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To the memory of our friend Claude Kipnis

Consider the problem of estimating [®(f), where ® is a smooth
function and f is a density with given order of regularity s. Special
attention is paid to the case ®(¢) = ¢2. It has been shown that for low
values of s the n~1/2 rate of convergence is not achievable uniformly over
the class of objects of regularity s. In fact, a lower bound for this rate is
n=45/A+49) for 0 <s < 1/4. As for the upper bound, using a Taylor
expansion, it can be seen that it is enough to provide an estimate for the
case ®(x) = x3. That is the aim of this paper. Our method makes inten-
sive use of special algebraic and wavelet properties of the Haar basis.

1. Introduction. Let X,,..., X, be n independent identically dis-
tributed random variables according to a distribution P. We assume that P
is absolutely continuous with respect to Lebesgue measure on R with density
f. One aim of this paper is to study the problem of estimating [f?, assuming a
priori that f lies in a class of low order of regularity, namely, s < 1/4.

The problem of estimating nonlinear functionals of the density has now
widely been studied. Some approaches can be found in Levit (1978), Hasmin-
skii and Ibragimov (1978), Hall and Marron (1987), Bickel and Ritov (1988),
Ritov and Bickel (1990), Donoho and Nussbaum (1990), Goldstein and Messer
(1992) and Birgé and Massart (1995). A common feature is that for certain
classes of regularity the parametric rate n~!/2 is achievable. On the other
hand, for low regularity situations, the rate typically becomes nonparametric.

The present work is principally based on the papers of Bickel and Ritov on
estimating [f? and the paper of Birgé and Massart extending their results to
estimate integrals of general functionals of the density, [#(f). In Bickel and
Ritov, it is shown that the rate n~'/2? is achievable for regularity s > 1/4,
whereas for s < 1/4 the optimal rate is n~*$/1*49 Birgé and Massart, in
the more general context, have proven that n~**/1%49) was a lower-bound
rate. Moreover, they provide an n !/? consistent estimate for the case
s > 1/4. Furthermore, Laurent (1996) has built efficient estimates for s >
1/4.

Birgé and Massart noted that the case of low regularity, 0 < s < 1/4, was
not completely solved. This gap may be explained as follows: the method of
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Birgé and Massart is based (using a Taylor expansion of the function ®) on
an “initial” estimate corrected by estimates of functionals of order 1 (linear)
and 2 (quadratic). Their method failed to go up to the third order as there was
still the problem of producing an estimate of the cubic-order terms which
become important in the low-regularity case, 0 < s < 1/4.

In this paper, we provide a new estimator of [f® exactly attaining the
lower-rate bound in the low-regularity case and closing the problem.

Our approach has several interesting features:

1. Our estimator is constructed directly, not as a “one step” corrected esti-
mate. To clarify this point, we give, as a starting point, a very simple
construction of a direct estimator of [f2.

2. We make essential use of the Haar basis here. Two properties of the Haar
basis are useful: first, the multiresolution properties, which provide an
orthogonal partitioning of objects into coarse resolution terms on the one
hand and details on the other, permitting us to estimate separately each of
them; second, the more specific martingale-type properties of the Haar
basis and more generally very special algebraic properties.

3. Although our approach is based on wavelets, the issues are different from
some other work building wavelet estimators in other problems. We em-
phasize that we do not use here any thresholding methods [as we have
used with profit in Donoho, Johnstone, Kerkyacharian and Picard (1995)].

4. We make essential use of Besov spaces here. Relying on their properties,
we need not impose limitations on the support of the density, as other
authors have done.

The paper is organized as follows. In Section 2 we introduce the properties
of the Haar basis and Besov spaces used in the sequel. Section 3 is devoted to
the special case of estimating [f2. In Section 4 we present our estimate of [f3.
The evaluations of the behaviors of the different components of the estimate
is postponed until the Appendix. In a final remark, we explain how to extend
the previous results in order to complete the results of Birgé and Massart for
the general case of estimating [¢(f).

2. Haar basis and Besov spaces.

2.1. Algebraic properties of the Haar basis. Let ¢(x) = 1, ;,(x) and let
V, be the subspace spanned by all the ¢, for k& € Z [where ¢;,(x) =
2//%(27/x — k)]. Similarly, let ¢(x) = 1, ,4(x) — 1 51 (x), ¢y(x) =
27/%y(2/x — k) and W, be the subspace spanned by all the yy;, for k& € Z. Let
ay, ={f, ;10 B =<fo¥,) and E;f=1Y, 5 a;¢,,. The following (very
simple) properties are classical and will be very useful in the sequel:

@) vv; € Viar(jjn if v; €V, v €V

() (wj,v;) =0if w, € W, v, €V, j' <.

(i) w? €V, if w; € W,

av) ww; € W, if w, e W, w, € W, j' > j.

