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ASYMPTOTIC LIKELIHOOD ESTIMATION FROM BIRTH
AND DEATH ON A FLOW 1

BY MICHAEL J. PHELAN

University of Pennsylvania

Birth and death on a flow refers to a particle system on a Brownian
flow. Particles are born in a point process and move on the flow subject to
position-dependent killing. They die eventually and leave the flow. The
particle process is a measure-valued Markov process tracking these mo-
tions. Its law depends on the distribution of births, the coefficients of the
flow and the rate of killing. We treat asymptotic likelihood estimation of
these parameters from chronicles of the particle process as observed over
a long period of time.

1. Introduction. In their 1992 model of mass transport, Çinlar and Kao
imagined particles on a turbulent fluid flow. With a Brownian flow describing
the fluid-flow map of this fluid over its domain, a Poisson process regulates
the birth of particles that live and die there. The particles move with the
motion of the flow. They dissipate in response to position-dependent killing or
decay. Eventually, they die and leave the flow.

Ž .Çinlar and Kao 1992a, b studied the configuration of live particles on the
flow in terms of a measure-valued Markov process. The law of this particle
process depends on the distribution of births, the coefficients of the flow and
the rate of killing.

Ž .Phelan 1996 developed likelihood methods for parametric estimation of
the system parameters from chronicles of the particle process as observed
over a fixed period of time. In this work, we treat asymptotic, maximum-like-
lihood estimation from chronicles of the particle process as observed over a
long period of time. As in our earlier work, the martingale dynamics over the
particle process play a central role.

Ž .Our results recall in particular the work of Feigin 1976 , Basawa, Feigen
Ž . Ž .and Heyde 1976 , Godambe and Heyde 1987 , Barndorff-Nielsen and

Ž . Ž .Sørensen 1994 and Sørensen 1989, 1990 on likelihood methods for stochas-
tic processes. The addition here lies in treating a spatial stochastic process.

Ž .2. Birth and death on a Brownian flow. We recall Phelan’s 1996
statistical model of birth and death on a Brownian flow. Of course, we take

Ž .our description of the process itself from that of Çinlar and Kao 1992 . The
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Ž .probability space V, HH, P supports all of the random variables that appear
in the following text. The set E denotes Euclidean space of dimension d.

A particle system. The particle system is a countable system of particles
Ž .in motion on a Brownian flow F s F , 0 F s F t F `, on E. The life processst

L is an independent Poisson random measure on R = E = R whose atomsq q
Ž .identify particles that enter, live and die on the flow. That is, let S, X, U

denote an atom of L, identifying a generic particle. Our interpretation is that
the particle enters the flow at random time S and random position X. The
trajectory t ª F X describes its motion on the flow. This motion stops whenSt
the particle dies and leaves the flow at time T,

t
T s inf t ) S : dr k F X ) U ,Ž .H Sr½ 5

S

where U is the particle’s intrinsic lifetime and k is the position-dependent
rate of killing.

The particle process t ª M is a Markov process on the space of countingt
measures on E. It tracks the position of the living particles on the flow.

Ž .According to Çinlar and Kao’s 1992b master formula, the particle process
satisfies the equation

t
1 M f s L ds, dx , du f F x 1 s 1 dr k F xŽ . Ž . Ž . Ž . Ž .H Ht st w0, t x w0, u. srž /s

for every function f in the space C of continuous functions having compactK
support in E. Since all particles move on the same flow, contemporaneous
particles move dependently.

We suppose that F is a Brownian flow of homeomorphisms on E having
infinitesimal mean b and infinitesimal covariance c. The mean b is a
mapping from E to E. We suppose that there is a mapping g from E to the

Ž . Ž . TŽ .space of d = m matrices such that c is the mapping x, y ª g x g y ,
where T denotes transpose. The coefficients b and g satisfy the global
Lipschitz condition

< <2 b x y b y q g x y g y F K x y yŽ . Ž . Ž . Ž . Ž .
and the linear growth condition

< <3 b x q g x F K 1 q xŽ . Ž . Ž . Ž .
Ž .for some constant K. We refer to Kunita 1990 for more on flows.

The life process L is a Poisson random measure on R = E = R . Its meanq q
measure l satisfies the equation

� 4 yu yu4 l ds, dx , du s d s m dx du e q ds p dx du eŽ . Ž . Ž . Ž .Ž .0 0

for every s G 0, x g E, u G 0, where d is the Dirac measure at zero and m0 0
and p are finite measures on E. Thus, the placement of the initial particles
on the flow has distribution m on E. Thereafter, particles enter the flow at0

Ž .rate p E while having distribution p on E. The intrinsic lifetime of all
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Ž .particles is exponential with mean 1. We refer to Karr 1986 for more on
random measures.

For later reference, we notice that the one-point motions are diffusions
having Markov generator A that satisfies the equation

d d d 2 f 1  f
5 Af x s b x x q c x , x xŽ . Ž . Ž . Ž . Ž . Ž .Ý Ý Ýi i j x 2  x  xi i jis1 is1 js1

for every function f having two continuous derivatives.

A statistical model. A statistical model here refers to a sample space, an
indexed family of probability laws for the particle system and an observa-
tional scheme.

Ž .The particle process takes values in the space M , MM of bounded count-b b
ing measures on E with its Borel sigma algebra relative to the vague

Ž .topology. Its sample paths belong to the Skorokhod space D M of right-con-b
tinuous functions from R to M having vague limits from the left. Theq b

Ž .coordinate mappings on this space generate a filtration G s GG , t G 0, andt
Ž Ž . .the filtered space D M , GG, G . This space is the canonical setting for theb

particle process and our sample space.
We specify a family of laws for the particle process as indexed by a

finite-dimensional parameter on the system parameters themselves. The
parameter set Q is an open, bounded subset of Euclidean space of dimension
p. As a convenience, we assume it contains the origin as an interior point. The
zero theta is the parameter of reference.

Ž u u u .For u in Q, we introduce the system parameter b , c, p , k and the
Ž u . Ž .probability space V, HH, P for the life-flow pair L, F ; the covariance c is

intentionally free of theta. The life process L is a Poisson random measure
u Ž . uhaving mean measure l satisfying 4 with p as the distribution of births.

The flow F is an independent Brownian flow having infinitesimal mean bu

and infinitesimal covariance c.
The life-flow pair and the killing function ku induce the particle process

u Ž .t ª M as at 1 . The particle process has sample paths in the Skorokhodt
Ž .space D M , so we may speak of its law there. The law of the particle processb

u u u Ž u .y1refers to the probability P , namely, P s P ( M , on the filtered space
Ž Ž . .D M , GG, G .b

For a strictly positive time T, the observational scheme is to observe the
w xmapping t ª M on 0, T , yielding a chronicle of the particle process or thet

sigma algebra GG as data. We suppose that we know the law of these dataT
only up to theta and consider the problem of estimating theta from GG . OurT
approach is maximum-likelihood estimation from the score function as de-

Ž .rived in Phelan 1996 . We study this problem in the limit as T approaches
infinity.

Ž .3. Likelihood estimation. Phelan 1996 considered the problem of
maximum-likelihood estimation from birth and death on a Brownian flow. We
recall his representation of the likelihood and the score function here.



