constants C5 = C5�σ; p; q; M� and K0 = K0�σ; p; p′y M� [specified after

(18) below] such that if

2j1�n� '
(

n�log n���p′−p�/p�I�ε≥0�)1−2α
;

2j0�n� ' �n/ log n�α/σ ′
(11)
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and K ≥K0, then

sup
f∈Dσpq�M;T�

�Ef��TW−f��p
′

p′�1/p′ ≤































C5�log n��1−ε/σp�αn−α; ε > 0;

C5�log n��1/2−p/qp′�+
(

log n

n

)α

; ε = 0;

C5

(

log n

n

)α

; ε < 0;

(12)

where x+ = max�x; 0�.

Remarks. In the case ε < 0, the rate is sharp: the bounds in Theorems 2

and 3 agree.

When ε = 0, there is an extra logarithmic term when q is sufficiently large.

It turns out [Donoho, Johnstone, Kerkyacharian and Picard (1996)] that this

extra term is actually sharp, since the lower bound of Theorem 2 can be

improved to contain it, at least in the Gaussian white-noise setting. Of course,

the constant C5 depends on p, q, σ , p′ and blows up for ε→ 0 or q→ 2p/p′,
which accounts for the discontinuous nature of the results as presented here.

These logarithmic terms do not appear in the case of quadratic losses

p′ = 2 studied by Donoho and Johnstone (1996) since ε ≤ 0 and σ > 1/p

together imply p′ > 2 + p.

When ε > 0, the exponent of the logarithmic term in the upper bound is

strictly better than αp′ and is independent of q [indeed, the simpler choice

2j1�n� ' n1−2α leads to the poorer risk bound C5�log n/n�α]. However, for ε > 0,

this logarithmic term is not in fact necessary. For example, it does not appear

in the case p′ = 2 studied by Donoho and Johnstone, and we show in the next

section that we can modify C�j� so as to obtain the analog of their result when

p′ = 2. Furthermore, after this manuscript was first drafted, Delyon and Ju-

ditsky (1993) showed that the choice C�j� =
√

j− j1 removed the logarithmic

term (essentially by reducing the bias term at the critical resolution level j1)

for general p′. Nevertheless, both these modifications have the disadvantage

of strongly depending on the constants p; σ; q; p′. Thus they will not be of

use when we want to construct adaptive procedures (see the final section).

The number of levels used is proportional to log2n: indeed, j1�n� ∼
�1 − 2α� log2n and j0�n� ∼ �α/σ ′� log2n: In particular, we note that

j1�n� < j0�n� unless p′ = p, ε > 0, in which case Theorems 1 and 2

show that the linear estimators considered in the previous section are

optimal. Thus we will exclude this case from the proof that follows.

The restriction p′ ≥ p is inessential: for compactly supported functions the

Lp-norms are increasing. So in the case p′ < p linear estimators attain the

bound and there is no need of nonlinear estimates.

5.1. Proof of Theorem 3. This section will be divided into two parts. In the

first part we set up the technical tools of the proof: moment bounds, large-
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deviation results and norm inequalities. In the second part we derive the

results, but in outline the argument runs as follows. We consider three terms:

1. a bias term ��f − Ej0�n�f��
p′

p′ , which will be negligible because of the

approximation properties of Besov spaces;

2. the error due to the linear component of the estimator TW,

Ef��f̂n;j1�n� −Ej1�n�f��
p′

p′;

which will be treated as is usual for kernel estimators, for example, by

evaluations of moment bounds;

3. the details term: using norm inequalities, we reduce the treatment of

this global term to the specific study of each coefficient β̃jk − βjk. The

approach is then inspired by Hodges–Lehmann superefficiency arguments.

A large-deviations approach shows that there is a negligible probability

that β̂jk and βjk differ greatly. Then only two kinds of errors have to be

controlled: β̂jk − βjk, when both of them are large, or βjk, when both are

small. We then employ moment bounds in the first case, and for the second

term the Besov constraint to show that βjk cannot be large very frequently.

5.1.1. Preliminaries.

Moment bounds. We recall the following result of Rosenthal (1972). Let

Y1; : : : ;Yn be i.i.d. random variables with EYi = 0, EY2
i ≤ σ2. Then there

exists cm such that

E�n−1
∑

Yi�m ≤ cm
(

σm

nm/2
+ E�Y1�m

nm−1

)

if m ≥ 2;

E�n−1
∑

Yi�m ≤ σmn−m/2 if 1 ≤m ≤ 2:

(13)

Back in the density estimation setting, let X1; : : : ;Xn be an i.i.d. sample

from a distribution with bounded density f, and let g ∈ Lm�R� be bounded

with
∫

g2 = 1. Define gjk�x� = 2j/2g�2jx− k�:

γjk =
∫

gjk�x�f�x�dx; γ̂jk = n−1
n
∑

i=1

gjk�Xi�:

Now apply Rosenthal’s inequalities to Yi = gjk�Xi� − Egjk�X1�: We note

that E�Y1�m ≤ 2mE�gjk�X1��m ≤ 2m · 2j�m/2−1��f�∞�g�mm and that

σ2 ≤
∫

�g�2�x− k�f�x/2j�dx ≤ ��f��∞��g��22 = ��f��∞:

It follows that there exists a constant cm depending only on m such that

E�γ̂jk − γjk�m ≤ cm

{

��f��m/2∞ + 2m��f��∞��g��mm
(

2j

n

)�m/2−1�+
}

n−m/2:(14)
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Now it is easy to show that, if f ∈ Dσpq�M�, then

��f��∞ ≤ �1 − 2−σ ′′q′�1/q′J′
σ ′′∞q�f� ≤M�1 − 2−σ ′′q′�1/q′;(15)

where σ ′′ = σ−1/p > 0 and 1/q+1/q′ = 1. Consequently, when f ∈ Dσpq�M�,
the bound (14) may be written as

E�γ̂jk − γjk�m ≤ cmbn−m/2;(16)

for all j if 1 ≤m ≤ 2, and as soon as n ≥ 2j for m > 2, where cmb depends as

shown in (14) and (15) on σ , p, q, M, ��g��m and m.