Wi
. 7
) w;v;, €W, if v, eV, w, € W, j' > j.
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2.2. Haar basis and Besov spaces. Besov spaces, like Sobolev or Lipschitz
spaces, give the opportunity of restricting a nonparametric problem
using regularity conditions. Those spaces, however, happen to lead to opti-
mality properties in the minimax framework [cf. Kerkyacharian and Picard
(1993)] and to be particularly adapted to the “wavelet” decompositions [cf.
Johnstone, Kerkyacharian and Picard (1992), Kerkyacharian and Picard
(1992a, b) and Donoho, Johnstone, Kerkyacharian and Picard (1995)]. Here,
they will not be used in complete generality, but as can easily be seen, they
will allow us to get rid of the condition that f be compactly supported. Let
us only mention the following definition [see Bergh and Léfstrom (1976) and
Peetre (1975)]. Let 7, f(x) = f(x —h). For 0 <s <land 1 <p < 4+, set

1 B dh 1/q
“f”qu = (/;) (”Thf_f”ph s)q 7 )
while, for g = o, set
||f||sp00 = Sup ||Thf_f||ph_s
he(0,1]

and say that f € B, if and only if 1fllspq < .
We need the following inequalities [see, e.g., Kerkyacharian and Picard
(1992b)]: forall0 <s < 1,1 <p < +x,

(1) ”Ejf_ f”p < C”f”spoozijs 1ff€ Bpm,

(2) 1B < Cllfll27C*Y/2 if fE B

gor J.>d,set Dy ; f=E; f—E;f=XYX7";"%, Bjiy. From (1) we de-
uce

J,—1

Z ZBjk al < ClIfll;p=277¢ if f € BS,.

(3) “DJ,J* f”p =

Let IIa ||z denote the /, norm of the sequence (a k)k ez
(4 Vj=0, |Efl, =202 Vnlal, <Ilfl, iffeB:.

REMARKS.

1. The constants we denote C appearing here and throughout the paper are
generic, typically denoting different quantities from one occurrence to the
other. However, they always denote quantities that are independent of
both f and j. It would not be difficult to obtain explicit bounds for the
constants occurring in this paper, but as it is of no apparent importance to
our results, we have not tried to do so. )

2. Of course, f itself may be estimated crudely, using the ¢, by f(x) =
(1/n)x; G(X;, x), where G(x ¥) =X, dip(2)d;(y). It is Well known that,
for 0 <s <1, Ellf f||2 < C{2//n + 272} as soon as f € Bj,. In this
paper, we give an extension of such ideas to the problem of estimating the
integral of higher powers of f.
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3. Estimation of a quadratic functional. As a warmup for our tech-
nique we give here an estimator for the square of a density. Of course, the
result we give, Theorem 1, is not new, since already in Bickel and Ritov
(1988), there appears an estimator with the right rate of convergence even for
small regularity assumptions. Other estimates also can be found in Laurent
(1996). Nevertheless, in the Besov framework, it gives a primary understand-
ing of our technique, since in the sequel we will only elaborate this basic
construction to cover the more difficult case of the cube of the density.

We start from the basic identity

[ = J(F=Ef) + [(Bif)',  Eif = Taudyn,  an = <Frdye)
k

We have used here the orthogonality of (E;f) with (f — E.f).
We have obviously the following results, using (1) and (4):

(5) f(f_ Ejf)z < C2‘2js||]c||§2Oc and j‘(EJf)Z _ ZaJ-Zk.
k

Introduce now the kernel G(x, y) = X, ¢;,(x) ().

DerFINITION 1. By quadratic wavelet estimator we mean the U-estimator
constructed from the kernel G using the n-sample:

B)= = ¥ G(X,X,).

(iy,i9)€l

Here I is the set of all strictly ordered pairs (i, i,) with values in {1,..., n},
and, of course, card I = C2 = n(n — 1)/2.

Now B?(j) is an unbiased estimator of [(E;f)?; below, we will evaluate its
variance. As a result we will obtain the following result on its mean-squared
error.

THEOREM 1. Suppose fis such that ||fl|lso. < M, ||flls < M. There exists a
constant C depending on M such that

2
E(’f’ _ f(f)Z) < Cp~@s/A+asnnn,

where T = B2(j,), 2 ~ nif s > 1/4 and 2/1 ~ n2/ 149 jf s < 1/4.

REMARKS. If f belongs to a bounded subset of B and is compactly
supported, then it belongs to a bounded subset of B;, N B;..

By the Sobolev injection theorem [see, e.g., Bergh and Lofstrom (1976)], we
have Bj, c Bi, if s —1/2 =s' — 1/3. But we also have Bj., C L, if s’ > 0.
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Hence, if s > 1/6, we only need to impose that f belong to a bounded set of
B;..

3.1. Proof of Theorem 1.

@ BB - [mr) - EEO) - ([

But

2

E(B*(j)) =(C3)° ¥ Y EG(X,,X,)G(X;,X,).

