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LIKELIHOOD AND LINKAGE: FROM FISHER TO THE FUTURE1
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University of Washington

Genetic epidemiology is almost unique among the sciences in that com-

putation of a likelihood function is the accepted approach to statistical

inference. In the context of genetic linkage analysis, in which genes are

mapped by analysing the dependence in inheritance of different traits, the

use of likelihood dates back to the early work of Fisher and Haldane, and

has seldom been seriously challenged. After introducing the underlying

genetic concepts, this paper reviews the history of the statistics of linkage

analysis, from 1913 to 1980, and its dependence on the development of

likelihood inference.

With the sudden increase in genetic marker data deriving from new

DNA technology, the potential for mapping the genes contributing to com-

plex genetic traits is markedly increased, but the difficulties of likelihood

analysis are also multiplied. With increasing complexity of models and the

desire to make maximum use of available data on individuals not closely

related, the likelihood approach to human linkage analysis faces new com-

putational and methodological challenges. New methods are meeting some

of these challenges; likelihood and linkage seem as closely interwoven as

ever.

1. Introduction.

· · · There is a widespread and urgent demand for competent mathe-

maticians who understand that branch of mathematics known as theoret-

ical statistics, but who are capable also of recognising situations in the

real world to which such mathematics are applicable. [R. A. Fisher: From

a letter to John Wishart, dated October 27, 1949, agreeing to serve on a

Faculty Board Committee to review a proposal for the Cambridge Diploma

in Mathematical Statistics.]

This paper was presented as the R. A. Fisher lecture at the Joint Statistical

Meetings, Toronto, August 1994, and it is therefore appropriate to start with

a quotation from Fisher. Not only does this quotation summarise his view as a

statistical scientist, but it is also particularly appropriate to genetic analysis.

Among all the real-world areas of science in which inference on the basis of a

limited class of probability models is applied, the one where it is most appli-

cable must be genetic linkage analysis. The model is very simple, but using it

in the context of the real-world problem of finding the genes contributing to

human disease susceptibility leads to many statistical challenges.
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I am grateful to the Committee and the Organisers for their invitation to

present the 1994 Fisher Lecture and for giving me the opportunity to talk

about a subject that is central to my own past and future work. Above all I

would like to acknowledge my Ph.D. and postdoctoral research advisors, Dr.

A. W. F. Edwards and Professor L. L. Cavalli-Sforza. As Ph.D. student and

postdoctoral researcher (respectively), each worked in Cambridge and was in-

fluenced by Fisher’s teaching. Their admiration for his work has influenced

my own. From Fisher to the future: it is hard to know where to draw the line,

as research with each of my graduate students has influenced my thinking on

likelihood or linkage or both. However, I would like particularly to acknowl-

edge four of my former Ph.D. students whose work is most directly related to

the content of this paper: Heike Bickeböller (Blossey), Kevin Donnelly, Charles

Geyer and Shili Lin.

2. Foundations.

2.1. The genetic model. Modern genetics started with Mendel (1866), who

postulated his two laws as a probability model. The following list summarises

Mendel’s laws in modern terminology.

1. Everyone has two genes (factors) controlling a given trait, one from the

mother, one from the father.

2. When an individual has an offspring, a copy of a randomly chosen one of

his two genes is copied (segregates) to the offspring,

3. Gene copying is independent of the other parent, independent for each child

and independent for each trait (or locus).

Mendel’s work was rediscovered in 1900, and not long thereafter geneticists

realised that independence of segregations for different traits is not true. In-

stead, there are groups of traits, which are linked; the genes controlling them

tending to be inherited by the child as a group, not independently. Fairly soon

thereafter, geneticists associated this linkage (dependence) with the chromo-

somes, the linear DNA structures that can be seen in a cell nucleus. In the

formation of the offspring chromosome, crossovers occur; these are points at

which copying of the parental DNA switches from one parental chromosome

to the other. For genes at any two given locations on a chromosome, recombi-

nation occurs if there are an odd number of crossover events between them.