Large deviations. The terms ebs and esb below are bounded using large-

deviation inequalities for the event �β̂jk − βjk� > �K/2�
√

j/n: We therefore

recall Bernstein’s inequality. IfY1; : : : ;Yn are i.i.d. bounded random variables

such that EYi = 0, EY2
i = σ2, �Yi� ≤ ��Y��∞ <∞, then

P
(
∣

∣

∣
n−1

∑

Yi

∣

∣

∣
> λ

)

≤ 2 exp

(

− nλ2

2�σ2 + ��Y��∞λ/3�

)

:

Applying this to Yi = ψjk�Xi� −Efψjk�X1� and noting that σ2 ≤ ��f��∞ ≤M,

we conclude that, if j2j ≤ n, then there exists K = c�M; ψ�γ such that, for

all γ ≥ 1,

P��β̂jk − βjk� > �K/2�
√

j/n� ≤ 2−γj:(17)

For example, it can be verified that the choice c�M; ψ� = c
√
M ∨ 1 suffices if

c = c�ψ� is chosen so large that c2 ≥ 8 log 2�1 + c�ψ�∞/3�.
Norm inequalities. We begin with some useful inequalities for Lp′ -norms

(p′ ≥ 1) of a (random) function

f̂ =
j0
∑

j1

∑

k

f̂jkψjk:

Using the inclusions B0p′p′∧2 ⊂ Lp′ and Lemma 1, we have, for π = p′ ∧
2 ≥ 1,

��f̂��p
′

p′ ≤ Cp′
( j0
∑

j1

��Djf̂��πp′

)p′/π

;(18)

��Djf̂��
p′

p′ ≤ Cp′
2j�p

′/2−1� ∑

k

�f̂jk�p
′
:(19)

Here, and throughout, C denotes a constant that is not necessarily the same

at each appearance. Define

S�γ� =
j0
∑

j1

2jγ ≤
{

cγ2
max�j0γ; j1γ�; γ 6= 0;

�j0 − j1�; γ = 0:
(20)
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Let β ∈ R be arbitrary and set a = p′/�p′ − 2�. We will make frequent use of

the bound

E��f̂��p
′

p′ ≤



























Cp
′
j0
∑

j1

2j�p
′/2−1� ∑

k

E�f̂jk�p
′
; 1 ≤ p′ ≤ 2;

Cp
′
S�βa��p′/2−1�+

j0
∑

j1

2j�p
′/2−1−βp′/2� ∑

k

E�f̂jk�p
′
; p′ > 2:

(21)

The first inequality is immediate from (18) and (19). When p′ > 2, we first

apply Hölder’s inequality in (18) to obtain, for arbitrary β,

(

∑

��Djf̂��2p′

)p′/2
≤

( j0
∑

j1

2jβp
′/�p′−2�

)p′/2−1 j0
∑

j1

2−jβp′/2��Djf̂��
p′

p′ :(22)

Combining (22) with Lemma 1 yields the second inequality in (21). If we

adopt the purely formal convention that S0 = 1, then the second inequality

in (21) (in the particular case of β = 0) reduces to the first, and so, with this

convention, we use the second inequality of (21) for all p′ ≥ 1 below.

5.1.2. Completion of the proof. The estimator TW in (10) has two parts:

a linear piece f̂n;j1�n� and a detail term D̂j1; j0
. Along with a corresponding

decomposition of f = Ej1
f+Dj1; j0

f+ �f−Ej0
f�, this yields

Ef��TW − f��p
′

p′ ≤ 3p
′−1�Ef��f̂n;j1�n� −Ej1�n�f��

p′

p′

+Ef��D̂j1j0
−Dj1j0

f��p
′

p′ + ��f−Ej0�n�f��
p′

p′�;
(23)

where

Ejf�x� =
∫

∑

k∈Z

φjk�y�φjk�x�f�y�dy;

Dj1j0
f�x� =

∫
j0
∑

j1

∑

k∈Z

ψjk�y�ψjk�x�f�y�dy:

The third and first terms in (23) are easily estimated. We start with the

approximation error.

We detail the proof only for p′ < +∞. The arguments extend easily to

the case p′ = +∞ if we replace moment bounds evaluations by Bernstein’s

inequality.

Bias term. Using the characterizations of Besov spaces and the Sobolev

embeddings Bσpq ⊂ Bσ ′p′∞, it is easy to see that

��f−Ej0�n�f��
p′

p′ ≤ C�f�p′

σpq2
−j0�n�σ ′p′

:(24)

From the choice of j0�n�, this bound has the rate of convergence specified in

(12) if ε > 0, p′ = p; or ε = 0, p′/2p ≤ 1/q; or ε < 0 and is negligible otherwise.
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Linear term. Ef��f̂n;j1�n�−Ej1
f��p

′

p′ . Using Lemma 1, (16) and the compact

support of φ, this term is bounded by

��θφ��
p′

p′2j1�n��p′/2−1� ∑

k∈Z

E�α̂j1�n�k − αj1�n�k�
p′ ≤ Ccbh�T+A�

(

2j1�n�

n

)p′/2

:(25)

From the choice of j1�n�, this bound has the specified rate of convergence if

ε = 0, p′/2p ≤ 1/q and is negligible otherwise.

Details term. To decompose the details term, define

B̂j = �k: �β̂jk� > K
√

j/n�; Ŝj = B̂cj;

Bj = �k: �βjk� > �K/2�
√

j/n�; Sj = Bcj;

B′
j = �k: �βjk� > 2K

√

j/n�; S′
j = B′c

j :

We may then write

D̂j1j0
f−Dj1j0

f =
j0
∑

j1

∑

k

�β̂jk − βjk�ψjk�I�k ∈ B̂j ∩Sj� + I�k ∈ B̂j ∩Bj��

−
j0
∑

j1

∑

k

βjkψjk�I�k ∈ Ŝj ∩B′
j� + I�k ∈ Ŝj ∩S′

j��

= �ebs + ebb� − �esb + ess�:

Large-deviation terms. For the term ebs, we set f̂jk = �β̂jk − βjk�I�k ∈
B̂jSj�. Clearly, B̂jSj ⊂ Djk = ��β̂jk−βjk� > �K/2�

√

j/n�, the large-deviation

event studied in (17). We first calculate, using this, Hölder’s inequality and

(16), that

∑

k

E�f̂jk�p
′ ≤

∑

k

E��β̂jk − βjk�p
′
;Djk�

≤
∑

k

�E�β̂jk − βjk�p
′r�1/rP�Djk�1/r′

≤ cmb�T+ 2A�n−p′/22j�1−γ/r
′�:

Applying (21) gives

E��ebs��
p′

p′ ≤ Cp′ · cmbn−p′/2 ·S�βa��p′/2−1�+S��1 − β�p′/2 − γ/r′�:(26)

Using the notation of (20), we note that, when p′ > 2,

S�βa�rS�b� ≤ cp′bβ2�βp′/2+b�js; js =
{

j1; if β; b < 0;

j0; if β; b > 0:
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When p′ ≤ 2, we have

S�b� ≤ c2bjs; js =
{

j1; if b < 0;

j0; if b > 0:

Since γ can be chosen arbitrarily large and the choice of β is free (when p′ > 2),

we may arrange that the appropriate arguments of S�·� in (26) (i.e., both

when p′ > 2 and the second when 1 ≤ p′ ≤ 2) are negative. Thus, for p′ ≥ 1,

E��ebs��
p′

p′ ≤ C2j1�p′/2−γ/r′�n−p′/2:

For any choice of γ > 0, this bound is smaller than the linear term in (25)

and so is asymptotically negligible.