M. J. PHELAN1164

Likelihood. We may view the counting measures on E as a subset of the
space of distributions on E. In doing so, we may view the particle process as a
semimartingale on the space of distributions. This view is important because
it supports a stochastic calculus over the particle process, a special case of the

Ž .calculus in Ito 1984 . Indeed, each of the likelihood, the score and theˆ
information matrix have representations in terms of stochastic integrals with
respect to the martingale parts of the particle process.

To introduce this, let DD denote the space of infinitely differentiable
functions having compact support on E. The dual DDX of DD is the space of
distributions on E. We identify a Radon measure m, for example, with a
distribution that takes functions in DD to their integral with respect to m. As

X 0U 0 Ž .an operator on DD , let A denote the adjoint of the operator A of 5 with
b s b0. For T in DDX, the distribution A0UT is the distribution satisfying the

Ž 0U . Ž 0 .equation A T f s T A f for f in DD.
Ž Ž . 0.On the stochastic basis D M , GG, G, P , the particle process is by con-b

struction right continuous with left limits in the topology of vague conver-
gence. So for t ) 0, let M denote the vague limit of M as s increases to tty s
and let D M denote the signed-Dirac measure M y M on E. The sett t ty
�Ž . 4s, D M : s ) 0, M / M then induces a multivariate point process m ons s sy
R = M , where M denotes the space of signed-Dirac measures on E. Itsq sd sd
compensator n 0 is a predictable random measure on R = M satisfying theq sd
equation

n 0 dt , dhŽ .
0 y1 0 y1s dt p (d dh 1 h1 q k M (d ydh 1 h1Ž . Ž . Ž . Ž .Ž .�q14 ty �y14

6Ž .

for every signed-Dirac measure h in M , where d is the mapping from E tosd
the space of Dirac measures on E.

Therefore as a process on DDX, the particle process satisfies the stochastic
integral equation

t0 c 0M s M q B q X q m y n ds, dh h ,Ž .Ž .H Ht 0 t t
0 Msd

t U0 0 0 0B s ds p q k M q A M , t G 0,Ht sy sy
0

7Ž .

implicitly defining the continuous-martingale part t ª X c and the discrete-t
martingale part on the compensated point process m y n 0. The continuous-
martingale part t ª X c associates with a characteristic q satisfying thet
equation

8 q M ; f , w s M dx M dy f x c x , y w yŽ . Ž . Ž . Ž . Ž . Ž . Ž .Hsy sy sy
E=E

for every f and w in DD.
To specify the likelihood, we need to integrate with respect to X c and

m y n 0. So, we need the following regularity conditions.
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CONDITION A. The birth measures p u and p 0 are finite measures on
Ž . u u Ž . 0E, EE and p admits a density x ª p x with respect to p for every u
in Q.

CONDITION B. The drift coefficient bu satisfies the global Lipschitz condi-
Ž . Ž .tion of 2 and the linear growth condition of 3 for every u in Q. The

coefficient b0 is zero; otherwise replace bu with bu y b0 in the sequel.

CONDITION C. The square root of c, namely, g , satisfies the global Lips-
Ž . Ž .chitz condition of 2 and the linear growth condition of 3 . In addition, we

Ž .suppose that x ª g x is of full column rank on E. The rank condition
Ž .ensures the existence of a generalized inverse at 10 .

CONDITION D. The killing function ku is a Borel function such that
b G ku G 0 on E for some constant b, and ku and k 0 vanish on the same set
for every u g Q.

This ends the conditions for now. In these conditions and in our treatment
below, we treat the zero theta as a reference parameter. To us this seems
simpler than carrying a u throughout the discussion.0

Ž .We introduce the coefficients of the prelikelihood in Phelan 1996 . For u in
u Ž .Q and referring to Conditions A and D, let h ª y h denote the mapping on

M satisfying the equationsd

ku (dy1 yhŽ .
u u y19 y h s p (d h 1 h1 q 1 h1 ,Ž . Ž . Ž . Ž . Ž .�q14 �y140 y1k (d yhŽ .

where dy1 maps Dirac measures on E to their atoms and 0r0 is by conven-
Ž . u Ž .tion zero. Referring to Condition C, let t, x ª f M ; x denote the pre-ty

dictable mapping satisfying the equation
y2

u T T u10 f M ; x s g x M du g u g u M dz g z b zŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H Hty ty ty
E E

Ž . u uif M E ) 0 and f s 0 otherwise. In this case, let h denote the mappingty t
u Ž .x ª f M ; x on E for every t in R . As a process of functionals onty q

distributions, identify the coefficient t ª Hu with the predictable processt
u Ž . u Ž . u Ž .t ª h and the random field h ª J h with the mapping h ª y h y 1. Ast

a result, we introduce the process t ª j u:t

t t 2u u u 0 u11 j s ds q M ; h , h q n ds, dh y h y 1 .Ž . Ž . Ž .Ž .Ž .H H Ht sy s s
0 0 Msd

For u in Q, one says that P u is locally absolutely continuous with respect
0 Ž Ž . . uto P on D M , GG, G whenever the restriction of P to GG is absolutelyb t

continuous with respect to that restriction of P 0 for every t in R . In thisq
case, there is a density process t ª Zu, for example, for local change oft
measure from P 0 to P u. The random variable Zu is then the likelihood of P u

T
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relative to P 0 on the data GG . The mapping u ª Zu is the likelihood functionT T
over our statistical model.

Ž .The next proposition summarizes some results from Phelan 1996 on
Ž .likelihoods for birth and death on a Brownian flow. The centered dot ?

notation denotes stochastic integration for measure-valued processes as de-
Ž . Ž .fined in Ito 1984 ; the centered asterisk ) stands for multivariate pointˆ

Ž .processes as defined in Jacod and Shiryaev 1987 .

12. PROPOSITION. We suppose that we have the regularity conditions A
through D. For u in Q, we suppose that the process t ª j u is integrable witht
respect to both P u and P 0. The probability measure P u is then locally,

0 Ž Ž . .absolutely continuous with respect to P on D M , GG, G . In addition, thereb
is a locally square-integrable martingale t ª Y u,t

Y u s Hu ? X c q Ju ) m y n 0 ,Ž .t t t

Ž u .such that its Doleans]Dade exponential t ª EE Y ,´ t

t1u u u u u uEE Y s exp Y y ds q M ; h , h 1 q DY exp yDY ,Ž . Ž . Ž . Ž .ŁHt t s s s s s2ž /0 sFt

Ž Ž . 0. Ž u .is a local martingale on D M , GG, G, P such that EE Y s 1. The densityb 0
u u 0 Ž u .process t ª Z between P and P is then the process t ª EE Y and thet t

Ž u .likelihood over our statistical model is the mapping u ª EE Y .T

Ž .We refer to Phelan 1996 for regularity conditions and demonstration of
this result.

Score. The score function is the derivative of the natural logarithm of the
likelihood with respect to theta. The log-likelihood process t ª Lu referst
naturally to the process t ª ln Zu for every theta. If u ª Lu is differentiablet t
for every t in R and D denotes differentiation with respect to theta, thenq u

the score process refers to the process t ª D Lu for every theta. The scoreu t
function is then the mapping u ª D Lu .u T

We begin with a regularity condition on the system parameters that allow
such differentiation. In particular, let g denote a generic function from
Q = E into R or into E. Let D denote the first-order differential operator onu

Ž .functions on Q. For example, if u ª g u , x is differentiable with respect to
Ž . Ž .theta for every x in E, then D g u denotes the mapping x ª D g u , xu u

on E.
For real-valued functions, our convention is that the operator D inducesu

the gradient vector as arranged in a row vector. For E-valued functions, our
convention is that D induces a matrix of order given by the coordinateu

dimension of E by that dimension of Q, giving a rowwise arrangement of
gradients.