Then, at those locations, the offspring receives genes from different parental

chromosomes—that is, deriving from different grandparents. The earliest ge-

netic mapping started, by counting, in Drosophila, the combinations of types

of genes inherited by offspring. Sturtevant (1913) showed the patterns were

best explained by a linear arrangement of genes for different traits and he

made the first gene ordering inference, by methods analogous to those still

used today.

For those not familiar with genetics, Figure 1 shows a simple example,

where estimation is a matter of counting. There are three genetic loci, labelled

A, B and C, each with three corresponding alleles ai, bi and ci, i = 1, 2, 3.
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Fig. 1. Segregation events in a small pedigree, where complete information on genotypes and

grandparental gene origins can be inferred from the data on the types of alleles carried by individ-

uals. There are three genetic loci, A,B,C, each with three corresponding alleles ai, bi, ci (i = 1, 2, 3),

here shown as being on a single chromosome in the order ABC.

Because of the data on the mother’s parents, we know the mother can only

have a1b1c1 on her maternal chromosome and a2b2c2 on her paternal chro-

mosome. The father must have a3b3c3 on each of his two chromosomes and

he passes this combination to each offspring, regardless of which paternal

chromosome provides each offspring allele. From the mother there are four

possibilities; a nonrecombinant offspring gets an intact maternal chromosome

a1b1c1 or a2b2c2, while the other three possibilities consist of the allele at one

locus deriving from a different maternal grandparent than the other two. For

example, offspring maternal chromosome a1b2c2 (or a2b1c1) has alleles at lo-

cus A of different grandparental origin than those at B and C, and if the three

loci are indeed on a single chromosome, in the order ABC, this implies recom-

bination between locus A and locus B. From a large number of offspring of

matings of this type, linkage (dependent segregation) can be tested for, recom-

bination frequencies estimated and loci ordered—this last exercise depending

on the fact that offspring in which the allele at the central locus is of dif-

ferent grandparental origin (e.g., a1b2c1) will have much smaller frequency,

since these can arise only as a result of recombination in both intervals (AB

and BC).

Haldane (1919) extended the mathematical model, defining the distance

along a chromosome as the expected number of crossover events. He related

this additive map distance to recombination frequencies between loci on the

assumption that crossovers occur as a homogeneous Poisson process. (This is

the model of “no interference”; a given crossover event does not affect the prob-

ability distribution of the locations of other crossover events.) This sparked an
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exploration, which still continues, on the relationship between physical dis-

tance (actual DNA length) and map distance (the statistical measure based

on the degree of dependence between genetic loci). However, the early statisti-

cal geneticists were clear that only recombination frequencies, and hence map

distances, could be estimated from segregation data.

Fisher (1922b) used a slightly different relationship between recombina-

tion frequencies and map distance, assuming a crossover precluded any other

crossover in the region of genome he considered. Under this model of “com-

plete interference,” recombination frequencies are themselves additive. With

this simplifying assumption, he used the multinomial distribution of offspring

counts as one of his first examples of maximum likelihood estimation, cit-

ing and drawing on his theoretical work published in the same year [Fisher

(1922a)]. Thus from its earliest days, likelihood and linkage have been tightly

connected.

2.2. Human genetic linkage: the 1930’s. Linkage analysis in human genet-

ics did not start until the 1930’s, with the recognition that the same model

used to analyze counts of offspring in experimental organisms could also be

used to address data in human families—grandparents, parents and children

(Figure 1). Several geneticists and statisticians were involved, but again it was

Fisher and Haldane who furthered the likelihood approach—the approach of

computing the probability of the observed data, under the probability model

[Haldane, (1934); Fisher (1934)].

There are four main areas of discussion that are still active in the area of

practical human genetic linkage analysis: each of these was recognised by the

founders of this area, and particularly by R. A. Fisher.

1. Genetic counselling using observable genetic markers known to be linked

to a locus determining a given genetic disease: Fisher (1934) foresaw the

potential of linked markers for counselling and also foresaw some of the

potential problems.