Gr.ig)el (i, ipel
We can split I X I into three subsets in the following way:
IO = {((il’ i2)> (l/1> 1/2)) elX I: {i1> iz} N {lll’ 1/2} = Q},
card I, = C2C?%_,,
I = {((iy,15), (i}, 15)) € I X I:card{iy, iy} N {1}, 15} = 1},
card I, = n(n — 1)(n — 2),
I, ={((iy,15), (i}, 15)) € I X I:card{i,, i,} N {i}, 15} = 2},
cardl, = C2.
Thus, we can decompose (6) as e, + e; + e,, where
2
-2 .
v = (C2)* TEG(X,, X,)G(Xo i) ~ ([ (5,1)')
I
and the other e; are given by
€= (03)72 LEG(X;, X;,)G(X;, Xy,).
I;

Below, we let X, Y, Z, T denote independent variables with density f.

1. Bound for e:

(fmry).

2—2 2 2 2 03—2
e, = Cgf (E(GX,Y)) - (f(Ejf)) = (7—1

n

Hence, by (4), le,| < ClIfll3/n.
2. Bound for e, = [(n? — n)(n — 2)/(CH*1EG(X,Y)G(X,T):

_ (n? —n)(n -2

€

) ];ff(rbjk jk’(ajk’ajk)

(€’
_ (n2_n)(n—2) J/2,8
(03)2 %2 Jk*

Thus, using (4), le,| < CIIfll3/n.
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3. Bound for e,:
SEGXX YO Y) = o 2 (forr)
= 59 ) ) = 39 ik =
2 CE c: e\

Thus, using (4), |e,| < C|If11527/(n?).

Putting together all the above bounds, we obtain that, as soon as the
density f is such that || f|ls < M, there exists a constant C depending on M
such that

2 1 97
9, - 2
(7) E(B (J)—f(Ejf)) sc{;+—2}.

n

1

e
2
C,

2/ a?.
k

REMARK. When n < 2/, we obtain
2) 27
(8) E(Bz(j) —/(Ejf)) 50{?}.

Now suppose that f is such that ||fll;2. < M, ||flls < M, and use the
inequality

2 2 2
BB - [r7) <2{8(82G0 - [@,07) + ([ B0 |
Using the preceding bounds (5) and (8), we complete the proof. O

4. Estimation of a cubic functional. Let us introduce the following
quantities:

Low-resolution term. Consider GjB(x, ¥,2) =X, 2j/2¢jk(x)¢jk(y)¢jk(z)
and the associated U-estimator constructed on the n-sample:

1
Bg(]) = a3 Z GJB(Xi17Xi2aXi3);

no(iy,iq,ig)€l

I is the set of all strictly ordered triples (i, i,, i) with values in {1,..., n}.

Cross term. For J < J* define A, ={(j',k'): J <j <., k/27 <k'/27
<(k+ 1)/27},

Gry(x,5,2) =272 3¢y ( ) Loy (¥) ¥y (2)
k A,
and the associated U-estimator constructed on the n-sample:
1
M3(J, J*) = F %G%*(Xil’ Xi2’ Xi3)'

S is the set of all triples (i, iy, i3) with no common value in {1,..., n}, and
A3 =n(n — )(n — 2).
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Cubic term. Consider
-1

GJJ*(x y,2) =3 Z Z dljk(x)lv[l]k(y)d/jk(z)<¢jk’2j/2¢k>

J,j'=J k,k’

and the associated U-estimator constructed on the n-sample:

1
TS(J, J*) = _A3 ZG;J*(Xil’Xiz’Xi3)-
n S

DEFINITION 2. By cubic wavelet estimator we mean the statistic

A _ 3 . 3 . . 3 . .
T'=B"(j1) +3M*(J1,J3s)locs<1a + T7(J1sJ2) Lo<s<1 125
where 271 ~ n, 973 ~ n2/(1+43), nG/2=28)/(1+4s) L 9z « p(3/2+25)/(1+45)

THEOREM 2. Iffis such that ||fllsex < M, || fllswe < M, then there exists a
constant C depending on M so that the cubic Haar U-estimator obeys the
bound

2
E(T—f(f)s) < Cn—Bs/A+4spA1

We prove Theorem 2 by considering three different cases of regularity
for f.

4.1. s = 1/4. This case can be treated as in the previous section. We
recall that, using the orthogonality of (E;f)* with (f — E;f), we have [f® =
[(f—E, f)3 +3/(f — E;,)(E;f) + [(E; f)3 However, we have using (1) and
@),

J(F=Eif) <C2%If s, [(F=E;f)(Ef) < C2 2| fl%Ifl..

If we suppose now that f belongs to a bounded subset of Bj, N B,
we can estimate [f® at the rate 1/n, by taking simply 7' = B3(j,): Indeed
(B*(j)— [(fP)? <C{EB*(j)— [(E, [ + (J(f — E; [V +(J(f = E; [)*¥
(E, F)?.

