
The Annals of Statistics
1996, Vol. 24, No. 3, 952]974

ASYMPTOTICALLY OPTIMAL ESTIMATION IN
MISSPECIFIED TIME SERIES MODELS

BY R. DAHLHAUS AND W. WEFELMEYER

Universitat Heidelberg and Universitat Siegen¨ ¨
A concept of asymptotically efficient estimation is presented when a

misspecified parametric time series model is fitted to a stationary process.
Efficiency of several minimum distance estimates is proved and the behav-
ior of the Gaussian maximum likelihood estimate is studied. Furthermore,
the behavior of estimates that minimize the h-step prediction error is
discussed briefly. The paper answers to some extent the question what
happens when a misspecified model is fitted to time series data and one
acts as if the model were true.

1. Introduction. Let X , . . . , X be a sample from a real-valued station-1 n
Ž . w xary process X , t g Z, with mean 0, spectral density f l , l g yp , p andt

Ž .covariance function c u , u g Z. Suppose, for example, that we want to make
a one-step-ahead prediction, and that we want to use for convenience an

Ž . ŽAR p -model autoregressive model of order p}for this model the predictor
.has a simple form ; that is, we use the model

X q a X q ??? qa X s « ,t 1 ty1 p typ t

where « are iid with mean 0 and variance s 2. The best linear predictor oft
Ž .X in an AR p -model isnq1

p

ˆ1.1 X s y a XŽ . Ýnq1 j nq1yj
js1

w Ž . xcf. Brockwell and Davis 1987 , page 170, Example 5.3.1 . The mean square
prediction error under the true distribution of the process is

2p p
p 2

PE u , f s E a X s a a c k y j s f l A l dl,Ž . Ž . Ž . Ž .Ý Ý Hj tyj j k už / ypjs0 j , ks0

Ž . Ž . p Ž . Ž .where a s 1, u s a , . . . , a and A l s Ý a exp yil j . Here PE u , f0 1 p u js0 j
Ž .is a kind of distance between the true process and an AR p -process. Suppose

now that we wish to estimate the parameter u which leads to the best mean0
Žsquare prediction error note that the process is misspecified and hence there
.exists no ‘‘true’’ value u ; that is, we want to estimate0

u s arg min PE u , f .Ž .0
u
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Ž .A natural way to estimate u is to replace the covariance function c u or the0
Ž .spectral density f l by a nonparametric estimate and to minimize the

Ž .resulting empirical function. For example, we may take as an estimate of f l
the periodogram

2n1
I l s X exp yiltŽ . Ž .Ýn t2p n ts1

and minimize
p 2

PE u , I s I l A l dl.Ž . Ž . Ž .Hn n u
yp

ˆ ŽThis leads to the Yule]Walker estimate u of u . Estimates with bettern 0
small-sample properties such as maximum likelihood estimates and tapered

.Yule]Walker estimates will be discussed in Section 4. The innovation vari-
2 ˆŽ .ance may be ‘‘estimated’’ by s s PE u , I ; the corresponding theoreticaln̂ n n

2 Ž .value is s s PE u , f . We can proceed in a similar way if we wish to0 0
Ž .estimate those parameters of an AR p -model that lead to the best h-step-

Ž .ahead prediction error cf. Section 4 .
An equivalent approach to the minimization of the one-step-ahead predic-

tion error is to look for the model which is closest in the sense of the
Ž .asymptotic Kullback]Leibler information divergence. For a Gaussian pro-
cess and a Gaussian model, this divergence has the form

p1 f l f lŽ . Ž .u
1.2 log q y 1 dl,Ž . H ½ 54p f l f lŽ . Ž .yp u

Ž . w Ž .where f l is the spectral density of the model cf. Pinsker 1963 andu

Ž .xParzen 1982, 1992 . Thus, the best fit is achieved by

1.3 u s arg min D u , f ,Ž . Ž .0
u

where now

p1 f lŽ .
1.4 D u , f s log f l q dl.Ž . Ž . Ž .H u½ 54p f lŽ .yp u

It may be estimated by

û s arg min D u , IŽ .n n
u

ˆ w Ž .x Ž .where u is called the Whittle estimate Whittle 1952 . For AR p -modelsn
Ž . Ž 2 . < p Ž . < y 2 wwe have f l s s r2p Ý a exp yil j we now set u su js 0 j

Ž 2 .xa , . . . , a , s . Since Kolmogorov’s formula gives1 p

p
21 1 s

log f l dl s logŽ .H u4p 2 2pyp

w Ž . xcf. Brockwell and Davis 1987 , page 184, Theorem 5.8.1 , the values u and0
û are exactly the same as the values obtained by minimization of then
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one-step-ahead prediction error. In addition, s 2 and s 2 are the same as theˆ0 n
values obtained by minimization of the one-step-ahead prediction error. Now
s 2 and s 2 are also obtained as solutions of a minimization problem.ˆ0 n

Ž . Ž . w Ž .xSince D u , I converges uniformly to D u , f see 3.1 , we immediatelyn
ˆ ˆget that u is a consistent estimate of u . In this paper we prove that u isn 0 n

Ž .also efficient if the true underlying process is Gaussian Theorem 3.2 . The
Ž .same holds for the Gaussian maximum likelihood estimate Theorem 3.3 .

This is rather surprising since the MLE in a misspecified model is, in general,
Žnot an efficient estimate for the ‘‘best’’ approximating parameter where

.‘‘best’’ is meant in the sense of the Kullback]Leibler distance . As an example
Ž .consider the situation where the true distribution of the process is AR p

with « following an unknown distribution.t
Our efficiency result is proved by considering the best fit u as a functional0

Ž .u s T f of the unknown spectral density f and then applying a nonpara-0
Ž .metric version of the convolution theorem of Hajek 1970 . Other functionals´

Ž .and estimates are treated by Hasminskii and Ibragimov 1986 and Ginovyan
Ž .1988 . Their efficiency concept is based on a local asymptotic minimax
theorem rather than a convolution theorem.

Note that in our setting the true spectral density lies outside the paramet-
ric model. Furthermore, it does not approach the parametric model asymptot-

Ž .ically. Hence, our setting is not covered by the general results of Millar 1984
on optimality of minimum distance estimates. Efficiency in our sense is

Ž .considered by Beran 1977 for iid observations and the Hellinger distance,
Ž .and by Greenwood and Wefelmeyer 1993 for Markov chains and the

Kullback]Leibler distance. Despite similar titles, there is little overlap with
Ž .the latter paper. This has two reasons. In Greenwood and Wefelmeyer 1993 ,

the true model is nonparametric. Hence, we expect the MLE in the misspeci-
fied model to be efficient, because it can be interpreted as a function of the
empirical distribution. In the present paper, the true model is semiparamet-
ric, and a function of the empirical distribution is, in general, inefficient in
such a model. Hence, our efficiency result is unexpected. The second reason is
that the present paper deals with a specific parametrization, while the
previous one leaves the parametrization unspecified, leading to technicalities
that do not come up here.

