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OPTIMAL BLOCKED MAIN EFFECTS PLANS
WITH NESTED ROWS AND COLUMNS

AND RELATED DESIGNS

BY J. P. MORGAN1 AND NIZAM UDDIN2

Old Dominion University and Tennessee Technological University

Optimal design is studied for factorial experiments in the nested row
and column setting. The approach is analogous to that of orthogonal Latin
squares: main effects plans are found by the superimposition of one nested
row and column design upon another. Conditions are stated for statistical
orthogonality of the superimposed components, resulting in orthogonal
main effects plans, and a number of constructions are given. Orthogonal
collections of sets of Latin squares are introduced. All of the constructed
designs are also optimal main effects plans for the row]column and the
unstructured block design settings. Further applications are as optimal
multidimensional incomplete block designs and as optimal designs for
multistage experimentation.

1. Introduction. In the nested row and column setting, v treatments
are to be compared in b blocks, each block being a cross of p rows and q
columns. This setting has recently received considerable attention in the
literature, including the first studies of optimality under the bottom-stratum
analysis. Sufficient conditions for optimality and corresponding constructions

Ž .may be found in the papers of Bagchi, Mukhopadhyay and Sinha 1990 ,
Ž . Ž . Ž .Chang and Notz 1990, 1994 , Gupta 1992 and Morgan and Uddin 1993a .

The strongest of these optimal designs, in the sense of being optimal with
respect to the widest class of criteria, are the balanced nested row and

Ž .column designs, or BNRC’s. A BNRC is a design for which i the bq columns
w Ž .x Ž .are a balanced block design Kiefer 1975 with block size p and ii within

wany given block, each row is the same multiset of treatments if r is theji l
Ž .number of times treatment j occurs in row l of block i, statement ii says

xexactly that r is constant in l for fixed i and j . The BNRC’s are varianceji l
Žbalanced for the within-rows-and-columns analysis they have completely

.symmetric information matrices , hence their name. However, they are not
unique in this way, for there are large classes of variance balanced nested
row and column designs which are not BNRC’s, such as the more aptly
named balanced incomplete block designs with nested rows and columns
w Ž .xSingh and Dey 1979 . We will retain the BNRC acronym, while suggesting
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that these designs be named bottom-stratum universally optimal nested row
and column designs, a clearer identification of their properties.

The BNRC’s for b s 1 are the well-known regular generalized Youden
Ž . Ž .designs GYD’s of Kiefer 1975 , which include Latin squares and Youden

squares. Thus are BNRC’s a generalization of this widely studied and applied
Ž .class of designs to the b ) 1 setting. Morgan and Uddin 1993a point out

that the blocks of any BNRC may be combined into a GYD, further demon-
strating the close ties between these classes. In this paper we will exploit
those ties to find optimal main effects plans for the nested row and column
setting.

The simplest case in terms of both analysis and combinatorics is that of
Ž .Latin squares b s 1, p s q s v . One of the many uses of a pair of orthogo-

nal Latin squares of order v is as an optimal main effects plan for the v = v
factorial in the v = v row]column setting. An immediate extension is that a
set of t mutually orthogonal Latin squares is an optimal main effects plan for
the v t factorial in the same setting. For b s 1, and p and q each multiples of
v, the relevant designs are the mutually orthogonal F-squares with row and
column replication counts constant over treatments, F-squares of this type
being intermediate in the generalization sequence from Latin squares to

ŽBNRC’s. For the asymmetrical case number of treatments not the same in
.each square , orthogonal F-squares with variable numbers of symbols have

w Ž .been studied see Denes and Keedwell 1991 for an overview of results on´
xLatin squares and F-squares . For each of these classes of designs, the

orthogonality is a simple combinatorial property: imposition of a square on an
orthogonal mate results in each symbol of the first square being imposed on
each symbol of the second the same number of times.

There are of course other uses for these orthogonal sets of row]column
designs. In terms of Latin squares, t pairwise orthogonal squares define a
multidimensional incomplete block designs with s-way heterogeneity for the

tys w Ž .xv factorial, 0 F s F t y 1 e.g., Mukhopadhyay and Mukhopadhyay 1984 .
They are also used for sequential experimentation in which distinct, nonin-
teracting sets of v treatments each are used on the same v = v array of plots
at distinct points in time, what has been called multistage experimentation
w Ž . Ž .e.g., Hoblyn, Pearce and Freeman 1954 , Preece 1976 , Mandeli and Fed-

Ž . Ž .erer 1984 , and Morgan and Uddin 1993b ; the Preece paper contains many
xrelevant older references . Both of these applications are covered by the

model, analysis and designs given here, but for simplicity of exposition we
will maintain the single terminology of ‘‘main effects plans,’’ referring to
other applications only when there is a relevant point to be made. In this
regard, see especially Section 3.3.

Analogous to sets of mutually orthogonal Latin squares and F-squares, we
here seek sets of mutually orthogonal BNRC’s to use as main effects plans in

Ž .nested rows and columns. The definition of the latter Section 2 can be made
in terms of counts from the superimposition of one BNRC upon another, but
as will be seen generally involves more than just the simple combinatorial
orthogonality of Latin squares and F-squares, owing to symbols not possess-
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ing combinatorial orthogonality with respect to the blocking factors. The
conditions fundamentally involve those of orthogonal sets of BIBD’s, which
are also discussed in Section 2. In Section 3, construction of the new designs
using recursive, permutation, and difference techniques are given. Section 4
introduces the notion of orthogonal collections of sets of Latin squares, and
such collections are constructed for prime power numbers of treatments,
embedding the classical sets of mutually orthogonal Latin squares due to

Ž . Ž .Bose 1938 and Stevens 1939 .
When there is need to refer to specific design parameters, the notation will

Ž .be as follows: BIBD v, b, k for a balanced incomplete block design for v
Ž . Ž .treatments in b blocks of size k; YS v, k and GYD v, p, q for k = v Youden

Ž .squares and p = q generalized Youden designs; and BNRC v, b, p, q for
bottom-stratum universally optimal nested row and column designs with b
blocks of size p = q. A consequence of the convention, to be maintained

Ž .throughout this paper, that the column rather than the row component
design of a BNRC be a balanced block design is p F q.

2. Orthogonality, optimality and BIBD’s. Again, the nested row and
column setting consists of n s bpq experimental units arranged in b sepa-
rate p = q arrays. Placing v treatments on these units, one treatment per
unit, the additive linear model is

1 Y s m1 q At q Z b q Z r q Z g q «Ž . 1 2 3

with, for plots ordered rowwise by block, Z s I m 1 , Z s I m 1 and1 b p q 2 b p q
Z s I m 1 m I the plot-block, plot-row and plot-column incidence matri-3 b p q

Ž . Ž .ces; A the n = v plot-treatment incidence matrix; t v = 1 , b b = 1 , r
Ž . Ž .bp = 1 and g bq = 1 the vectors of treatment, block, row and column

Ž .effects; and « n = 1 a random vector of mean zero, uncorrelated, equivari-
able error terms.