JUsing a bound on the first term of the sum on the r.h.s. (to be developed in
Lemma 3 in the Appendix), we get

E(B3(j1) - f(f)3)2 < c{% + n-4S} L&

n

4.2.1/12 < s <1/4. Notice, to begin, that

[£2=[(F-E, 1) +3[(F- B, [)(E,f)+ [(E,f)

and

f(Ejgf)szf s | +3f s Ej1f+f(Ejlf)3
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[because [( D,

E; f)? = 0]. Just as before, we get an inequality (see
Lemma 3)

1,J3

c

(9) E(B3(j1) - f(Ejlf)3)2 < {;}

It remains to construct an estimator of the “cross term” [(D; ; f )ZEJ-1 f.
We do this using M3(j,, j;). Its behavior is investigated in the Appendix.
Particularly, we obtain (cf. Lemma 2)

9J1tJs

2
(10) E(M3(j1,j3) - f(Djl,j3f)2Ej1f) < C{ . } < Cpn~8s/0+4s)

Using (1),

[(F=E,f)" < €250 fli%s. < Cn-os/a+40,
Using (1) and (4),

J(F=E, ) (B, f) < C27 2| fllZullfl. < Cn#e/0+49),
Using (3),
f(Djl,jgf)s < C27%9|f|I3s.. < Cn=%e.

Hence, we have

B(33°(i, ) + B - ff3)2

< C{E(3M3(J‘1,J'3) - f3(Djl,jgf)2Ej1f)2 + E(Bs(jl) B f(Eflf)s)

Ao -2 s

As 6 > 8/(1 + 4s) we obtain the rate of convergence indicated in the theo-
rem.

4.3. 1/12 > s. In the case of very low regularity, the preceding estimator
fails to obtain the right rate of convergence due to the term | (Djl, Wl )3. But
we have /(Djlvjaf)s = f(Dj27j3f)3 + 3](D12:j3f)2(Dj1,j2 f) + f(Djhjz f)S USing
(3), we have the following bounds:

1. [IKD;, ;. FIP < C2735%| f||35.. If 272 > n%/30+49) then the preceding quan-
tity is bounded by Cn~**/0*49, _
2. [I(D;, ;. P*D; ; Pl < C27 252270 112l fll e If 272 > p(3/2728)/ At 4s),

then the preceding quantity is bounded by Cn—*s/1+49),

It remains now to estimate the “cubic term”, [(D;

.., /). Using Lemma 1 (see
the Appendix), we get E(T?(jy, j,) — [(D; ; f)*)?* < C{2%:/n).

1 J2
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It may be worthwhile to notice the similarity in the rates of convergence
between this estimate and that of the “cross term” (cf. Lemma 2). If 272 <
n3/2+729/0+49) then the preceding quantity is controlled by Cn85/1+49) Ag
4/3 < 38/2 — 2s, by choosing n®/2729)/(A+49) < 97> < p(B/2+25)/A+45) e ob-
tain the result.

5. Extensions. Our technique may certainly be extended to produce
estimates for other integer powers. Unfortunately, the computations may
become rather cumbersome. It seems more fruitful, at this stage, to extend
the construction of Birgé and Massart (1995) since, in addition, it applies to
general functionals. We will not perform the extension in detail here; instead
we give the principal ideas. Looking at the proof given by Birgé and Massart,
one easily sees that the important point is to give a bound for [f®g, where g
is a known function, where the bound has the same rate of convergence as
our previous estimator of [f?.

We modify slightly the definitions of the three components B2, M3, T?
to achieve this aim. Suppose that g belongs to Bl/? and let

Ejg = Z &jko Jiko? &jko = (g, ¢j,k0>'
ko€Z

Instead of B®, M?, T?, take now B3, M3, T? with the following definitions:
let B3(j) be the U-estimator associated with the function G (in place of G),
where

éjB(x’y’z) = §2j&jk jk(x)¢jk(y)¢jk(z)-

M?3(J, J,) is the U-estimator associated with the function G (in place of @),
where

G«%]*(xay, z) = 2JZ¢Jk(x)&JkZl!lj’k’(y)l»[/j’k’(z)'
k A,

T3(J, J,) is the U-estimator associated with the function G (in place of G),
where

C‘%‘J*(x’ y,z)
= 322J/2&Jk0 Z Z l/jjk(x)‘/’j’k’(y)wj’k’(z)<¢jk72j’/2¢j’k’>
ko J k€A, T k€A,

(A, was defined in Section 4). Apart from these modifications, the construc-
tion remains the same.

APPENDIX

We present here the details of the calculations for the variances of the
three estimates 7', M and B. We have chosen to present them in decreasing
order of difficulty so that the easiest case is given in less detail.
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A.l. Bounds on the cubic term. Consider the term [(D, , f)? Of
course, we have the a priori control of this integral, as soon as f is in BZ,, by
ClIf112 5..27375. We will now investigate the rate of convergence of an estima-
tor of this quantity. For simplicity of the expressions, from now on we
suppress the indices J and J, — 1 in the summations as often as possible.
Let I, = X, B;,; , be the projection of f on W,. We have

I(ZIJ') Z Z Zf1111]2113

It is easy to see that if the three indices are all different the integral of the
product has no contribution. In this case, as a matter of fact, by a special
property of the Haar functions i, this product belongs to Wy, ;, .-
Hence,

-1J,-1

[(D; ;. 1) =3 Z Y [(L) L T alh, 2 ) 27 b

=J j=dJ "k’

