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ASYMPTOTIC LIKELIHOOD ESTIMATION FROM BIRTH
AND DEATH ON A FLOW!

By MICHAEL J. PHELAN

University of Pennsylvania

Birth and death on a flow refers to a particle system on a Brownian
flow. Particles are born in a point process and move on the flow subject to
position-dependent killing. They die eventually and leave the flow. The
particle process is a measure-valued Markov process tracking these mo-
tions. Its law depends on the distribution of births, the coefficients of the
flow and the rate of killing. We treat asymptotic likelihood estimation of
these parameters from chronicles of the particle process as observed over
a long period of time.

1. Introduction. In their 1992 model of mass transport, Cinlar and Kao
imagined particles on a turbulent fluid flow. With a Brownian flow describing
the fluid-flow map of this fluid over its domain, a Poisson process regulates
the birth of particles that live and die there. The particles move with the
motion of the flow. They dissipate in response to position-dependent killing or
decay. Eventually, they die and leave the flow.

Cinlar and Kao (1992a, b) studied the configuration of live particles on the
flow in terms of a measure-valued Markov process. The law of this particle
process depends on the distribution of births, the coefficients of the flow and
the rate of killing.

Phelan (1996) developed likelihood methods for parametric estimation of
the system parameters from chronicles of the particle process as observed
over a fixed period of time. In this work, we treat asymptotic, maximum-like-
lihood estimation from chronicles of the particle process as observed over a
long period of time. As in our earlier work, the martingale dynamics over the
particle process play a central role.

Our results recall in particular the work of Feigin (1976), Basawa, Feigen
and Heyde (1976), Godambe and Heyde (1987), Barndorff-Nielsen and
Sgrensen (1994) and Sgrensen (1989, 1990) on likelihood methods for stochas-
tic processes. The addition here lies in treating a spatial stochastic process.

2. Birth and death on a Brownian flow. We recall Phelan’s (1996)
statistical model of birth and death on a Brownian flow. Of course, we take
our description of the process itself from that of Cinlar and Kao (1992). The
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probability space ({),.7, P) supports all of the random variables that appear
in the following text. The set E denotes Euclidean space of dimension d.

A particle system. The particle system is a countable system of particles
in motion on a Brownian flow F = (F,,), 0 < s <t < », on E. The life process
L is an independent Poisson random measure on R, X E X R, whose atoms
identify particles that enter, live and die on the flow. That is, let (S, X,U)
denote an atom of L, identifying a generic particle. Our interpretation is that
the particle enters the flow at random time S and random position X. The
trajectory t — Fg, X describes its motion on the flow. This motion stops when
the particle dies and leaves the flow at time T,

T = inf{t > S: ['drk(F, X) > U},
S

where U is the particle’s intrinsic lifetime and % is the position-dependent
rate of killing.

The particle process ¢ — M, is a Markov process on the space of counting
measures on E. It tracks the position of the living particles on the flow.
According to Cinlar and Kao’s (1992b) master formula, the particle process
satisfies the equation

(V) M= [L(ds,dx,du) fOR ) oo ($) Yoo [ A k()|

for every function f in the space Cy of continuous functions having compact
support in E. Since all particles move on the same flow, contemporaneous
particles move dependently.

We suppose that F' is a Brownian flow of homeomorphisms on E having
infinitesimal mean & and infinitesimal covariance c¢. The mean b is a
mapping from E to E. We suppose that there is a mapping y from E to the
space of d X m matrices such that ¢ is the mapping (x, y) — y(x)y"(y),
where T denotes transpose. The coefficients b and 7y satisfy the global
Lipschitz condition

(2) [6(x) = b(y) [ +]y(x) = y(»)] < Klx =yl
and the linear growth condition
(3) [o(x) [ +lly(x) [ < K(1 + Ixl)

for some constant K. We refer to Kunita (1990) for more on flows.
The life process L is a Poisson random measure on R, X E X R,. Its mean
measure A satisfies the equation

(4) Mds,dx,du) = 8,({s}) mo(dx)due™ + dsmw(dx)due™

for every s > 0, x € E, u > 0, where §, is the Dirac measure at zero and u,
and 7 are finite measures on E. Thus, the placement of the initial particles
on the flow has distribution p, on E. Thereafter, particles enter the flow at
rate w(E) while having distribution = on E. The intrinsic lifetime of all
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particles is exponential with mean 1. We refer to Karr (1986) for more on
random measures.
For later reference, we notice that the one-point motions are diffusions
having Markov generator A that satisfies the equation
d 2

d 1 d
(5)  Af(x) = ,Zlbi(x)j—;(x) +5 X Tey(xn)

1 Jdx; Ix;

(%)
for every function f having two continuous derivatives.

A statistical model. A statistical model here refers to a sample space, an
indexed family of probability laws for the particle system and an observa-
tional scheme.

The particle process takes values in the space (M,, .#,) of bounded count-
ing measures on E with its Borel sigma algebra relative to the vague
topology. Its sample paths belong to the Skorokhod space D(M,) of right-con-
tinuous functions from R, to M, having vague limits from the left. The
coordinate mappings on this space generate a filtration G = (£,), t > 0, and
the filtered space (D(M,), Z, G). This space is the canonical setting for the
particle process and our sample space.

We specify a family of laws for the particle process as indexed by a
finite-dimensional parameter on the system parameters themselves. The
parameter set O is an open, bounded subset of Euclidean space of dimension
p. As a convenience, we assume it contains the origin as an interior point. The
zero theta is the parameter of reference.

For 6 in O, we introduce the system parameter (6% ¢, 7% k%) and the
probability space (Q,.#,P?) for the life-flow pair (L, F); the covariance c is
intentionally free of theta. The life process L is a Poisson random measure
having mean measure A’ satisfying (4) with 7° as the distribution of births.
The flow F is an independent Brownian flow having infinitesimal mean 5°
and infinitesimal covariance c.

The life-flow pair and the killing function k¢ induce the particle process
t > M/ as at (1). The particle process has sample paths in the Skorokhod
space D(M,), so we may speak of its law there. The law of the particle process
refers to the probability P?, namely, P’ = P?<(M?%)"1, on the filtered space
(M), 2, G).

For a strictly positive time 7', the observational scheme is to observe the
mapping ¢ — M, on [0,T], yielding a chronicle of the particle process or the
sigma algebra %, as data. We suppose that we know the law of these data
only up to theta and consider the problem of estimating theta from Z,. Our
approach is maximum-likelihood estimation from the score function as de-
rived in Phelan (1996). We study this problem in the limit as T' approaches
infinity.