2. Power of a potential linkage study and assessment of the amount of trait

data required to find a linkage: This was the focus of much of Fisher’s work

in this area [Fisher, (1934, 1935)].

3. Whereas putative linkages are often detected, for complex traits attempted

confirmation by other studies often fails. In many cases, this may be due

to genuine genetic heterogeneities—different genetic causes of apparently

similar phenotypes. The possibility of linkage heterogeneity was noted by

Fisher (1936). In this particular study he noted one family in which the

recombination frequency was apparently different than in other families in

the collection. Fisher analysed the evidence for linkage heterogeneity. He

also cautioned against overinterpretation of the test statistic.

4. When now geneticists speak of finding a gene, they mean the physical DNA

sequence. The relationship between physical and genetic distance now has

practical implications that were irrelevant in the 1930’s. However, the com-

ments of Fisher and Haldane that only recombination patterns and map

distances can be estimated by linkage analysis are no less true now.



LIKELIHOOD AND LINKAGE 453

Thus, although much has altered since the 1930’s, the basic statistical

framework, as developed by J. B. S. Haldane and R. A. Fisher remains. Over

the next 50 years, there were, of course, further developments, and many

contributions were made by many statistical geneticists. These led to better

understanding of how inferences could be drawn [Haldane and Smith (1947);

Morton (1955)], better methods for the computation of likelihoods [Elston and

Stewart (1971)], and better understanding of their properties [Smith (1953)].

Ott (1991) covers many of these developments in his text.

3. Linkage analysis: 1935–1990.

3.1. The likelihood function. First, let us consider in more detail the form

of the likelihood function required for linkage analysis. When we cannot ob-

serve or infer precisely which genes are on which chromosomes in all the

relevant individuals, the likelihood is no longer a single multinomial. Instead,

it is a sum X over all the latent possibilities:

Pθ(Y) =
∑

X

Pθ(Y, X) =
∑

X

Pθ(Y | X)Pθ(X).(1)

Here Y are the observed data and X is everything else. Generally, the data on

an individual depends only on his own genotype, and genes are transmitted

from parents to offspring in accord with the Mendelian segregation proba-

bilities [Mendel (1866)]. Thus the likelihood is most easily considered in the

form

Pθ(Y | X) =
∏

observed

Pθ(Yi | Xi)

Pθ(X) =
∏

founders

Pθ(Xj)
∏

nonfounders

Pθ(Xj | Xmj
,Xfj),

(2)

where Xj now denotes the underlying types of the genes on the two chromo-

somes of individual j, and mj and fj are the parents of j. For data on linked

loci, the probabilities of the combinations of genes in a child, given those in

the parents, depend on the recombination frequencies; the linkage analysis

parameters enter only through the final product of (2).

3.2. The DNA revolution.

... the enormous amount of Statistics at this moment at their disposal

is absolutely useless. Why? Because . . . [they] have received no education

whatever on the point on which all . . . must ultimately be based. We do not

want a neat arithmetical sum. We want to know what we are doing. What

we want first is not . . . an accumulation of facts, but to teach [them] the

uses of facts, “Statistics”, . . . [Florence Nightingale: From a letter to Ben-

jamin Jowett, 1891, concerning the teaching of Statistics at the University

of Oxford, Quinn and Prest (1987).]

Although more genetic markers that could be typed in human individuals

were gradually accumulated, in 1980 the entire biological framework changed

with the advent of very large numbers of DNA markers [Botstein, White,
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Skolnick and Davis (1980)]. These are traits which first have to be mapped

relative to each other and then can be used to map other traits of medical

significance. Since 1980, the various kinds of these DNA markers have prolif-

erated and the number available has exploded; for a view of the current human

linkage map, see Murray et al. (1994). The mass of data creates many statisti-

cal problems, while also of course vastly increasing the potential power to map

the genes contributing to complex traits—assuming that there are genes that

make a significant contribution to the trait in question. Florence Nightingale,

in the preceding quote, was writing about government Public Health statistics

and Members of Parliament in 1891; her comments would apply also to genome

data bases and molecular geneticists in 1991. There is no “neat arithmetical

sum” that will extract a map from the mass of data currently available.