CONDITION E. In the sense defined in the preceding text, the mappings
u ª bu, u ª pu, u ª ln pu, u ª r u, where r u s kurk0, and u ª ln r u are
twice continuously differentiable for every theta.
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Ž Ž . 0.The stochastic basis is D M , GG, G, P . For u in Q, Proposition 12b
implies that there is a log-likelihood process t ª Lu satisfying the equationt

t1u u c u u u 0 u u 0L s H ? X y ds q M ; h , h q ln y ) m y n q ln y y J )n ,Ž . Ž .Ž .Ht t s s s t2 t
0

after modest reexpression of ln Zu.t
Condition E implies that the coefficients in the log-likelihood are differen-

tiable with respect to theta. In particular, for u in Q, there is a mapping
u Ž .h ª D ln y h on M satisfying the equationu sd

D ln yu h s D ln pu (dy1 h 1 h1Ž . Ž . Ž .Ž .u u �q14

q D ln r u (dy1 yh 1 h1 ,Ž . Ž .Ž .u �y14

where r u is again the function kurk0. Similarly, there is a mapping h ª
u Ž . u Ž . Ž . XuŽ .D y h and so a mapping h ª D J h . Next, let t, x ª f M ; x denoteu u ty

the predictable mapping satisfying the equation
y2

Xu T T uf M ; x s g x M du g u g u M dz g z D b zŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H Hty ty ty u
E E

Ž . Xu uif M E ) 0 and f s 0 otherwise. In this case, let D h denote thety u t
XuŽ .mapping x ª f M ; x on E for every t in R . As a process of functionalsty q

on distributions, we then identify the process t ª D Hu with the predictableu t
process t ª D hu for the purpose of representing a stochastic integral inu t
subsequent text.

13. PROPOSITION. We suppose that we have the regularity conditions A
c u Ž 0.through E. We suppose the X -integrability of t ª D H , the m y n -u t

integrability of D ln yu and the n 0-integrability of D ln yu y DuJu for everyu u u

Ž Ž . 0.theta. On the stochastic basis D M , GG, G, P , there is then a well-definedb
semimartingale t ª Su,t

Su s D Hu ? X c q D ln yu ) m y n 0Ž .Ž . Ž .t u t u t

t
u u 0 u uq D ln y y D J )n y ds q M ; h , D hŽ . Ž .Hu u t sy s u s

0

for every theta. Next, we suppose there is an increasing sequence n ª T ofn
stopping times and a sequence n ª c of constants such that T increasesn n
almost surely to infinity with n and such that we have the inequality:

21
0 uqu u u 2E sup du L y L y uS F c uŽ .H t t t nuQt-Tn

for every n. For every u in Q, the process t ª Su is then a representation of thet
score process t ª D Lu of interest here.u t

The score process then has an integral representation with respect to the
particle process obtained by formally interchanging differentiation and
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Ž .stochastic integration. We refer to Phelan 1996 for regularity conditions and
demonstration of this result.

4. Observed information. We derive a type of Fisherian information
that is integral to our asymptotic treatment of maximum-likelihood estima-
tion. Known as the observed information, it requires two derivations of the
log-likelihood function. In this section, we specify sufficient conditions in
terms of the system parameters for the existence of the information process
as well as a representation of it in terms of stochastic integrals over the
particle process.

Regularity conditions. The regularity conditions here are differentiability
conditions on the system parameters and controls on those derivatives. As in
our preparation for Condition E in the second half of Section 3, let g denote a
generic function from Q = E into R or into E. Let D denote the first-orderu

differential operator on functions on Q, supposing the same conventions as
before.

We also introduce the second-order D 2
2 and the third-order D 3

3 differentialu u

operators. In particular, let g denote a generic function from Q = E into R or
Ž .into E. If u ª g u , x is thrice differentiable with respect to theta for every x

2 Ž . 2 Ž . 3 Ž .2 2 3in E, then D g u denotes the mapping x ª D g u , x on E. Also, D g uu u u
3 Ž .3denotes the mapping x ª D g u , x on E.u

For real-valued functions, our convention is that the operator D inducesu

the gradient vector as arranged in a row vector. The operator D 2
2 thenu

induces the usual matrix of mixed-partial derivatives. The operator D 3
3

u

induces a three-dimensional p = p = p matrix of mixed-partial derivatives.
For E-valued functions, our convention is that D induces a matrix ofu

order given by the coordinate dimension of E by that dimension of Q, giving
a row-wise arrangement of gradients. The operator D 2

2 then induces au

blocked matrix of mixed-partial derivatives obtained by differentiating the
rows of gradients as induced by D . Since E has d dimensions and Q has p,u

2 w 2 Ž .x w 2 Ž .x2 2 2the operator D induces d blocks D g u , . . . , D g u of p = p matri-u u 1 u d
w 3 Ž .x w 3 Ž .x3 3ces. The third-order operator induces d blocks D g u , . . . , D g u ofu 1 u d

p = p = p matrices.
There are three regularity conditions of interest here. The first specifies

excessive measures for the transition semigroup of the one-, two- and three-
point motions on the flow. The second imposes a differentiability condition on
the system parameters, the last integrability conditions on pairs of control-
ling functions.

CONDITION F. For n s 1, 2, 3, let t ª T Žn. denote the transition semi-t
Ž 0.group for the n-point motions on the flow F on V, HH, P . The measures m0

and p 0 are excessive for t ª T Ž1., the product measure of m q p 0 witht 0
itself being excessive for t ª T Ž2. and the triple product of m q p 0 witht 0
itself being excessive for t ª T Ž3..t
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CONDITION G. In the sense defined above, the mappings u ª bu, u ª pu,
u ª ln pu, u ª r u, where r u s kurk0, and u ª ln r u are thrice continuously
differentiable for every theta. There exist a constant K X and a pair of
controlling functions bY and bZ from E into the respective space of block

Ž p p. Ž p p p.matrices E m R m R and the block matrices E m R m R m R such
that

n d
2 u 2 u

2 2D b x c x , x D b xŽ . Ž . Ž .Ý Ý u k i j k l u l ji
k , ls1 i , js1

n d
X Y YF K b x c x , x b xŽ . Ž . Ž .Ý Ý jk i j k l li

k , ls1 i , js1

for every u in Q and such that

n d
3 u 3 uk l3 3D b x c x , x D b xŽ . Ž . Ž .Ý Ý u k i j k l u l jk li

k , ls1 i , js1

n d
X Z ZF K b x c x , x b xŽ . Ž . Ž .Ý Ý jk i j k l li

k , ls1 i , js1

A Afor every x , . . . , x in E and for every u , . . . , u in Q, where ? is a1 n 1 n
suitable norm on three-dimensional matrices. There is a pair of controlling
functions pY and pZ such that

X Y X Z2 u 3 u
2 3D p x F K p x and D p x F K p xŽ . Ž . Ž . Ž .u u

for every x in E and u in Q. This last inequality prevails for the derivatives
of the remaining parameters, but with corresponding controlling functions
Ž Y Z . Ž Y Z . Ž Y Z .lp , lp , r , r and lr , lr . Here the symbol l invokes memory for the
control functions on the logarithms of the corresponding parameters, so that
lrZ controls D 3

3 ln r u for every theta and so on. This condition is essentially au

pointwise-Lipschitz condition on two derivatives of the system parameters.