3. Likelihood estimation. Phelan (1996) considered the problem of
maximum-likelihood estimation from birth and death on a Brownian flow. We
recall his representation of the likelihood and the score function here.
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Likelihood. We may view the counting measures on E as a subset of the
space of distributions on E. In doing so, we may view the particle process as a
semimartingale on the space of distributions. This view is important because
it supports a stochastic calculus over the particle process, a special case of the
calculus in Ito (1984). Indeed, each of the likelihood, the score and the
information matrix have representations in terms of stochastic integrals with
respect to the martingale parts of the particle process.

To introduce this, let & denote the space of infinitely differentiable
functions having compact support on E. The dual &’ of & is the space of
distributions on E. We identify a Radon measure u, for example, with a
distribution that takes functions in & to their integral with respect to u. As
an operator on 2’, let A°* denote the adjoint of the operator A° of (5) with
b =b° For T in 2, the distribution A°*T is the distribution satisfying the
equation (A%*T)¢ = T(A%) for ¢ in 2.

On the stochastic basis (D(M,), Z, G, P°), the particle process is by con-
struction right continuous with left limits in the topology of vague conver-
gence. So for ¢ > 0, let M,_ denote the vague limit of M, as s increases to ¢
and let AM, denote the signed-Dirac measure M, — M,_ on E. The set
{(s,AM,): s >0, M, # M,_} then induces a multivariate point process u on
R, X M,,;, where M_, denotes the space of signed-Dirac measures on E. Its
compensator »° is a predictable random measure on R, X M,, satisfying the
equation

vO(dt,dn)
=dt[7’e 8 (dn)1y(n1) + (k°M, ) 87} (—dn)1_y(n1)]

for every signed-Dirac measure n in M,,;, where é is the mapping from E to
the space of Dirac measures on E.

Therefore as a process on &, the particle process satisfies the stochastic
integral equation

(6)

t
M,=M,+ B} + X/ + fo'[M (n—v°)(ds,dn)n,
sd

(7)
BY = [ds[n + k°M,_+ A%M, ], =0,
0

implicitly defining the continuous-martingale part ¢ — X/ and the discrete-
martingale part on the compensated point process w — »°. The continuous-
martingale part ¢ — X/ associates with a characteristic g satisfying the
equation

®)  a(Mh,0) = [ M, (dx)M,_(dy)(x)e(x,5)e(y)

for every ¢ and ¢ in 2.
To specify the likelihood, we need to integrate with respect to X°¢ and
w — v°. So, we need the following regularity conditions.
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CoNDITION A. The birth measures w% and #° are finite measures on
(E,&) and 7% admits a density x — p?(x) with respect to 7° for every 6
in O.

ConpITION B. The drift coefficient b’ satisfies the global Lipschitz condi-
tion of (2) and the linear growth condition of (3) for every 6 in ©. The
coefficient b° is zero; otherwise replace b? with 5% — b° in the sequel.

ConDITION C. The square root of ¢, namely, vy, satisfies the global Lips-
chitz condition of (2) and the linear growth condition of (3). In addition, we
suppose that x — y(x) is of full column rank on E. The rank condition
ensures the existence of a generalized inverse at (10).

ConpITioON D. The killing function 2° is a Borel function such that
b> k%> 0on E for some constant b, and £? and £° vanish on the same set
for every 6 € 0.

This ends the conditions for now. In these conditions and in our treatment
below, we treat the zero theta as a reference parameter. To us this seems
simpler than carrying a 6, throughout the discussion.

We introduce the coefficients of the prelikelihood in Phelan (1996). For 6 in
O and referring to Conditions A and D, let n — y’(n) denote the mapping on
M., satisfying the equation

0 _ 0, 5-1 k7o 87 (—m)
9) y'(m) =p"° 8 (m)1qy(nl) + m1<-1)(n1),

where 6 ! maps Dirac measures on E to their atoms and 0/0 is by conven-
tion zero. Referring to Condition C, let (¢, x) — f%(M,_; x) denote the pre-
dictable mapping satisfying the equation

(10) (M, 30) = 7| [ My (@) @y [ 2 (d)r(2)82)

if M,_(E)> 0 and f? = 0 otherwise. In this case, let 4! denote the mapping
x > f%M,_;x) on E for every ¢t in R,. As a process of functionals on
distributions, identify the coefficient ¢+ - H/ with the predictable process
t = h? and the (random) field n — J%(n) with the mapping  — y%(n) — 1. As
a result, we introduce the process ¢t — &/:

(1) &= [dsq(M, k8 R0 + [ v0(ds, dm)(y*(n) = 1),

For 0 in O, one says that P? is locally absolutely continuous with respect
to P° on (D(M,), ,G) whenever the restriction of P’ to &, is absolutely
continuous with respect to that restriction of P° for every ¢ in R,. In this
case, there is a density process ¢ — Z/, for example, for local change of
measure from P° to P’ The random variable Z¢ is then the likelihood of P
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relative to P° on the data £,. The mapping 6 — Z2 is the likelihood function
over our statistical model.

The next proposition summarizes some results from Phelan (1996) on
likelihoods for birth and death on a Brownian flow. The centered dot (-)
notation denotes stochastic integration for measure-valued processes as de-
fined in It6 (1984); the centered asterisk () stands for multivariate point
processes as defined in Jacod and Shiryaev (1987).

12. PROPOSITION. We suppose that we have the regularity conditions A
through D. For 0 in ©, we suppose that the process t — £ is integrable with
respect to both P° and P°. The probability measure P® is then locally,
absolutely continuous with respect to P° on (D(M,), Z, G). In addition, there
is a locally square-integrable martingale t —> Y2,

Y!=H X¢ + Je*(“ _ VO)“
such that its Doléans—Dade exponential t - &(Y?),,

#(7°), = exp( ¥ — 4 ['dsa (0,318, )| T (1 + A¥ Jexp( YY),

0 s<t
is a local martingale on ((M,), Z, G, P°) such that &(Y°), = 1. The density
process t = Z! between P’ and P° is then the process t — &(Y"?), and the
likelihood over our statistical model is the mapping 6 — &(Y?);.

We refer to Phelan (1996) for regularity conditions and demonstration of
this result.

Score. The score function is the derivative of the natural logarithm of the
likelihood with respect to theta. The log-likelihood process ¢ — L¢ refers
naturally to the process ¢ — In Z! for every theta. If § — LY is differentiable
for every t in R, and D, denotes differentiation with respect to theta, then
the score process refers to the process ¢t — D,L! for every theta. The score
function is then the mapping 6 — D, L.

