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We consider the empirical Bayes estimation of a distribution using bi-
nary data via the Dirichlet process. Let D �α� denote a Dirichlet process
with α being a finite measure on �0;1�. Instead of having direct samples
from an unknown random distribution F from D �α�, we assume that only
indirect binomial data are observable. This paper presents a new inter-
pretation of Lo’s formula, and thereby relates the predictive density of the
observations based on a Dirichlet process model to likelihoods of much
simpler models. As a consequence, the log-likelihood surface, as well as
the maximum likelihood estimate of c = α��0;1��, is found when the shape
of α is assumed known, together with a formula for the Fisher information
evaluated at the estimate. The sequential imputation method of Kong, Liu
and Wong is recommended for overcoming computational difficulties com-
monly encountered in this area. The related approximation formulas are
provided. An analysis of the tack data of Beckett and Diaconis, which mo-
tivated this study, is supplemented to illustrate our methods.

1. Introduction. The setting for nonparametric problems is usually as
follows: we have n iid observations from an unknown probability measure P,
and want to make an inference about P. As a Bayesian, one may try to put
a prior distribution on a rich class of distributions and hope to find the pos-
terior distribution. Because of the pioneering work of Ferguson (1973, 1974),
Blackwell and MacQueen (1973), Doksum (1972), Antoniak (1974) and many
others, the choice of a Dirichlet process, D �α�, where α is a finite measure
on the sample space, as a prior distribution of the unknown P, has become
standard. Many interesting theoretical properties of the Dirichlet process and
samples from it have been obtained. For a thorough understanding, see the
seminal work of Ferguson (1973), Antoniak (1974) and Korwar and Hollander
(1973) among others.

Partly for simplicity, we concentrate on probability measures on �0;1� in
this paper. Let α be a finite measure on the interval �0;1�. A random probabil-
ity measure P on �0;1� is said to follow a Dirichlet process D �α� if, for every
finite partition �B1; : : : ;Bm� of �0;1� (i.e., measurable, disjoint and exhaus-
tive), the random vector �P�B1�; : : : ;P�Bm�� follows a Dirichlet distribution
with parameter �α�B1�; : : : ; α�Bm��. We call α the characteristic measure of
the Dirichlet process, and define �α� by �α� =

∫ 1
0 α�dx�. A fundamental fact
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shown by Ferguson (1974) is that:

Suppose P ∼ D �α� and ζ1; : : : ; ζn is a sample of size n from P. Then the
posterior distribution of P given the observations is again a Dirichlet process
with a new characteristic measure, that is,

P � ζ1; : : : ; ζn ∼ D

(
α+

n∑
i=1

δζi

)
;

where δx is a probability measure that gives mass 1 to x.

In many situations, however, one may not be able to obtain direct obser-
vations from P, but indirect ones whose distribution can be expressed as a
convolution of P with a known kernel function [see Lo (1984) for more details].
For convenience, we let F be the cumulative distribution function of P and use
F and P interchangeably. Suppose that the random variables yi; i = 1; : : : ; n,
are binomially distributed with parameters li and ζi, where li is a preassigned
number of trials for the ith observation and ζi is the corresponding probability
of success. Given the set of parameters z = �ζ1; : : : ; ζn�, all the yi are indepen-
dent. Instead of assuming any parametric model for the ζ’s, we assume that
the ζi are iid from the unknown distribution F. To summarize, we have:

1. Given ζi, yi ∼ Bin�li; ζi�, where the yi are observed and the li are preas-
signed.

2. Given the unknown distribution F, ζ1; : : : ; ζn are iid observations on F.
3. F is a priori distributed as D �α�.

This setting is treated in Berry and Christensen (1979), where the focus
is on deriving analytic forms of the empirical Bayes estimates for the ζi and
on computing approximations of these quantities. In a more general setting,
Antoniak (1974) shows that the posterior distribution of F is a mixture of
Dirichlet processes. Kuo (1986) provides a Monte Carlo method for computing
posterior means. Lo (1984) derives the analytic form of Bayes estimators for
a density estimation problem that involves convolutions with a known kernel
function. Our problem is one special case of his setting.