For a factorial treatment structure the treatment set V decomposes as
< <V s V = V = ??? = V , V being the set of levels of factor i, V s v and1 2 t i i i

v s P t v , each treatment being a combination of one level of each factor. Ais1 i
main effects model says that the factor effects are additive, and thus At s
Ýt A t , where now A is n = v , t is v = 1 and A 1 s 1 . Eliminatingis1 i i i i i i i v ni

block, row, and column effects, the information matrix for estimation of
Ž X X X.Xt s t , t , . . . , t in the within-rows-and-columns stratum is the partitioned1 2 t

Ž .Xmatrix C s C , wherei i

1 1 1
X X X X

X X2 C s A I y Z Z y Z Z q Z Z AŽ . i i i 2 2 3 3 1 1 iq p pq

w Ž .xMorgan and Uddin 1993b .
Ž t . Ž t .X X X XWrite D for the Ý v y v = Ý v y v matrix found by deletingi1 i s1 i i i s1 i i

the v rows and columns from C which contain C . Write D for thei i i i2
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Ž t .X XÝ v y v = v matrix composed of the v columns of C containing C buti s1 i i i i i i
with C deleted. Then the information matrix for the estimation of t alone isi i i

3 CU s C y DX DyD .Ž . i i i i i2 i1 i2

Ž .As in Cheng 1980 , a design is said to be universally optimal for estimating
t t Ž U .main effects in a P v factorial if it minimizes Ý F C for all functionsis1 i is1 i i i

F with the following characteristics:i

1. F is convex;i
Ž .2. F aC is nondecreasing in scalar a G 0;i

3. F is invariant under simultaneous row and column permutations of CU.i i i

Sufficient for this is that each CU is completely symmetric of maximum trace.i i
Ž U . Ž .Nonnegative definiteness of C implies tr C F tr C . So sufficient condi-i i i i

tions for an optimal main effects plan in nested rows and columns are

4 C is completely symmetric of maximum trace for all iŽ . i i

and

5 C X s 0 for all i / iX .Ž . i i

Ž .Condition 4 says that the nested row and column design formed by just the
Ž .levels of factor i is a BNRC. Condition 5 , which makes D s 0, is thei2

Ž .orthogonality condition. When 5 holds, main effects contrasts for factors i$ $
X X XŽ .Xand i are orthogonally estimated, that is, cov l t , mt s 0, an immediatei i

consequence of Cq being a variance]covariance matrix for t . To state condi-ˆ
Ž .tion 5 in terms of pairwise concurrence counts, define the following:

l X
P iiX

s AX A X X , the number of plots on which j g VŽ . j jj j i i i

and jX g V X concur;i

l X
BiiX

s AX Z ZX A X X , the number of pairs j g V , jX g V X ,Ž . j jj j i 1 1 i i i

occurring in blocks;

l X
R iiX

s AX Z ZX A X X , the number of pairs j g V , jX g V X ,Ž . j jj j i 2 2 i i i

occurring in rows;

l X
G iiX

s AX Z ZX A X X , the number of pairs j g V , jX g V X ,Ž . j jj j i 3 3 i i i

occurring in columns.

Then C X s 0 if and only ifi i

1 1 1X X X XP ii R ii G ii B ii
X X X X6 l y l y l q l s 0,Ž . j j j j j j j jq p pq

X Ž . Ž .for all j, j . However, conditions 4 and 5 are not unrelated.
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THEOREM 2.1. If the designs d and d X formed by levels of factors i and iX
i i

are each BNRC’s, then C X s 0 if and only ifi i

1X XP ii G ii
X X7 l y l s 0,Ž . j j j jp

for all j, jX.

PROOF. Let d and d be any two BNRC’s with common b, p and q.1 2
Suppose the superimposition of d on d results in j g V and jX g V1 2 1 2

Ž .occurring in s common blocks. Let r , . . . , r be the constant within blocksj1 js
row counts for j in those s blocks, and let r X , . . . , r X be the same counts forj 1 j s
jX. Then

s s
R12 B12 2

X X X Xl s p r r and l s p r r .Ý Ýj j jl j l j j jl j l
ls1 ls1

Ž . Ž .Substituting these in 6 gives 7 . I

This is suggested in the following definition.

Ž .DEFINITION. Let d be a BNRC v , b, p, q , i s 1, . . . , t. Then d , . . . , di i 1 t
are said to be a set of mutually orthogonal BNRC’s if l X

P iiX

y l X
G iiX

rp s 0 forj j j j
all j g V , jX g V X , i / iX s 1, 2, . . . , t.i i

Ž .The orthogonality condition 7 says that, for each occurrence of levels of
two different factors on the same plot, there must be p occurrences of those

Ž .two levels in the same column one of which is the occurrence on a plot . It
can be shown that this is exactly the condition for mutual orthogonality of the

Ž .BIBD’s or BBD’s given by the columns of the BNRC’s; that is, if rows and
blocks are removed from each BNRC to leave columns as an unstructured

Ž .block design, then 7 says that superimposition of these designs produces a
blocked main effects plan. Hence the study of sets of mutually orthogonal
BIBD’s will be of primary importance to the current endeavor. Curiously, this
is a topic which has not received much attention in the literature. What work
is available mainly appears under the general headings mentioned in Section
1 as mathematically equivalent formulations of the main effects problem:
‘‘designs for two sets of treatments’’ or ‘‘designs for two successive experi-
ments,’’ and ‘‘multidimensional incomplete block designs.’’ In the current
terminology, the former would be superimpositions of two block designs for
the v = v factorial, although the papers in this area include many designs1 2

Ž . w Ž .which are not BIBD’s andror do not satisfy 7 e.g., Street 1981 ; Preece
Ž . x1976 and many papers referenced there . Indeed, the reader should be
warned that many of these papers focus solely on the individual counts l X

P iiX

,j j
R iiX G iiX BiiX Ž . Ž .X X Xl , l and l arising from 2 , although 3 makes it clear that balanc-j j j j j j

ing or partially balancing those counts alone does not assure a statistically
good design. Here we briefly review known series of these designs, primarily
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by giving new results that include them as special cases in the sense of
producing designs with the same parameters.

2.1. Orthogonal BIBD’s: the method of differences. Several authors have
used difference techniques over the finite fields to construct pairs of mutually
orthogonal BIBD’s. We generalize some of these constructions in the lemmas
that follow. In the finite field GF , x will be used to denote a primitivev
element.

LEMMA 2.2. Let v s mf q 1 be an odd prime power with m s tg for some
Ž jy1.Ž 0 m Ž fy1.m.Xt G 2. Let k s hf for h F g. Write C s x x , x , . . . , x for thej

column of powers of x m multiplied by x Ž jy1., and

C1

C2i Ž iy1. g Ž ly1.b s x x ..l ..� 0
Ch

i i i Ž .Then b , b , . . . , b are initial blocks for a BIBD v, mv, k d , and d , . . . , d1 2 m i 1 t
are mutually orthogonal.

PROOF. The orthogonality will be demonstrated. It must be shown that in
the superimposed initial blocks, each difference occurs k times as often in
blocks as on plots. Superimposing b i on b iX

, the plot differences are, forl l
j s 1, 2, . . . , h, the list

x ly1 x Ž iy1. gC y x Ž iXy1 . gC s x ly1 x Ž iy1. g x jy1 C y x Ž iXyi . gCŽ .Ž .j j 1 1

s x ly1 x Ž iy1. g x jy1 1 y x Ž iXyi . g C ,Ž . 1

which for l s 1, . . . , m give each nonzero in GF exactly once. Changingv
j s 1, 2, . . . , h, the plot differences are each nonzero h times.