We begin with a regularity condition on the system parameters that allow
such differentiation. In particular, let g denote a generic function from
O X E into R or into E. Let D, denote the first-order differential operator on
functions on ©. For example, if 6 —» g(0, x) is differentiable with respect to
theta for every x in E, then D,g(6) denotes the mapping x — D,g(6, x)
on E.

For real-valued functions, our convention is that the operator D, induces
the gradient vector as arranged in a row vector. For E-valued functions, our
convention is that D, induces a matrix of order given by the coordinate
dimension of E by that dimension of O, giving a rowwise arrangement of
gradients.

CoNDITION E. In the sense defined in the preceding text, the mappings
6—->b% 6->p° 6->1Inp’ 06— r’ where r’=~Ek%E° and 6 > Inr? are
twice continuously differentiable for every theta.
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The stochastic basis is (D(M,), £, G, P°). For 6 in O, Proposition 12
implies that there is a log-likelihood process ¢ — LY satisfying the equation

LY=H X - %ftdsq(Ms;hg,hg) +Iny’s(p—2°),+(Iny’—J%)=»,
0

after modest reexpression of In Z!.

Condition E implies that the coefficients in the log-likelihood are differen-
tiable with respect to theta. In particular, for 6 in O, there is a mapping
n — D, In y%(n) on M,, satisfying the equation

DyIn y°(n) = (DyIn p?)o 571 (n) 1, (nl)
+(D0 In re)o 671( _7))1{71)(”’11)7
where r? is again the function 2°/k°. Similarly, there is a mapping 7 —

D,y°(n) and so a mapping 1 — D,J%(n). Next, let (t, x) = f'°(M,_; x) denote
the predictable mapping satisfying the equation

FO(M,; %) = y(x)[/EMt_(du)yT(u)y(w]_ [ M- (d2)¥'(2)D,b"(2)

if M, (E)>0 and f'’=0 otherwise. In this case, let D,h’ denote the
mapping x — f'°(M,_; x) on E for every ¢ in R, . As a process of functionals
on distributions, we then identify the process ¢ — D, H/ with the predictable
process ¢t — D,h¢ for the purpose of representing a stochastic integral in
subsequent text.

13. PROPOSITION. We suppose that we have the regularity conditions A
through E. We suppose the X‘-integrability of t — D,H/, the (u — v°)-
integrability of D, In y° and the v°-integrability of D,1In y° — DJ}J* for every
theta. On the stochastic basis (D(M,), Z, G, P°), there is then a well-defined
semimartingale t > S/,

Sf = (D,H®)-X¢ + (D, In y?)+(u — v°),
+(DyIny’ = D, %)« v — [‘dsq(M,_; hZ, D,h?)
0

for every theta. Next, we suppose there is an increasing sequence n — T, of

stopping times and a sequence n — c, of constants such that T, increases
almost surely to infinity with n and such that we have the inequality:

1 2

E° sup f@dOHZ(L?M — L - uS/)|| <c,u?

t<T,

for every n. For every 0 in O, the process t — S/ is then a representation of the
score process t — D, LY of interest here.

The score process then has an integral representation with respect to the
particle process obtained by formally interchanging differentiation and
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stochastic integration. We refer to Phelan (1996) for regularity conditions and
demonstration of this result.

4. Observed information. We derive a type of Fisherian information
that is integral to our asymptotic treatment of maximum-likelihood estima-
tion. Known as the observed information, it requires two derivations of the
log-likelihood function. In this section, we specify sufficient conditions in
terms of the system parameters for the existence of the information process
as well as a representation of it in terms of stochastic integrals over the
particle process.

Regularity conditions. The regularity conditions here are differentiability
conditions on the system parameters and controls on those derivatives. As in
our preparation for Condition E in the second half of Section 3, let g denote a
generic function from ® X E into R or into E. Let D, denote the first-order
differential operator on functions on ®, supposing the same conventions as
before.

We also introduce the second-order D% and the third-order D2 differential
operators. In particular, let g denote a generic function from ® X E into R or
into E. If 0 — g(0, x) is thrice differentiable with respect to theta for every x
in E, then D%g(0) denotes the mapping x — D%g(6, x) on E. Also, D3g(6)
denotes the mapping x — D2 g(6, x) on E.

For real-valued functions, our convention is that the operator D, induces
the gradient vector as arranged in a row vector. The operator D2 then
induces the usual matrix of mixed-partial derivatives. The operator D}
induces a three-dimensional p X p X p matrix of mixed-partial derivatives.

For E-valued functions, our convention is that D, induces a matrix of
order given by the coordinate dimension of E by that dimension of ®, giving
a row-wise arrangement of gradients. The operator D2 then induces a
blocked matrix of mixed-partial derivatives obtained by differentiating the
rows of gradients as induced by D,. Since E has d dimensions and O has p,
the operator D2 induces d blocks [ D2 g(6)],,...,[D%g(0)], of p X p matri-
ces. The third-order operator induces d blocks [ D%g(0)],,...,[D3g(0)], of
p X p X p matrices.

There are three regularity conditions of interest here. The first specifies
excessive measures for the transition semigroup of the one-, two- and three-
point motions on the flow. The second imposes a differentiability condition on
the system parameters, the last integrability conditions on pairs of control-
ling functions.

ConDITION F. For n =1,2,3, let ¢ > T/" denote the transition semi-
group for the n-point motions on the flow F on (,.%,P°). The measures u,
and 7° are excessive for ¢t —» TV, the product measure of u, + 7° with
itself being excessive for t - T® and the triple product of wu, + 7° with
itself being excessive for ¢t — T,®.
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ConpITION G. In the sense defined above, the mappings 6 — b, 6 — p?,
6 - 1Inp? 6> r’ where r®=%%/k° and 6 - Inr? are thrice continuously
differentiable for every theta. There exist a constant K’ and a pair of
controlling functions b” and 5" from E into the respective space of block
matrices E @ (R? ® R?) and the block matrices E ® (R? ® R? ® R?) such
that

n d
lz: Z:[ 20°(x,)] (20, 1) [ DRDO(x)] ;

[b”(xk)]icij(xk’ xl)[b”( xz)]j

1

T~

k,l=11,

for every 6 in ® and such that

rx

[Dggbgk(xk)]icij(xka xl)[D0313bel(xl)]jm

kyi=1i,j=1
n d
<K'| X X [0"(xp)]ci(xs, x)[0"(x))];
kol=1i,j=1
for every x;,...,x, in E and for every 6,,...,6, in ®, where || -l is a

suitable norm on three-dimensional matrices. There is a pair of controlling
functions p” and p” such that

ID&p’(x)| <K'l p"(x)ll and || DZp°(x)|| < K'll p" ()l

for every x in E and 60 in 0. This last inequality prevails for the derivatives
of the remaining parameters, but with corresponding controlling functions
Up",Ip"), (r",r") and (Ir",Ir"). Here the symbol [ invokes memory for the
control functions on the logarithms of the corresponding parameters, so that
Ir" controls D3 In r? for every theta and so on. This condition is essentially a
pointwise-Lipschitz condition on two derivatives of the system parameters.