Rather than seeking to estimate recombination rates of perhaps 20%, it is

necessary to order markers between which recombination rates are less than

1%. A marker map with 1% recombination frequencies is a goal of the Human

Genome Project [Murray et al. (1994)]. To analyse these small recombina-

tion frequencies, far more data are required. Now genome scans are done to

search for linkage; thus, we have the problem of multiple dependent tests. The

method of map-specific multipoint linkage analysis is often used. That is, the

marker map is assumed known and a log-likelihood difference (or “location

score”) is computed for each hypothesised location of the trait locus relative to

the hypothesis that no trait locus is linked to this segment of the marker map.

Because, even when the trait gene is in some map interval, there will often

be strong evidence for recombination between the trait locus and an adjacent

marker, the log-likelihood curve for the location of the trait locus will normally

have multiple peaks with sharp decreases at the marker locations (Figure 2).

The interpretation of such likelihood surfaces is not straightforward. Further,

there may be uncertainties about the marker map, which can have a strong

impact on the location log-likelihood curve. Differences in male and female ge-

netic map distances may also have an impact. Moreover, the model of Haldane

(1919), which assumes crossover events occur independently of each other and

hence provides for a simple relationship between map distance and recombi-

nation frequencies, may no longer be adequate.

3.3. Association tests for linkage.

Hypotheses which may be true may be rejected because they have

not predicted observable results which have not occurred. [Jeffreys (1961),

page 385]

Because of difficulties of likelihood computation, trait model uncertainties

and the mass of marker data, often with different markers typed or informa-

tive in different families, a number of researchers moved away from likelihood

analyses of linkage in the 1980’s and instead developed a variety of association

tests for linkage detection. There are two main classes of such tests: those at

the population level and those at the family level. It is not within the scope

of this paper to review the extensive literature on these tests; only sufficient

information will be given to relate the ideas to the overall theme.
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Fig. 2. Nine-point location score for the MODY trait estimated by sequential imputation. [Figure 3

of Irwin, Cox and Kong (1994), reproduced with permission of the authors and the National

Academy of Sciences from a graphics file provided by Mark Irwin.]

Where there is very tight linkage, there will be no recombination within

pedigrees and markers cannot be ordered. However, there will be popula-

tion associations, due to a particular allele arising initially on a particular

chromosomal background and recombination being very slow to break up this

historical association. The earlier ideas of using the estimated magnitudes of

pairwise associations to map loci at larger genetic distances have not proved

useful. Unless recombination frequencies are very small, the residual effect of

history rapidly declines. Moreover, the information in population samples as

to the magnitude of associations depends on allele frequencies at the loci in

question and can also be small.

However, “disequilibrium mapping” can be very useful in ordering the loci

of a tightly linked group, particularly where the trait allele is rare and re-

cent (on an evolutionary time scale). The combinations of marker alleles on

chromosomes which carry a given trait allele provide an indication of the re-

combinations that have occurred over the generations since the trait allele

first arose. Thus, far more segregations (and opportunities for recombination)

are implicitly observed than can be observed in an analysis of marker and

trait segregations in a pedigree. Of interest here is that the first such locus

ordering on the basis of population frequency data was that of Fisher (1947).

Fisher regarded his analysis of the Rhesus blood group system as a prime

example of scientific inference; the final step of his analysis was to infer the

order of the three main loci of the system from the population frequencies of

the eight possible combinations of alleles at the three loci.
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Within a pedigree there are also associations that indicate linkage. Rela-

tives with similar trait values or affected for the same disease are likely to

share genes at loci affecting that trait or disease, these genes being copies of

a single gene in a recent common ancestor. In this case, they will share genes

also at closely linked loci. Hence it is possible to construct a test statistic to

test for gene sharing at marker loci, on the basis of sharing of marker alleles,

and hence to locate genes contributing to a trait. Under the null hypothesis of

no linkage, test statistics have distributions independent of the trait model.