To find the block differences, subtract each member of x Ž iXy1 . gC X from eachj
Ž iy1. g X Ž X . X

Xof x C for j, j s 1, 2, . . . , h. With w s i y i g q j y j, for fixed j andj j j
jX this is x Ž iy1. gqŽ jy1. times the differences of the members of xw j jX C from1
those of C , which are the list1

1 y xw j jX , 1 y xw j jXqm , . . . , 1 y xw j jXqŽ fy1.m m CŽ . 1

Ž < < . i iX

Xnote that 0 - w - m . Hence, for fixed l, the block differences b minus bj j l l
are

x Ž ly1.x Ž iy1. gqŽ jy1. 1 y xw j jX , 1 y xw j jXqm , . . . , 1 y xw j jXqŽ fy1.m m C .Ž . 1

Letting l s 1, 2, . . . , m for fixed j, jX, this is f copies of the nonzeros of GF ,v
so also varying j, jX gives fh2 s kh copies of the nonzeros, and the orthogo-
nality is established. I
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COROLLARY 2.3. Let v s mf q 1 be an odd prime power. Then there are m
Ž .mutually orthogonal BIBD v, mv, f ’s.

COROLLARY 2.4. Let v s mf q 1 be a prime power with m even. Then there
Ž .is a pair of orthogonal BIBD v, mv, hf ’s for each h F mr2.

Corollary 2.3 is the case g s 1 in Lemma 2.2. The same result for a pair of
wŽ . xorthogonal BIBD’s can be found in Causey 1968 , Section 3 , who used them

wŽ .to construct four-dimensional incomplete block designs. Street 1981 , Theo-
Ž .xrem 5 a also has this result for a pair of BIBD’s, but restricted to even m.

Corollary 2.4 is g s mr2 with even m in Lemma 2.2. This can be found in
wŽ . Ž .xStreet 1981 , Theorem 4 a with the restriction that f be odd.

LEMMA 2.5. Let v s mf q 1 be an odd prime power. Let k s hf q 1 for
Ž jy1.Ž 0 m Ž fy1.m.Xh F m. Write C s x x , x , . . . , x andj

0
C1

i Ž iy1.m Ž ly1. C2b s x x .l ...� 0
Ch

i i i Ž .Then b , b , . . . , b are initial blocks for a BIBD v, mv, k d , and d , . . . , d1 2 m i 1 f
are mutually orthogonal.

PROOF. Again the orthogonality will be demonstrated. Relative to Lemma
2.2, the initial blocks have been modified by the addition of a 0 and by
changing the multiplier x Ž iy1. g to x Ž iy1.m. One effect of the latter is that b iX

isl
i Ža permutation of b with only the 0 fixed in Lemma 2.2 these two blocks arel

.disjoint sets . So the plot differences are m zeros and, as in the proof of
Lemma 2.2,

x ly1 x Ž iy1.m x jy1 1 y x Ž iyiX .m C for l s 1, . . . , m and j s 1, . . . , h ,Ž . 1

which are the nonzeros h times each.
Also as in the proof of Lemma 2.2, the block differences for b i relative tol

b iX

, if 0 is excluded from each block, arel

x Ž ly1.x Ž iy1.mqŽ jy1. 1 y xw j jX , 1 y xw j jXqm , . . . , 1 y xw j jXqŽ fy1.m m C ,Ž . 1

for l s 1, . . . , m and j, jX s 1, . . . , h, which are

1 y xw j jX , 1 y xw j jXqm , . . . , 1 y xw j jXqŽ fy1.m m GF y 0 , j, jX s 1, . . . , h ,Ž . Ž .v

Ž X . Ž X . X
Xwhere now w s i y i m q j y j . When j s j the listj j

1 y xw j jX , 1 y xw j jXqm , . . . , 1 y xw j jXqŽ fy1.mŽ .
contains exactly one zero, and when j / jX it contains none. So these differ-

Ž . Ž . Ž . Ž . Ž .ences are h v y 1 s m k y 1 zeros, and h h y 1 f q h f y 1 s h hf y 1
of each nonzero.
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Placing the 0 in each block then also gives m additional zeros and, for
� ly1 Ž iXy1 .m ly1 Ž iy1.m 4j s 1, . . . , h and l s 1, . . . , m, the differences yx x C , x x C ,j j

which are 2h additional copies of the nonzeros. Hence the block differences
Ž . Ž .are m k y 1 q m s mk zeros, and h hf y 1 q 2h s hk of each nonzero,

these counts being k times those for the plot differences. I

Lemma 2.6 will cover a subset of the v of Lemma 2.5 while for some values
of f and h allowing a larger set of BIBD’s to be constructed. In Lemma 2.6, a

Ž .special combinatorial array will be needed. The p = t array A p, t, s on p
Ž .symbols is said to have s-pair balance if i each column contains each symbol

Ž .exactly once and ii each pair of columns has exactly s like pairs in rows. The
s Ž .array is said to have symmetric s-pair balance, and will be written A p, t, s ,

Ž . Ž .if it further satisfies iii if the pair a , b is formed by the rows of a given two
Ž . Ž .columns, so is the pair b, a . Morgan and Uddin 1993b have shown that an

s Ž . w wA p, t, 0 exists if and only if t F 2 , where p s 2 e for some odd e.

LEMMA 2.6. Let v s 2mf q 1 be a prime power for which f is odd. Write
k s hf q 1 for some even h F m, and suppose h s 2we for some odd e and

ŽŽ .. s Ž w .w G 1. Let A s a be an A h, 2 , 0 on the symbols 0, 1, . . . , h y 1. Leti j

0
Ca1 i

Ci ab s 2 i1 ...� 0
Cahi

i ly1 i i i i Ž .and b s x b . Then b , b , . . . , b are initial blocks for a BIBD v, mv, kl 1 1 2 m
d , and d , . . . , d w are mutually orthogonal.i 1 2

PROOF. For each i, b i contains x ly1 times C , . . . , C in some order.l 0 hy1
That d is thus a BIBD and that the block differences when superimposing b i

i l
on b iX

for l s 1, . . . , m are each nonzero element of GF with frequencyl v
Ž . Ž . Ž .h hf q 1 r2, and 0 m hf q 1 times, follows from Theorem 5 b of Street

Ž .1981 . It only need be shown that the plot differences are each nonzero with
frequency hr2, and m copies of 0. For fixed l, the plot differences b i y b iX

arel l
zero and

x ly1 C y C s x ly1 x a jiya jiX C , j s 1, 2, . . . , h.Ž .Xa a 0ji ji

By the symmetry property of A, these are 0 and "x ly1 x a jiya jiX C for hr2 of0
the values of j. As l s 1, . . . , m, "x ly1C generates one copy of the nonzeros0
of GF , so b i y b iX

gives hr2 copies of the nonzeros and m copies of 0. Iv l l

Ž . Ž .Lemma 2.6 extends Street’s 1981 Theorem 3 b to more than two orthogo-
nal BIBD’s. Other than this, we know of no general series of designs that

Ž .overlaps with Lemmas 2.5 and 2.6. Street 1981 gives two additional series of
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Ž .pairs of orthogonal BIBD’s that are not extended here. Her Theorem 2 a is
for two different numbers of symbols: v s 4s q 3 s v y 1, b s 2v , k s1 2 1
Ž . Ž .v q 1 r2 with v a prime power. In her Theorem 4 c , v s 2mf q 2, b s1 1

Ž .2m v y 1 and k s mf q 1, where f is odd and 2mf q 1 is a prime power.
Ž .Other orthogonal pairs for small v have been tabulated by Preece 1966a .

2.2. Orthogonal BIBD’s from transitive arrays. A transitive array of
Ž .strength 2, TA v, b, k , is a k = b array on v symbols with the property that

the columns of any two rows give every ordered pair of distinct symbols with
w Ž .xequal frequency. If that frequency is 1 implying b s v v y 1 , the TA is

equivalent to a set of k y 2 mutually orthogonal Latin squares with a
common transversal. Transitive arrays played an integral role in Bose,

Ž .Parker and Shrikhande’s 1960 proof of the falsity of Euler’s conjecture. See
wŽ . xDenes and Keedwell 1991 , Chapter 2 for recent results on transversals´

and Latin squares.