CONDITION H. The pointwise norm of the mappings pY, lpY, pZ and lpZ

are square integrable with respect to p 0. The pointwise norm of the map-
pings rY, lrY, rZ and lrZ are square integrable with respect to k 0m and k 0p 0.0

Ž .For z in E, let r z denote the minimum eigenvalue of the nonsingular
T Ž . Ž . Ž .m atrix g z g z . If f denotes the m apping x , y , z ª

d w YŽ .x Ž .w YŽ .x y2 Ž . 5 Ž .5Ý b x c x, y b y r z , then the mapping x ª f x, x, x is inte-i, j i i j j
0 Ž . 5 Ž .5 Ž .grable with respect to m and p , the mappings x, y ª f x, x, y , x, y0

5 Ž .5 Ž . 5 Ž .5 Žª f x, y, x and x, y ª f x, y, y are integrable with respect to m q0
0. Ž 0. Ž . 5 Ž .5p = m q p . The mapping x, y, z ª f x, y, z is integrable with re-0
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spect to the threefold product measure of m q p 0 with itself. Similarly, if f0
denotes the mapping

d
Z Z y2x , y , z ª b x c x , y b y r z ,Ž . Ž . Ž . Ž . Ž .Ý ji ji

i , js1

A Ž .A 0then the mapping x ª f x, x, x is integrable with respect to m and p ,0
Ž . A Ž .A Ž . A Ž .A Ž .the mappings x, y ª f x, x, y , x, y ª f x, y, x and x, y ª

A Ž .A Ž 0. Ž 0.f x, y, y are integrable with respect to m q p = m q p . The0 0
Ž . A Ž .Amapping x, y, z ª f x, y, z is integrable with respect to the threefold

product measure of m q p 0 with itself.0

This completes our additional conditions on the system parameters. We
show next that they are sufficient for the existence of observed information
and its explicit representation as a stochastic integral on the particle process.

Information. The information process here refers to minus the second
derivative of the log-likelihood process. In particular, if u ª Lu is twicet
continuously differentiable for every t in R , then the information processq
refers to the process t ª yD 2

2 Lu for every theta. The observed informationu t
over our statistical model is then the mapping u ª yD 2

2 Lu .u T
Under the regularity conditions above, the next proposition shows that

there exists an information process, which is calculated explicitly in the proof.
Ž .The proof relies on arguments in Phelan 1996 . We also appeal to the work of

Ž .Metivier 1982 on interchanging differentiation and stochastic integration´
for semimartingales.

14. PROPOSITION. We suppose that we have conditions A through H. For u
in Q, there is an information process t ª yD 2

2 Lu having an integral repre-u t
sentation with respect to the particle process.

Ž Ž . 0.PROOF. The stochastic basis is D M , GG, G, P . For u in Q, Propositionb
13 implies that the score process t ª Su,t

Su s D Hu ? X c q D ln yu ) m y n 0Ž .Ž . Ž .t u t u t

t
u u 0 u uq D ln y y D J )n y ds q M ; h , D h ,Ž . Ž .Hu u t sy s u s

0

is a well-defined semimartingale. To get the information process, we work on
differentiating it.

Condition G implies that the coefficients in the score are differentiable
with respect to theta. In particular, for u in Q, there is a mapping

2 u Ž .2h ª D ln y h on M satisfying the equationu sd

D 2
2 ln yu h s D 2

2 ln pu (dy1 h 1 h1Ž . Ž . Ž .Ž .u u �q14

q D 2
2 ln r u (dy1 yh 1 h1 ,Ž . Ž .Ž .u �y14
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where r u is again the function kurk0. Similarly, there is a mapping
2 u Ž . 2 u Ž . Ž . YuŽ .2 2h ª D y h and so a mapping h ª D J h . Next, let t, x ª f M ; xu u ty

denote the predictable mapping satisfying the equation

f Yu M ; xŽ .ty

y2d
T T 2 u

2s g x M du g u g u M dz g z D b zŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ý H Hty ty u i
E Eis1 i

Ž . Yu 2 u
2if M E ) 0 and f s 0 otherwise. In this case, let D h denote thety u t

YuŽ .mapping x ª f M ; x on E for every t in R . As a process of functionalsty q
on distributions, we then identify the process t ª D 2

2 Hu with the predictableu t
process t ª D 2

2 hu as a candidate for stochastic integration relative to theu t
continuous-martingale part of the particle process.

Our aim is to propose a formula for the information process and then verify
c 2 u Ž 0.2it. To do so, we first require the X -integrability of t ª D H , the m y n -u t

integrability of D 2
2 ln yu y D 2

2 Ju and two other such integrability require-u u

ments. Since each of the differentiated coefficients yields a matrix of order
p = p, we are referring to elementwise stochastic integration. We divide our
argument in two: one part on integrability; the other on information itself.

Ž . Ž . 5 2 u
2i Integrability. For u in Q, 6 and Condition G imply that D ln y yu

2 u 5 0
2D J )n satisfies the inequalityu t

5 2 u 2 u 5 2 0 X 0 5 Y 5 2 5 5 2
2D ln y y D J )n F K tp lp q p0Ž .u u t

t 2 2X Y0 5 5 5 5q K ds M k lr q r 0Ž .Ž .H s
0

Ž .for every t in R . Therefore, with reference to details in Phelan 1996 ,q
0 5 2 u 2 u 5 0

2 2Conditions F and H imply the P -integrability of D ln y y D J )nu u t
0 2 u 2 u w x2 2and so the almost sure n -integrability of D ln y y D J on 0, t = Mu u sd

for every t in R .q
c 2 u Ž 0.2Next, we verify the X -integrability of t ª D H and the m y n -u t

integrability of D 2
2 ln yu. To this end, we introduce the following notation:u

Mm2 denotes the product measure of M with itself andsy sy

q M D 2
2 hu , D 2

2 huŽ .sy u s u s

d
m2 2 u 2 u

2 2' M dx , dy D h x c x , y D h y ,Ž . Ž . Ž . Ž .ÝH sy u s i j u s ji
E=E i , js1

2 u Ž .2recalling that D h x is a d-block matrix of p = p matrices. For the desiredu s
integrability, it suffices to show that the process t ª j u,t

t 2u 2 u 2 u 0 2 u
2 2 2j s ds q M ; D h , D h q n ds, dh D ln y h ,Ž . Ž .Ž .H Ht sy u s u s u

w x0 0, t =Msd

is integrable with respect to P 0 for every t in R .q
First, we simplify and bound the integrand in the first term of j u. Int

Ž .particular, the calculation of Proposition 24 in Phelan 1996 , the theory of
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Moore]Penrose pseudoinverses and the spectral theory of symmetric matri-
ces yields the inequality

2 u 2 u
2 2q M ; D h , D hŽ .sy u 3 u s

d
m3 2 u 2 u y2

2 2F M dx , dy , dz D b x c x , y D b y r zŽ . Ž . Ž . Ž . Ž .ÝH sy u i j u ji
i , js1

for the first term of j u, where Mm3 denotes the threefold product measure oft sy
M with itself and where r appears at Condition H. Now Condition Gsy
implies the inequality

d
tX Y Y0 u 0 m3 y2E j F K ds E M dx , dy, dz b x c x , y b y r zŽ . Ž . Ž . Ž . Ž .ÝH H jt sy i ji