Thus they can provide a useful screening tool. However, not only do these tests

generally lack power, but power is dependent on a trait model. Moreover, in

the context of genome-wide searches for markers linked to genes contributing

to complex traits, even the P-value for the rejection of absence of linkage (the

“hypothesis which may be true, but may be rejected”) needs careful considera-

tion. If there is a gene contributing to the trait, it must be located somewhere

in the genome, but any framework for the interpretation of results must con-

sider not only trait gene location, but trait gene existence. The trait model

cannot be ignored.

In fact, once probabilities under linkage alternatives are computed, we re-

turn to likelihood inference, although possibly on a subset of the available

data. A specific instance is provided by Smith (1953), who considered the ma-

ternal and paternal marker allele similarities in inbred individuals affected

by a rare recessive disease, and hence having this disease allele on both the

maternal and paternal chromosome. At one level, this is an association test

based on the shared marker types on paternal and maternal chromosomes

(“homozygosity mapping”), but also it is a likelihood analysis based on the

marker and trait data on unrelated inbred individuals.

While much is written about the advantages of so-called model-free associ-

ation tests, when a linkage likelihood can be obtained, practitioners want it.

However, the computational methods that could be used before 1980 are no

longer practical for many of the data sets of today.

4. Monte Carlo estimation of linkage likelihoods.

4.1. Importance sampling. Due to the increasing demands of the available

data, there has been much recent effort directed toward improving computa-

tional methods. Some of this effort has been toward exact methods [Cotting-

ham, Idury and Schäffer (1993); Lander and Green (1987)], but also there has

been an explosion of ideas for the use of Monte Carlo estimation methods. We

consider here only Monte Carlo methods for the estimation of likelihoods or lo-

cation scores; there have also been recent advances in simulation methods for

studying the distributional properties of log-likelihoods, conditional on partial

data.

The likelihood (1) is a sum over a huge space of X-values; Monte Carlo

integration is an obvious route, sampling from some probability distribution

h(·) on this space. The simplest form of the likelihood as an expectation dates
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back to Ott (1979):

L(θ) = Pθ(Y) =
∑

X

Pθ(Y, X) =
∑

X

Pθ(Y | X) P(X)

= Eθ(Pθ(Y | X)) = Eθ0

(

Pθ(Y | X)
Pθ(X)

Pθ0
(X)

)

,

(3)

the last equation being due to K. Lange [Ott (1979)]. On large pedigrees or

for multiple loci, sampling from prior distributions Pθ(X) or Pθ0
(X) is ineffec-

tive, since these prior probabilities bear no relation to the observed data Y.

However, the formulation (3) does introduce three key ideas. The first is use

of Monte Carlo integration, the second importance sampling and the third,

estimation of a function of θ by simulation at a single θ0.

For importance sampling, we want the sampling distribution to mimic the

integrand. Since

Pθ(Y, X) = Pθ(X | Y)Pθ(Y) ∝ Pθ(X | Y),

this means we must sample from something close to the conditional distribu-

tion of underlying genotypes (X-values) given the data. Direct Monte Carlo

from exactly this distribution is impossible; if a probability distribution pro-

portional to the integrand were explicitly known, so also would be the value

of the integral, and the Monte Carlo would be unnecessary [Hammersley and

Handscomb (1964)]. However, there are at least two ways to come close to the

required sampling.

4.2. Sequential imputation. One approach is that of sequential imputa-

tion [Kong, Liu and Wong (1994)]. The development for the case of multilocus

linkage likelihoods is given by Irwin, Cox and Kong (1994) and, in brief, is as

follows. Suppose we have data on m genetic loci (say m − 1 markers and a

disease). Let Yl now denote the data for locus l and let Xl denote the under-

lying genotypes at that locus. A realisation X∗
l

is obtained for each locus in

turn from the distribution

Pθ0
(Xl | X

∗
1, . . . ,X∗

l−1,Y1, . . . ,Yl−1,Yl).