Ž .LEMMA 2.7. Existence of the TA v, b, tk implies the existence of t mutu-
Ž .ally orthogonal BIBD v, b, k ’s.

PROOF. Use consecutive sets of k rows to create t nonoverlapping subar-
rays from the TA. The columns of these subarrays are the required design. I

Ž Ž . .For v a prime power there is always a TA v, v v y 1 , v : use the v y 1
lŽ 0 1 vy2 .Xinitial columns x 0, x , x , . . . , x , l s 0, 1, . . . , v y 1.

2.3. Orthogonal BIBD’s from SOLS’s. A self-orthogonal idempotent Latin
Ž .square SOLS L is a Latin square with diagonal transversal which is

Ž .orthogonal to its own transpose. Brayton, Coppersmith and Hoffman 1974
have shown that there is a SOLS for every order v except 2, 3 and 6.

LEMMA 2.8. Existence of a SOLS of order v implies the existence of a pair
Ž Ž . .of mutually orthogonal BIBD v, v v y 1 r2, 2 ’s.

ŽŽ ..PROOF. Let L s L be a SOLS and assume that L s i for each i. Thei j i i
Li jiblocks of the design d are and the corresponding blocks of d are ,1 2ž /j ž /Lji

Ž .1 F i - j F v. Verification of 7 is routine. I

For v not covered by the lemma, orthogonal pairs with block size 2 are
given in Table 1. These designs illustrate that the plot incidence structure
AX A need not be of the form xI q y11X, as was the case for all of the designs1 2
in Lemmas 2.2 and 2.5]2.8.

3. Orthogonal sets of BNRC’s.

3.1. Recursive and related constructions. Bagchi, Mukhopadhyay and
Ž . Ž . Ž .Sinha 1990 , Chang and Notz 1990, 1994 , Gupta 1992 and Morgan and
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TABLE 1
Orthogonal BIBD’s with k s 2

v s 2 v s 3

1 1 1 3 2 1 3 2
2 2 2 1 3 2 1 3

1 2 1 2 3 2 3 1
2 1 2 3 1 1 2 3

v s 6

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5
2 2 3 3 4 4 5 5 6 6 3 3 4 4 5 5 6 6 4 4 5 5 6 6 5 5 6 6 6 6

1 2 1 3 1 4 1 5 1 6 3 4 3 5 3 6 4 5 4 6 5 6 2 3 2 4 2 5 2 6
2 1 3 1 4 1 5 1 6 1 4 3 5 3 6 3 5 4 6 4 6 5 3 2 4 2 5 2 6 2

Ž .Uddin 1993a provide a variety of methods for constructing BNRC’s. Cer-
tainly a pragmatic first approach to constructing orthogonal sets of these
designs is to investigate known methods for single BNRC’s for their adapt-
ability to the problem at hand. The first of these is a very useful basic
compositional result.

THEOREM 3.1. If there exists a set of t mutually orthogonal
Ž .BIBD v, b , k ’s, and a BNRC for k treatments in b blocks of p rows and q1 2

Žcolumns, then there exists a set of t mutually orthogonal BNRC v, b s
.b b , p, q ’s.1 2

The proof is simple: constructing the BNRC for k treatments for each block
Ž .of one of the BIBD’s produces one of the BNRC v, b b , p, q ’s. Compare1 2

wŽ . xBagchi, Mukhopadhyay and Sinha 1990 , Theorem 3.2.1 , Chang and Notz
wŽ . x wŽ . x1990 , Theorem 3.1 and Morgan and Uddin 1993a , Theorem 2 . Applying

Žthis to Lemma 2.8 and Table 1 using the simplest BNRC a 2 = 2 Latin
.square yields the following corollary.

Ž Ž . .COROLLARY 3.2. There is a pair of orthogonal BNRC v, v v y 1 r2, 2, 2 ’s
Ž Ž . .for every v / 2, 3, 6 and a pair of orthogonal BNRC v, v v y 1 , 2, 2 ’s for

every v.

ŽThe same techniques can be applied for the 2 = 3 and 3 = 3 cases use a
.Youden square and a Latin square for three treatments if one can construct

the orthogonal BIBD’s with k s 3. Alternatively, a simple modification of
Theorem 3.1 requires the orthogonality to hold for the starting BNRC rather
than for the BIBD.

Ž .THEOREM 3.3. If there exist a BIBD v, b , k and a set of t mutually1
orthogonal BNRC’s for k treatments in b blocks of p rows and q columns,2

Ž .then there exists a set of t mutually orthogonal BNRC v, b s b b , p, q ’s.1 2
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Ž .COROLLARY 3.4. There is a pair of orthogonal BNRC v, b, 3, 3 ’s for every
v G 3, where

¡v v y 1Ž .
, if v ' 1 or 3 mod 6 ,Ž .

6
v v y 1Ž .

, if v ' 0 or 4 mod 6 ,Ž .~b s 3
v v y 1Ž .

, if v ' 5 mod 6 ,Ž .
2¢v v y 1 , if v ' 2 mod 6 .Ž . Ž .

Corollary 3.4 takes advantage of the fact that for k s 3 the necessary
conditions for existence of a BIBD are also sufficient, and combines those
designs with a pair of orthogonal Latin squares of side 3. The corresponding
result for 2 = 3’s is not so clean, however, for there is no orthogonal pair of

Ž .YS 3, 2 ’s. In fact, a fairly broad non-existence result can be established.

Ž .THEOREM 3.5. There is no orthogonal pair of BIBD v, v, k ’s, and hence
Ž .no orthogonal pair of YS v, k ’s, for any v.

Ž .PROOF. Let d and d be BIBD v, v, k ’s with common replication r s k,1 2
and suppose they are orthogonal. Imposing d on d , one may assume that1 2
lP12 s 1, for l X

P12 ) 0 for some j, jX, and lP12 ) 1 requires lG12 s klP12 ) k11 j j 11 11 11
for orthogonality, contradicting r s k. Hence lP12 s 1, lG12 s k, and treat-11 11
ment 1 of d occurs in every block containing treatment 1 of d . Also, once1 2
treatment 1 of d appears in a block with any treatment of d , they must1 2

Ž .appear together on a plot if they are to satisfy 7 . It follows from the above
reasoning that treatment 1 of d appears in every block containing every1
treatment of d that appears in a block with treatment 1 of d , that is,2 2
treatment 1 of d appears in every block, contradicting the fact that d is a1 1
BIBD. I

Returning to the 2 = 3 problem, one can apply Theorem 3.3 using an
Ž .orthogonal pair of BNRC 3, 2, 2, 3 ’s as given in Table 1, meaning that an

Ž .orthogonal pair BNRC v, b, 2, 3 can be constructed for any v with b equal to
twice that given in Corollary 3.4. Again, this can be improved if Theorem 3.1
can be applied, which is possible at least for v s 5 and 6. For v s 5 the

Ž .relevant pair of orthogonal BIBD’s is in Preece 1966a . For v s 6 the two
Ž . Ž . Ž . Ž . Ž . Ž .sets of initial blocks 0, 1, 2 , 0, 2, ` mod 5 and 3, `, 4 , 4, 3, 1 mod 5

generate orthogonal BIBD’s. Improvement in this manner for v s 4 and 7 is
ruled out by Theorem 3.5.