0 i , js1

t2 2X Y X Y0 0 05 5 5 5q K tp lp q K ds E M k lrŽ .H s
0

for every t in R . Finally, with reference to the same calculation of Proposi-q
Ž .tion 24 in Phelan 1996 , we apply Conditions F and H to the right-hand side

of this last inequality to yield the desired result for j u for every u in Q andt
every t in R .q

To complete this part of our proof, we validate two other terms for
integrability. To this end and for later use, we impose the following notation
as natural to our problem:

q M ; hu , D 2
2 huŽ .sy s u s

d
u 2 u

2' M dx M dy h x c x , y D h yŽ . Ž . Ž . Ž . Ž .ÝH sy sy s i j u s ji
E=E i , js1

and

Tu u u uq M ; D h , D h ' M dx M dy D h x c x , y D h y ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .Hsy u s u s sy sy u s u s
E=E

where in the second equivalence we note that D hu is a d = p matrixu s
Ž .random function on E. These equivalences properly yield random matrices
of order p = p, yielding the mixed-partial derivatives on Q. With these
definitions, the integrability result above and that Q is a bounded set imply
the inequalities

t t0 u 2 u 0 u u u
2E ds q M ; h , D h - ` and E ds q M ; D h , D h - `Ž . Ž .H Hsy s u s sy u s s

0 0

for every u in Q and t in R .q
Ž .ii Information. The integrability conditions above now imply that the

process t ª Iu,t

Iu s y D 2
2 Hu ? X c y D 2

2 ln yu ) m y n 0 y D 2
2 ln yu y D 2

2 Ju )n 0Ž .Ž . Ž . Ž .t u t u u u tt

t t
u u u 2 u

2q ds q M ; D h , D h q ds q M ; h , D h ,Ž . Ž .H Hsy u s u s sy s u s
0 0



ASYMPTOTIC ESTIMATION ON A FLOW 1173

is a well-defined semimartingale for every theta. We show that this process is
the information process of interest here.

For each t in R , the Iu come of formally interchanging differentiationq t
with respect to theta and stochastic integration in the formula for ySu. Tot
show that this gives the information, Proposition 13 implies that it suffices to
show that u ª ySu is almost surely continuously differentiable, havingt
derivative Iu. Our method of proof follows that of Section 34 in Metivier´t
Ž .1982 .

In particular, we suppose that the dimension p of Q is 1. For u in Q and u
in R, the problem here is to show that there is an increasing sequence n ª Tn
of stopping times and a sequence n ª c of constants such that T increasesn n
almost surely to infinity with n and such that we have the inequality

21
0 uqu u u 2E sup du S y S q uI F c uŽ .H t t t nuQt-Tn

for every n. Since Condition G allows us to substitute third-order Taylor
expansions for second-order ones where necessary, the calculation of Proposi-

Ž .tion 25 in Phelan 1996 readily completes the proof. I

COROLLARY. For u in Q, there exists an information process t ª Iu satisfy-t
ing the equation

Iu s y D 2
2 Hu ? X c y D 2

2 ln yu ) m y n 0 y D 2
2 ln yu y D 2

2 Ju )n 0Ž .Ž . Ž . Ž .t u t u u u tt

t t
u u u 2 u

2q ds q M ; D h , D h q ds q M ; h , D h .Ž . Ž .H Hsy u s u s sy s u s
0 0

The observed information over our statistical model is u ª Iu .T

In anticipation of the next section, we close this section with a reexpression
of the score and of the information. For u in Q, we suppose that the stochastic

Ž Ž . u .basis is now D M , GG, G, P . In this case, the multivariate point process mb
u u u Ž .has compensator n obtained by substituting p and k into 6 . The process

t ª X c has drift so that the process t ª X cu,t t

tcu c u T15 X f s X f y ds M dx b x =f x , f g DD,Ž . Ž . Ž . Ž .H Ht t s
0 E

now defines the continuous-martingale part of the particle process. This
change of basis is locally an absolutely continuous change of measure for the
particle process. The next proposition lists its effects on the martingale
dynamics of the score and of information.

16. PROPOSITION. For u in Q, the score process t ª Su is a locally square-t
Ž Ž . u .integrable local martingale on D M , GG, G, P satisfying the stochasticb

integral equation

17 Su s D Hu ? X cu q D ln yu ) m y n u ,Ž . Ž .t u t u t
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following some careful reexpression of the equation in Proposition 13. Its
² u:quadratic characteristic t ª S satisfies the equationt

t t
u u u u T u u² :S s ds q M ; D h , D h q n ds, dh D ln y h D ln y hŽ . Ž . Ž .Ž .t H H Hsy u s u s u u

0 0 Msd

w u xfor every t in R . Its quadratic variation t ª S satisfies the equationq t

t
u u u T u uw xS s ds q M ; D h , D h q D ln y D ln y )mŽ . Ž .Ht sy u s u s u u t

0

for every t in R . In addition, the information process t ª Iu,q t

Iu s y D 2
2 Hu ? X uc y D 2

2 yu ryu ) m y n uŽ .Ž . Ž .Ž .t u t u t

tT u u u uq D ln y D ln y )m q ds q M ; D h , D h ,Ž . Ž .Hu u t sy u s u s
0

w u x uis a well defined semimartingale such that the process t ª S y I is itselft t
a locally square-integrable local martingale.

This proposition is a consequence of Proposition 12 and Girsanov’s theorem
w Ž . xfor semimartingales Jacod and Shiryaev 1987 , Theorem III.3.24 . A proof

involves a modest amount of stochastic calculus. The proposition introduces
the three informational quantities of interest.

In the nomenclature of stochastic inference in Barndorff-Nielsen and
Ž .Sørensen 1994 , the quadratic variation is the incremental observed infor-

mation, the quadratic characteristic of the incremental expected information
and the information process of the observed information. We may simply call
them the nonanticipative, predictable and observed information. That the

w u x uscore is locally square integrable and that the difference S y I is a
local martingale may be used to argue that they have the same expec-
tation}Fisher’s information.

5. Asymptotic estimation. We devote this section to maximum-likeli-
hood estimation from birth and death on a flow. The aim is for a solution to
the estimation equation

Su s 0T

for some theta in the parameter set. The problem here is to study the
existence and distribution theory of a solution to the estimation equation as
the length T of the chronicle increases to infinity.

The resolution of this problem is largely driven off of the asymptotic
properties of information. So we treat asymptotic information first, but refer

Ž .to Phelan 1995 for a gentler treatment of asymptotic information in the
context of an equilibrium particle process. We then devote the latter part of
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this section to the existence, consistency and limiting law of a maximum-like-
lihood estimator of the system parameter theta.

Asymptotic information. We begin with three more regularity conditions.
For differential operators, the notation and conventions here are those of the
previous section. Similarly, for any Radon measure z and positive integer k,
we let z mk denote the k-fold product measure of z with itself. As in Section 4,

Ž .the quantity r z denotes the value of the smallest eigenvalue of the symmet-
TŽ . Ž . Ž .ric nonsingular matrix g z g z for every z in E. Here the quantity s z

TŽ . Ž .denotes the value of the largest eigenvalue of g z g z for every z in E.