For the term esb, apply (21) and (20) to f̂jk = βjkI�k ∈ ŜjB
′
j�. Again,

ŜjB
′
j ⊂ Djk and so, using the large-deviation bound and the inclusion

Bσ ′p′q ⊂ Bσ ′p′∞,

∑

k

E�f̂jk�p
′ ≤

∑

k

�βjk�p
′
P�Djk� ≤ ��βj:��

p′

p′2−γj

≤ C��f��p
′

σ ′p′∞2−j�σ ′p′+p′/2−1+γ�:

(27)

Thus

E��esb��
p′

p′ ≤ CS�βa��p′/2−1�+S�−p′�β/2 + σ ′� − γ�Mp′

≤ C2−j1�n��γ+σ ′p′�;
(28)

after choosing β and γ as described for ebs and exploiting the embedding

Bσp∞ ⊂ Bσ ′p′∞. This term also is seen to be negligible by taking γ large. For

example, the choice γ = γ0p
′ = �α/�1 − 2α� − σ ′�p′ makes (28) of at most

the same order as (24), since 2−j1�n�α/�1−2α� ≤ 2−j0�n�σ ′
. The constant K0 in

Theorem 3 may then be taken as c�M; ψ��γ0p
′ ∨ 1�, specified in (17).

Main terms. For the term ebb, apply (21) to f̂jk = �β̂jk−βjk�I�k ∈ B̂jBj�.

In this case, using (16),

∑

k

E�f̂jk�p
′ ≤ cmbn−p′/2

∑

k∈Bj

∣

∣

∣

∣

2βjk

K

√

n

j

∣

∣

∣

∣

p

≤ C��βj��pp j−p/2n−�p′−p�/2

≤ C��f��pσp∞2−j�σ+1/2−1/p�pj−p/2n−�p′−p�/2:

(29)

In the case ε 6= 0, we bound j−p/2 by 1 and use (21) and (20) as before:

E��ebb��
p′

p′ ≤
CMp

n�p′−p�/2S�βa�
�p′/2−1�+S�−ε− βp′/2�

≤ C

n�p′−p�/2 2max�−j0ε;−j1ε�:

Comparison with the statement of Theorem 3 shows that these powers are

negligible.
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In the case ε = 0 (so that p′ > 2), set β = 0 in the bound (22) to obtain

E��ebb��
p′

p′ ≤ CMp �j0 − j1��p
′/2−1�

n�p′−p�/2

j0
∑

j1

j−p/2

≤ CMp

(

j0

n

)�p′−p�/2
;

(30)

since j0�n�/j1�n� ∼ p′/�p′ − 2� in the case when p′ > 2. Thus this term is

O��log n/n�αp′� as n→ ∞.

Finally, we consider the important case ess, in which f̂jk = βjkI�k ∈ ŜjS′
j�.

Using the embedding B0p′p′∧2 ⊂ Lp′ and the structure of sequence norms, we

have

�ess�p′ ≤ ���βjk; j1 ≤ j ≤ j0; k ∈ S′
j���0p′p′∧2:

The condition k ∈ S′
j implies �βjk� ≤ 2K�j0/n�1/2 = δn, say. Donoho, John-

stone, Kerkyacharian and Picard (1996, 1995) studied a modulus of continuity

�0�δy � · �; B� = sup��β�: β ∈ B; �βjk� ≤ δ ∀ jk�:
Clearly, we have

�E�ess�
p′

p′�1/p′ ≤ �0�δny � · �0p′p′∧2; Bσpq�M�� = �n

say. In fact, Donoho, Johnstone, Kerkyacharian and Picard (1996) considered

a version of �0 in which the number of coefficients nj at level j was finite

(namely 2j), but it can be seen that in the present case, where p′ > p,

the results are actually unchanged when nj = ∞: From Theorem 3 (Besov

modulus) of Donoho, Johnstone, Kerkyacharian and Picard (1996), we read

off (noting that α = r/2) that

�n ≤M1−2α

(

2K

√

j0

n

)2α(

log
M

2K

√

n

j0

)eC

;(31)

where

eC =











0; ε 6= 0;
(

1

2
− p

p′q

)

+
; ε = 0:

(Here we have used the fact that ε = 0 and σp > 1 ⇒ p′ > 2:� Since

j0�n� � log n, we conclude from this argument that

�n ≤ CM1−2α logeC n ·
(

log n

n

)α

:

This bound is sufficiently sharp for our purposes when ε ≤ 0 (and also for all

ε for the adaptive result of Section 6).

However, for fixed �σ; p; q; p′�, when ε > 0, the exponent of log n can

be improved to �1 − ε/sp�α by a more detailed examination of the proof of
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Theorem 3 of Donoho, Johnstone, Kerkyacharian and Picard (1996). The key

point is that we have adjusted the range of j ∈ �j1�n�; j0�n�� in TW to lie

entirely above the least favorable level j∗�n�, which satisfies 2j
∗�n� � n1−2α

and leads to the bound (31). So, in fact, �n ≤ 2��∗�j�I�j ≥ j1�n���q′ , where

the quantity �∗�j� is defined in Donoho, Johnstone, Kerkyacharian and

Picard (1996) and can be seen to satisfy

�∗�j� ≤ 2jσ̄
′
δnn

1/p′

0j ;

where σ̄ ′ = 1/2 − 1/p′, n0j = �Mδ−1
n 2−jσ̄�p and σ̄ = σ + 1/2 − 1/p. Note

that n0j is less than 2j for j ≥ j1. [Hence the restriction of nj = 2j made

in Donoho, Johnstone, Kerkyacharian and Picard (1996) does not affect the

results, and so can be applied here to unbounded nj.] Thus

�∗�j� ≤ Cδ1−p/p′

n 2−�σ̄p−σ̄ ′p′�j/p′
:

Hence �n ≤ 2��∗�j�I�j ≥ j1��q′ is dominated by �∗�j1�, and substituting

the choice (11) for 2j1�n� yields (for ε > 0) the claimed bound

�n ≤ CM1−2α�log n��1−ε/sp�αn−α: 2

6. Quadratic loss and Gaussian approximation. We now turn to

the specific case of squared error loss, p′ = 2. In this case, we can exhibit

estimators having the exact rate of convergence described by the lower bound

of Theorem 2. The approach is via white noise approximation, taking ad-

vantage of the results of Donoho and Johnstone (1996). [Nussbaum (1996)

has suggested how this approach might be extended to Lp′ -losses for p′ 6= 2;

hopefully, this will be set out in detail elsewhere.]