Furthermore, all of the series of Lemmas 2.2, 2.5 and 2.6 can be used in
either Theorem 3.1 or Theorem 3.3. For Theorem 3.3, since they are all based
on initial blocks over finite fields, the BIBD’s may be written as orthogonal

Ž .BNRC v, b , k, v ’s, where b is the number of initial blocks, then combined0 0
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Ž U U U . Ž U U .with any BIBD v , b , k s v to give orthogonal BNRC v , b b , k, v ’s.0
Ž .They can also be combined into orthogonal sets of GYD v, b, k ’s, or into

orthogonal BNRC’s with intermediate numbers of blocks, as shown by the
w Ž . xnext theorem cf. Morgan and Uddin 1993a , Theorem 8 and its proof .

Ž .THEOREM 3.6. The existence of orthogonal BNRC v , b, p, q ’s, i s 1, . . . , t,i
for which b is a multiple of an integer s, implies the existence of orthogonal

Ž .BNRC v , brs, p, sq ’s, i s 1, . . . , t.i

Applying Theorem 3.6 to Corollary 3.2 gives a simple example.

Ž Ž . .COROLLARY 3.7. There is a pair of orthogonal BNRC v, v v y 1 r4, 2, 4
Ž .for every v ' 0 or 1 mod 4 .

Starting with a balanced incomplete block design with nested rows and
wŽ . xcolumns, Cheng 1986 , Theorem 2.1 constructed another design of the same

type and with fewer rows by retaining only those rows corresponding to
Ž .treatments in blocks of a BIBD. Gupta 1992 constructed BNRC’s using the
Ž .same technique but starting with a YS v, k in place of the BIBRC. In fact

one may start with any BNRC, and the method will preserve orthogonality if
starting with an orthogonal set. For completeness this is stated as the last
theorem of this subsection.

Ž .THEOREM 3.8. If there exists a BIBD v s p , b , k s p and a set of t1 2 1
mutually orthogonal BNRC’s for v treatments in b blocks of size p = q, then2 2

Ž .there exists a set of t mutually orthogonal BNRC v, b s b b , p, q ’s.1 2

3.2. Constructions using the method of differences. The next few results
directly construct orthogonal sets of BNRC’s using initial blocks based on
finite fields.

THEOREM 3.9. Let v s mq q 1 be a prime power and let 2 F p F q. The
initial blocks

Xiqly2 0 m Ž py1.m 0 m Žqy1.mA s x x , x , . . . , x m x , x , . . . , x ,Ž . Ž .i , l

Ž .l s 1, . . . , m, generate a BNRC v, mv, p, q d , and d , . . . , d are mutuallyi 1 m
orthogonal.

wŽ .PROOF. The BNRC d is due to Bagchi, Mukhopadhyay and Sinha 1990 ,1
xCorollary 3.2.2 . The column component design of d is generated by mqi

initial columns which can be written as the p = mq array

X0 1 my1 0 m Žqy1.m iy1 0 m Ž py1.mx , x , . . . , x m x , x , . . . , x m x x , x , . . . , xŽ . Ž . Ž .
Xiy1 0 m Ž py1.m� 4s GF y 0 m x x , x , . . . , x .Ž .Ž .v
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It is apparent that differences for plots and for columns of d versus d X arei i
balanced and contain no zeros. Since the number of column differences is p
times that of plot differences, orthogonality is established. I

The design d of Theorem 3.9 may be orthogonalized in at least two other1
ways. The proofs of this and Theorem 3.11 are further straightforward
exercises in the method of differences, so they are omitted. These theorems

Ž . s Ž .employ the arrays A p, t, 1 and A p, t, 1 defined prior to Lemma 2.6.

THEOREM 3.10. Let A , l s 1, . . . , m, be the initial blocks of d of Theo-1, l 1
rem 3.9.

Ž . Ž iy1. pmi Blocks A s x A for l s 1, . . . , m generate a BNRC d , andi, l 1, l i
d ,d , . . . , d are mutually orthogonal.1 2 intŽqr p.

Ž . Ž .ii Let p be the permutation of 1, 2, . . . , p defined by the ith column ofi
Ž .an A p, t, 1 . Thinking of this as a permutation of the rows of an array, let

Ž .A s p A . Then the A , l s 1, . . . , m, generate a BNRC d , andi, l i 1, l i, l i
d , d , . . . , d are mutually orthogonal.1 2 t

Ž .A table of arrays A p, t, 1 for 3 F p F 7 is given in Morgan and Uddin
wŽ . x1993b , page 440 .

THEOREM 3.11. Let v s 2mq q 1 with odd q be a prime power, and let
2 F p F q. The initial blocks A found by permuting the rows ofi, l

Xly1 0 2 m Ž py1.2 m 0 2 m Žqy1.2 mA s x x , x , . . . , x m x , x , . . . , x ,Ž . Ž .1, l

s Ž .l s 1, . . . , m, according to the ith column of an A p, t, 1 generate a
Ž .BNRC v, mv, p, q d , and d , . . . , d are mutually orthogonal.i 1 t

Ž .The BNRC d of Theorem 3.11 is Theorem 7 of Morgan and Uddin 1993a1

THEOREM 3.12. Let v s 2mq q 1 with odd q be a prime power.

Ž . Ž . Ž .i There exist q y 1 r2 mutually orthogonal BNRC v, mv, 2, q ’s.
Ž . Ž . U U Uii Let t F q y 1 r2 be written as t s t p . Then there exist t mutually

Ž U .orthogonal BNRC v, mv, 2 p , q ’s.

Ž .PROOF. The initial blocks for the BNRC d , i s 1, . . . , q y 1 r2, arei

x 2 mŽ iy1. x 2 mŽ iy1.q2 m ??? x 2 mŽ iy1.q2Žqy1.m
Ž ly1.A s x ,i , l 2 mŽqyi. 2 mŽqyi.q2 m 2 mŽqyi.q2Žqy1.mž /x x ??? x
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Ž . Ul s 1, . . . , m. For part ii , the initial blocks for d , i s 1, . . . , t , arei

A UŽ iy1. p q1, l

UAŽ iy1. p q2, l
B s ,.i , l ..� 0

U UAŽ iy1. p qp , l

l s 1, . . . , m. I

3.3. Related designs. Having established orthogonality conditions for, and
via Theorem 3.6 given numerous examples of, superimposed Youden designs,
a comparison of these results to superimposed Youden squares already in the

Ž .literature is warrented. Hedayat, Seiden and Federer 1972 , generalizing an
Ž .ideal of Clarke 1963 , define a mutually balanced Youden design for ordered

Ž .pairs as a set of YS v, v, v y 1 ’s for which superimposition of any pair of the
designs produces each ordered pair of distinct treatments on plots exactly
once. They define a mutually balanced Youden design for unordered pairs as

Ž Ž . .a set of YS v, v, v y 1 r2 ’s for which superimposition of any pair of the
designs produces each unordered pair of distinct treatments on plots exactly
once. However the authors do not explicitly mention a model or a specific
analysis, leaving somewhat vague the motivation for these properties. It is

Ž . Ž . Ž .evident from 2 , 3 and 7 that these requirements do not determine the
information matrix for the bottom-stratum analysis, and Theorem 3.5 says
that they cannot imply orthogonality. While it is possible to construct the
designs for ordered pairs with the column concurrences required for variance

w Ž .balance in the estimation of main effects using the method of Preece 1966b ,
page 5, to make C X s xI q y11X for i / iX, v / 2, 6; see also Hedayat, Seideni i

Ž . xand Federer 1972 , Theorem 3.1 , designs like those of Hedayat, Seiden and
wŽ . xFederer 1972 , Theorem 3.2 do not have this property, and it is an open

question as to what statistically meaningful benefits they may offer. Similar
comments apply to the designs for unordered pairs and to a related class due