CONDITION I. For each u in Q, there exist the quasiinformational quanti-
Ž u . Ž u .ties I p and I k satisfying the equation

y2u u T u u uI p s p dx D p x D p x p xŽ . Ž . Ž . Ž .Ž . Ž .H u u
E

u T u Ž . u Ž . u Ž .and, letting g denote the mapping x ª D k x D k x rk x ,u u

2u u u u u u uI k s p dx g x q p dx p dy g x g y .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H H
E E=E

U u Ž . T u Ž . Ž . u Ž . y2 Ž .Also, let f denote the mapping x, y, z ª D b x c x, y D b y r zu u
U u U u Ž X X X.on E = E = E. Let f m f denote the tensor product x, y, z, x , y , z ª

U uŽ . U uŽ X X X. U u 3 3f x, y, z f x , y , z of f with itself on E = E . Label the coordinates
x, y, z, xX, yX, zX with the labels 1, 2, . . . , 6, respectively. For each j s

6 � 41, 2, . . . , 6, let V denote a generic partition of the set 1, 2, . . . , 6 into jj
Ž . 6 �� 4 � 44 6nonempty subset s . An example of V is 1, 2 , 3, 4, 5, 6 . Then let d2 V j

denote the mapping on functions on E6 into functions on E j obtained by
enforcing equality among the arguments of the original function among the
coordinates in the subsets of V 6. Using the example above, d 6 f U u is thej V2

Ž . U uŽ . 2mapping x, y ª f x, x, y, y, y, y on E . Using this notation, there exists
U Ž u .a quasiinformational quantity I b satisfying the equation

6
U U u U uu um j

6I b s p d f m f .Ž . Ž .Ý Ý ž /V j
6js1 Vj

Next, for any positive integer m, we introduce the partitions V m of the labelsj
� 4 m

m1, . . . , m into j nonempty subsets and the operators d on functions on EV j

into functions on E j. In this case, let f#u denote the mapping
Ž . T u Ž . Ž . u Ž . 2 Ž 2 .mmx, y ª D b x c x, y D b y on E . For each m s 0, 1, 2, . . . , let su u

2 Ž 2 .m0denote the m-fold tensor product of s with itself; of course s ' 1.
u Ž .Using this notation, there exists a positive-definite matrix B 1rb satisfying
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the equation

2q j2nq1 2 mq21 1muB s y1Ž .Ý Ýž / ž /b bms0 js1

mmm j u 2 2
2 mq2= p d f# m s m sŽ .Ý ž /V j

2mq2Vj

1
u uq I p q I kŽ .Ž .

b

for some, possibly infinite, n, where b is the bound of the next Condition J.

CONDITION J. There exist constants b and a such that b G ku G a ) 0 for
every u in Q.

Ž u .CONDITION K. For each u in Q and on the probability space V, HH, P , the
Ž . uBrownian flow F s F , 0 F s F t F `, preserves p on E. For every boundedst

measurable function having compact support in E, we then have the equa-
tion

p uFy1 g s p u dx g u F x s p u dx g u x s p ugŽ . Ž . Ž . Ž .Ž . H H0 t 0 t
E E

almost surely for every t in R .q

This completes the conditions. Condition J supplants Condition D, requir-
Ž .ing additionally a lower bound on the killing functions. Kunita 1990 treats

measure-preserving Brownian flows in his Section 4.3. Because of his Theo-
rem 4.3.2, Condition K supplants Condition F. Now for every u in Q, on the

Ž u . umkprobability space V, HH, P , the k-fold product measure p is an invariant
measure of the k-point motion on the flow.

For each u in Q, we recall the gathering of informational statistics at
Ž Ž . u .Proposition 16. On the stochastic basis D M , GG, G, P , the score is ab

w u xlocally square-integrable martingale. Its quadratic variation t ª S is thet
² u:incremental observed information; its quadratic characteristic t ª S ist

w u x uthe incremental expected information. The process t ª S y I is a zero-t t
mean martingale. For each t in R , the quantity EuSu TSu is the expectedq t t
information. This next proposition shows that the temporal averages of these
statistics converge to a positive-definite matrix.

18. PROPOSITION. We suppose that we have the regularity conditions A
through K. For each u in Q, there is a positive-definite matrix Su of rank p
such that we have the limits

y1² u: y1 u y1 u y1 u u T u uw xlim t S s lim t S s lim t I s lim t E S S s St t t t t
tª` tª` tª` tª`

Ž Ž . u .almost surely on D M , GG, G, P .b
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Ž Ž . u .PROOF. We fix u in Q. The stochastic basis is D M , GG, G, P . Theb
atoms of M constitute the initial particles on the flow. By virtue of the lower0
bound in Condition J, their contribution to the asymptotic calculation below
vanishes almost surely in finite time. We suppose therefore that M s 0, so0
that the renewal argument below is conditional on this initial condition.

By virtue of Proposition 16, the score process t ª Su is a locally square-in-t
Ž . Ž .tegrable local martingale. By virtue of Theorem 23.4 38 in Metivier 1982 ,´

we have the equalities
u u T u u² u: u u u uw xE S S s E S s E S s E IT TT T T

for every stopping time T. This consequence of the martingale property
sharply reduces our computational burden below.

In particular, that p u is a finite measure and the lower bound in Condition
J imply that there is a sequence k ª T of regeneration times for the particlek
process; compare with the argument in the proof of Lemma 4.10 in Çinlar and

Ž . Ž .Kao 1992b and Definition 9.2.18 in Çinlar 1975 . The distribution of T is1
not arithmetic and EuT is finite. If, for example, R is the stopping time1

� Ž . 4 � Ž . 4inf t: M E ) 0 , then T is the stopping time inf t ) R: M E s 0 . We putt 1 t
T s T for future purposes.1

In light of the martingale property, we claim that it suffices to show that
u² u:E S exists and is positive definite. The desired limits are then a conse-T

wŽ .quence of the regenerative property in Çinlar 1975 , 2.18b of Definition
x9.2.18 and the strong law of large numbers for regenerative phenomena.

Let t ª z u denote the p = p matrix-valued process satisfying the equationt

z u s q M ; D hu , D hu q I puŽ .Ž .t ty u t u t

y2u T u u uq k M dx D k x D k x k x ,Ž . Ž . Ž . Ž .Ž .Ž .H ty u u
E

Ž u u . Ž .where q M ; D h , D h appears first near the close of part i in the proofty u t u t
Ž u . ² u:of Proposition 14 and I p appears in Condition I. Naturally, S satisfiest

the equation
t

u u² :S s ds zt H s
0

for every t in R .q
We fix the vector v in R p of unit length. For the stopping time T and the

T² u:quadratic form v S v, we have the equationT

u T² u:E v S vT

`
u T us ds E v z v1H s �T G s4

0

`
u T u u T u us ds E v q M ; D h , D h v1 q v I p vE TŽ .Ž .H sy u s u s �T G s4

0

` y2u T u T u u uq ds E v k M dx D k x D k x k x v1 .Ž . Ž . Ž . Ž .Ž .Ž .H H sy u u �T G s4
0 E
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To show that this expectation is finite, therefore, it suffices to do so for the
first and third term on the right-hand side of the second equality.