We begin by recalling the Gaussian white-noise model in sequence space:

yjk = θjk + εzjk; j = 0; 1; : : : ; k = 0; 1; : : : ;2j − 1;(32)

where zjk are i.i.d. N�0; 1� and θ = �θjk� is unknown. Suppose that it is

desired to estimate θ with squared error loss ��θ̂ − θ��22 = ∑�θ̂jk − θjk�2 and it

is known that θ ∈ 2σpq�M� = �θ: ��θ��σpq ≤M�; where, in this section,

��θ��qσpq =
∑

j≥0

�2jτ��θj:��p�q(33)

and s = σ + 2−1 − p−1, ��θj:��
p
p = ∑2j−1

k=0 �θjk�p. The nonlinear minimax risk

under squared error loss is defined by

RN�ε; 2� = inf
θ̂

sup
θ∈2

E�θ̂− θ��22:

From Donoho and Johnstone (1996), it is known that

RN�ε; 2σpq�M�� ∼ γ�ε��Mε2�2σ/�2σ+1�;(34)

where γ�ε� = γ�εy σ; p; q; M� is a continuous, periodic function of log2ε with

period 1.
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We recall also that coordinatewise threshold estimators can be chosen to

be within a bounded factor of being asymptotically minimax. Define a soft

threshold rule θ̂λ by �δs�yjk; λj�; j = 0; 1; : : : ; k = 0;1; : : : ;2j − 1�, where

δs�y; λ� = sgn�y���y� − λ�+. Then Donoho and Johnstone (1996) show that in

model (32) there exist absolute constants Aσpq such that

inf
λ=�λj�

sup
2σpq�M�

Eθ��θ̂λ − θ��22 ≤ AσpqRN�ε;2σpq�M���1 + o�1��:(35)

Theorem 4. Suppose either that p ≥ 1 and σ > p−1 or that σ = p−1

and p > 1. Then there exist τ = τ�σ; p; q; M�, c = c�σ; p; T� and

C6 = C6�σ; p; q; M� such that

inf
f̂n

sup
Dσpq�M;T�

Ef��f̂n − f��22 ≤ C6RN�τn−1/2; 2σpq�cM���1 + o�1��:(36)

Estimators of the form (44) below attain the bound, for choices of j1; j2 and

�λj� to be described below.

The following approximation lemma is the basic tool in bounding the den-

sity estimation risk by a corresponding white-noise model risk. It is proved

in the Appendix.

Lemma 2. Let the i.i.d. variables Y1; : : : ;Yn satisfy EYi = 0; EY2
i =

1; �Yi� ≤ M and set Sn = ∑n
1 Yi: Then there exist absolute constants c1; c2

and a standard Gaussian variable Z such that, whenever M2n−1 log3n ≤ c1;

E�n−1/2Sn −Z�2 ≤ c2M
2n−1:(37)

The following lemma, also proved in the Appendix, describes a bound on

the risk of soft-threshold estimators in the Gaussian white-noise model as

the noise variance is increased. This will be used to bound a heteroscedastic

model by a homoscedastic one.

Lemma 3. Let Eβ; τ2 denote expectation when Y ∼N�β; τ2�: If τ < τ̄, then

Eβ; τ2�δs�Y; λ� − β�2 ≤ 2Eβ; τ̄2�δs�Y; λ� − β�2:(38)

To apply the lemmas, fix �j; k� and note that β̂jk has mean βjk and vari-

ance n−1τ2
jk, where τ2

jk = τ2
jk�f� = Varfψjk�X�: We use Lemma 2 to construct

an approximation γ̂jk having an exact Gaussian distribution with the same

mean and variance. To this end, let Yi = �ψjk�Xi� − βjk�/τjk and note that

�Yi� ≤ 2��ψ��∞2j/2/τjk =Mjk, say. We construct γ̂jk = βjk+n−1/2τjkZjk by the

following recipe.

First, if τ2
jk ≥ 4��ψ��2∞2j log3 n/c1n; then use Lemma 2 to construct Zjk and

note that

T4 = E�β̂jk − γ̂jk�2 = n−1τ2
jkE�n−1/2Sn −Zjk�2(39)

≤ 4��ψ��2∞c22jn−2:(40)
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Second, if τ2
jk < 4��ψ��2∞2j log3 n/c1n; then choose an independent

Zjk ∼N�0; 1� and simply use the inequality

T4 ≤ 2 Var β̂jk + 2n−1τ2
jk = 4n−1τ2

jk < 16��ψ��2∞c−1
1 2jn−2 log3 n:(41)

In either case, we have, therefore, for all j; k; n;

T4 = E�β̂jk − γ̂jk�2 ≤ c42jn−2 log3 n:(42)

To apply the Gaussian approximation to β̃jk = δs�β̂jk; λj�, we first write

�δ�β̂jk; λ� − βjk�2 ≤ 2�δ�β̂jk; λ� − δ�γ̂jk; λ��2 + 2�δ�γ̂jk; λ� − βjk�2:(43)

We shall use the notation r�δλ; βy τ� for the Gaussian mean squared error

E�δs�β+ τZ; λ� − β�2 for estimation of β from a single Gaussian observation

with mean β and variance τ2. In addition, the mapping y → δs�y; λ� is a

contraction: �δs�y1; λ�−δs�y2; λ�� ≤ �y1−y2� regardless of the value of λ. Thus

E�β̃jk − βjk�2 ≤ 2E�β̂jk − γ̂jk�2 + 2r�δλ; βjky n−1/2τjk�

≤ 2c42jn−2 log3 n+ 4r�δλ; βjky τn−1/2�;

where we have used the approximation error bound (42), the variance bound

(38) and τ2 is any common upper bound on τ2
jk. For example, all densities f ∈

F
′
σpq�M� are uniformly bounded, say by B0, and so τ2

jk ≤
∫

ψ2
jk�x�f�x�dx ≤

B0.