Hence T°(J, J ) is an unbiased estimator of [(D, ; f)°. Let us estimate its
variance:

(a0 B0 [0, 7) =B, 907 - (D17

In the remainder of this section, we will omit from G any mention of the
indices T', J, J*:

E(T3(J,d,)) = : —— Y EG(X,,X,,, X,)G(X:, X;,, X;.)-
(A3) sxs
We have to split S X S into different subsets in the following way:
So = {((i1,15,15), (i1, 85, i3)) €S X St{iy, iy, is} N {1}, 15,15} = T},
Sy = {((i1,19,5), (i1, iy, 85)) € S X Steard{iy, iy, i5} N {i, iy, 85} = 1},
S, = {((il,ig,ig),(i’l,i’z,ig)) € S X S:card{iy,iy,i5) N {i}, 5,05} = 2},
S, = {((il,iz,iS),(i’l,i’z,i’S)) € S X S:card{i,i,,i5} N {i},i%,05} = 3}.

Thus, we can decompose (11) in e, + e; + e, + e5, where

€y =

2

3
iy DO X X)0(X X Xo) = ([ (Da.
n 0

and the other e i

1
e = (a0 ;EG(XwXiz’Xi.g)G(Xia’Xi'z’ Xi,)-

J
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A.1.1. Bound for e,.

6

ey = (23”)2(EG(X,Y,Z))2 - (f(DJ,J*f)g)

AG

o 1)( (s 1)

n

Using (3), we get

(12) leol < C2787%|| F1ISs.. /n.

A.12. Bound for e;. As we will have to calculate terms like
EG(X,, X, , X, )G(X,, X, , X;), it will be worthwhile to split again S, into
subsets reflecting the setting of the two indices which are equal. There
obviously are nine such subsets, each of cardinality A®. Fortunately, because
of the symmetry of the function G with respect to the two last arguments, we
have just to consider three such subsets, as the other ones may be reduced to
one of these. In fact, we only have to evaluate

5

e, = —=EG(X,Y,Z)G(X,T,U),
(4:)
A5

e 5= (A3")2EG(X,Y,Z)G(T,X, U).

(i) Bound for e, ;: For the sake of simplicity we shall now denote in
the long formulas the multiindex (j&) by L, with the obvious extensions,
(J'k") = L', (jiky) = Ly, (j1ky) = Ly:

9A°

n

er1 = Y X [funn Be Bu) s 27 e, 20 )

(Ai)Q LL LI,
A5
(A3)°

~-9

/ f( ;wL<wL, L2/ ﬁLr)2>)2

C 2
< 2IfILY {<Zlﬁ, wL>} .
n L\ 7
We have used the Parseval identity and

(13) 12 =Y (By)27 %,
L
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Moreover, (¥, I7, ¢ ) = (TJ5 1 12, 4y ) = ((E7<71 I,)?, ¢, ). We used here
the special algebraic properties of the Haar functions recalled in the Intro-

duction. Thus,
C Je—1 2 ?
e < —IALY | X 1|, u
n L J'=i+1

(14) c ( I -1 )4

IA

—IfLEf| T I

PRV

IA

c
— Ul F a2 4
n

Here we used inequality (3). For later use, we remark that

2

b ¢L<¢L, Y27 %, ( BLf)2>
L

L

(15)

2
2
=||DJJ*(ZIJ'2)”2 < €27 fllise
(ii) Bound for e, ,:
9Ai /2 i /2
€12~ T 2 Z Z Br B BLI BL/lfflpL’wL’1< ¥, 27 / ¢L'><¢Ll, 21/ ¢L’1>

(A% I L.

A5 ) 2
=9 (A3)2 ff( Z By, B iy, 27 /2¢L'>¢L')
5 LL'
5
< 9C|| flle—

Y27 (B ({Dy 4. fr b)),
&

%

using the Parseval identity. Now, by (2) and (3),

C ,
lex ol < IFINfIE— 2274 L (D, . £ 0
2

B

C ,
< Il I D272 (D4, )’
>

C y
< IIfIIwIIfllfmllfom; Y2725

J

C
< ||fllsollfllﬁmllfllﬁmzf“s.
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Let us also remark that we have in fact proven that

(16) Y27 (B ({Dy 5. fr b)) < ClFIZ FIIZ.27 475,
&

(iii) Bound for e, j:
5

e 5 =9 Y X (Bu)Bu, Bu, [ A, 27 %y ), 27 %)

(A‘Z)2 LL LI,

A, .
=9——s Y <DJ,J* fs 2J1/2¢L’1>:8L’1ff¢/L’1DJJ*( lez)-
(A7) o
Using the Schwarz inequality, we have
5

A5 ) , /2
le; 5l <9 (A3)2 {;21 (Br) (<DJ,J* f ¢L'>) }

([ (2]

Using the Bessel inequality, (15) and then (16), we have
1/2

(Z ( / f¢Lf1DJJ*(ZIf)) ) <|fD,, (L17)], < C2 271 fllZal fl,
L,

1/2
X

C 2 —4dJs
le; 5l < ;||f||s4oc||f”wa”swwHf||52002 :