Thus, we exhibit two finite constants B and K, for example, such that we
have the inequalities

2u T u uE v q M ; D h , D h v F BŽ .sy u s u s

and
2

y2u T u T u u uE v k M dx D k x D k x k x v F KŽ . Ž . Ž . Ž .Ž .Ž .H sy u u

u Ž .1r2for every s in R . We then show that the mapping s ª P T G s isq
integrable on R . That the expectations above are finite as desired is then aq
consequence of Holder’s inequality.¨

In demonstrating the bounds above, we move freely between the canonical
Ž Ž . u . usetting D M , GG, P with its expectation E and the probability spaceb

Ž u . uV, HH, P of Section 2 with its expectation E . In each space, we maintain the
notation t ª M for the particle process.t

Let Pu denote conditional probability given the sigma algebra as generatedF
Ž .by the flow. For each s in R , Proposition 2.13 in Çinlar and Kao 1992bq

implies that the law of M under Pu is that of a Poisson random measures F
having mean m satisfying the equations

s s
u u um f s E M f s dr p dx f F x exp y dw k F xŽ . Ž . Ž .H H Hs F s r s r wž /0 E r

for every continuous function f having compact support in E, recalling that
M s 0 here. Subsequently we will repeatedly use this fact and essential0
results on moment measures of Poisson processes.

First, let g u denote the mapping on E as defined in Condition I. Let g u
v

T u Ž . u udenote the mapping x ª v g x v and let g m g denote the tensor productv v
Ž . u Ž . u Ž . Ž .x, y ª g x g y on E = E. Proposition 2.13 in Çinlar and Kao 1992b ,v v

Ž .Example 1.15 in Chapter 1 of Karr 1986 and Conditions J and K imply the
following inequalities:

2
y2u T u T u u uE v k M dx D k x D k x k x vŽ . Ž . Ž . Ž .Ž .Ž .H s u u

s EuMm2 g u m g u
s v v

s s2u u u us E dr p dx g F x exp y dw k F xŽ . Ž . Ž .Ž .H H Hv rs r wž /0 r

s s
u um2 u uq E dr du p dx , dy g m g F x , F yŽ . Ž .H H H v v rs u s

0 0

s s
u u=exp y dw k F x y dz k F yŽ . Ž .H Hr w u zž /r u

F ay1 vTI ku v q ay2 vTI 2 ku vŽ . Ž .
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Ž u .for every s in R , where I k appears in Condition I. This exhibits one of theq
desired bounds.

Next, let f U u denote the mapping on E = E = E as defined in Condition I.
U u T U uŽ . U u U uLet f denote the mapping x ª v f x, y, z v and let f m f denote thev v v

tensor product on E3 = E3. By virtue of the argument in the proof of
Ž .Proposition 24, part 3, in Phelan 1996 , we have the following inequality:

22 U u U u U uu T u u u m3 u m6E v q M ; D h , D h v F E M f s E M f m f .Ž .sy u s u s sy v sy v v

Ž .By virtue of Proposition 2.13 in Çinlar and Kao 1992b and Exercise 5.4.5
Ž . Ž .and Example 7.4 a in Daley and Vere-Jones 1988 , Conditions I, J and K

imply the inequality
6

2 U u U uu T u u yj um jE v q M ; D h , D h v F a p d f m fŽ . Ž .Ý Ý ž /sy u s u s V v vj
js1 Vj

for every s in R , using the notation of Condition I. This exhibits the secondq
desired bound.

u Ž .1r2Therefore, it remains to show that s ª P T G s is integrable on R .q
Ž .We again appeal to the proof of Lemma 4.10 in Çinlar and Kao 1992b . In

uŽ . Ž .particular, on the stochastic basis V, HH, H, P , let t ª M v denote thet
Ž .particle process of 1 , but with k replaced by the constant a for every v in V.

Recalling that M s M s 0, we introduce, as above, the stopping time0 0
� Ž . 4 � Ž . 4R s inf t: M E ) 0 and the stopping time T s inf t ) R: M E s 0 . Sincet t

uŽ .T exceeds or equals T almost surely on V, HH, P , it suffices to show that
u 1r2Ž .s ª P T G s is integrable on R .q

u Ž .We show that P T G s decays exponentially fast for all sufficiently large
Ž .s. That is, the process t ª M E is an MrMr` queue having arrival ratet

u Ž .c s p E and expected service time 1ra. The time T equals the sum of an
exponential random variable with mean 1rc and the length of the first busy
period of the queue. In the theory of coverage processes, the length of a busy
period in an MrMr` queue is the length of a clump in a Boolean model on
the line with parameters c and 1ra. We rescale this model to one with
Poisson intensity cs and mean segment length 1ras and consider the proba-

w xbility of complete coverage of the unit interval 0, 1 . By virtue of Theorem 2.5
Ž . Ž .in Hall 1988 , taking t s 1, l s cs and a s 1ras in his 2.21 , we have the

u Ž . Ž Ž ..heavy-traffic limit P T G s f exp ysc exp ycra for all sufficiently large
s, implying the desired integrability.

u T² u:We next show that the quantity E v S v is strictly positive. LetT
Ž . T ut ª g M denote the mapping t ª v z . The regenerative property impliest t

that its expectation satisfies the renewal equation

t
u u u uE g M s E g M 1 q P T g ds E g M .Ž . Ž . Ž . Ž .Ht t �T G t4 tys

0

Ž .By virtue of the demonstration above and Proposition 9.2.16 c in Çinlar
Ž .1975 , the leading term on the right-hand side above is bounded by a directly
Riemann-integrable function. Therefore, by virtue of the quasi-left continuity



M. J. PHELAN1180

Ž .of the particle process, Çinlar’s Proposition 4.2.16 b implies that the leading
term itself is directly Riemann integrable. Since the distribution of T is not
arithmetic, the key renewal theorem therefore implies the limit

1
u u T u² :lim E g M s E v S v.Ž . Tt uE Ttª`

Ž . T uHowever, for the leading term in g M s v z v, we have the inequalityt t

1
T u u T m2 uv q M ; D h , D h v G v M dx , dy f# x , y v ,Ž . Ž .Ž . Hty u t u t ty22 E=E1 q M sty

u Žwhere f# appears in Condition I. We therefore approximate 1r 1 q
w 2 x2 .M s from below with 2n q 1 terms in its Taylor series and find thatty

Ž .Proposition 2.13 in Çinlar and Kao 1992b , manipulations on the moment
measures of the Poisson process and Conditions I, J and K imply the
inequality

1
u T ulim E g M G v B v ) 0Ž .t ž /btª`

p u² u:for every v in R of unit length. Thus, E S is positive definite. ThisT

completes the proof. I

Ž .As seen in the proof, the work of Çinlar and Kao 1992b inspired the
renewal argument above. We notice that the regenerative property makes the
limiting information deterministic, putting our case of stochastic inference
among the ergodic ones. This fact simplifies the asymptotic distribution
theory below.

Distribution theory. We show here that there exists asymptotically a
consistent maximum-likelihood estimator. Its limiting law is Gaussian. We
draw our treatment from the program for such inference in Barndorff-Nielsen

Ž .and Sørensen 1994 . Because of Proposition 18, we do not invoke the full
generality of their program, but use its simpler form for ergodic inference.

u Ž .For each u in Q and t in R , let D t denote the diagonal matrixq
u² u:containing the diagonal elements from the information matrix E S . Thet

random variable Z is Gaussian on R p having zero mean and identity
covariance matrix.