Proof of Theorem 4. It suffices to restrict attention to estimators of the

form

f̂ =
∑

k

α̂j1k
φj1k

+
j2
∑

j1

∑

k∈Z

δs�β̂jk; λj�ψjk:(44)

where j1 is a fixed constant and j2 = j2�n� will be specified below. Thus

E��f̂− f��22 =
∑

k

E�α̂j1k
− αj1k

�2 +
j2
∑

j1

∑

k

E�δs�β̂jk; λj� − βjk�2 +
∞
∑

j2+1

∑

k

β2
jk

= Ln�f� +Sn�f� +Tn�f�:

Since j1 is fixed, Ln ≤ Cn−1 is negligible. A simple maximization shows that

sup�Tn�f�; f ∈ Dσpq�M; T�� =M22−2j2s;

where s = σ + 1/2 − 1/p. To bound Sn�f�, let Sj = �k: �2−jk� < T + A�,

employ (44) and note that

j2
∑

j1

∑

k∈Sj
2jn−2 log3 n ≤ 4�T+A�22j2n−2 log3 n:
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In summary,

E��f̂− f��22 ≤ Cn−1 + 4
∑

j

∑

k∈Sj
r�δλj; βjky τn

−1/2�

+ c522j2n−2 log3 n+M22−2j2s:

(45)

Choose j0 so that 2j0−1 ≤ T + A < 2j0 . Using the identification θj′k = βjk,

j′ = j+ j0, and λ̄j′ = λj+j0
, the sum in (45) is bounded by

sup

{

∞
∑

j′=j0

∑

�k�≤2j
′
r�δλ̄j; θj′ky τn

−1/2�: θ ∈ 2σpq�2j0sM�
}

;

which, for appropriate choice of λ̄j, is bounded by

AσpqRN�τn−1/2;2σpq�2j0sM���1 + o�1��:

Thus, for c = c�σ; p; T�, we might take c = 2s�T+A�s.
To complete the proof, it therefore remains to show that the cutoff

j2 = j2�n� can be chosen so that the final two right-side terms in (45)

are of smaller order than RN, namely, n−2σ/�2σ+1� [cf (34)]. A sufficient

condition for this is easily seen to be

σ

2σ + 1

1

s
log2 n� j2�n� �

σ + 1

2σ + 1
log2 n− 3

2
log2 log2 n;(46)

where an � bn is to be interpreted as bn − an → ∞. In turn, a sufficient

condition for this is that σ < �σ+1��σ+2−1−p−1�, which is certainly satisfied

if p ≥ 1 and either σ = p−1 < 1 or σ > p−1. 2

7. Adaptation results. This section shows that a slight modification of

TW renders it adaptive, in the sense that it either exactly or approximately

achieves the rates of convergence of Theorem 3 without the need to specify

σ; p; q. Fix an integer r0 and define a class

S = ��σ; p; q; T�: �1/p� < σ ≤ r0; 1 ≤ q; p ≤ ∞; 0 < T < +∞�:

The modification, denoted ATW, is obtained from compactly supported and

�r0 + 1�-regular functions φ; ψ in (10) simply by specifying C�j� =
√

j as

before, and

2j1�n� ' n1/�1+2r0�; 2j0�n� ' n/ log2 n:

The constant K in (9) is chosen as c�M; ψ�r0p
′. Thus ATW is constructed

from TW by maximizing over S the range of levels j over which thresholding

occurs in (12).
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Theorem 5. Suppose that X1; : : : ;Xn are i.i.d. with density f of compact

support contained in �−T; T� and belonging to some class Dσpq�M; T�;
where �σ; p; q� ∈ S . If p′ ≥ 1; then, for all �σ; p; q; T� ∈ S ; there exists

C7�σ; p; q; M� such that

�Ef��ATW − f��p
′

p′�1/p′ ≤
{

C7�log n/n�α; ε 6= 0;

C7�log n��1/2−p/qp′�+�log n/n�α; ε = 0:
(47)

Remark. Although the estimator does not depend on �σ; p; q�, its spec-

ification still depends on p′ and M. A fully adaptive estimator is possible in

the Gaussian white-noise case; see Donoho, Johnstone, Kerkyacharian and

Picard (1995). An adaptive estimator which also obtains the correct rate of

convergence when ε > 0 has recently been constructed by Birgé and Massart

(1996) as a byproduct of their complexity penalized model selection approach.

Proof of Theorem 5. Because Lp-norms decrease in p for compactly

supported functions, the case p′ < p reduces to the case p′ = p. Thus we

investigate only the case p′ ≥ p and modify the proof of Theorem 3. Here

also, we present only the case p′ < ∞, the extension going through as well.

Consider f ∈ Dσpq�M� and define indices ji�σ; p; q� by

2j1�σ;p; q� ' �n�log n�−I�ε>0��1−2α; 2j0�σ;p; q� ' �n�log n�−I�ε≤0��α/σ ′
:

The index j1�σ; p; q� differs only slightly from that used in Theorem 3, which

will be denoted j∗1�σ; p; q�. Of course, j1�n� ≤ j1�σ; p; q� ≤ j∗1�σ; p; q� ≤
j0�σ; p; q� ≤ j0�n�:

Linear and bias terms. On Dσpq�M�, the bias and linear terms have rates

of convergence no worse than TW:

Ef��Ej0
f− f��p

′

p′ ≤ C2−j0�n�σ ′p′ ≤ C2−j0�σ;p; q�σ ′p′
;

Ef��f̂n;j1
−Ej1

f��p
′

p′ ≤ C
(

2j1�n�

n

)p′/2

≤ C
(

2j
∗
1�σ;p;q�

n

)p′/2

:

Large-deviation terms. The asymptotic behavior of the large-deviation

terms esb; ebs is treated exactly as for TW. Note that p′ ≥ p implies

that r0p
′ ≥ 1, as required for the large-deviation condition (17). For

γ ≥ max�γ0p
′; 1�, with γ0 = γ0�σ; p; p′� = �α/�1 − 2α� − σ ′�, they are

bounded by C2−j0�σ;p; q�σ ′p′
. In view of the choice K = c�M; ψ�r0p

′, it suffices

to verify that γ0�σ; p; p′� ≤ r0 over S . For ε > 0, γ0 = σ − σ ′ ≤ r0, whereas,

for ε ≤ 0, γ0 = 2σ ′/�p′ − 2� ≤ 1/p− 1/p′ = σ − σ ′ ≤ r0.

Main terms. As noted in the discussion of ebb in Section 4, the argument

given there establishes the bounds given in (47) even for the wider range of

j considered in ATW.