More generally, we consider in this paper distance functions of the form

p

D u , f s K u , f l , l dl.Ž . Ž .Ž .H
yp

We set

T f [ arg min D u , fŽ . Ž .
u

and make the following assumption.

k Ž . w xASSUMPTION 1.1. Q ; R is compact and K : Q = 0, ` = yp , p ª R is
Ž . Ž .three times differentiable in u , x with continuous derivatives in u , x, l .
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Ž .For the true spectral density f , we assume that T f exists, is unique and
lies in the interior of Q.

Ž .One would usually consider functions with T f s u . However, we do notu

Ž .need this assumption. Taniguchi 1987 considers distance functions of the
Ž Ž . . Ž Ž . Ž .. Ž .special type K u , f l , l s K f l rf l , where f l is the spectral densityu u

of the model. An important distance function which is not of this form is the
Ž . Ž Ž . Ž ..h-step prediction error cf. Section 4 . If we take K f l rf l as the distanceu

Ž .function, then Assumption 1.1 is fulfilled if K x is three times continuously
differentiable with unique minimum at x s 1 and the model spectral densi-
ties f fulfill the following assumption.u

ASSUMPTION 1.2. Q ; R k is compact and the model spectral density f isu

Ž .two times differentiable with respect to u with continuous in u and l
derivatives. f and its derivatives are uniformly bounded and bounded awayu

from 0.

Note that we do not assume f / f for u / u . Instead we assume thatu u 1 21 2
Ž .T f exists uniquely. This is of importance when only part of the parameters

Ž 2are estimated as in the case of the prediction error where s is not
.estimated by minimizing a distance function .

The assumptions on the observed process are as follows.

ASSUMPTION 1.3. X , t g Z, is a Gaussian stationary process with EX s 0t t
and a Lipschitz-continuous spectral density f which is bounded and bounded
away from 0.

ˆŽ . Ž . Ž .As estimates of T f we consider in this paper T I and T f , wheren n

p
ˆ1.5 f l [ I l q a W a daŽ . Ž . Ž . Ž .Hn n n

yp

is a kernel estimate of f. For the kernel we need the following assumption.

Ž . Ž . 1r4 1r2ASSUMPTION 1.4. W a s mW ma , where n < m < n and W isn
Ž . < <bounded, symmetric and nonnegative with W x s 0 for x ) c and

c ˆŽ . Ž .H W x dx s 1. The Fourier transform W x is assumed to be continuousyc
` ˆ< Ž . <with H W x dx - `.y`

The above assumptions are discussed after Lemma A.7.
ˆThe use of f instead of I is important for distance functions that are notn n

Ž . Ž .linear in f , since in this case D u , I will usually not converge to D u , f ,n
Ž . Ž .with the consequence that T I is not a consistent estimate of T f .n

ˆŽ . Ž .Taniguchi 1987 has proved asymptotic normality of T f for general sta-n
tionary time series, and efficiency when the model is correctly specified.

Ž .Asymptotic normality of T I for the Whittle distance has been proved byn
Ž . Ž .several authors. We mention Whittle 1952 , Walker 1964 , Dzhaparidze
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Ž . Ž . Ž . Ž .1971 , Hannan 1973 , Hosoya and Taniguchi 1982 and Hosoya 1989 .
Ž .Asymptotic efficiency of T I in correctly specified models has been provedn

Ž .by Dzhaparidze 1986 .
We also study the efficiency of the exact Gaussian maximum likelihood

estimate under model misspecification. The asymptotic distribution of this
Ž .estimate was derived under model misspecification by Ogata 1980 . Asymp-

totic efficiency of the MLE in correctly specified models has been proved by
Ž . Ž .Dzhaparidze 1986 and Maliukevicius 1989 .´

ˆŽ . Ž .In particular, we prove that T f is an efficient estimate of T f even ifn
Ž .the model is misspecified. T I turns out to be efficient if the distancen

function is linear in f while the MLE is only efficient if the Kullback]Leibler
divergence is used as a distance function.

The asymptotic variance bound is derived in Section 2. Efficiency of several
estimates is proved in Section 3. The results are discussed together with some
examples in Section 4. In particular, we consider the h-step prediction error
in some detail. Some technical lemmas are given in the Appendix.

2. The asymptotic variance bound. In this section we derive a lower
bound for the asymptotic variance of ‘‘regular’’ estimates of the functional
Ž .T f introduced in Section 1. Let X , . . . , X be a sample from a real-valued1 n

stationary Gaussian process with mean 0 and unknown spectral density f.
The distribution of the process is determined by the spectral density. Hence,
we may consider f as an infinite-dimensional ‘‘parameter’’ of the distribution.

Ž .We want to prove that certain estimates of T f are efficient.
In a first step, we prove that the true model is locally asymptotically

Ž .normal LAN . If the spectral density were to depend on a finite-dimensional
parameter u , we would consider the likelihood ratio corresponding to u and a

'Ž .nearby parameter u q 1r n h, with h an arbitrary vector, the so-called
local parameter. Local asymptotic normality in this case was first proved by

Ž .Davies 1973 . In our case, however, the spectral density is completely
unknown. Hence, we fix a spectral density f and consider a nearby spectral

'Ž .Ž Ž . Ž .. Ž .density of the form f l 1 q 1r n h l , with h an arbitrary bounded
function. The function h now plays the role of local parameter.

Ž .Let L denote the space of functions on yp , p which are square-integra-2
ble with respect to Lebesgue measure. Introduce the inner product

p1
² :h , k s h l k l dlŽ . Ž .H4p yp

5 5 2 ² :and the norm h s h, h on L . For a bounded function h set2

1
f l s f l 1 q h l , l g yp , p .Ž . Ž . Ž . Ž .nh ž /'n

Furthermore, let

p

S g s g l exp il r y s dlŽ . Ž . Ž .Ž .Hn ½ 5
yp r , ss1, . . . , n
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Ž .Xbe the Toeplitz matrix of g and X s X , . . . , X . If g is a vector function,n 1 n
Ž .S g is the corresponding vector of matrices.n

Ž .The following result is due to Dzhaparidze 1986 .