Ž .to Afsarinejad and Hedayat 1975 : the design conditions they impose, in and
of themselves, have no apparent usefulness for the standard analysis.
Nonetheless, many of the designs these authors construct do have the addi-

w Ž .xtional properties needed for variance balance see Singh and Singh 1984 ,
Ž .and some could turn out to be optimal for their settings, in which 5 cannot

hold.
Using Theorem 3.6, orthogonal sets of GYD’s can be constructed with more

than v columns. Relative to the designs just discussed, comparable parameter
Ž .values are found with Corollary 2.3 and Lemma 2.5 with m s 2 and h s 1

Ž Ž . .results, giving orthogonal GYD v, 2 v, v y 1 r2 ’s and orthogonal
Ž Ž . .GYD v, 2v, v q 1 r2 ’s. To see the gain afforded by the orthogonality, con-

Ž . Ž .sider the orthogonal GYD 7, 14, 3 ’s and the variance balanced YS 7, 7, 3 ’s for
wŽ . xunordered pairs of Hedayat, Seiden and Federer 1972 , Theorem 4.4 gener-

Ž .X Ž .X Žated by the two initial columns 1, 2, 4 and 2, 4, 1 . The value tr C y11
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9y y.C C C for the former is , for the latter is 6. Multiplying the former by12 22 21 7

2 to account for the additional experimental units, the relative efficiency for
3 Ž .the nonorthogonal design is only . Better YS 7, 7, 3 ’s for unordered pairs7

Ž .Xcan be found: the same comparison for the two initial columns 1, 2, 4 and
X 6Ž .3, 6, 5 gives a relative efficiency of . This also demonstrates that within the7

bounds of the conditions for Youden designs for unordered pairs a great range
of efficiency behavior is possible.

Orthogonal pairs of Youden designs with different numbers of treatments
Ž .have been constructed by Preece 1982, 1991, 1992, 1993, 1994 and Christofi

Ž .1994 . These double Youden rectangles are superimpositions of a p = v GYD
for v treatments on a p = v GYD for p treatments so that orthogonality
holds in the bottom-stratum analysis. Unlike in the framework of this paper,
one of the GYD’s has symbols orthogonal to rows, the other to columns. In

Ž .that situation, 7 is not sufficient for orthogonality of the pair.
Ž .Finally, Hedayat, Parker and Federer 1970 , using pairs of orthogonal
wLatin squares with common transversal in the language of Section 2.2,

Ž Ž . .x Ž .TA v,v v y 1 , 4 , construct pairs of GYD v, v q 1, v ’s that are variance
balanced for the bottom-stratum analysis.

This is also a good opportunity to explain the relationship with multidi-
mensional incomplete block designs. If one begins with any t superimposed

Ž .orthogonal GYD v, b, k ’s, and lets t y 1 of the treatments sets denote levels
ty1 Ž .of t y 1 additional blocking factors, the result is a k = b = v t q 1 -

dimensional incomplete block design for v treatments. That the design is
universally optimal for treatment comparisons follows easily from the orthog-

Ž .onality. This technique has been used at least as far back as Causey 1968
Ž .and as recently as Stewart and Bradley 1991 . The class IIIa designs of

Ž .Stewart and Bradley 1991 are constructed in this manner starting with the
Ž Ž . .GYD v, 2v, v q 1 r2 ’s of Lemma 2.5, although they realized this construc-

tion only for prime v of the form 4s q 3. Their result is now extended in
terms of the available v as well as the number of dimensions. One can also
start with t mutually orthogonal BIBD’s for v , . . . , v treatments which do1 t
not arrange into GYD’s and get a b = v = v = ??? = v t-dimensional1 2 ty1
incomplete block design for v treatments. This is the construction of classest

Ž .IIa, IIb and IIIb of Stewart and Bradley 1991 , starting with the BIBD’s from
Ž . Ž . Ž .Theorems 2 a and 4 c of Street 1981 mentioned at the end of Section 2.1.

The IIa and IIb classes can be had for any odd prime power if instead the
Ž .orthogonal BIBD’s of Seberry 1979 are used. Related constructions are in

Ž .Agrawal and Sharma 1978 .

4. Orthogonal collections of Latin squares. To motivate the topic of
this section, return to the problem of constructing a pair of orthogonal 2 = 2
BNRC’s. In Section 3 this was accomplished by applying Theorem 3.1 to the
BIBD’s of Lemma 2.8 using a 2 = 2 Latin square. A different solution would

Ž Ž . .be to apply Theorem 3.3 using any BIBD v, v v y 1 r2, 2 and a pair of
mutually orthogonal Latin squares of side 2, but for the fact that the Latin
squares do not exist. Howevery, this does not mean that there are not
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Ž .orthogonal sets of t BNRC 2, b, 2, 2 ’s for larger values of b and possibly
t ) 2. For instance, with b s 2 there is

1 2 1 2d1 2 1 2 1

1 2 2 1d2 2 1 1 2

and for b s 4 there is

1 2 1 2 1 2 1 2d1 2 1 2 1 2 1 2 1

1 2 1 2 2 1 2 1d2 2 1 2 1 1 2 1 2

1 2 2 1 1 2 2 1d3 2 1 1 2 2 1 1 2

1 2 2 1 2 1 1 2d4 2 1 1 2 1 2 2 1

DEFINITION. A collection of t ordered sets each containing b Latin squares
Ž .of order v is said to be a t, b -orthogonal collection if, upon superimposition

of the b corresponding squares of any two sets, every ordered pair of symbols
occurs b times.

Ž . Ž .Each set of b squares in a t, b -orthogonal collection is a BNRC v, b, v, v .
Ž .A pair of these BNRC’s is orthognal if and only if 7 holds, and, since

l X
G iiX

s bv for all pairs and symbols, the orthogonality requirement is simplyj j

l X
P iiX s b, the requirement of the definition. Although the motivation for thesej j

designs has been as input in Theorem 3.3 for constructions with p s q - v,
they are also legimately useful designs in and of themselves. For v s 4, for
instance, b s 1 « t F 3, but b s 2 allows t as large as 5, this being a special
case of the main result of this section. Before proceeding to that result, the
v s 2 case will be disposed of.

Ž .THEOREM 4.1. There is a t, b -orthogonal collection of Latin squares of
order 2 provided a Hadamard matrix of order b exists, where

t
b s 4 = 1 q largest integer less than .ž /4

PROOF. There are only two Latin squares of order 2. Represent these by 1
and y1. Then an ordered b-set of order 2 Latin squares can be thought of as
a vector of 1’s and y1’s. Two such ordered b-sets are orthogonal if and only if
their vectors are orthogonal in the usual sense. So given t orthogonal b = 1
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vectors of 1’s and y1’s, the collection can be constructed. These are any t
rows of the Hadamard matrix. I

For a comprehensive introductory treatment of Hadamard matrices, see
Ž .Hall 1986 . For t s 2, Theorem 4.1 should be eschewed in favor of the design

displayed in the first paragraph of this section. Any even b can be accommo-
dated for t s 2.

Ž .Combining squares of a t, b -orthogonal collection in the manner of Theo-
Ž .rem 3.6 produces t orthogonal BNRC v, 1, v, bv , which are t orthogonal

v = bv F-squares. Typically one should expect to achieve larger t for the
F-squares, however, as that setting is less restrictive than this one. The only
mention we have found in the literature of superimposing a new treatment

wŽ . xset on b ) 1 Latin squares is Freeman 1972 , Section 6 , who briefly
discusses the 3 = 3 and 4 = 4 squares.