"

ConDITION H. The pointwise norm of the mappings p”, Ip”, p” and Ip
are square integrable with respect to 7°. The pointwise norm of the map-
pings r”, Ir", r” and Ir"” are square integrable with respect to k%, and & %r°
For z in E, let p(z) denote the minimum eigenvalue of the nonsingular
matrix v (2)y(z). If f denotes the mapping (x,y, z) —

[b”(x)]lcu(x Yl b”(y)] ’Z(z) then the mapping x — || f(x, x, x)|| is inte-
grable with respect to u, and °, the mappings (x, y) — || f(x, x, )|, (x, y)
- || f(x, y, x|l and (x, y) = || f(x, y y)|l are integrable with respect to (u, +
7°%) X (py + 7°). The mapping (x, y, z) — || f(x, y, 2)|| is integrable with re-
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spect to the threefold product measure of u, + 7° with itself. Similarly, if f
denotes the mapping

d

(x,5,2) > X [0"(x)],ci;(x, ) [0"(2)];07%(2),

i,j=1

then the mapping x — ||| f(x, x, x) ||| is integrable with respect to u, and 7°,
the mappings (x, y) = [l f(x, x, I, (x,3) = |l f(x,y, )| and (x,y) —
Il f(x, v, Yl are integrable with respect to (u, + 7°) X (u, + 7°). The
mapping (x, y, z) = |l f(x, y, 2) ||l is integrable with respect to the threefold
product measure of u, + 7° with itself.

This completes our additional conditions on the system parameters. We
show next that they are sufficient for the existence of observed information
and its explicit representation as a stochastic integral on the particle process.

Information. The information process here refers to minus the second
derivative of the log-likelihood process. In particular, if 6 — LY is twice
continuously differentiable for every ¢ in R_, then the information process
refers to the process t > —DALY for every theta. The observed information
over our statistical model is then the mapping 6 > —D2 L.

Under the regularity conditions above, the next proposition shows that
there exists an information process, which is calculated explicitly in the proof.
The proof relies on arguments in Phelan (1996). We also appeal to the work of
Meétivier (1982) on interchanging differentiation and stochastic integration
for semimartingales.

14. PROPOSITION. We suppose that we have conditions A through H. For 0
in O, there is an information process t > —D2% LY having an integral repre-
sentation with respect to the particle process.

PrROOF. The stochastic basis is (D(M,), Z, G, P°). For 6 in ®, Proposition
13 implies that the score process ¢t — S/,
S)=(D,H®)-X{ + (DyIny®)*(u— »°),
+(DyIny* = D, ")« v — [‘dsq(M,_; h?, D,hY),
0

is a well-defined semimartingale. To get the information process, we work on
differentiating it.

Condition G implies that the coefficients in the score are differentiable
with respect to theta. In particular, for 6 in ©, there is a mapping
n = D2 In y%(n) on M, satisfying the equation

Dj:In y’(n) = (D In p?)e 81 (n)1,1(nl)
+(D022 11'1 ro)o 6_1(_7])1(_1}(771))
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where r? is again the function %k°/k°. Similarly, there is a mapping
n — DZ%y’(n) and so a mapping 1 — D% J%(n). Next, let (¢, x) — f"*(M,_; x)
denote the predictable mapping satisfying the equation

(M, )
d -2
= T [y M@y | [y (DR,

if M, (E)>0 and "’ =0 otherwise. In this case, let DZA! denote the
mapping x — f"°(M,_; x) on E for every ¢ in R,. As a process of functionals
on distributions, we then identify the process ¢ —» D% H/! with the predictable
process ¢t —» DZ:h! as a candidate for stochastic integration relative to the
continuous-martingale part of the particle process.

Our aim is to propose a formula for the information process and then verify
it. To do so, we first require the X°‘-integrability of ¢ » DA H/, the (u — v°)-
integrability of D% In y? — D%J% and two other such integrability require-
ments. Since each of the differentiated coefficients yields a matrix of order
p X p, we are referring to elementwise stochastic integration. We divide our
argument in two: one part on integrability; the other on information itself.

(i) Integrability. For 6 in ©, (6) and Condition G imply that ||DZ% In y? —
D2 J%|x v satisfies the inequality

IDZ In y® — DAJ|1*« v < K'tm®(llip"I* + I p"1I%)

+ K’/OtdsMS(kO(lllr"llz +11r 1))

for every ¢ in R,. Therefore, with reference to details in Phelan (1996),
Conditions F and H imply the P°-integrability of [|[D% In y’ — DA J°|* v?
and so the almost sure »°-integrability of D% In y’ — DZ2J? on [0,¢] X M,
for every ¢ in R,.

Next, we verify the X‘integrability of ¢t > D:2H/! and the (u — v°)-
integrability of D2 In y’. To this end, we introduce the following notation:
M2? denotes the product measure of M,_ with itself and

q(MS_ Dgzzhg,Dozzhg)
d
= [ M2*(dx,dy) L [DERI(x)]cii(x, 9)[DERU)];,
EXE i,j=1

recalling that D% A’(x) is a d-block matrix of p X p matrices. For the desired
integrability, it suffices to show that the process ¢t — £/,

t 2
&' = [(ds|q(M,_; DRI, DERL)| + [ v°(ds,dn)| D% n y* ()|,
0 [0,¢1XM 4
is integrable with respect to P° for every ¢ in R,.
First, we simplify and bound the integrand in the first term of £ In
particular, the calculation of Proposition 24 in Phelan (1996), the theory of
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Moore—Penrose pseudoinverses and the spectral theory of symmetric matri-
ces yields the inequality

la(M, ; DY, D2RY)|

<

d
M (dx,dy, dz) ¥ [DEb(x)] e (%, y)[ DR (9)];072(2)

i,j=1

for the first term of &, where M 2? denotes the threefold product measure of
M,_ with itself and where p appears at Condition H. Now Condition G
implies the inequality

E%’ <K'['dsE’
0

d
M (dx, dy, dz) L [ (o)ley(x [ ()] *(2)

+ K'ta'llip"|* + K ['ds E°M, (k°llir"II”)
0

for every t in R,. Finally, with reference to the same calculation of Proposi-
tion 24 in Phelan (1996), we apply Conditions F and H to the right-hand side
of this last inequality to yield the desired result for &’ for every 6 in ® and
every ¢t in R,.