THEOREM 2.1. Let f be even, positive, bounded and bounded away from 0.
Let P be the distribution of the observations X , . . . , X of a Gaussiannh 1 n 'Ž Ž . .stationary process with mean 0 and spectral density f s f 1 q 1r n h ,nh
where h is even and bounded. Then we have, under the law P ,n0

dP 1nh ² :log y Z h q h , h ª 0,Ž .n PdP 2n0

where

p1 h ny1XZ h s X S f S X y h l dl .Ž . Ž . Ž .Hn n n n nž /ž /' 2p 2p2 n yp

w Ž . ² X : xNote that Z h can be written in the form h, Z . Furthermore,n n

² :Z h ª N 0, h , h ,Ž . Ž .n D

that is, the sequence P is LAN.nh

wŽ . Ž .PROOF. See Dzhaparidze 1986 , page 64, Section 1.3, Theorem 4 3 , and
xpage 155, Section 2, Theorem A1.2 . I

wŽ .The following result is also due to Dzhaparidze 1986 , page 64, Section
Ž .x1.3, Theorem 4 4 . We prove it under slightly different conditions.

THEOREM 2.2. Suppose Assumption 1.3 holds and h is even and bounded.
Then

' pn I l y f lŽ . Ž .n
h l dl y Z h ª 0.Ž . Ž .H n P4p f lŽ .yp

Ž .PROOF. Lemma A.7 iv implies

' pn EI l y f lŽ . Ž .n
h l dl s o 1 .Ž . Ž .H4p f lŽ .yp

Since

p 1
XI l g l dl s X S g X ,Ž . Ž . Ž .H n n n n2p nyp

the variance of the expression in Theorem 2.2 is equal to

1 h hy1XVar X S y S f S X .Ž .n n n n n2½ 5ž /ž /n 4p8p f
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Ž X . Ž .If X is Gaussian with covariance matrix S, then Var X AX s tr S AS A q
Ž X. Ž .tr S AS A . Therefore, this variance is, with S s S f , equal tof n

2 h h h h
tr S S S S y tr S S Sn f n f n n f2 2 2½ 5 ½ 5ž /ž / ž / ž /n 4p8p f 8p f 8p f

h h h h
ytr S S S q tr S S ,n f n n n2 ½ 5½ 5ž / ž / ž /ž /4p 4p 4p8p f

which tends to 0 by Lemma A.3. I

We now derive a lower bound for the asymptotic variance of ‘‘regular’’
Ž . Ž .estimates of T f . Local asymptotic normality see Theorem 2.1 induces the

² :norm h, h on the local parameter space. The norm determines how difficult
'Ž Ž . .it is, asymptotically, to distinguish between f and f 1 q 1r n h on the

basis of a sample X , . . . , X . Consider now the problem of estimating the1 n
Ž .functional T f . The convolution theorem says that a variance bound for

Ž .‘‘regular’’ estimates of T f is given by the squared length of the gradient of
² :the functional in terms of the inner product h, k . The gradient is given in

Corollary 2.4 below.
We need the following Taylor expansion which will also be used in Section

3. Let f be a spectral density which converges to f. Let us assume for then
Ž .moment that T f is also in the interior of Q. Let =K denote the derivativen

Ž . Xof K u , x, l with respect to u , and K the derivative with respect to x. We
Ž . Ž .obtain with K u , x s K u , x, ?

0 s =D T f , fŽ .Ž .n n

p
2s =D T f , f q = K T f , f l , l dl T f y T fŽ . Ž . Ž . Ž . Ž .Ž .Ž . Ž .Hn n½ 5

yp

p
X2 ˜q = K T f , f l , l f l y f l dl T f y T fŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .H n n½ 5

yp

2.1Ž .

pX1 3 ˜q T f y T f = K t , f l , l dl T f y T f ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .Hn n n2 ½ 5
yp

˜< Ž . Ž . < < Ž . Ž . < < Ž . < < Ž . Ž . <˜where f l y f l F f l y f l and t y T f F T f y T f . Further-n n
more,

=D T f , f s =D T f , fŽ . Ž .Ž .Ž .n

p
Xq =K T f , f l , l f l y f l dlŽ . Ž . Ž . Ž .Ž . Ž .H n

yp2.2Ž .
p 2Y1 ˜q =K T f , f l , l f l y f l dl.Ž . Ž . Ž . Ž .Ž .Ž .H n2

yp

Ž Ž . .Note that =D T f , f s 0. As a first consequence we obtain the following
w Ž . Ž .result. A similar result was proved by Taniguchi 1987 , Theorems 1 b and 2

Ž Ž . . Ž Ž . Ž .. xin the special case K u , f l , l s K f l rf l .u
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5 5THEOREM 2.3. Suppose that f is a sequence with f y f ª 0 and2n n
0 - C F f , f F C . Then we have:1 n 2

Ž . Ž . Ž .i T f ª T f .n
Ž .ii If

p
2H [ = K T f , f l , l dlŽ . Ž .Ž .Hf

yp

is a nonsingular matrix, then we have with
1g l s h l y h ylŽ . Ž . Ž .Ž .f f f2

and

h l s y4p Hy1 =K X T f , f l , l f l ,Ž . Ž . Ž . Ž .Ž .f f

p1 f l y f lŽ . Ž .n 25 5T f y T f s g l dl q O f y f .Ž . Ž . Ž . Ž .H 2n f n4p f lŽ .yp

Ž . Ž . Ž . Ž .PROOF. i T f ª T f is exactly analogous to Theorem 1 b in Taniguchin
Ž .1987 .

Ž . Ž . Ž . Ž .ii Since T f ª T f , the value T f lies in the interior of Q for nn n
large enough. Furthermore, f and f are bounded from above and below.n
Therefore, all derivatives of K in the above Taylor expansion are bounded,
and we obtain

25 5T f y T f q O T f y T f f y f q O T f y T fŽ . Ž . Ž . Ž . Ž . Ž .Ž .2 ž /n n n n

p1 f l y f lŽ . Ž .n 25 5s g l dl q O f y f ,Ž . Ž .H 2f n4p f lŽ .yp

Ž .which, with part i , implies the result. I

As a consequence we obtain the following corollary.