A.1.3. Bound for e,. As for e; we have to split again S, into subsets
reflecting the position of the two pairs of indices which are equal. There are
18 such subsets, each of them of cardinality A*. Fortunately, again because of
the symmetry of the function G with respect to the two last variables, we
have just to consider four such subsets, as the other ones may be reduced to
one of these. In fact, we have to evaluate

A4

ey1 = —5EG(X,Y,Z)G(T,Y,Z),
(42)
A4

ey, = —5EG(X,Y,Z)G(X,T,Z),
(47)
A4

ey 3= (Ag” sEG(X,Y,Z)G(Y,T, Z),
4

A
ey 4 = EG(X,Y,Z)G(Z,T, X).

(43)°
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(i) Bound for e, ;:

Al
€91 = Y X B BLl(ff¢L lle) (P, 27 %y, ><¢L ,211/2¢L )

(Ai)z LL LI,

Al 2 ) ',
=9 (A3 )2 LY (/wa'¢L’1) Dy ;. 1,2 /2¢L’><DJ,J* f>2h/2¢L'1>’
w) L L

(17) KDy g, F,27 )l <Dy 5 fILN27 2oyl < C277%) fll s,
2
a8 X ([ < X[ = IfET2 < 27171
L'r, L’ 7'

and thus, le, ;| < | fll%-l 52727527+ C /n?.
(i1) Bound for ey 5t

A
€22 = Y X Bu B, [ fontn, [, 27 )y, 27 %)

(A‘Q’)2 LL' LI,
4

(A“Q')2 LZL’ /fBL Buy b b ffDJ 2.(27%y,) Dy (27 %)

- 9m [Jreor| gML,(x)DJ,J*(W’%Lr)(y))Z dxdy.

Applying the Parseval identity and the fact that D; ; is a projector:

C
|e22|<llfllw Z(BL) 27 [(Dy,s.(¢1))" <NFIE—527272 70 e,

(iii) Bound for e, ;:

A
€2,3 = Y X BuB /f¢L¢L ffl/fL ¢L<¢L,2J = X, ,211/2¢L>

(Ai)2 LL' LI,

A
- (A3)2 E /walDJ J (2J /2¢L ffDJJ (f)zh/zd’Ll B /fll’L P, -

Using (17) and the Bessel inequality,
4

ey o <9 c2- "sllfllstIBLIZ (27 ‘ffwmyl
4
<9 C2 "I fllowe T 1B NFDy. . (27 b1l b
4
< n

5C27 7N fll g2 72N F 1l o1 Bl I i Nl
o

3
n
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By the Schwarz inequality,
4

1/2 1/2
02l 2 I T8 ) (Sl 8]
A?) r L

|eg73| <9

n

4

1/2
22 fll el 227 /2||f||m( | f22f’)
L

n

<

Sl —

272N Fll gl Fll 227 W Fllel £l

(iv) Bound for ey 4:

€94 =

Y X BuBy [ A, [ firn v (i, 27 %)y, 27 )

( n)z LL LI,
Al
(A )ZZZBLBL,[NI% J, 21/2¢L fﬂ»{lL JJ(2J1/2¢’L)

L' L

By the Schwarz and Bessel inequalities,

ota T g o
4
(AB”)Q LB [ 21Dy, (27 )"
4

A
5 2 B2 IfII
Ai) T

C
< ||f||§?2"*2‘2"sllf||32w.

A.1.4. Bound for e;. We now have to split S; in six sets, each of them of
cardinality A3. In fact, we just have to evaluate two cases:
3
e; 1 = —E(G(X,Y, Z))?,

(43)

(i) Bound for ey ;:

3

(43)°

¢35 = ———=EG(X,Y,Z)G(Y,X,Z).

T (AS) LL' L%,l'/-fllele(/ﬁpL lle) (P, 27 %y, ><¢L ,211/2¢ )

(A3 EZ(/f¢L¢L)ffDJJ (297%,) Dy, ;1. (27 %y)

L' L

2
< |If||w§22°’*||f||2.
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We used here inequality (18) and the following inequality:
ffDJ,J*(2j,1/2¢L’1)DJ,J*(2j’/2¢L’) < I £1.20" /2 < || fll.27+.

(ii) Bound for ej ,:

9
=T ] fn A 27 by Y, 2 %)
0.2 = (47 LLEL& [ Foni, [ Fon v, [ o v, 27 % )i, 27 %y,

9 , .
= A LZL JFb, [D; 5. (27 %y ) [ D, 5. (27 /%y )b,
By the Schwarz inequality and |ffl,UL/l,/lLr1| < IIfllmfle/tpoll < Ifll., we get
9 , 2
el = gyl T {[Ds.0.25 %))

' L’l

9 . 2
- - X {J27%,,D,.,.( )

L'L,

9 , 2
(@) ||f||w%izflf(DJ,J*(wa/))

9 Ji 2
Azl 2.2 [ (fu)

9 , y
oy Ifl-227 E [r22)
n) J1 J'

<

<

—_~

<

—~~

C
< IIfIImF22J*IIfII§.