The behavior of the term ebb is a little more delicate. We look first at the

case ε ≤ 0, which, as noted earlier, arises only for p′ > 2. Applying (21) for
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β = 0 with (29) gives

E��ebb��
p′

p′ ≤ Cp′�j0 − j1��p
′−2�/2cmbn

−p′/2
j0
∑

j1

2j�p
′/2−1� ∑

k

∣

∣

∣

∣

2βjk

K

√

n

j

∣

∣

∣

∣

p1

≤ Cp′
(

j0

n

)�p′−p1�/2[

sup
j

2j�p
′−2�/2p1 ��βj��p1

]p1

:

Since ε ≤ 0, (8) shows that �p′ − p�/2 ≥ αp′ so we choose p1 ∈ �p;p′� so that

�p′ − p1�/2 = αp′. Thus p1 = p′�1 − 2α�, and setting σ̄ = σ + 1/2 − 1/p, it

follows that

p1 = p′�1 − σ ′/σ̄� = �p′ − 2�/2σ̄:

Hence �p′ − 2�/2p1 = σ̄ , and since �βj�p increases as p decreases (from p1

to p), the above supremum is bounded by �f�σp∞. Thus

E��ebb��
p′

p′ ≤ Cp′
(

j0

n

)αp′

��f��p1
σp∞ ≤ Cp′

Mp1

(

log n

n

)αp′

:

When ε > 0, we decompose

ebb =
(j1�σpq�

∑

j1

+
j0
∑

j1�σpq�

)

∑

k

�β̂jk − βjk�ψjkI�k ∈ B̂j ∩Bj�

= ebba + ebbb:

The term ebbb is bounded exactly as in the previous section since the upper

limit j0 does not affect the estimate. For the term ebba, we exploit (21) along

with (25) (applied to β̂jk instead of α̂jk) to conclude that

E��ebba��
p′

p′ ≤ Cp′
S�βa��p′/2−1�+

j1�σpq�
∑

j1

2−jβp′/2cmb�T+A�
(

2j

n

)p′/2

≤ Cp′
(

2j1�σpq�

n

)p′/2

≤ Cp′
n−αp′

: 2

APPENDIX

A.1. Characterizations of Besov spaces. We list here three further

characterizations of Besov spaces. The first explains their role in linear

minimax theory, the second their importance in approximation theory. The

third is the most usual definition in terms of modulus of continuity.

A.1.1. Minimax viewpoint. Let V be a set of densities included in a

ball in Lp. We recall the definitions and notation of Section 3 for linear

estimators. In particular, let El, l = ∗, #, be the kernels (4) and (5) and let

El
j�f� =

∫

El
j�x; y�f�y�dy.
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Theorem 6 [Kerkyacharian and Picard (1993)]. Let 2 ≤ p ≤ ∞ and

suppose that V is a set of densities contained in a ball of Lp�R� such that

1. There exists C2 > 0; σ > 0 such that, for all n;

inf
f̂∈Fn

sup
f∈V

Ef��f̂− f��pp ≥ C2n
−σp/�1+2σ�;(48)

where Fn is a set of estimators based on X1; : : : ;Xn containing at least the

class of linear estimators.

2. There exist a kernel E∗ with κ integrable or E# with φ localized and

sufficiently smooth and a sequence j�n� such that, for l = ∗ or #;

sup
f∈V

Ef��Êl
j�n� − f��pp < Cn−σp/�1+2σ�:(49)

Then V is included in a ball B of Bσp∞; and the problems have the same

complexity: (48) and (49) hold with V replaced by B.

To paraphrase the theorem: sets where linear estimators attain the minimax

rate are contained in Bσp∞ balls.

A.1.2. Approximation theory. The next result is well-known folklore [see

Fix and Strang (1969)]: it is also implicit in Peetre (1975); for some details,

see Härdle, Kerkyacharian, Picard and Tsybakov (1996).

Theorem 7. Let N ∈ N ; 0 < σ < N + 1; 1 ≤ p ≤ ∞; 1 ≤ q ≤ ∞:
Suppose that ∀ x; y; �El�x;y�� ≤ H��x − y�� for l = ∗ or # with H ∈ L; and
∫

H�u��u�N+1 du <∞:

1. If
∫

El�x; y��x− y�k dy = δ0; k; ∀ k = 0; : : : ;N; then

�f ∈ Bσpq� implies �f ∈ Lp; εj = 2jσ ��El
jf− f��p ∈ lq�N ��:

2. (a) �f ∈ Lp; εj = 2jσ ��E∗
jf− f��p ∈ lq�N �� implies �f ∈ Bσpq�:

(b) If φN+1 exists and satisfies
∑

k∈Z �φ�N+1��x−k�� <M for all x ∈ R; then

�f ∈ Bσpq� ⇐⇒ �f ∈ Lp; εj = 2jσ ��E#
jf− f��p ∈ lq�N ��;

and the norms are equivalent.

3. In case l = #; a sufficient (but not necessary condition) to assure
∫

El�x; y��x − y�k dy = δ0; k; ∀ k = 0; : : : ;N; is that φN exists in a

weak sense and belongs to Lp for p < +∞ (resp., is uniformly continuous

and bounded if p = +∞�:

This characterization in terms of approximation rates is one of the most

important properties of Besov spaces. For example, condition �f ∈ Lp; εj =
2jσ ��E∗

jf − f��p ∈ lq�N �� is necessary but not sufficient for membership in

the classical Sobolev spaces.

We note also that part (1) of the above theorem applies to the Haar basis

(in the case N = 0)—note that it is only the direction in the theorem that is

used in our arguments.
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A.1.3. Modulus of continuity [cf. Bergh and Löfström (1976) and Meyer

(1990)]. Suppose that 0 < s < 1, 1 ≤ p, q ≤ ∞ and set τhf�x� = f�x−h�. Set

γσpq�f� =
(

∫

R

( ��τhf− f��p
�h�σ

)q
dh

�h�

)1/q

;

γσp∞�f� = sup
h∈R

��τhf− f��p
�h�σ :

In the case σ = 1, set

γ1pq�f� =
(

∫

R

( ��τhf+ τ−hf− 2f��p
�h�

)q
dh

�h�

)1/q

;

γ1p∞�f� = sup
h∈R

��τhf+ τ−hf− 2f��p
�h� :

For 0 < σ ≤ 1 and 1 ≤ p, q ≤ ∞, set Bσpq = �f ∈ Lp: γσpq < ∞�, equipped

with the norm ��f��σpq = ��f��p+γσpq�f�. For σ > 1, set σ = n+α, with n ∈ N

and 0 < α ≤ 1. Let f�m� denote the mth derivative of f and set f ∈ Bσpq
whenever f�m� ∈ Bαpq for all m ≤ n. This space is equipped with the norm

��f��σpq = ��f��p +
∑

m≤n
γσpq�f�m��:

Remarks.

1. It is easy to see from the definitions that Bσ∞1 for σ ≥ 0 and Bσ∞q for

σ > 0, q > 1 are contained in the space of bounded continuous functions.

2. There are other characterizations of Besov spaces [e.g., Lions–Peetre inter-

polations of Sobolev spaces or Littlewood–Paley decompositions; cf. Bergh

and Löfström (1976), Peetre (1975) and Triebel (1992)] that we will not

need here.