'Ž Ž . .COROLLARY 2.4. Let h be bounded and f s f 1 q 1r n h . Thennh

p1'n T f y T f ª g l h l dl.Ž . Ž . Ž . Ž .Ž . Hnh f4p yp

The function g is called the gradient of T at f. We are now in a positionf
Ž .to formulate our efficiency concept for estimates of T f . An estimate T isn

regular for T at f with limit L if its distribution converges continuously to L
in the following sense:

'n T y T f ª L under P for all bounded h.Ž .Ž .n nh D nh

The convolution theorem says that the limit L is the convolution of some
distribution M with a normal distribution the variance of which equals the
squared length of the gradient:

² :2.3 L s M) N 0, g , g .Ž . Ž .f f
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Ž .By a well-known result of Anderson 1955 , L is less concentrated in symmet-
Ž ² :.ric intervals than N 0, g , g . This justifies calling T efficient for T at f iff f n

Ž ² :. ² :its limit distribution is N 0, g , g . We say briefly that g , g is af f f f
variance bound for regular estimates. Note, however, that the optimality

Ž .result is much stronger: it holds for all bounded symmetric bowl-shaped loss
Ž .functions, not just for the truncated quadratic loss function.

We also have the following useful characterization: an estimate T isn
regular and efficient for T at f if and only if it admits the following stochastic
approximation:

'2.4 n T y T f y Z g ª 0.Ž . Ž . Ž .Ž .n n f P

A convenient reference for the above version of the convolution theorem,
Ž .and the characterization, is Greenwood and Wefelmeyer 1990 . There it is

also pointed out that the convolution theorem implies its own multivariate
Ž .Xversion. Specifically, let T s T , . . . , T be a finite-dimensional functional of1 k

Ž .Xthe spectral density. If g is the gradient of T , then g s g , . . . , g isj j f 1 k
Ž .called the gradient of T. The convolution theorem 2.3 is true with a

² X :k-dimensional normal distribution with covariance matrix g , g . The char-f f
Ž .acterization 2.4 is true with vectors T and g .f

3. Efficient estimates. In this section we study several estimates of
ˆ ˆŽ . Ž . Ž .T f . We start with T f , where f is a kernel estimate as in 1.5 . As seenn n

in Section 2, proving efficiency means proving the stochastic approximation
Ž .2.4 .

THEOREM 3.1. Suppose Assumptions 1.1, 1.3 and 1.4 hold and H isf
nonsingular. Then we have

ˆ'n T f y T f y Z g ª 0,Ž . Ž .Ž .ž /n n f P

ˆŽ . Ž .that is, T f is an efficient estimate of T f .n

PROOF. We start by proving consistency. We cannot apply Theorem 2.3
ˆdirectly, since f is not necessarily bounded. f is bounded and bounded awayn

ˆ�5 5 4from 0, say 0 - 2g F f F g . Then, on the set B s f y f F g l`1 2 n n 1
ˆ y1r4 ˆ�5 5 4f y f - n we have 0 - g F f , f F g q g . Lemma A.7 implies2n 1 n 1 2
Ž .P B ª 0 and we therefore obtain as in the proof of Theorem 2.3 thatn

ˆ' pn f l y f lŽ . Ž .n 21r2ˆ ˆ' 5 5n T f y T f s g l dl q O n f y f ,Ž . Ž .Ž . Ž .H 2ž /n f p n4p f lŽ .yp

Ž . Ž .which by using Lemma A.7 i and iii is equal to

' pn I l y f lŽ . Ž .n
g l dl q o 1Ž . Ž .H f p4p f lŽ .yp

w Ž . xcf. Taniguchi 1987 , proof of Theorem 2 . Theorem 2.2 implies that this is
Ž . Ž .Z g q o 1 . In f p
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Ž .We now study the estimate T I with distance functions that are linear inn
Ž . Ž .f l . An example is the Kullback]Leibler distance as in 1.4 .

Ž .THEOREM 3.2. Suppose Assumptions 1.1 and 1.3 hold, where K u , x, l s
Ž . Ž .a l q b l x. If H is nonsingular, thenu u f

'n T I y T f y Z g ª 0,Ž . Ž . Ž .Ž .n n f P

Ž . Ž .that is, T I is an efficient estimate of T f . Heren

g l s y2p Hy1 = b l q b yl f lŽ . Ž . Ž . Ž .Ž .f f T Ž f . T Ž f .

and
p

2 2H s = a l q = b l f l dl.Ž . Ž . Ž .Ž .Hf T Ž f . T Ž f .
yp

Ž .PROOF. Lemma A.7 v implies that

3.1 sup D u , I y D u , f ª 0.Ž . Ž . Ž .n P
u

Ž Ž . . Ž Ž . . Ž Ž . . Ž Ž . .Since D T I , I F D T f , I and D T f , f F D T I , f , it follows thatn n n n
Ž Ž . . Ž Ž . . Ž . Ž .D T I , f ª D T f , f in probability and therefore also T I ª T f inn n

Ž . <˜probability. A modification of the Taylor expansion 2.1 yields with t y
Ž . < < Ž . Ž . <T f F T I y T f :n

' pn I l y f lŽ . Ž .n
g l dlŽ .H f4p f lŽ .yp

p
y1 2 ˜s H = K t , f l , l dlŽ .Ž .Hf ½

yp

p
2 'q = b l I l y f l dl n T I y T f .Ž . Ž . Ž . Ž . Ž .Ž . Ž .H t̃ n n5

yp

Since

' pn I l y f lŽ . Ž .n
g l dl s Z g q o 1 Theorem 2.2 ,Ž . Ž . Ž . Ž .H f n f p4p f lŽ .yp

p
2 ˜= K t , f l , l dl ª H smoothness of KŽ . Ž .Ž .H P f

yp

and
p

2= b l I l y f l dl ª 0 Lemma A.7 v ,Ž . Ž . Ž . Ž .Ž .H t̃ n P
yp

the result is proved. I

At this point we also want to mention another optimality property of the
above estimate in correctly specified models which was first proved by

Ž . w Ž .Whittle 1953 for generalizations see Kabaila 1980 and Dzhaparidze
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Ž .x Ž . Ž . Ž .1984 : consider the class of all estimates T I , where K u , x, l s a l qn u

Ž . Ž . Žb l x with T f s u examples for different K with this property are theu u

. U Ž .one- and three-step-ahead prediction errors}cf. Section 4 . Then T I withn
U Ž . Ž . Ž . Ž . y1Ž . Ž .K u , x, l s 1r4p log f l q 1r4p f l I l is the estimate of u withu u n 0

the smallest variance among all estimates of this class. This also holds for
Žnon-Gaussian processes the MLE may have a smaller variance but it is of a

ˆ U. Ž . Ž .different form . u s T I is the Whittle estimate cf. Section 1 .n n
Ž .In the next theorem we consider the Kullback]Leibler distance D u , f as