Note that this probability can be rewritten as

Pθ0
(Xl,Yl | X

∗
1, . . . ,X∗

l−1
,Y1, . . . ,Yl−1)

Pθ0
(Yl | X

∗
1, . . . ,X∗

l−1
,Y1, . . . ,Yl−1)

.

Hence it is readily shown that the joint simulation distribution for X∗ =

(X∗
1, . . . ,X∗

m) is

P∗(X∗) = Pθ0
(Y, X∗)/wm(X

∗),

where

wm(X
∗) =

m
∏

l=1

Pθ0
(Yl | Y1, . . . ,Yl−1,X∗

1, . . .X∗
l−1).
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Thus, in addition to computing the successive simulation distribution for

each X∗
l
, the predictive probabilities of the observed data Yl conditional on

genotypes (and phenotypes) at preceding loci

Pθ0
(Yl | Y1, . . . ,Yl−1,X∗

1, . . . ,X∗
l−1)

must also be evaluated. The product of these predictive weights is accumu-

lated:

wi =

i
∏

l=1

Pθ0
(Yl | Y1, . . . ,Yl−1,X∗

1, . . . ,X∗
l−1)

to provide finally the denominator wm(X
∗).

Then

EP∗(wm(X
∗)) =

∑

X∗

wm(X
∗)P∗(X∗) = Pθ0

(Y)(4)

and thus a Monte Carlo estimate of L(θ0) = Pθ0
(Y) is given by the mean

value of wm(X
∗), over repeated independent repetitions of the sequential im-

putation process. Repeating the process for different disease locus locations,

one obtains an estimated location log-likelihood curve. Figure 2 shows the

resulting location curve from Irwin, Cox and Kong (1994)—a very typical lo-

cation score curve for the disease locus against a known map of eight mark-

ers at seven distinct locations. There is strong evidence for a gene, although

precise interpretation of such curves is unclear. On this large pedigree exact

computation would be impossible. In some cases, the sequential imputation

computations are also impossible, in particular for complex pedigrees. How-

ever, in many cases this approach will be both feasible and successful.

Very often, one wants to compute conditional probabilities, given the data,

with respect to some particular model Pθ0
(·): Where are the recombinations?

Whom should we sample to obtain most information? Where are the biggest

uncertainties in underlying marker genotypes? How would it affect inferences

to reduce such uncertainty? In principle, such expectations can be readily

estimated, using the sequential imputation probability distribution P∗ and

computed weights wm:

Eθ0
(g(X, Y) | Y) =

∑

X

g(X, Y)Pθ0
(X | Y)(5)

=
∑

X

g(X, Y)P∗(X)wm(X)/Pθ0
(Y)

= EP∗(g(X, Y)wm(X))/Pθ0
(Y).(6)

Equation (4) provides a Monte Carlo estimate of Pθ0
(Y) so that

Eθ0
(g(X, Y) | Y) = EP∗(g(X, Y)wm(X))/EP∗(wm(X)).

However, the numerator and denominator here require separate Monte Carlo

estimates, which are then combined in a ratio estimate.
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4.3. Markov chain Monte Carlo. An alternative approach avoids use of a

ratio estimator. The expectation (5) could be estimated directly if realisations

from Pθ0
(· | Y) were available. Direct simulation is not possible since, again,

this probability distribution is known only up to the unknown normalising fac-

tor Pθ0
(Y), but the realisations can be obtained by Markov chain Monte Carlo

(MCMC). Here is not the place for even a brief review of MCMC. Suffice it to

say that by using the Gibbs sampler, or any of the broad class of Metropolis–

Hastings algorithms [Hastings (1970)], one obtains realisations from a Markov

chain whose equilibrium distribution (the desired distribution) is known only

up to such an unknown normalising factor. They are dependent realisations,

which complicates analysis as compared to the independent realisations of se-

quential imputation. Further, only when effects of the starting configuration

have decayed are the realisations from the desired equilibrium distribution of

the Markov chain. On the other hand, there is no reweighting, no weights to

be computed and no separate estimation of the normalising factor. Whereas

sequential imputation could be regarded as sampling from approximately the

right distribution, MCMC is sampling approximately from the right distribu-

tion.