A.2. Lower bound for linear estimators. We consider a subclass of

densities:

Ṽj =
{

g0 +
∑

k∈Kj

λjkψjk; λjk ≤ 0�jy σ; p; M�
}

:

Choose γ > 0 such that fk = g0 + γψjk and f′
k = g0 − γψjk belong to Ṽj.

Lemma 4. Suppose that fL is such that Eff̂L�x� < ∞ for all f ∈ Ṽj and

x ∈ R. Then

2γ
∂

∂λjk
�Eff̂L�x�� = Efk

f̂L�x� −Ef′
k
f̂L�x�:
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Proof.

Efk
f̂L�x� −Ef′

k
f̂L�x� =

n
∑

i=1

Efk
Ti�Xi; x� −Ef′

k
Ti�Xi; x�

= 2γ
∫ n
∑

i=1

Ti�y; x�ψjk�y�dy:

On the other hand, in Ṽj,

Eff̂L�x� =
n
∑

i=1

∫

Ti�y; x��g0�y� +
∑

k

λjkψjk�y��dy

and

∂

∂λjk
Eff̂L�x� =

∫ n
∑

i=1

Ti�y; x�ψjk�y�dy:

This establishes the lemma. 2

Let us observe that neither
(

∂

∂λjk

)

�Eff̂L�x�� nor ajk x=
∫

(

∂

∂λjk

)

�Eff̂L�x��ψjk�x�dx

depends on the choice of f ∈ Ṽj.

We apply an L1 version of the Cramér–Rao inequality in the model in

which X1; : : : ;Xn is an i.i.d. sample from f ∈ Ṽj, θ = λjk and

T̂ =
∫

f̂L�x�ψjk�x�dx = α̂jk:

Indeed,

∂

∂θ
EθT̂ = EθT̂L ≤ �sup �L�� ·Eθ�T̂�;

where

L =
∑

i

1

fθ�xi�
∂

∂θ
fθ�xi� =

∑

i

ψjk�xi�
fθ�xi�

and

�L� ≤ n��ψ��∞/C:
Thus, for p′ ≥ 1,

Eθ�T̂�p
′ ≥ �Eθ�T̂��p

′

≥ C�ajk�p
′
n−p′/2:

(50)

Observe now that, if Dj = Ej+1 −Ej (namely, projection on Wj), then

��f̂L − f��p′ ≥ ap′ ��Dj�f̂L − f���p′
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for some constant ap′ , and hence, from Lemma 1,

Ef��f̂L − f��p
′

p′ ≥ a′p′2
j�p′/2−1�Ef

∑

k

�α̂jk − λjk�p
′
:(51)

Recalling now the definition of the pyramid Pj from the proof of Theorem 2,

Rn�f̂L� = sup
f∈Dσpq�M�

Ef��f̂L − f��p
′

p′ ≥
1

card Pj

∑

f∈Pj
Ef��f̂L − f��p

′

p′

≥ 2−�j+1� ∑

k∈Kj

Efk
��f̂L − fk��

p′

p′ +Ef′
k
��f̂L − f′

k��
p′

p′

≥ a′p′2
j�p′/2−1�2−�j+1� ∑

k∈Kj

{

∑

k′∈Kj

k′ 6=k

Efk
�α̂jk′ �p

′ +Ef′
k
�α̂jk′ �p

′

+Efk
�α̂jk − γ�p

′ +Ef′
k
�α̂jk + γ�p

′

}

;

(52)

using Lemma 1.

But

Efk
�α̂jk − γ�p

′ +Ef′
k
�α̂jk + γ�p

′ ≥ �Efk
α̂jk − γ�p

′ + �Ef′
k
α̂jk + γ�p

′

≥ 2−�p′−1��Efk
α̂jk −Ef′

k
α̂jk − 2γ�p′

= 2γp
′ �ajk − 1�p′

;

(53)

using Lemma 4.

Using (50), (52) and (53), we obtain

Rn�f̂L� ≥ Ca′p′2
j�p′/2−2�

{

∑

k∈Kj

γp
′ �ajk − 1�p′ +

∑

k∈Kj

∑

k‘ 6=k
k′∈Kj

n−p′/2�ajk′ �p
′

}

:

The double sum collapses to �2j − 1�n−p′/2 ∑ �ajk�p
′
, and after setting

γp
′ = �2j − 1�n−p′/2, we have

RL
n ≥ a′p′2

jp′/2n−p′/22−j ∑

k∈Kj

(

�ajk − 1�p′ + �ajk�p
′
)

≥ c
(

2j

n

)p′/2

:

Recall that γ was constrained to be at most 0�jy σ; p; M�, which, since

σ ≥ 1/p, amounts to requiring that γ ≤ �M/2�2−j�σ+1/2−1/p�. To maximize the

lower bound subject to this constraint, equate 2jn−p′/2 and 2−j�σ+1/2−1/p�p′
.

This leads to choosing j so that 2j � n1/�1+2σ ′�, where σ ′ = σ − 1/p+ 1/p′. It

follows that
(

2j

n

)p′/2

� n−σ ′p′/�1+2σ ′�;

which establishes the first part of Theorem 1. 2
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A.3. Gaussian approximation for quadratic loss.

Proof of Lemma 3. Let us first note some easily verified properties of

soft thresholding:

(a) for β, z > 0, �δs�β− z; λ� − β� ≥ �δs�β+ z; λ� − β�;
(b) for β > 0, z→ �δs�β− z; λ� − β� is increasing for 0 ≤ z <∞.

That is, negative disturbances yield bigger errors than positive disturbances of

the same size, and the error is monotone in the size of a negative disturbance.

Write X = β + τZ for Z ∼ N�0; 1� and drop explicit reference to λ and s.

We now apply these properties in turn:

Eβ; τ�δ�X� − β�2 = E��δ�β+ τZ� − β�2; Z < 0�

+E��δ�β+ τZ� − β�2; Z ≥ 0�
≤ 2E��δ�β+ τZ� − β�2; Z < 0�
≤ 2E��δ�β+ τ̄Z� − β�2; Z < 0�
≤ 2Eβ; τ̄�δ�X� − β�2: 2

Remark. Although the constant 2 in the statement of the lemma is not

sharp, it cannot be reduced to 1, as may be checked by explicit calculation

with β = λ and τ varying from 0 to ∞.

Proof of Lemma 2. We adopt the following conventions: the notation

xn = yn + θrn means �xn − yn� ≤ rn; that is, θ ∈ C satisfies �θ� ≤ 1 and may

differ at each occurrence. Second, c1; c2; : : : denote absolute constants.