Ž . w Ž . Ž .in 1.4 i.e., we have K u , x, l as in Theorem 3.2 with a l su

Ž . Ž . Ž . Ž . y1Ž .x1r4p log f l and b l s 1r4p f l . We then haveu u u

p1 X2 y1H s f l y f l = f l q = log f l = log f l dl.Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .½ 5Hf u u u u0 0 0 04p yp

As a consequence of Theorems 2.1 and 3.2, we now obtain for the Whittle
ˆ Ž .estimate u s T I :n n

p1 Xy1 2 y1 y1 y1ˆ'n u y u ª N 0, H f l =f l =f l dl H ,Ž . Ž . Ž .Ž . H Ž . Ž .n 0 D f u u f½ 50 0ž /4p yp

Ž .a result already proved by Taniguchi 1979 . In the special case of an
Ž . Ž . ŽAR p -model, this result was proved by Bhansali 1981 in this case the

.Whittle estimate is identical to the Yule]Walker estimate . In addition, we
now know that this limit variance is the smallest which can be achieved by
regular estimators under model misspecification.

We now study the behavior of the Gaussian maximum likelihood estimate
ũ of the fitted model, that is,n

ũ s arg min LL u ,Ž .n n

where

1 1 1 y1XLL u s log 2p q log det S f q X S f X .Ž . Ž . Ž . Ž .n n u n n u n2 2n 2

˜Below we prove that u is also an asymptotically efficient estimate of u . Itn 0
˜is obvious that u cannot be efficient for any point different from u . Thus, ifn 0

we choose a distance function different from the Kullback]Leibler diver-
gence, the maximum likelihood estimate will usually not be consistent. In
particular, this holds if u is the parameter that gives the best h-step0

Ž .prediction error for h G 2 cf. Section 4 .

Ž .THEOREM 3.3. Suppose u is the unique solution of 1.3 and lies in the0
interior of Q. Suppose further that Assumptions 1.2 and 1.3 hold. If H isf
nonsingular, then we have, with g s yHy1 f =fy1,f f u 0

˜'n u y u y Z g ª 0,Ž .Ž .n 0 n f P

that is, the Gaussian maximum likelihood estimate is efficient for the point u0
which minimizes the asymptotic Kullback]Leibler information divergence.
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PROOF. Unfortunately, it is much more difficult to prove the analogous
Ž . Ž . Ž .result to 3.1 with LL u instead of D u , I . Therefore, we follow the methodn n

˜Ž .of proof of Walker 1964 , Section 2, to prove consistency of u . We start byn
Ž .proving that for all u g Q, u / u there exists a constant c u ) 0 with1 1 0 1

lim E LL u y LL u G c u .� 4Ž . Ž . Ž .n 1 n 0 1
nª`

Ž . Ž . Ž .Let S s S f , S s S f and S s S =f . We obtainu n u f n = n u 0

1 1
y1 y1 y1E LL u y LL u s log det S S q tr S S y S ,� 4Ž . Ž . ½ 5Ž .n 1 n 0 u u f u u1 0 1 02n 2n

w Ž .which tends with Szego’s identity cf. Grenander and Szego 1958 , page 64,¨ ¨
xSection 5.2 and Lemma A.5 to

D u , f y D u , f \ c u ) 0Ž . Ž . Ž .1 0 1

due to the uniqueness of u . Furthermore,0

1 2y1 y1Var LL u y LL u s tr S S y SŽ . Ž .Ž . Ž .½ 5n 1 n 0 f u u2 1 02n
tends to 0 with Lemma A.5, which implies

lim P LL u y LL u - c u r2 s 0.Ž . Ž . Ž .Ž .n 1 n 0 1
nª`

< < < <Using Lemma A.1, we obtain, with u y u F u y u ,1 2 1

LL u y LL uŽ . Ž .n 2 n 1

k1  
X Xy1 y1 y1s u y u tr S S f y X S S f S X .Ž .Ý 2 1 u n u n u n u u ni ½ 5ž / ž /2n u ui iis1

Ž . � < < 4Lemmas A.1 and A.2 now imply, with U u [ u g Q: u y u - d ,d 1 2 2 1

1
Xsup LL u y LL u F Kd 1 q X X .Ž . Ž .n 2 n 1 n n½ 5nŽ .u gU u2 d 1

y1 X Ž . p Ž . ŽŽ . X . Ž y1 .Since En X X s c 0 s H f l dl and Var 1rn X X s O n , it fol-n n yp n n
Ž .lows that there exists for all u / u a c u ) 0 with1 0 1

lim P inf LL u y LL u G c u r4 s 1Ž . Ž . Ž .Ž .n 2 n 0 1ž /nª` Ž .u gU u2 d 1

for sufficiently small d . With a compactness argument we obtain as in Walker
˜Ž .1964 that u ª u .n P 0

We now obtain with a Taylor argument

˜ 2 Ž i. ˜=LL u y =LL u s = LL u u y u ,Ž . Ž .Ž . Ž .½ 5n n n 0 n n n 0ii i

Ž i. ˜ ˜< < < <where u y u F u y u , i s 1, . . . , k. If u is an interior point of Q, wen 0 n 0 n
˜ ˜Ž .have =LL u s 0. If u lies on the boundary of Q, then the assumption thatn n n

˜< <u is in the interior implies u y u G d for some d ) 0, that is, we obtain0 n 0

˜ ˜' < <P n =LL u G « F P u y u G d ª 0Ž . Ž .ž /n n n 0
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for all « ) 0. Therefore, it is sufficient to prove

3.2 =2 LL u Ž i. ª HŽ . Ž .n n P f

and
y1'3.3 n =LL u y Z f =f ª 0.Ž . Ž . Ž .n 0 n u P0

We have with Lemma A.1

1 1
Xy1 y1 y1=LL u s tr S S =f y X S S =f S XŽ . Ž . Ž .� 4n u n u n u n u u n2n 2n

and

1 122 y1 y1 2= LL u s y tr S S =f q tr S S = fŽ . Ž . � 4Ž . Ž .½ 5n u n u u n u2n 2n
1