Of all expectations we could estimate, a key one is the likelihood ratio itself:

L(θ)

L(θ0)
=

Pθ(Y)

Pθ0
(Y)

= Eθ0

(

Pθ(Y, X)

Pθ0
(Y, X)

∣

∣

∣

∣

Y

)

(7)

[Thompson and Guo (1991)]. That is, with observed data Y and latent variables

(genotypes) X, the likelihood ratio is the expected complete-data likelihood

ratio, where genotypes X are sampled conditional on Y. Hence we can estimate

a likelihood ratio function by the average of complete-data likelihood ratios at

realised X-values:

1

N

N
∑

l=1

(

Pθ(Y, X(l))

Pθ0
(Y, X(l))

)

.(8)

Locally (for θ ≈ θ0) the estimate will be “good” in an importance sampling

sense. Further, we have an estimate as a function of θ from realisations at a

single θ0. [Lange and Sobel (1991) also develop a MCMC approach to genetic

linkage location score curves. Their method uses a different space of latent

variables X, a different MCMC algorithm and a different expectation equation

for estimation of the likelihood. Each method has its advantages.]

In practice, more has to be done to obtain a useful method from (7). The

first problem is the sampling at a single θ0. This will be useless if we require

a likelihood over a large range of genetic maps or trait models. Geyer (1991)

provided a solution; without the technical detail, his solution is to sample at

a large number of different θj and combine the estimates in accordance with

the appropriate importance sampling weights. Second, the Gibbs sampler will

not sample effectively the huge space of multilocus genotype configurations
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Fig. 3. Five-point location score for a set of markers obtained by MCMC, with exact values for

comparison. [The figure is due to Lin and Wijsman (1994), computed using the method of Lin

(1995), using marker data from Palmer, Dale, Livingston, Wijsman and Stephens (1994).]

for multiallelic markers on extended pedigrees. However, samplers that up-

date more than one individual’s genotype at a time are hard to implement,

because of the constraints of Mendelian segregation. The marker data impose

additional constraints that make it difficult (or sometimes impossible) for a

single-site updating method to reach all feasible genotypic configurations. For

the particular case of multilocus linkage analysis, the work of Lin [Lin, Thomp-

son and Wijsman (1994); Lin, (1995)] has resolved many of these difficulties.

Figure 3 shows a location score curve obtained by MCMC for a problem for

which exact computation is still feasible (and the exact solution also shown),

but for which MCMC requires 15 times less CPU time [Lin and Wijsman

(1994)]. With an additional marker, exact computation would no longer be

practical.

5. Segregation indicators and genome descent.

5.1. Segregation indicators as latent variables. Another sampling design

for linkage analysis, first considered by Smith (1953) but recently gaining in

popularity, is that of data on a single individual who has two copies of a rare

disease gene. If the trait is sufficiently rare, the posterior probability is high

that these are two copies of a single gene in a recent common ancestor of his

parents. Figure 4 shows a pedigree arising in a recent study of a rare recessive

trait [Nakura et al. (1994)]; any of the three marked founder ancestors could

contribute two copies of a gene to the affected individual. If the individual
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Fig. 4. The complex ancestry of an individual affected with a rare recessive disease. This pedigree

is a part of a study described in Nakura et al. (1994). Any of the three founder individuals shaded

gray can contribute two copies of a single gene to the final affected individual (the black diamond).

has two copies of a single gene at the disease locus, he likely does so also at

nearby loci—patches of homozygosity are evidence for linkage. Again we want

to know the likelihood—the probability of observed data under alternative hy-

potheses. On a complex pedigree, such as that of Figure 4, exact computation

methods fail with more than a very few loci. The Monte Carlo methods of

the previous section are also not satisfactory. The sequential imputation com-

putations are nontrivial on a pedigree of this complexity and the alternative

multilocus genotypic patterns on all the unobserved ancestors are not easy to

sample with a MCMC method.