Ž . Ž .Bose 1938 and Stevens 1939 made an invaluable contribution to statis-
tical theory when they established the existence of complete sets of mutually
orthogonal Latin squares of order v, a prime power. In the BNRC terminol-

Ž .ogy, these would be v y 1, 1 -orthogonal collections. Their technique was to
use the finite field of order v to define initial rows that would generate the
orthogonal squares. The final result of this paper takes the same approach to

Ž .constructing t, b -orthogonal collections for t ) v y 1 and b ) 1.

THEOREM 4.2. Let v s pn be a power of the prime p. Then there exists a
ŽŽ . ny1 .2 p y 1 p y 1, p -orthogonal collection of Latin squares of order v.

Ž Ž ny1. .Especially interesting is the case p s 2: there is a 3 2 y 1, 2 -
orthogonal collection of Latin squares of order 2 n. For n s 2 this is the
Ž .5, 2 -collection of side 4 squares mentioned above and displayed later in
Table 3. The immediate question is whether or not these are the largest such
sets that can be constructed; that is, what is the upper bound on t? A simple

Ž . Ž .counting of degrees of freedom shows that in any t, b -collection, t F b v y 1 .
For v s b s 2 this is achieved by Theorem 4.2, but for v s 4 and b s 2 the
theorem falls one short. We have managed to enumerate all of the possibili-
ties for v s 4 and b s 2 and by doing so have established that, for this case,

Ž .5 is indeed the largest achievable t. So unlike for the Latin square b s 1
case, ‘‘complete sets’’ do not necessarily exist even for prime power numbers
of treatments. Other examples of this observation are provided by the designs
with v s 2, for which the bound is t F b. If b is a multiple of 4 and the
Hadamard matrix exists, Theorem 4.1 attains the bound, but if b is odd only

Ž .t s 1 is possible, and if b ' 2 mod 4 only t s 2 can be had.
To start the proof of Theorem 4.2, define v y 1 vectors a byj

8 a s x j 0, x 0 , x1 , . . . , xvy2 , j s 0, 1, . . . , v y 2,Ž . Ž .j

and v y 1 vectors b byq

9 b s x q 0, x 0 , x p , . . . , x Žvy2. p , q s 0, 1, . . . , v y 2.Ž . Ž .q
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These will be used as initial rows of Latin squares in the orthogonal collection
Ž .presented in 11 below, but first the differences between the a ’s and the b ’sqj

Ž .2will be studied. Define v y 1 difference vectors d by d s a y b . Thej, q j, q j q
elements of d are 0 and dk s x kq j y x qqk p for k s 0, 1, . . . , v y 2. Nowj, q j, q

kq j qqk p qŽ kq jyq k p. qŽ jyq p. kx y x s x x y x s x x y y y , where y s x . Going
over all values of k goes over all nonzero values of y, so d in some order isj, q

10 d s x q y p y x jyq y : y g GFŽ . � 4Ž .jq v

Next a series of statements concerning properties of the d ’s will bej, q
Ž . p p pderived. Several of these employ the relationship w q u s w q u for

wnevery w, u g GF . Also needed is that the elements of the subfield ZZ thep p
Ž .x aŽŽ p ny1 .rŽ py1..

nintegers mod p in GF are x , a s 0, 1, . . . , p y 2.p

Ž . � Ž nPROPERTY 1. Write j y q s l p y 1 q m for some l g 0, 1, . . . , p y
. Ž . 4 � 4 Ž .1 r p y 1 y 1 and some m g 0, 1, . . . , p y 2 . Then 10 is

x q x l p y p y x m y , y g GF .Ž . v

Ž .PROOF. The factor involving y in 10 is

p jyq p lŽ py1.qm lŽ py1. ylŽ py1. p my y x y s y y x y s x x y y x y
plŽ py1. l yl mql yls x x x y y x x yŽ . Ž .

pX X Xl p m yls x y y x y , y s x y. IŽ . Ž .

Ž . Ž .PROPERTY 2. If j y q k 0 mod p y 1 , then 10 is an ordering of GF .v

PROOF. This is true if and only if y / y « y p y x jyq y / y p y x jyq y .1 2 1 1 2 2
� 4By property 1, it is sufficient to prove this for j y q s m g 1, 2, . . . , p y 2 . If

p jyq p jyq p p mŽ . Ž . py y x y s y y x y , then y y y s x y y y « y y y s1 1 2 2 1 2 1 2 1 2
mŽ . m Ž . py1 a mx y y y « x s y y y . Now y y y s x for some a, so x s1 2 1 2 1 2
aŽ py1. Ž .Ž n . Ž . w Ž .Ž nx « m ' a p y 1 mod p y 1 « m mod p y 1 ' a p y 1 mod p
.xŽ .y1 mod p y 1 s 0, a contradiction. I

Ž . Ž .PROPERTY 3. If j y q ' 0 mod p y 1 , then 10 is p copies of each of
pny1 elements of GF , and these pny1 elements form an additive subgroup.v

Ž . q l pŽ p .PROOF. By Property 1, 10 is x x y y y for y g GF , so consider thev
Ž p .list y y y , y g GF . Let w be any element of GF and let i g ZZ . Thenv v p

p p p p pw q i y w q i s w q i y w q i s w q i y w q i s w y w ,Ž . Ž . Ž . Ž .

showing that y s w, w q 1, . . . , w q p y 1 all give the same value to y p y y.
Since y p y y s z has at most p roots for any fixed z, the list is indeed pny1

different values p times each. It is now simple to check that the group
requirements hold. I
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Ž .Properties 4 and 5 relate different d ’s of 10 for special values of j and q.jq
They are easy consequences of Property 1.

Ž . yhPROPERTY 4. If q y q s h p y 1 , then d s x d .2 1 j, q j, q2 1

Ž . h pPROPERTY 5. If j y j s h p y 1 , then d s x d .2 1 j , q j , q2 1

PROPERTY 6. If dU is the set of pny1 distinct elements of d , then the0, 0 0, 0
following hold:

Ž . Ui d is an additive subgroup;0, 0
Ž . U Uii id is a reordering of d for any i g ZZ ;0, 0 0, 0 p
Ž . U U Uiii the cosets of d in GF are iw q d , i g ZZ , for any fixed w f d .0, 0 v 1 0, 0 p 1 0, 0

Ž . p U pPROOF. Property 3 gives i . For z s y y y g d , iz s iy y iy s0, 0
p p Ž . p Ž . U Ž .i y y iy s iy y iy g d « ii . If i w and i w are in the same coset,0, 0 1 1 2 1

U Ž . w Ž .xthen i w y i w s i w g d i s i y i « i s 0 or by ii w g1 1 2 1 3 1 0, 0 3 1 2 3 1
U Ž .d « iii . I0, 0

Now fix w as any element of GF which is not of the form y p y y, that is,1 v
which is not in d . Let w , w , . . . , w ny 1 be an ordering of the elements of0, 0 1 2 p
w q dU . Let h be defined by x h i s wy1 w , i s 1, 2, . . . , pny1. Consider the1 0, 0 i 1 i

Ž n . Ž . ny1following collection of p y 1 q p y 1 p ordered sets of p initial rows
each. Each initial row generates a Latin square in the usual way, so this is

Ž . ny1 Ž .specifying 2 p y 1 p y 1 BNRC v, p, v, v ’s which, to satisfy Theorem 4.2,
we claim are mutually orthogonal. The sets are:

� 4a q a , a q a , . . . , a q a for j s 0, 1, . . . , v y 2;j j0 j j1 j j , py1

b , b , . . . , b for q s p y 1 h q g with i s 1, . . . , pny1 and� 4 Ž .q q q i11Ž .
g s 0, 1, . . . , p y 2.