X y1 y1 y1q X S S =f S S =f S XŽ . Ž .n u n u u n u u nn
1

X y1 2 y1y X S S = f S X .Ž .n u n u u n2

Lemma A.6 implies

y1'E n =LL u y Z f =fŽ . Ž .ž /n 0 n u 0

1
y1 y1 y1s tr S S y tr S S S S� 4 � 4ž /u = f u = u0 0 0'2 n

' pn
y1s f l y f l =f l dl q o 1Ž . Ž . Ž . Ž .Ž .H u u0 04p yp

's n =D u , f q o 1 s o 1 .Ž . Ž . Ž .0

Furthermore,

y1'Var n =LL u y Z f =fŽ . Ž .ž /n 0 n u 0

1 f2y1 y1 y1 y1 y1s 2 tr S S S S y 2 tr S S S S S =fŽ .½ 5f u = u f u = u n u½ 50 0 0 0 0ž /4n 2p

2f f
y1 y1 y1 y1y2 tr S S S S S =f q tr S =fu = u f n u n u½ 50 0 0 0½ 5ž / ž /2p 2p

f f
y1 y1 y1qtr S S =f S S =f .f n u f n u½ 50 0ž / ž /2p 2p

Ž .Lemma A.5 implies that this tends to 0 which proves 3.3 . We only sketch the
Ž .proof of 3.2 . By using the smoothness properties of f , we can prove withu

Lemmas A.1, A.2 and A.5 that

=2 LL u Ž i. y =2 LL u ª 0Ž .Ž .n n n 0 P
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w Ž . xcf. Dahlhaus 1988 , proof of Theorem 3.3 . With Lemma A.5 it then follows

E =2 LL u ª HŽ .n 0 f

and

Var =2 LL u s O ny1 ,Ž . Ž .Ž .n 0

which implies the result. I

We now discuss the question whether the above estimates remain efficient
when the model is correctly specified, that is, when f s f . In this caseu0

p1 X
I u [ = log f l = log f l dlŽ . Ž . Ž .Ž . Ž .H u u4p yp

is the Fisher information matrix. If the model is correct, then the MLE is
Ž .known to be efficient this also follows in the same way as in Theorem 3.4 .

For the other estimates we obtain the following result.

ˆTHEOREM 3.4. Let u be one of the estimates of Theorems 3.1 and 3.2.n
Suppose that the conditions of the corresponding theorem hold. If the model is

ˆŽ .correctly specified f s f , then u is efficient for u if and only ifu n 00

1 y1 y1 Xy1I u =f l s H =K u , f l , lŽ . Ž . Ž .Ž .0 u f 0 u0 04p

w xfor all l g yp , p .

Ž .PROOF. Theorems 4.2 and 4.4 of Davies 1973 imply that the sequence of
� k4experiments P : h g R , where P is the Gaussian distribution of nnh nh

observations with spectral density f , is locally asymptotically normalu qh r n'0

with central sequence

1 y1 y1y1 XZ s I u X S f S =f S f XŽ . Ž . Ž . Ž .n 0 n n u n u n u nž 0 0 0'2 n
y1ytr S f S =f .Ž . Ž .½ 5n u n u /0 0

Ž .We therefore have efficiency if and only if Z y Z g ª 0. We haven n f Pu0Ž Ž .. Ž . Ž .E Z y Z g s 0 and, with S s S f , I s I u ,n n f 0 u 0 0u 00

X

E Z y Z g Z y Z gŽ . Ž .ž / ž /n n f n n fu u0 0

k1
X y1 y1 y1s Var X S S I =f SÝ Ž .ž /n 0 n 0 u 0½ 0 iž4n is1

1
y1yS S g X ,Ž .0 n f n5už / /0 i2p
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which tends by similar arguments as in the proof of Theorem 2.2 or 3.3 to
2

p 12 y1 Xy1 y14p f l I =f l y H =K u , f l , l dl,Ž . Ž . Ž .Ž .H u 0 u f 0 u0 0 04pyp

< <where ? is the Euclidean norm. This implies the result. I

We now give an important class of estimates that are also efficient if the
model is correctly specified.

Ž Ž . . Ž Ž . Ž ..COROLLARY 3.5. Let K u , f l , l s K f l rf l , where K is three timesu

differentiable with unique minimum at x s 1. Suppose the model is correctly
specified. Then the estimates from Theorems 3.1 and 3.2 are efficient for u .0

YŽ .PROOF. Let c s K 1 . Direct calculation gives
p

2H s = K u , f l , l dl s 4p cI uŽ . Ž .Ž .Hf 0 u 00yp

and
=K u , f l , l s c =fy1 l ,Ž . Ž .Ž .0 u u0 0

which implies the result. I

Ž .The above result has been derived directly by Taniguchi 1987 , Theorem 5.
An example for an estimate that is not efficient when the model is correctly
specified will be given in the next section.

4. Discussion, extensions and examples.

Minimizing the linear h-step prediction error. Suppose that we have
observed X , . . . , X and wish to make a linear prediction of X . If the1 n nqh

Ž .process is an AR p -process, the best linear predictor is given by
p

ˆ ˆX s y a X ,ÝNq h j Nqhyj
js1

ˆwhere X is the best linear predictor of X given X , . . . , X . ThisNq hyj Nqhyj 1 N
ˆŽ .means that we can start with 1.1 and calculate X iteratively. InNqh

particular,
p

X̂ s y c X ,ÝNq h j Nq1yj
js1

Ž .where c [ c a , . . . , a are certain functions of the parameters.j j 1 p
Ž .If we proceed as if the process were AR p , the mean square prediction

w Ž .xerror is given by u s a , . . . , a1 p
2ˆPE u , f s E X y XŽ . Ž .h Nqh Nqh

2p
p

s f l exp il h y 1 q c exp yil j dl.Ž . Ž . Ž .Ž . ÝH j
yp js1
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This is an example for a distance function which is linear in f and different
ˆfrom the Kullback]Leibler distance. Theorems 3.1 and 3.2 imply that u sn

ˆ X̂Ž . Ž .arg min PE u , f and u s arg min PE u , I are efficient estimates of u sh n n h n 0
Ž .arg min PE u , f . As indicated in the discussion prior to Theorem 3.3, theh

˜MLE u will, in general, not even be consistent.n
To be specific, let h s 3 and p s 1. Then u s a , c s ya3 and1 1 1

p
3 6PE u , f s f l 1 y 2u cos 3l q u dl,Ž . Ž . Ž .H3

yp

Ž . Ž .which leads with c u s Var X , X tot tqu

p
2 5w x= PE u , f s f l y6u cos 3l q 6u dlŽ . Ž .H3

yp

and
1r3 1r3pH f l cos 3l dl c 3Ž . Ž . Ž .yp

u s s .0 pH f l dl c 0Ž . Ž .yp

The corresponding efficient estimate obtained, for example, by minimizing
Ž .PE u , I is3 n

1r3c 3Ž .n
û s ,n c 0Ž .n

where
nyu p1

c u s X X s I l exp ilu dlŽ . Ž . Ž .Ý Hn t tqu nn ypts1

is the empirical covariance.
If we take instead h s 1 we obtain

c 1Ž .
Uu s y .0 c 0Ž .