From the earliest linkage analyses, perhaps even dating from Mendel’s

(1866) latent “factors,” there has been a tendency to consider genotypes as the

underlying latent variables. The form of the likelihood (1) and (2) expresses

this view. However, there is a more basic specification of gene descent. The

paths of descent of genes are determined by a specification, for every point

along a transmitted chromosome, of whether the gene derives from the par-

ent’s paternal or maternal chromosome [Donnelly (1983)]. Thus we can define



462 E. A. THOMPSON

segregation indicators:

Sij =

{

1

0

}

if segregation i at locus j is parent’s

{

paternal

maternal

}

gene

The space of segregation indicators, although large, is very much smaller

than the space of individual multilocus genotypes. The segregation indicators

in different segregations are independent. If absence of interference is as-

sumed, the probability of a single Sij conditional on the remaining indicators

depends only on the values for the same segregation for the two adjacent loci.

Further, where only one, or a very few, individuals are observed on a pedi-

gree, the probability of observed data conditional on specified values of the

segregation indicators can be computed very rapidly. It is therefore possible

to implement an effective MCMC method for sampling the S = {Sij} condi-

tional on observed data for this type of linkage analysis design, and hence to

obtain Monte Carlo estimates of likelihood ratios for linkage, analogous to (6)

and (7), with S replacing X. Just as for the earlier discussion, sampling from

the conditional distribution provides effective Monte Carlo estimates, whereas

sampling from a prior distribution often cannot. Details are given elsewhere

[Thompson (1994a, b)].

5.2. Genome sharing and Fisher’s theory of junctions. In the 1980’s, with

the increasing amounts of genetic marker data, association tests for the de-

tection of linkage gained in popularity. In Section 3.3 we found that, first, to

interpret results of such tests one needs the probabilities of data under alter-

native hypotheses (the likelihood function) and, second, that Fisher (1947) had

considered the information for mapping available in population associations

at tightly linked loci.

Now history is repeating itself. One current enthusiasm in genetic map-

ping is genome matching [Nelson, McCusker, Sander, Kee, Modrish and Brown

(1993)], in which the genomes of individuals having particular characteristics

of interest are compared. However, to interpret the results of such a com-

parison a likelihood is still required, and conditional probabilities of genome

sharing, given observed marker data, are not easily computed. The case of

shared genome between the two chromosomes of an individual having two

copies of a rare allele, considered in the preceding text, is the simplest pos-

sible case. Donnelly (1983) provides a framework for such computations in

the continuous genome setting and considered pairs of relatives connected by

a single descent path and descent from a parent to a set of offspring. This

framework has been used by Blossey (1993) to address more complex ques-

tions of genome descent. Figure 5 shows the complexity that arises as soon

as more than one descent path or more than one generation of segregations

is considered, even with the simplest model of recombinations occurring as a

Poisson process along a chromosome. The patterns of grandparental genome

among sibs are constrained by the genome that the parent receives from the

grandparent.
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Fig. 5. Segregation of chromosome seqments in a three-generation pedigree, showing the depen-

dence among offspring resulting from their shared history in the genome received by their parent

from her parents. [Figure from Blossey (1993); reproduced from a graphics file provided by Heike

Bickeböller (Blossey)].

Which finally brings us back to Fisher (1949), 45 years ago. In that year

Fisher published his small monograph on the Theory of Inbreeding, intended,

according to the Preface, as “a practical handbook for animal breeders.” While

it is doubtful it served this purpose, the book contains much interesting ma-

terial on gene descent and a chapter in which the descent of genome is con-

sidered. Fisher performed (by hand, using tables of random digits) a Monte

Carlo simulation of the descent patterns of chromosome segments in a sib-

mating system. In fact, he did a conditional simulation, conditioning on con-

tinuing variation at specified points in the genome. Now that we have fast

workstations, simulation conditional on data, and large scale Monte Carlo

likelihood analyses become a practical proposition, even for the more complex

problems resulting from a dense genetic map that provides information on

shared genome.
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