Hence, putting together all the previous evaluations, we obtain the following
result.

LEMMA 1. As soon as f is such that ||fl|lsee < M, || fllexe < M, then there
exists a constant C depending on M so that
2 274Js 2J*272Js 22J*
E(T3(J,J*)—f(DJ7J*f)3) sC{ — ot ——— + — }

n n

Ifn <27,

E(T3(J, J.) = [(Ds., f)3)2 < C{ 2:; }

A.2. Estimation of the cross term. Let us evaluate [(D; ; [)’E,f. We
have the a priori control of this integral, as soon as f is in Bj, N BJ, by
Cllf 1125 fll.2727¢ and we are going to investigate the rate of convergence of
an estimator of this quantity:

/(DJ,J* FYE;f=Yay, AZ( B,)’27 ",
k k
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Hence M?(J, J,) is an unbiased estimator of [(D, ; f)?E;f. As previously,
let us estimate its variance

E(M3(J,J,))" = Y EG(X,, X, X, )G(X;, X, X3,).

2
(An) Sx S
(As previously, we omit the indices J,J*, M in G.) We have the same
splitting of S X S as in the previous section into the same four subsets. And
we can decompose this variance into e, + e; + e, + e5, where

2
LEG(X,,, X,y X,)6( X, X X,) = ([(Ds0. 1) B, 1)

€y = (A3)2
And the other e;:
ej (A3 )2 §EG( Xi3)G(Xi’1, Xi’2’ Xl%)
A2.1. Bound for e, = [ A3 /(A}P1B(G(X, Y, 2) = (J(Dy,;, FVE, )
AS , )
w= | oy Y @)
So, by (3) and (4),
C
(19) |e0| < ;2 4Jq(||f” 200”]“” )

A2.2. Bound for e;. Asin the previous section, we have to evaluate three
terms:

() Bound for e, ; = [A} /(A%)’1EG(X,Y, Z)G(X,T,U):
A A 2
€11~ (A3) Jfo(¢Jk) (Z( Br) ) = (A3) 23772 ZaJk(Z( Br) ) .
As previously, we used the support properties of the ¢;. We have, using (2)
and the definition of A,

J. -1
(20) Y (B < ClfI%. Y 2u-Dg i@t < ¢||f|12, 2 J@s+D),
A, J

Using (3) and (4), we obtain
2—4 Js

1Nl 1l e
(ii) Bound for e, , = [ A% /(A2)’1EG(X,Y, Z)G(U,Y,T):

5

A
€1,2 = (A3) 5 g aJklAkZAkIBL Br: ffl//L ‘le

- (jf)z2J§(a”>2ff(§wp)2.

le, 41 <
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As usual, we used here the support properties of the ;. Using (3) and (4)
now, we get

C 2
eyl = ;||f||i§/f(§;ﬁm)

—2Js

C 3 2 C 3 2
;”f”wZZ(BL’)S sV E VA=

E A,

IA

(iii) Bound for e, 3 = [A} /(A3)’]EG(X,Y, Z)G(T, X, U):

5

€1,3 =

2/ Y s, X (B) By, [Fbsin,

(Ai) ™ Ay Ay

5

= An 3J/ZZZZ(BL ( )aJk

(An) kA, A,
5 2
= (A—:)zng/z Xk:%k( ;( BL’)Z) =€

A.2.3. Bound for e,.
(i) Bound for e, ; = [A} /(A3)’]EG(X,Y, Z)G(T,Y, Z):
A4
ey 1= 527 Y agap X (ff% lle)

(A?’) ™ Ay, Ay,

727 (a)' S Z [ %1) ,

using again the support property of the ;. Now using (4), we get

leg ol < C”f”“’ L AE Azk(ff% v )
. Cllfllw %2[(%
) Cllfllw Zf(ﬁh
3 CZJ*IleIIwIIfIb (. (18)].

n
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(i) Bound for e, , = [ A% /(A3 ]EG(X,Y, Z)G(X, T, Z):

4
n

A
- 27 Y. [fo FBu Buy b b
T Ty ,§ / Jk¢Jk1Ak§kl B B v,

4

A 2
= W2J§2J/2aJk/f(AZkBL"/jL’) .

Then, using the same arguments as for e, o,

c2?|fI2 2
leg ol < —5— %f(;kﬁw/fu) <

c2/\IfI2
———27 2 f1%,...
n

(iii) Bound for e, 3 = [A} /(A3 1EG(X,Y, Z)G(Y,T, Z):

A4
ey 3 = —27Y Y ay BLflff‘l’L'¢Jka¢L'¢’L'1

(A‘Qn’)2 Ry Ay, Ay,

4

An
= 2JZ Z Agp BL’12J/2 L'ff¢L'¢L'l

(A% % apa,

A 2
= (A3)22J22J/201kaf(ZBL"!’L') =€39-
n k Ay

(iv) Bound for e, , = [ A} /(A2)*1EG(X,Y, Z)G(Z,T, X):

4

A
€94 = - 2JZ Z .BL'BLflffl/fL'¢Jk1ff¢Jkl/fL'l

(Ai,’;)2 khy Ay, Ay,

4

Aﬂ
=52y Y (BB

(A::’L)2 k Ay, A,

At 52
_ 927 )2

7 ;(Azk(ﬁ ?)