To complete this part of our proof, we validate two other terms for
integrability. To this end and for later use, we impose the following notation
as natural to our problem:

q(M,_;h?, DY)

d
- fExEMsf(dx)Mk(dy) , ‘2:1 [R2(x)],ei;(x, ) [ DRRIU(2)];
and
q(M,_; Dyhi, Dyhy) = fEXEMS,(dx)MS,(dy)(DOhg(x))Tc(x,y)pehg(y),

where in the second equivalence we note that D,h? is a d X p matrix
(random) function on E. These equivalences properly yield random matrices
of order p X p, yielding the mixed-partial derivatives on ©. With these
definitions, the integrability result above and that ® is a bounded set imply
the inequalities

E°['dsq(M, ;h},Dkh}) <= and E°[‘dsq(M, ;D,h!, D'A}) <=
0 0

for every 6 in ® and ¢ in R, .
(ii) Information. The integrability conditions above now imply that the
process t — I,

I/ = —(D:H®)-X{ — (D Iny?)+(pn—v°), = (D Iny’ — DR J%)* v}

+f0tdsq(Ms_;D9h§,D9h§) + /Otdsq(Ms_;hg,Dnghﬁ),
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is a well-defined semimartingale for every theta. We show that this process is
the information process of interest here.

For each ¢ in R,, the I” come of formally interchanging differentiation
with respect to theta and stochastic integration in the formula for —S/. To
show that this gives the information, Proposition 13 implies that it suffices to
show that 6§ - —S? is almost surely continuously differentiable, having
derivative I/. Our method of proof follows that of Section 34 in Métivier
(1982).

In particular, we suppose that the dimension p of ® is 1. For 6 in ©® and u
in R, the problem here is to show that there is an increasing sequence n — T,
of stopping times and a sequence n — ¢, of constants such that 7, increases
almost surely to infinity with n and such that we have the inequality

2

E° supf

t<T,”©

<c,u’

1
deH;(sfw — ¢+ ull)

for every n. Since Condition G allows us to substitute third-order Taylor
expansions for second-order ones where necessary, the calculation of Proposi-
tion 25 in Phelan (1996) readily completes the proof. O

COROLLARY. For 6 in O, there exists an information process t — I satisfy-
ing the equation

I!= —(D2H")-X{ — (D& Iny’)x(m— v°), — (D& Iny’ — DJ")* v?

s—9

+ [‘dsq(M,_; D,h?, DY) + [‘dsq(M,_; !, DARY).
0 0
The observed information over our statistical model is 6 — I3.

In anticipation of the next section, we close this section with a reexpression
of the score and of the information. For 6 in ©®, we suppose that the stochastic
basis is now (D(M,), Z, G, P?). In this case, the multivariate point process u
has compensator v’ obtained by substituting 7% and %° into (6). The process
t > X! has drift so that the process t - X;?,

(15) X% = Xio — ['ds [ M(dx)b""(x)V(2), d<D,
0 E

now defines the continuous-martingale part of the particle process. This
change of basis is locally an absolutely continuous change of measure for the
particle process. The next proposition lists its effects on the martingale
dynamics of the score and of information.

16. PROPOSITION. For 6 in O, the score process t — S! is a locally square-
integrable local martingale on (D(M,), %, G, P’) satisfying the stochastic
integral equation

(17) S¢=D,H" X' + D,In y*(p — »%),,
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following some careful reexpression of the equation in Proposition 13. Its
quadratic characteristic t — {S°), satisfies the equation

(8%, = /tdsq(Ms,;Dehg,Dehg’) + ftf v’(ds,dn) D] In y°(n)D, In y°(n)
0 0’Mm,,
for every t in R .. Its quadratic variation t — [S°], satisfies the equation
t
[S?], = fodsq(Ms,;D(,hg’,Dehg) + (D] In y°D, In y) * u,

for every t in R,. In addition, the information process t — I/,
19 = —(DRH")-XP — ((Diy")/y")+(u - v°),

+(D] In y°D, In y)# p, + fotdsq(Ms_; D!, D,h),

is a well defined semimartingale such that the process t — [S°], — I? is itself
a locally square-integrable local martingale.

This proposition is a consequence of Proposition 12 and Girsanov’s theorem
for semimartingales [Jacod and Shiryaev (1987), Theorem II11.3.24]. A proof
involves a modest amount of stochastic calculus. The proposition introduces
the three informational quantities of interest.

In the nomenclature of stochastic inference in Barndorff-Nielsen and
Sgrensen (1994), the quadratic variation is the incremental observed infor-
mation, the quadratic characteristic of the incremental expected information
and the information process of the observed information. We may simply call
them the nonanticipative, predictable and observed information. That the
score is locally square integrable and that the difference [S°] —I° is a
local martingale may be used to argue that they have the same expec-
tation—Fisher’s information.

5. Asymptotic estimation. We devote this section to maximum-likeli-
hood estimation from birth and death on a flow. The aim is for a solution to
the estimation equation

St=0

for some theta in the parameter set. The problem here is to study the
existence and distribution theory of a solution to the estimation equation as
the length T' of the chronicle increases to infinity.

The resolution of this problem is largely driven off of the asymptotic
properties of information. So we treat asymptotic information first, but refer
to Phelan (1995) for a gentler treatment of asymptotic information in the
context of an equilibrium particle process. We then devote the latter part of
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this section to the existence, consistency and limiting law of a maximum-like-
lihood estimator of the system parameter theta.

Asymptotic information. We begin with three more regularity conditions.
For differential operators, the notation and conventions here are those of the
previous section. Similarly, for any Radon measure { and positive integer &,
we let £ ®* denote the k-fold product measure of { with itself. As in Section 4,
the quantity p(z) denotes the value of the smallest eigenvalue of the symmet-
ric nonsingular matrix y'(z)y(z) for every z in E. Here the quantity o(z)
denotes the value of the largest eigenvalue of y'(z)y(z) for every z in E.

ConDITION I.  For each 6 in O, there exist the quasiinformational quanti-
ties I( p?) and I(k%) satisfying the equation

1(p") = [ 7'(dx) Dip"(x)Dyp" (x)(p" (%))

and, letting g? denote the mapping x > Djk%(x)D,k°(x)/k%(x),

I(R') = [ w"(dx)(g"(0)) + [ m'(dw)m’(dy)g"(x)8" (7).