Ž . U UIf the true process is AR 1 , then u s u while, in general, u / u . The0 0 0 0
˜ UMLE u is an efficient estimate for u but not for u .n 0 0

Since
p

PE u , f s K u , f l , l dl,Ž . Ž .Ž .H3
yp

Ž . w 3 6 xwith K u , x, l s x 1 y 2u cos 3l q u , we have

=K X u , f l , l s y6u 2 cos 3l q 6u 5 .Ž .Ž .0 u 0 00

Since
2p

y1=f l s 2 cos l q 2u ,Ž . Ž .u 020 s

ˆthe condition of Theorem 3.4 is not fulfilled, and u is therefore not efficient ifn
the model is correctly specified.
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Ž .Note that u s arg min PE u , f is not always uniquely determined, that0 h
is, Assumption 1.1 may be violated. For example, for h s 2 and p s 1 only
u 2 s a2 is uniquely determined. We conjecture that in this situation0 1
Ž . Ž . 2c 2 rc 0 is an efficient estimate of u .n n 0
From a practical point of view, the situation becomes difficult when the
Ž . ŽAR p -model is ‘‘close’’ to the true f which usually is the case when the order

. Uis selected by an information criterion . Then u f u , and it will depend on0 0
U ˆ ˜Ž .the unknown difference between u and u whether u or u will lead to0 0 n n

the better estimate of u .0
The fitting of time series models by minimizing multi-step-ahead predic-

tion errors has recently been discussed under more practical aspects by
Ž .Haywood and Tunnicliffe Wilson 1993 . They also use the frequency domain

approach.

Ž .Distances between spectral densities. As in Corollary 3.5, Taniguchi 1987
Ž Ž . . Ž Ž . Ž ..has considered several distances of the form K u , f l , l s K f l rf l .u

Ž . Ž . Ž .Examples are K x s log x q 1rx Kullback]Leibler distance , K x s
a 2Ž . Ž .ylog x q x or K x s x y 1 .

Ž .Taniguchi 1987 , Section 4, recommends choosing the distance function
Ž .K x dependent on the parameter space to obtain noniterative efficient

Ž .estimates e.g., for MA-models K s ylog x q x instead of log x q 1rx .
We mention that different K lead in the misspecified case to different

f lŽ .u
u s arg min K dlH0 ž /f lŽ .

w Ž . Ž .e.g., for an MA 1 -model K x s ylog x q x leads to a different u from0
Ž . xK x s log x q 1rx . This means that one is estimating efficiently different

values of the parameter space. Therefore, the above-mentioned advice has to
be handled with care.

Small-sample effects. It is well known that estimates based on the non-
Ž .tapered periodogram I l have a poor small-sample behavior. The small-n

ˆŽ .sample behavior of I l and of u may be drastically improved by applying an n
w Ž .xdata taper cf. Dahlhaus 1988 . If the data taper stays constant with

increasing sample size, the tapered estimates are no longer efficient due to an
increase of the asymptotic variance. However, if the proportion of tapered

ˆŽ . Ž .data tends to 0 as n ª `, the resulting estimates T I and T f will ben n
efficient as well. This can be proved by suitable modifications of the above
results. In order not to complicate the calculations, we have omitted these
results.

ˆŽ . Ž .For linear distance functions we recommend using T I instead of T fn n
ˆ ˆsince the convolution in f may lead to a loss of sharpness of the peaks in fn n

and therefore also in f .ˆT Ž f .n
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APPENDIX

In this Appendix we briefly summarize some properties of matrix norms
w Ž . Ž .and Toeplitz matrices cf. Grenander and Szego 1958 , Davies 1973 , Azen-¨

Ž . Ž . Ž .xcott and Dacunha-Castelle 1986 , Dzhaparidze 1986 and Taniguchi 1991 .
Furthermore, we prove some convergence results for spectral estimates.

Suppose A is an n = n matrix. We denote
U U 1r2< <Ax x A Ax

5 5A s sup s sup Už /< <n nx x xxgC xgC

1r2Uw xs maximum characteristic root of A A ,

where AU denotes the conjugate transpose of A, and
1r2U< <A s tr AA .Ž .

If A is a real nonnegative symmetric matrix, that is, A s PXDP with
X X � 4 1r2PP s P P s I and D s diag l , . . . , l , where l G 0, then we define A s1 n i

X 1r2 1r2 1r2� 4P D P, where D s diag l , . . . , l . Thus, A is also nonnegative' '1 n
1r2 1r2 y1r2 Ž 1r2 .y1definite and symmetric with A A s A. Furthermore, A s A if

A is positive definite.
w Ž .The following results are well known see, e.g., Davies 1973 , Appendix II,

Ž . xor Graybill 1983 , Section 5.6 .

LEMMA A.1. Let A, B be n = n matrices. Then:

Ž . < Ž . < < < < <a tr AB F A B ,
Ž . < < 5 5 < <b AB F A B ,
Ž . < < < < 5 5c AB F A B ,

'Ž . 5 5 < < 5 5d A F A - n A ,
Ž . 5 5 5 5 5 5e AB F A B ,
Ž . 5 5 5 U 5f A s A ,

'Ž . < Ž . < < <g tr A F n A ,
Ž . < U < U 5 5 nh x Ax F x x A , x g C ,
Ž . � 4i log det A F tr A y I , A G 0.

Suppose now that the elements of A are continuously differentiable functions
of u . Then:

 
y1 y1 y1j A s yA A A ,Ž . ž /u u

 
y1k log det A s tr A A ,Ž . ½ 5u u


< <l A u y A u F u y u A u with a mean value u ,Ž . Ž . Ž . Ž .Ý1 2 1 i 2 i uii


< <m A u y A u F u y u A u with a mean value u .Ž . Ž . Ž . Ž .Ý1 2 1 i 2 i uii
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LEMMA A.2. Suppose h is a real, symmetric function such that there exist
Ž .constants with 0 - c F h l F c . Then1 2

1r2 y1r2
S h F 2p c and S h F 1r 2p cŽ . Ž .' 'n 2 n 1

and, as a consequence,

y1
S h F 2p c and S h F 1r 2p c .Ž . Ž . Ž .n 2 n 1

Lemma A.2 follows, for example, from Proposition 4.5.3 of Brockwell and
Ž .Davis 1987 .