Using (20), we have

2
Z ( Z( :BL')2) < Z Z( BL,)2||f||§mw27J(2s+1)’
B \A, kA,
so we get

—4Js+dJ
2 2
|e2,4| < T”f”socoo”f”s%c
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A.2.4. Bound for e,.
(i) Bound for e; , = [A3 /(A3)’]E(G(X,Y, Z))*:

es 1 = (23 2J2ff¢Jk¢Jk1 (ff% lﬂLl)

Aps Ay,

(A3)2JZ2J/ JkAZA (/flﬁL ‘//Ll) .
Using an earlier bound for e, 4, le; ;| < I £1AC/n®)27+7 <] FlI5.
(ii) Bound for e; , = [ A% /(A3)’1EG(X,Y, Z)G(Y, X, Z):
€3 o = (A3)2JZ by ff%beka(ka%/ﬁﬁL%l

kky Ay, Ay,

2J
(An)z %A}EZA}BBL BL /fl»[fL d’Ll

2
(Toom )
Ay

1
- (47)
Hence,
C
|e3,2| < ?22:7272:]5“]0”2200”]0”00-

Putting together all the previous evaluations, we obtain the following result.

LEMMA 2. As soon as f is such that ||fl|ls0. < M, || fllsxe < M, then there
exists a constant C depending on M so that

272Js 2J* 2J+J*

E(M?’(J,J*)—f(DJ,J*f)ZEJf)ZSC{ Tt

So if n < 27,

, 2 9J+d.,
E(M3(J,J*)—f(DJ’J*f) EJf) gc{ — }

A.3. Estimation of the low-frequency term. As [(E,f)’ = 2//2%, o},

B3(j) is an unbiased estimator of [(E )2, and we are going to evaluate
E(B*(j))* — (J(E;f)?)*. However, as in the previous sections (we omit in G
the indices B, j),

> Y EG(X,, X, X, )G(X;,, X;,, X;.)-

E(B(j)) = ) &
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And now we have to split I X I into four subsets in the following way:

IO = {((il’i2’i3)’(i,1’i,2’i’3))61 X I:{il’iQ’i3}m{i,1’i,2’i’3} = @}’
card I, = C3C?

n~n—-3»

Il = {((il’iz’i3)7(i,11i,2’il3))61><I:card{ilaimi3}m{i€l’i,2’i,3} = 1}’
card I, = nC?_,C?_,,
I, = {((il,iz,i3),(i’1,i’z,ig))el X I:card{i,, iy, i3} N{i}, i%, 15} = 2},

card I, = C2AZ%_,,
IS = {((ll’lz’l3)7(l,11l,2’ll3))61 X I:card{il,ig,i3}ﬂ{i§l,i’2,i’3} = 3}’
card I, = C3.

Thus, we can decompose again the variance in e, + e; + e, + e;, where

! 2
eO = (C3)2 ZEG(Xi17 Xi2> XLG)G(XL,]" Xi/z, Xl'g) — (/(Ejf)s) ,
n) o

and the other e 5

€ = Y EG(X, , Xiy» Xi,)G( Xy, Xy, Xy ).
)= o DEC(E, X, X,)6( )

n J

A3.1. Bound for e, = [C}_3/C3NEG(X,Y, Z2))* — (J(E, ).

% -1 (f(Ejf)3)2 < %Ilfllg.

|€0| =

We used (4)

A.3.2. Bound for e; = [nC2_,C:_;/(C}*1EG(X,Y,Z)G(X,T,U).

nC,_C7_5 . 2
— ——9J . . . .
ST 2% [ Fin (@)
nC2_,C2_, .
= %21221/2%%
(C)) k

C 5
< —Iflls.
n
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A.3.3. Bound for e, = [C2(n — 2)(n — 3)/(C3)*1EG(X,Y, Z)G(T,Y, Z).

. - Ci(n —2)(n - 3) 212([%%1”)2%%3
k

(ciy
2 — _
- (023))(2n Dy Y aj,
" k
c .
<lfli—27.
n
A.3.4. Bound for e; = [1/C31E(G(X,Y, Z))>.
1 2j 5
— 27Y a}2%/? .
[ C,? Xk:ajk < 3 (hallE

Hence, putting together all the previous evaluations, we obtain the following
result.

LEMMA 3. As soon as the density [ belongs to a bounded subset of Ly
(which is implied by the hypothesis f belongs to a bounded subset of B2),
there exists a constant C depending on this bound such that

(21) E(B3(j) - [(Ejf)g')2 < c{% + 2—;}

n

So when n < 27,

n

s s <of2).
So when 27 < n,
BB - [y = (5]
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