Also, let f*° denote the mapping (x, y, z) = DJb’(x)c(x, y)D,b°(y)p~2(2)
on E X E X E. Let f*° ® f*? denote the tensor product (x, y, z, x', y', 2') —
¥ x, y, z)f* g(x', y',2") of f*? with itself on E® X E®. Label the coordinates
x,¥,2,x',y,2 with the labels 1,2,...,6, respectively. For each j=
1,2,. 6 let V6 denote a generic part1t10n of the set {1,2,...,6} into j
nonempty subset(s) An example of VJ$ is {{1,2},{3,4,5,6}}. Then let 6Ve
denote the mapping on functions on E6 into functions on E’ obtained by
enforcing equality among the arguments of the original function among the
coordinates in the subsets of V6 Using the example above, &y %% is the
mapping (x, y) = f*%x, x, y, y, v, ¥) on E2. Using this notation, there exists
a quasiinformational quantity I*(5?) satisfying the equation

6
I*(b") _ Z Zﬂ_em(gvﬁ(f*e ®f*6)).

j=1vs

Next, for any positive integer m, we introduce the partitions V" of the labels
{1,..., m} into j nonempty subsets and the operators Sym on funct10ns on E™
into functions on E’. In this case, let [{ denote the mapping
(x,y) = Djb%(x)e(x, y)D,b%(y) on EZ2. For each m =0,1,2,..., let (¢?)®™
denote the m-fold tensor product of o2 with itself; of course (o2)®° = 1.
Using this notation, there exists a positive-definite matrix B?(1/b) satisfying
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the equation

1 2n+1 2m+2 ( 1\2+/
2(5)- L " T (4
b m=0 Jj=1 b
X ) 7T®j6Vj2m+z(fi ®(0'2®0'2)®m)

‘/jZm+2
1
+1I(p°) + Zl(k")
for some, possibly infinite, n, where b is the bound of the next Condition J.

CONDITION J. There exist constants  and a such that > 2% > a > 0 for
every 6 in O.

ConpITION K. For each 6 in © and on the probability space (Q),.%7, P?), the
Brownian flow F = (F,,),0 < s < ¢t < », preserves 7’ on E. For every bounded
measurable function having compact support in E, we then have the equa-
tion

(mF5t)g = [ m(dx)g"(Fyx) = [ m'(dx)g’(x) = m'g
E E
almost surely for every ¢ in R,.

This completes the conditions. Condition J supplants Condition D, requir-
ing additionally a lower bound on the killing functions. Kunita (1990) treats
measure-preserving Brownian flows in his Section 4.3. Because of his Theo-
rem 4.3.2, Condition K supplants Condition F. Now for every 6 in O, on the
probability space (,.%, P?), the k-fold product measure 7?®* is an invariant
measure of the k-point motion on the flow.

For each 6 in O, we recall the gathering of informational statistics at
Proposition 16. On the stochastic basis (D(M,), Z,G, P?), the score is a
locally square-integrable martingale. Its quadratic variation ¢ — [S?], is the
incremental observed information; its quadratic characteristic ¢ — {(S?%), is
the incremental expected information. The process ¢ — [S’], — I/ is a zero-
mean martingale. For each ¢ in R, the quantity E’S?'S/ is the expected
information. This next proposition shows that the temporal averages of these
statistics converge to a positive-definite matrix.

18. PROPOSITION. We suppose that we have the regularity conditions A
through K. For each 0 in O, there is a positive-definite matrix 3% of rank p
such that we have the limits
limz 1(S%), = lim¢ [ S?], = lim¢ I} = lim¢ 'E°S/TS? = 37

t—

t— t— t—

almost surely on (D(M,), &, G, P?).
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Proor. We fix 6 in O. The stochastic basis is (D(M,), Z,G, P?). The
atoms of M, constitute the initial particles on the flow. By virtue of the lower
bound in Condition J, their contribution to the asymptotic calculation below
vanishes almost surely in finite time. We suppose therefore that M, = 0, so
that the renewal argument below is conditional on this initial condition.

By virtue of Proposition 16, the score process t — S/ is a locally square-in-
tegrable local martingale. By virtue of Theorem 23.4(3°) in Métivier (1982),
we have the equalities

E’SLTSY = E(S%yp = E°[S°], = E'IL

for every stopping time 7. This consequence of the martingale property
sharply reduces our computational burden below.

In particular, that 7 is a finite measure and the lower bound in Condition
J imply that there is a sequence £ — T, of regeneration times for the particle
process; compare with the argument in the proof of Lemma 4.10 in Cinlar and
Kao (1992b) and Definition 9.2.18 in Cinlar (1975). The distribution of T is
not arithmetic and ET, is finite. If, for example, R is the stopping time
inf{¢: M,(E) > 0}, then T is the stopping time inf{z > R: M,(E) = 0}. We put
T = T, for future purposes.

In light of the martingale property, we claim that it suffices to show that
E%S%); exists and is positive definite. The desired limits are then a conse-
quence of the regenerative property in Cinlar [(1975), 2.18b of Definition
9.2.18] and the strong law of large numbers for regenerative phenomena.

Let t — ¢ denote the p X p matrix-valued process satisfying the equation

(! = q(M, ; D,hY, Dyh!) + I(p*)
+ [ (R“M,)(dx) D] (x) D k" (x) (k" (x)) ",

where q(M,_; D,h?, D,h!) appears first near the close of part (i) in the proof
of Proposition 14 and I( p?) appears in Condition I. Naturally, (S?), satisfies
the equation

Setz td 0
(8% [Oszs

for every ¢ in R,.
We fix the vector v in R? of unit length. For the stopping time T and the
quadratic form v™(S?),v, we have the equation

Ev{(S" v

= fmdsEongsevl{Tzs)
0

= fmdsEequ(Ms,;Dghg,Dehg)vl{TZs} + v I(p?)vE’T
0

+fooodsE"vT/E(k"Ms_)(dx)ng"(x)Dek”(x)(k"(x))_zvl{TZs}.
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To show that this expectation is finite, therefore, it suffices to do so for the
first and third term on the right-hand side of the second equality.

Thus, we exhibit two finite constants B and K, for example, such that we
have the inequalities

E’[v'q(M,_; D,h%, D,h" )]’ < B
and

2

E"[UTf(keMs)(dx)Dnge(x)D(,k"(x)(ke(x))2v <K

for every s in R,. We then show that the mapping s - P%(T > s)'/? is
integrable on R, . That the expectations above are finite as desired is then a
consequence of Holder’s inequality.

In demonstrating the bounds above, we move freely between the canonical
setting (D(M,), Z, P?) with its expectation E’ and the probability space
(Q,7,P?) of Section 2 with its expectation E’. In each space, we maintain the
notation ¢ — M, for the particle process.