19. PROPOSITION. We suppose conditions A through K. For u in Q, the
Ž Ž . u .stochastic basis is D M , GG, G, P . For sufficiently large t, there exists ab

ˆ qsolution u to the estimation equation S s 0, q g Q, such that we have thet t
convergence

û ª ut

in probability as t increases to infinity. Finally, we have the weak limit
u 1r2 ˆ² :S u y u ª ZŽ .t t

as t increases to infinity.
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PROOF. We approach this problem from the general theory of filtered
Ž .statistical models in Barndorff-Nielsen and Sørensen 1994 , thereby extend-

ing their class of examples to a spatial stochastic process.
It suffices to verify conditions 2.1, 2.2, 2.3, 3.1, A.2 and A.3 in Barndorff-

Ž .Nielsen and Sørensen 1994 . Since Proposition 18 implies that the diagonal
u Ž .elements of D t approach infinity with t at the same rate, the desired

Ž .result then follows from Theorem A.1 and 3.44 in Barndorff-Nielsen and
Ž .Sørensen 1994 .

Ž Ž . u .Fix u in Q and the stochastic basis D M , GG, G, P . By virtue of Proposi-b
tion 16, the score process t ª Su is a locally square-integrable local martin-t
gale, the information process t ª Iu is a semimartingale of finite expectationt

u w u xand t ª I y S is a local martingale. We thus have Conditions 2.1, 2.2t t
Ž .and 2.3 in Barndorff-Nielsen and Sørensen 1994 . Moreover, by virtue of

Proposition 18, we have a, c and d of Condition 3.1.
We turn to the infinitesimality condition 3.1.b in Barndorff-Nielsen and

Ž .Sørensen 1994 . In our case, however, we verify a different but still sufficient
condition for infinitesimality. The goal is for a central limit theorem for the
normalized score. For each t, the natural choice here is to embed s ª Su,s

t Ž t .0 F s F t, into a square-integrable martingale X s X , 0 F u F 1, suchu
that X t s Su for every u so that X t inherits its characteristics from theu ut
score process in a natural way. For example, let n X t

denote the compensator
on the discontinuities of X t. In light of our Proposition 18, to get a central
limit theorem for the normalized score, we verify the Lindeberg]Feller
condition

y1 2 X t y1 u 2 u< < < < u ut x 1 )n s t D ln y 1 )n ª 04 4' '� < x < ) t « 1 u � < D ln y < ) t « t Pu

w Ž .as t increases to infinity for every « ) 0 cf. Jacod and Shiryaev 1987 ,
xVIII.3.23, page 435 . On the other hand, Proposition 18 implies

y1 t t y1 u u y1² t t: y1² u: uw x w x u ut X , X s t S ª S and t X , X s t S ª S ,1 t1 t P P

Ž . Ž . Ž .namely, ii and iii of VIII.3.24 in Jacod and Shiryaev 1987 with t s 1. As
Ž .in the proof of VIII.3.22 in Jacod and Shiryaev 1987 , this implies the desired

Lindeberg]Feller condition above.
We finally verify conditions A.2 and A.3 in Barndorff-Nielsen and Sørensen

Ž .1994 . Proposition 18 and the regenerative property imply that there exists a
u w u Ž .xy1 r2² u: w u Ž .xy1 r2 upositive-definite matrix B such that D t S D t ª B int

probability as t increases to infinity. So, we introduce the martingale t ª Gu,t

u w u x uG s S y I ,tt t

Ž Ž . u .on D M , GG, G, P . For strictly positive a , we introduce the setb

1r2X Xu r2 uB a , t s u : B D t u y u F aŽ . Ž . Ž .� 4
in Q. The problem here is to show that two quantities

Xy1r2 y1r2u u usup D t G D tŽ . Ž .t
X Ž .u gB a , t
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and
Xy1r2 y1r2u u u uw xsup D t S D t y BŽ . Ž .t

X Ž .u gB a , t

converge in probability to zero as t increases to infinity. Since Proposition 18
implies that we have the limits

y1r2 y1r2u u u
uD t G D t ª 0Ž . Ž .t P

and
y1r2 y1r2u u u uw x uD t S D t y B ª 0Ž . Ž .t P

as t increases to infinity, it suffices to estimate the distances between Gu andt
u

X w u x w u
X x Ž .G and between S and S on B a , t .t t t

w u xFirst, the quadratic variation t ª S satisfies the equationt

t t
u u u T u uw xS s ds q M ; D h , D h q m ds, dh D ln y h D ln y hŽ . Ž . Ž .Ž .H H Ht sy u s u s u u

0 0 Msd

Ž u u . Ž .using our convention for q M ; D h , D h from part i of the proof ofsy u s u s
X Ž .Proposition 14. For any u in B a , t , we have the equality

q M ; D hu , D hu y q M ; D X hu
X

, D X hu
XŽ . Ž .sy u s u s sy u s u s

s q M ; D hu q D X hu
X

, D hu y D X hu
X

.Ž .sy u s u s u s u s

Simplifying the right-hand side here, we find that Condition G and that the
5 5diameter Q of Q is finite imply the inequality

X X
u u u u

X Xq M ; D h q D h , D h y D hŽ .sy u s u s u s u s

< X < X 5 5F u y u K Q

=
d

Y Ym3 y2M dx , dy, dz b x c x , y b y r z .Ž . Ž . Ž . Ž . Ž .ÝH jsy i ji
i , js1

q Ž .More directly, Condition G implies that q ª D ln y h satisfies a Lipschitzq

condition for every h in M . Therefore, we have the inequalitysd
X

u uw x w xS y St t

< X < X 5 5F u y u K Q

=
d

t Y Ym3 y2ds M dx , dy, dz b x c x , y b y r zŽ . Ž . Ž . Ž . Ž .ÝH H jsy i ji
0 i , js1

t Y y1q m ds, dh p (d h 1 h EŽ . Ž . Ž .Ž .H H ž �q14
0 Msd

Y y1q lr (d yh 1 h EŽ . Ž .Ž . /�y14

X Ž . Ž .for every u in B a , t and t in R . Since the diameter of B a , t decreases toq
zero as t increases to infinity, this last inequality, Proposition 18, its regener-
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ative argument and the integrability Condition H imply that the second
quantity

Xy1r2 y1r2u u u uw xsup D t S D t y B ,Ž . Ž .t
X Ž .u gB a , t

converges in probability as desired to zero as t increases to infinity.
Last, we have the inequality

X X X
u u u u u u5 5 5 5w x w xG y G F S y S q I y It tt t t t

X Ž .for every u in B a , t . By virtue of the argument above, therefore, it suffices
to get an analogous Lipschitz-type estimate for the second term here. How-
ever, an analogous argument, this time using the thrice differentiability of
the system parameters and the controlling functions bZ, pZ and lrZ, readily
yields the desired estimate. In addition, again by virtue of Proposition 18, its
regenerative argument and the integrability Condition H, the quantity of
interest,

Xy1r2 y1r2u u usup D t G D t ,Ž . Ž .t
X Ž .u gB a , t

converges in probability as desired to zero as t increases to infinity. This
completes our proof. I

u u 1r2 ˆ² : ² : Ž .We chose S as normalizer in the pivot S u y u . Because oft t t
Proposition 18, there are several equivalent choices here. In a given
parametrization, one of course chooses the simplest. Finally, here is a corol-
lary that provides for the construction of confidence sets for theta.

COROLLARY. Let x denote a random variable with the chi-square distribu-
tion on p degrees of freedom. For sufficiently large t, there exists almost surely

ˆ ˜a maximum-likelihood estimator u . In this case, let u be a convex combina-t t
ˆtion of u and u . We then have the weak limitt

T
ũ tˆ ˆu y u I u y u ª xŽ . Ž .t t t

as t increases to infinity. Proposition 19 implies that the limit attains at
˜ ˆu s u .t t
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