LEMMA A.3. Suppose that g g LL with 1 F p F `, j s 1, . . . , k, are sym-j p jj

metric functions with Ýk py1 F 1. Thenjs1 j

k kp1 ky1lim tr S g s 2p g l dl.Ž . Ž . Ž .Ł ŁHn j j½ 5 ½ 5nnª` ypjs1 js1

Ž .Lemma A.3 was first obtained by Grenander and Szego 1958 , Section 8.1.¨
Ž .The above version is due to Avram 1988 , Theorem 1.

LEMMA A.4. Suppose f g LL is a real, symmetric function with fy1 g LL .4 4
Then we have, with I the identity matrix,

1r2 1r2y11 f f f
A.1 I y S S S s o 1 ,Ž . Ž .n n nž / ž /ž /' 2p 2p 2pn

Ž y1 . Ž .that is, S f r2p is an approximate inverse of S fr2p .n n

PROOF. Let
n

D x s exp yijx .Ž . Ž .Ýn
js1

p Ž . Ž . Ž .Since H D x y y D y y z dy s 2pD x y z the square of the left-handyp n n n
Ž .side of A.1 is equal to

2y1 y12 f f 1 f f
1 y tr S S q tr S Sn n n n½ 5ž / ž /ž / ž /½ 5ž /n 2p 2p n 2p 2p

f x f xŽ . Ž .1 3y4 y1s 2p n y 1 y 1Ž . H
4 ž / ž /f x f xŽ . Ž .w xyp , p 2 4

=D x yx D x yx D x yx D x yx dxŽ . Ž . Ž . Ž .n 1 2 n 2 3 n 3 4 n 4 1

s G x , x , x f x , x , x dx,Ž . Ž .H 1 2 3 n 1 2 3
3w xyp , p
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where

y3 y1f x , x , x s 2p n D x D x D x D yx y x y xŽ . Ž . Ž . Ž . Ž . Ž .n 1 2 3 n 1 n 2 n 3 n 1 2 3

and

p1 f x q x q x q x f x q xŽ . Ž .1 2 3 1
G x , x , x s y 1 y 1 dx .Ž . H1 2 3 ž /ž /2p f x q x q x f xŽ . Ž .yp 1 2

Ž .G is continuous in 0 with G 0, 0, 0 s 0 and f is an approximate convolutionn
w Ž . xidentity cf. Dahlhaus 1983 , Lemma 3 . This implies the result. I

LEMMA A.5. Suppose that g are real, symmetric functions with 0 - c Fj 1
Ž .g l F c . Letj 2

1, j g P ,1
s sj ½ y1, j g P ,y1

� 4 � 4where P , P is a partition of 1, . . . , k . Then we have1 y1

sk kj p1 g 1j s jlim S s g l dl.Ž .Ł ŁHn jž /½ 5 ½ 5n 2p 2pnª` ypjs1 js1

PROOF. We have

s sk k jj1 g gj j
tr S y SŁ Łn nž /½ 5ž /n 2p 2pjs1 js1

s ss sk iy1 kj ii j1 g g g gj i i js tr S S y S SÝ Ł Łn n n nž / ž /½ 5ž / ž /n 2p 2p 2p 2pjs1 jsiq1is1

s ss siy1 kj ii j1 g g g gj i i jF S S y S S .Ý Ł Łn n n nž / ž /ž / ž /n 2p 2p 2p 2pjs1 jsiq1igPy1

< y1 < 5 y1r2 5 2 < 1r2 1r2 <Since A y B F A I y A BA , Lemmas A.2, A.3 and A.4 imply
that this converges to 0. I

For the expectation of the maximum likelihood estimate in Theorem 3.3,
Ž y1r2 .we need the convergence of Lemma A.5 with rate o n . We state the

result as we need it in Theorem 3.3.

LEMMA A.6. Suppose g, f and f are real, symmetric functions, bounded0
from above and below with f, f g Lip with k ) 1r2. Then0 k

p1 1 g lŽ .y1 y1r2tr S f S g s dl q o nŽ . Ž . Ž .� 4 Hn 0 nn 2p f lŽ .yp 0
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and

p1 1 f l g lŽ . Ž .y1 y1 y1r2tr S f S f S g S f s dl q O n .Ž . Ž . Ž . Ž . Ž .� 4 Hn n 0 n n 0 2n 2p yp f lŽ .0

The proof is omitted. It is quite technical and uses calculations in the
frequency domain similar to the proof of Lemma A.4. Under stronger condi-
tions the result would follow, for example, from Theorem 2.1.1 of Taniguchi
Ž . Ž .1991 or from Lemma 4.5 in Azencott and Dacunha-Castelle 1986 , Chap-
ter 13.

LEMMA A.7. Suppose X , t g Z, is a fourth-order stationary process witht
EX s 0, Lipschitz-continuous spectral density f and bounded fourth-ordert
spectrum. Under Assumption 1.4 we have:

p ˆ 2 y2 y1r2Ž . Ž Ž . Ž .. Ž . Ž . Ž .i EH f l y f l dl s O m q O mrn s o n ,yp n

ˆŽ . Ž < Ž . Ž . < . Ž .ii P sup f l y f l G « s o 1 ,l n
p ˆ'Ž . Ž .� Ž . Ž .4iii n H c l f l y I l dl ª 0 for continuous c ,yp n n P
p'Ž . Ž .� Ž . Ž .4 Ž .iv n H c l EI l y f l dl s o 1 for bounded c ,yp n

Ž . < p Ž .� Ž . Ž .4 <v sup H h u , l I l y f l dl ª 0 for Q compact and h con-u g Q yp n P
w xtinuous on Q = yp , p .

Ž . Ž . Ž .PROOF. i and iv are standard. iii is contained in the proof of Theorem
Ž . Ž . Ž .3 in Taniguchi 1987 . v is proved by approximating h u , l by the Cesaro

w Ž . x Ž .sum of its Fourier series cf. Hannan 1973 , Lemma 1 . ii follows since

1 uˆ ˆsup f l y Ef l F c u y Ec u wŽ . Ž . Ž . Ž . ˆÝn n n n ž /2p nl < <u Fny1

and
Var c u s O uy1Ž . Ž .n

uniformly in u. I

If we make the stronger assumption that f is differentiable with
Ž .Lipschitz-continuous derivative, then we get in i the stronger result

Ž y4 . Ž .O m q O mrn . We then can relax the conditions in Assumption 1.4 to
n1r8 < m < n1r2.
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