Let P2 denote conditional probability given the sigma algebra as generated
by the flow. For each s in R, Proposition 2.13 in Cinlar and Kao (1992b)
implies that the law of M, under P/ is that of a Poisson random measure
having mean pu, satisfying the equation

wf=EGM,f= [drf Tr"(dx)f(Frsx)exp(—/ dwk"(Frwx))
0 E r
for every continuous function f having compact support in E, recalling that
M, = 0 here. Subsequently we will repeatedly use this fact and essential
results on moment measures of Poisson processes.

First, let g’ denote the mapping on E as defined in Condition I. Let g/
denote the mapping x — v'g?(x)v and let g/ ® g’ denote the tensor product
(x,y) » gi(x)gl(y) on E X E. Proposition 2.13 in Cinlar and Kao (1992b),
Example 1.15 in Chapter 1 of Karr (1986) and Conditions J and K imply the
following inequalities:

2
B o7 (R0, ) ) DT () Dy ) (7 )
=E0M®2g0®g6
B[ dr [7"(dx)(g"(F..x)) (—Sdk"F )
fo r/'n' (dx)(gl(F,..x)) exp fr wk'(F,,x)
+ B[ dr [ du[w'°*(dx,dy)g! ® g!(F,,x,F,
/;) r/;) uf’iT ( X y)gy gu( rsx usy)

Xexp(—fsdwke(F,wx) - fsdsz(Fuzy))

<a '0'I(k)v +a v I?(k%)v
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for every s in R, , where I(k?) appears in Condition I. This exhibits one of the
desired bounds.

Next, let f*? denote the mapping on E X E X E as defined in Condition I.
Let £* denote the mapping x — v'f*’(x, y, z)v and let £’ ® £* denote the
tensor product on E? X E3. By virtue of the argument in the proof of
Proposition 24, part 3, in Phelan (1996), we have the following inequality:

E°[v'q(M,_; D,h’, D,h!)o]* < B[ M23f:"]" = BM2SF" @ £

By virtue of Proposition 2.13 in Cinlar and Kao (1992b) and Exercise 5.4.5
and Example 7.4(a) in Daley and Vere-Jones (1988), Conditions I, J and K
imply the inequality
6
E'[v'q(M,_; D,h!, Dhl)v]” < ¥ a™/ X6y (£ @ £2"))

j=1 v;

for every s in R, using the notation of Condition I. This exhibits the second
desired bound.

Therefore, it remains to show that s > PT > s)'/? is integrable on R,.
We again appeal to the proof of Lemma 4.10 in Cinlar and Kao (1992b). In
particular, on the stochastic basis (Q,.7,H,P?), let t > M,(w) denote the
particle process of (1), but with % replaced by the constant a for every w in ().
Recalling that M, = M, = 0, we introduce, as above, the stopping time
}E = inf{t: M,(E) > 0} and the stopping time T = inf{t > R: M,(E) = 0}. Since
T exceeds or equals T almost surely on (Q,.%7,P?), it suffices to show that
s > P%T = s)'/? is integrable on R, .

We show that P%T > s) decays exponentially fast for all sufficiently large
s. That is, the process ¢t > M/(E) is an M /M /= queue having arrival rate
¢ = 7°(E) and expected service time 1/a. The time T equals the sum of an
exponential random variable with mean 1/c¢ and the length of the first busy
period of the queue. In the theory of coverage processes, the length of a busy
period in an M /M /o queue is the length of a clump in a Boolean model on
the line with parameters ¢ and 1/a. We rescale this model to one with
Poisson intensity cs and mean segment length 1/as and consider the proba-
bility of complete coverage of the unit interval [0, 1]. By virtue of Theorem 2.5
in Hall (1988), taking ¢ = 1, A = ¢s and « = 1/as in his (2.21), we have the
heavy-traffic limit P%T > s) = exp(—sc exp(—c/a)) for all sufficiently large
s, implying the desired integrability.

We next show that the quantity E°v™(S?)rv is strictly positive. Let
t > g(M,) denote the mapping ¢ — v',. The regenerative property implies
that its expectation satisfies the renewal equation

t
E'g(M,) = E'g(M)1g., + [ P(T € ds)E'g(M,.,).
By virtue of the demonstration above and Proposition 9.2.16(c) in Cinlar

(1975), the leading term on the right-hand side above is bounded by a directly
Riemann-integrable function. Therefore, by virtue of the quasi-left continuity
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of the particle process, Cinlar’s Proposition 4.2.16(b) implies that the leading
term itself is directly Riemann integrable. Since the distribution of T is not
arithmetic, the key renewal theorem therefore implies the limit

}er;Eeg(Mt) = EQTEGUT<SG>TU.
However, for the leading term in g(M,) = v v, we have the inequality
1
v'g(M,_; D,h?, D R’ vz—vT[ M2?(dx,dy) fl(x, v,
a(M,_; D,k Dyhi)o = — YR [, M*(dx, dy) i, 7)

where f¢ appears in Condition I. We therefore approximate 1/(1 +
[M,_o?]?) from below with 2n + 1 terms in its Taylor series and find that
Proposition 2.13 in Cinlar and Kao (1992b), manipulations on the moment
measures of the Poisson process and Conditions I, J and K imply the
inequality

1
limE°g(M,) = UTBQ(Z)U >0
t— >

for every v in R? of unit length. Thus, E%(S?); is positive definite. This
completes the proof. O

As seen in the proof, the work of Cinlar and Kao (1992b) inspired the
renewal argument above. We notice that the regenerative property makes the
limiting information deterministic, putting our case of stochastic inference
among the ergodic ones. This fact simplifies the asymptotic distribution
theory below.

Distribution theory. We show here that there exists asymptotically a
consistent maximum-likelihood estimator. Its limiting law is Gaussian. We
draw our treatment from the program for such inference in Barndorff-Nielsen
and Sgrensen (1994). Because of Proposition 18, we do not invoke the full
generality of their program, but use its simpler form for ergodic inference.

For each 60 in and ¢ in R,, let D%¢) denote the diagonal matrix
containing the diagonal elements from the information matrix E%S?),. The
random variable Z is Gaussian on R” having zero mean and identity
covariance matrix.

19. ProPOSITION. We suppose conditions A through K. For 6 in O, the
stochastic basis is (D(M,), Z, G, P?Y). For sufficiently large t, there exists a
solution 6, to the estimation equation S = 0, & € O, such that we have the
convergence

A

6, —> 0
in probability as t increases to infinity. Finally, we have the weak limit
(S%*(6,-0)->2Z

as t increases to infinity.
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Proor. We approach this problem from the general theory of filtered
statistical models in Barndorff-Nielsen and Sgrensen (1994), thereby extend-
ing their class of examples to a spatial stochastic process.