(a) It suffices to assume that the distribution function of the Xi is abso-

lutely continuous. If not, let Ui be i.i.d. uniform and independent of �Xi�
such that EUi = 0, EU2

i = 1. The variables Yi = Xi cosα + Ui sinα have

absolutely continuous distributions with mean 0, variance 1 and bound

M�1 + α�. Construct Z by applying the proposition to S1
n = ∑n

1 Yi. Since

E�S1
n − Sn�2 ≤ nα2, the choice α = n−1/2 ensures that E�n−1/2Sn − Z�2 ≤

2α2 + 2c2M
2�1 + α�2n−1 ≤ c3M

2n−1:

(b) Let Fn denote the distribution of Wn = Sn/
√
n. Since this is absolutely

continuous, the quantile transformation Z = 8−1�Fn�Wn�� yields a standard

Gaussian variable [here 8 denotes the distribution function of a N�0;1�
variate]. We show that Z has the desired approximation by considering

in turn large, moderate and small deviations, defined respectively by sets

A1 = �w: �w� >
√

a log n�; A2 = �1 ≤ �w� ≤
√

a log n� and A3 = ��w� ≤ 1�.

Indeed, we write

E�Wn −Z�2 = E��Wn −Z�2; �Wn� >
√

a log n�

+
∫

A2∪A3

�w−8−1�Fn�w���2Fn�dw�

= I1 + I2 + I3:

(54)
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(c) Small deviations are easily handled by the Berry–Esseen theorem,

which implies that �rn�x�� = �Fn�x� − 8�x�� ≤ Cρn−1/2 ≤ CMn−1/2 since

ρ = E�X1�3/�EX2
1�3/2 ≤M. According to the mean value theorem,

I3 ≤
∫ 1

−1

r2
n�w�

φ2�u?�w��Fn�dw� ≤ c3M
2n−1;(55)

since u?�w� lies between w and 8−1�Fn�w��, and the latter is bracketed by

8−1�8�w� ± CMn−1/2�, which in turn is bounded by an absolute constant in

view of the assumption on M2n−1 log3 n ≤ c1.

(d) For large deviations, first use the Hölder inequality to write

I1 ≤ c4�E�Wn�3 +E�Z�3�2/3P1/3��Wn� >
√

a log n�:(56)

Now use Bennett’s inequality [see, e.g., Pollard (1984)] to bound

P
(

�Sn� >
√

an log n
)

≤ 2 exp�−�1/2�a log nB�M
√

an−1 log n��;(57)

where the function B�λ� = 2λ−2��1 + λ� log�1 + λ� − λ� is continuous and

decreasing on �0; ∞� with B�0+� = 1. By hypothesis, M2n−1 log n ≤ c1, and

so the right side is bounded by

2 exp
{

−a
2
B�√c1a� log n

}

≤ 2n−3(58)

as long as we choose a large (= 10 say) and c1 small enough that aB�√c1a� ≥ 6.

Finally, the Rosenthal bound (13) shows that

E�Wn�3 ≤ c5�1 +Mn−1/2� ≤ c5�1 + c1/2
1 �;(59)

and hence that I1 ≤ c4�c5 +E�Z�3�2/3 21/3 n−1 = c6 n
−1.

(e) For moderate deviations, it is sufficient, because of symmetry, to focus on

I+2 =
∫ �a log n�1/2

1
�x− 8̃−1�F̃n�x���2Fn�dx�;(60)

where 8̃ = 1 −8; F̃n = 1 −Fn. We exploit the following lemma, whose proof

we omit.

Lemma 5. If x ≥ 1 and �F̃/8̃�x� − 1� ≤ e−3/2; then

�x− 8̃−1�F̃�x��� ≤ x−1e3/2��F̃/8̃��x� − 1�:(61)

We also use a uniform version of the classical moderate-deviation bound

based on the Cramér series [cf. Feller (1971) and Petrov (1975)]. The version

we use, due to Sakhanenko (1991), does not require explicit knowledge of the

Cramér series γ�x�. It is phrased instead in terms of the Liapounov exponent

L�h� = ∑n
1 E�Yi�3 max�ehYi; 1�, which may be conveniently bounded in our

application.
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Proposition 2 [Sakhanenko (1991)]. Let Wn = ∑n
1 Yi be the sum of

independent, mean-zero random variables, VarWn = 1. Let x ≥ 0 and

F̃n = P�Wn ≥ x�. If

16xL�2x� ≤ 1;(62)

then the Cramér series γ�x� is well defined and satisfies

�γ�x�� ≤ x3L�2x�;(63)

�e−γ�x�F̃n�x� − 8̃�x�� ≤ 32L�2x�φ�x�:(64)

In our application, Yi =Xi/
√
n are bounded by Mn−1/2 and so

L�h� ≤Mn−1/2ehMn−1/2

:(65)

The restriction 1 ≤ x ≤
√

a log n implies that Mx3n−1/2 and hence Mxn−1/2

are both bounded by �a3M2n−1 log3 n�1/2 ≤ 103/2√c1. For a sufficiently small

choice of c1, we may ensure that �Mx3n−1/2� ≤ 1/18, say, and hence that

condition (62) holds.

Let R = F̃n�x�/8̃�x� and γ = γ�x�; we exploit the bound

�R− 1� ≤ eγ�e−γR− 1� + �eγ − 1�:

Combining (63) with (65), we conclude that

�γ� ≤Mx3e2Mxn−1/2 ≤ �1/18�e1/9 ≤ 1/16:

From (64), we obtain

�R− 1� ≤ 32e17/16L�2x�φ�x�/8̃�x� + 2�γ�x��:

The function ν�x� = φ�x�/x8̃�x� is decreasing in x ≥ 0, and so is bounded

below in our case by ν�1�. Combining this with (63) again yields, for

1 ≤ x ≤
√

a log n,

�F̃n/8̃�x� − 1� ≤ c3�x+ x3�L�2x� ≤ c4x
3Mn−1/2e2xMn−1/2

≤ c5x
3Mn−1/2

≤ c5103/2√c1 ≤ e−3/2;

(66)

again if c1 is chosen sufficiently small.

Thus Lemma 5 applies also and, from (66),

I+2 ≤ e3
∫ �a log n�1/2

1
x−2��F̃n/8̃��x� − 1�2Fn�dx�

≤ c11EW
4
nM

2n−1 ≤ c11�1 + c1�M2n−1;

(67)



538 DONOHO, JOHNSTONE, KERKYACHARIAN AND PICARD

since EW4
n = n−2ES2

n ≤ 1 +M2n−1 ≤ 1 + c1. This yields the desired bound

for I+2 and completes the proof of Lemma 2. 2
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supporting a visit by IMJ.

REFERENCES
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