Ž . Ž .The a ’s are from 8 , and the b ’s from 9 , so the p initial rows in each setj q
are p vectors of order 1 = v. The a ’s are defined by

a s 0, a s w x Žky1.ŽŽ p ny1 .rŽ py1.. and a s x l pqca ,00 0 k 1 jk 0 k

Ž .for k s 1, 2, . . . , p y 1, j s l p y 1 q c, c s 0, 1, . . . , p y 2 and l s
Ž n . Ž .0, 1, . . . , p y 1 r p y 1 y 1. The subscripting implicit in the definition of

the q ’s has been suppressed to ease the notation.
First it will be shown that the b ’s are all distinct, that is, that the q ’s areq

Ž n . Ž . Ž . Xall distinct mod p y 1 . Write q s p y 1 h q g and q s p y 1 h q1 i 1 2 i
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Ž n .g , where, with no loss of generality, g G g . If q ' q mod p y 1 , then2 2 1 1 2

p y 1 h y h X ' g y g mod pn y 1Ž . Ž . Ž .i i 1 2

n
X« py1 h y h mod p y 1 mod p y 1 s g y g mod py 1Ž . Ž . Ž . Ž . Ž . Ž .i i 1 2

«g s g « p y 1 h y h X ' 0 mod pn y 1Ž . Ž . Ž .1 2 i i

pn y 1 pn y 1
X X«h y h ' 0 mod « h s h q a , some ai i i iž / ž /p y 1 p y 1

pn y 1
Y Y Yh h ai i9 X«x s i x for i s x g ZZ « w s i w .p i iž /p y 1

However, w and w X are in the same coset of dU , so w X q dU s iY w X qi i 0, 0 i 0, 0 i
U Y Ž . Xd « i s 1 by Property 6 « a s 0 « h s h « q s q .0, 0 i i 1 2

Hence the sets are all distinct. Now to show orthogonality of the sets it
must be shown that the plot differences for the superimposed vectors of any

Ž .Xtwo sets are p copies of GF . It is easy to see that a and a of 8 generatev j j
orthogonal Latin squares, and thus so too do a q a and a X q a X for j / jX.j jk j j k

X w Ž .xXLikewise, for q / q , the squares generated by b and b see 9 are alsoq q
Ž .orthogonal. If j y q k 0 mod p y 1 , then Property 2 implies that the squares

generated by a q a and b are orthogonal.j jk q
Ž . ŽFinally, consider a q a and b with j y q ' 0 mod p y 1 . So j s l yj jk q

. Ž .1 q c and q s h p y 1 q c for some i. The differences for k s 1, 2, . . . ,i
p y 1 are

a y b q a s x ca y x cb q x l pqcaj q jk lŽ py1. h Ž py1. 0 ki

nc l p Žky1.ŽŽ p y1.rŽ py1..s x d q x w xlŽ py1. , h Ž py1. 1i

nyh l p Žky1.ŽŽ p y1.rŽ py1..is x x d q x w x Property 4Ž .c lŽ py1. , 0 1

nc yh l p l p Žky1.ŽŽ p y1.rŽ py1..is x x x d q x w x Property 5Ž .0, 0 1

ncyh ql p h Žky1.ŽŽ p y1.rŽ py1..i is x d q x w x0, 0 1

ncyh ql p Žky1.ŽŽ p y1.rŽ py1..is x d q w x0, 0 i

cyh iql p Ž .and for k s 0 the differences are a y b s x d . Using iii of Prop-j q 0, 0
erty 6, these are together all elements of GF p times each, completing thev
proof of Theorem 4.2.

As an example, the five pairs of order-4 Latin squares will be constructed.
Ž .The addition table for GF also the subtraction table is shown in Table 2.4

Ž 0 1 2 . Ž 0 2 1.The vectors a s 0, x , x , x and b s 0, x , x , x give the difference0 0
Ž 0 0. 1 2vector d s 0, 0, x , x . Taking w s x gives w s x , h s 0 and h s 1.0, 0 1 2 1 2

The alpha’s are then a s a s a s 0, a s x1, a s x 0 and a s x 2.00 10 20 01 11 21
The five pairs of squares are thus generated from the five pairs of vectors
Ž 1. Ž 1 1 0. Ž 2 2 2 . Ž . Ž 1 1 .a ,a q x , x a , x a q x , x a , x a q x , b , b and x b , x b .0 0 0 0 0 0 0 0 0 0
Writing i in lieu of x i, and 3 for the field zero, the design is shown in Table 3.
Observe that the Bose squares are imbedded in this construction, in this
example appearing as the first square in the first three pairs.
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TABLE 2
Addition table for GF4

0 1 2q 0 x x x
0 1 20 0 x x x

0 0 2 1x x 0 x x
1 1 2 0x x x 0 x
2 2 1 0x x x x 0

Ž .If t, b -orthogonal collections are to be used as input into Theorem 3.3, one
would like b as small as possible. For b s 1 the extensive literature on
mutually orthogonal Latin squares is available. The goal with larger b is to
achieve larger t than is possible with b s 1, that is, to accommodate more
factors in the design. Most useful in this context is b s 2, which Theorem 4.2

Ž .addresses for v a power of 2. By other methods we have found t, 2 -orthogo-
Ž .nal collections for other values of v, including a 4, 2 -orthogonal collection of

order-6 Latin squares. This and related results will be reported elsewhere.

5. Summary. One of the limitations to the applicability of BIBD’s rela-
tive to other classes of available incomplete block designs is the number of
experimental units required to be able to meet the design conditions. When
there are multiple blocking factors, such as in the row]column or nested row

TABLE 3
Ž .A 5, 2 -orthogonal collection of order 4

3 0 1 2 1 2 3 0
0 3 2 1 2 1 0 3
1 2 3 0 3 0 1 2
2 1 0 3 0 3 2 1

3 1 2 0 0 2 1 3
0 2 1 3 3 1 2 0
1 3 0 2 2 0 3 1
2 0 3 1 1 3 0 2

3 2 0 1 2 3 1 0
0 1 3 2 1 0 2 3
1 0 2 3 0 1 3 2
2 3 1 0 3 2 0 1

3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2
1 2 0 3 1 2 0 3
2 1 3 0 2 1 3 0

3 1 0 2 3 1 0 2
0 2 3 1 0 2 3 1
1 3 2 0 1 3 2 0
2 0 1 3 2 0 1 3
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and column settings, that number can become prohibitive if optimality and
complete symmetry of the information matrix are sought, as well evidenced
by most of the available series of BNRC’s. The methods of this paper address
that problem for factorial treatment sets in nested rows and columns in the
same way that fractional fractorial plans do in unblocked factorial experi-
ments: it may be observed that many of the designs in this paper have fewer

Ž t .experimental units than a single replicate of the full p v factorial wouldis1 i
require. While the expressed intent was to find these optimal main effects
plans in nested row and column designs, a most welcome product of this
investigation is that the same goals have been met for the row]column and
the unstructured block settings. Moreover, these designs may also be used in
multistage experimentation and as optimal multidimensional incomplete
block designs.

Most of the designs here constructed are for the symmetrical v t factorial,
which of course can also be used for factors with numbers of levels which are
factorizations of v. A simple example is a Lemma 2.8 design for v s 12, say,

11 4 2which can serve as an replicate of the 2 = 3 experiment in blocks of size12

2, for which all of the main effects and some of the two-factor interactions are
Ž .estimable. As another example, a Lemma 2.5 design for v s 9 h s 1, f s 4

10 8can serve as an replicate of the 3 experiment in blocks of size 5.279
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