It suffices to verify conditions 2.1, 2.2, 2.3, 3.1, A.2 and A.3 in Barndorff-
Nielsen and Sgrensen (1994). Since Proposition 18 implies that the diagonal
elements of D°¢) approach infinity with ¢ at the same rate, the desired
result then follows from Theorem A.1 and (3.44) in Barndorff-Nielsen and
Sgrensen (1994).

Fix 6 in ® and the stochastic basis (D(M,), £, G, P°). By virtue of Proposi-
tion 16, the score process ¢t — S/ is a locally square-integrable local martin-
gale, the information process ¢ — I is a semimartingale of finite expectation
and t —» I —[S?], is a local martingale. We thus have Conditions 2.1, 2.2
and 2.3 in Barndorff-Nielsen and Sgrensen (1994). Moreover, by virtue of
Proposition 18, we have a, ¢ and d of Condition 3.1.

We turn to the infinitesimality condition 3.1.b in Barndorff-Nielsen and
Sgrensen (1994). In our case, however, we verify a different but still sufficient
condition for infinitesimality. The goal is for a central limit theorem for the
normalized score. For each ¢, the natural choice here is to embed s —» S¢,
0 < s <t, into a square-integrable martingale X’ = (X/), 0 <u < 1, such
that X! = S? for every u so that X' inherits its characteristics from the
score process in a natural way. For example, let »*' denote the compensator
on the discontinuities of X*. In light of our Proposition 18, to get a central
limit theorem for the normalized score, we verify the Lindeberg—Feller
condition

1,2 Xt _ 41 0|2 0
N s v = 6D In Yy T Lp 1o yops oy ¥ ¥ 2p0 O

as t increases to infinity for every £ > 0 [cf. Jacod and Shiryaev (1987),
VIII.3.23, page 435]. On the other hand, Proposition 18 implies

XX ] =t S], »pe 3¢ and ¢t X', X' =t 1S, 5ps 2,
namely, (i1) and (iii) of VII1.3.24 in Jacod and Shiryaev (1987) with ¢ = 1. As
in the proof of VIIL.3.22 in Jacod and Shiryaev (1987), this implies the desired
Lindeberg—Feller condition above.

We finally verify conditions A.2 and A.3 in Barndorff-Nielsen and Sgrensen
(1994). Proposition 18 and the regenerative property imply that there exists a
positive-definite matrix B’ such that [D%#)]"1/2{(S?),[D%¢)]"'/2 - B? in
probability as ¢ increases to infinity. So, we introduce the martingale ¢t — G/,

G/ =[S"], - I,
on (D(M,), &, G, P?). For strictly positive a, we introduce the set
B(a,t) ={0":|B2D*(t)"/*(0' - 0)| < a}
in O. The problem here is to show that two quantities

sup || D°(¢) *GrD(¢) V|
0'eB(a,t)
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and

sup | D(¢)"*[8"],D%(t) /* - BY|
0'€B(a,t)

converge in probability to zero as ¢ increases to infinity. Since Proposition 18
implies that we have the limits

|D?()?G!D0(£) 2| —p0 0
and
|D(t)""*[8°1,D°(¢) "> = B?| »ps 0

as t increases to infinity, it suffices to estimate the distances between G/ and
G/ and between [S’], and [S?], on B(a, t).
First, the quadratic variation ¢ — [ S "]t satisfies the equation

t t
[S°], = [‘dsq(M,_; D,h%, D,h%) + [ [ u(ds,dn)D] In y°(n)D, n y*(n)
0 07/M,,
using our convention for q(M,_; D,h¢, D,h?) from part (i) of the proof of
Proposition 14. For any 6’ in B(«, t), we have the equality
q(M, ; Dyh{, Dyhl) = q(M, ; Dyh{, Dyhy)
= q(M,_; D,h% + Dyh?, D,hl — D, RY).
Simplifying the right-hand side here, we find that Condition G and that the
diameter [|®|| of ® is finite imply the inequality
la(M,-; D,h{ + Dk, D,k = Dyhf) |
<lo—o'IK'lOl

X

d
JMEH(dx,dy,dz) X [6"(x)]sei,(x, ) [0 ()]0 2(2)

i,j=1

More directly, Condition G implies that % — D, In y”(n) satisfies a Lipschitz
condition for every n in M_,. Therefore, we have the inequality

”[Sg]t - [Se,]t”
< 16— 0IK'||O]

xlfotds

[ utds,dn)(l 508 () 1 (n(E))

d
M3 (dx,dy, dz) ¥ [b"(x)]sei(x, 9)[8"(9)];072(2)

i, j=1

+r e 87 (=) |1 y(n(E)))

for every 6’ in B(ea, t) and ¢ in R, . Since the diameter of B(«, ¢) decreases to
zero as ¢ increases to infinity, this last inequality, Proposition 18, its regener-
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ative argument and the integrability Condition H imply that the second
quantity

-1/2 4 -1/2
sup [ D7) [871,D°(t) " - B,
0'eB(a,t)
converges in probability as desired to zero as ¢ increases to infinity.
Last, we have the inequality

IG? = G/ <[[S°1, = [S" LIl + 177 — 1)

for every 6’ in B(«, ¢). By virtue of the argument above, therefore, it suffices
to get an analogous Lipschitz-type estimate for the second term here. How-
ever, an analogous argument, this time using the thrice differentiability of
the system parameters and the controlling functions ", p” and Ir"”, readily
yields the desired estimate. In addition, again by virtue of Proposition 18, its
regenerative argument and the integrability Condition H, the quantity of
interest,

~1/2 o -1/2
sup | D°(t) *G!Do(¢) 2,
0'eB(a,t)
converges in probability as desired to zero as ¢ increases to infinity. This
completes our proof. O

We chose {(S?), as normalizer in the pivot {(S?)}"*(6, — 6). Because of
Proposition 18, there are several equivalent choices here. In a given
parametrization, one of course chooses the simplest. Finally, here is a corol-
lary that provides for the construction of confidence sets for theta.

COROLLARY. Let x denote a random variable with the chi-square distribu-
tion on p degrees of freedom. For sufficiently large t, there exists almost surely
a maximum-likelihood estimator 0,. In this case, let 0, be a convex combina-
tion of 6 and 6,. We then have the weak limit

(8, — 0)'17(9, - 0) - x

as t increases to infinity. Proposition 19 implies that the limit attains at
6, = 6,.
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