We assume that the prior measure α is of the form cBeta�a; b�, where
Beta�a; b� represents a beta density with parameters a and b. The param-
eter c is a positive number representing the weight to put on our prior belief.
From an empirical Bayes point of view, we would like to use the data to help
determine the parameters a, b and c. But for convenience we will concentrate
on c, assuming a and b fixed in advance. In the tack example of Beckett and
Diaconis (1994) referred to later in Section 4, we find that the resulting pos-
terior mean of F is sensitive to changes in the prior weight c: the larger the c
assumed, the smoother the result. As was shown by Antoniak (1974) and Ko-
rwar and Hollander (1973), the weight c is related to the number of clusters,
that is, the distinct values one may expect to observe in �ζ1; : : : ; ζn�, a sample
of size n from some F ∼ D �α�. Roughly, the larger the value of c, the more
the number of clusters; and the number of clusters is about c log��n+ c�/c� for
large c. Along this line, Korwar and Hollander (1973) provide an estimation
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method for the weight c when one has direct observations on the ζi. Prac-
tical methods for dealing with indirect observations in nonparametric Bayes
settings only appear recently mainly because of computational difficulties.
The recognition of usefulness of Markov chain Monte Carlo methods in fa-
cilitating Bayesian inference [see Gelfand and Smith (1990) and Smith and
Roberts (1993)] especially contributes to the recent developments in this area.
Doss (1994) provides an iterative sampling method for applying nonparametric
Bayes to censored data. Escobar (1994) treats the James–Stein problem under
a Bayesian nonparametric model using the Gibbs sampler, and mentions the
problem of estimating c. The importance of determining the weight c and the
shape of α is discussed in more detail in Escobar and West (1995) and West
(1992). Especially, they illustrate how to incorporate a beta prior distribution
and then how to update for c in a general Gibbs sampling framework. For
priors other than the beta distribution or a mixture of the beta distributions,
a discretization of the range of c has been recommended.

In this paper, a new interpretation of Lo’s formula (his Lemma 2) is pre-
sented in Section 2 that relates the predictive density of the data [a termi-
nology from Box (1980)] resulting from imposing the nonparametric Dirichlet
process model to the likelihood of simpler models. The posterior distribution of
N�z�, the number of clusters among �ζ1; : : : ; ζn�, is shown to be proportional
to these likelihoods. As a consequence, we show that at c = ĉ, the maxi-
mum likelihood estimate of c, E �N�z��y� = E �N�z��, where E represents the
expectation with respect to the probability model determined by D �α�. Fur-
thermore, at c = ĉ, the expected Fisher information of d = log�c� is found as
Var�Eα�N�z� � y1; : : : ; yn��. Section 3 is concerned with the computational as-
pect of the problem. Instead of using the Gibbs sampler, we apply sequential
imputations introduced by Kong, Liu and Wong (1994) to obtain the quanti-
ties of interest: an approximate likelihood curve of log�c� and the MLE of c;
the posterior distribution of the number of clusters; the posterior mean and
variance of each ζi and the posterior mean of F. The tack example is treated
in Section 4 to illustrate our theory and methods.

2. Some theoretical results on Dirichlet processes. Let yi be an ob-
servation from Bin�li; ζi� where the ζi are iid observations on F for i =
1; : : : ; n and F ∼ D �α�. Throughout the paper, we use P �·� to denote the prob-
ability measure under the Dirichlet process model, and use E �·� and Var�·�,
respectively, to denote the expectation and variance taken under this measure.
Let z = �ζ1; : : : ; ζn� and y = �y1; : : : ; yn�. We assume α = cBeta�a; b�.

Let S = �1; : : : ; n�, P be a partition of S and �P� be the number of cells in
P. If �P� = k, for example, we further use p�1�; : : : ;p�k� to denote the cells of
this partition and use ei = �p�i��, i = 1; : : : ; k, to denote the size of each cell.
Therefore, the p�i� are nonintersecting, nonempty and exhaustive subsets of
S without regard to ordering. For any subset p�i�, we use the notation

l�i� =
∑
j∈p�i�

lj; y�i� =
∑
j∈p�i�

yj:
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For any positive integer n > x, we denote the Beta function by

Bab�n;x� =
0�a+ b�
0�a�0�b�

∫ 1

0
tx+a−1�1− t�n+b−x−1 dt = B�a+ x; b+ n− x�

B�a; b� :(1)

An m-spike model for the unobservable ζ’s is a discrete distribution G�ζ� with
m point masses on the unit interval, that is, with the probability distribution
function of the form

G�ζ� = a1δz1
�ζ� + · · · + amδzm�ζ�:

Theorem 1 (Predictive density). If the prior characteristic measure α =
cBeta�a; b�; then the predictive density of the observations under the Dirichlet
process model D �α� is

P �y� = �n− 1�!∏n
i=1�c+ i− 1�

n∏
i=1

(
li

yi

)
n∑

m=1

cmLm�y�;(2)

in which each term has the expression

Lm�y� =
1

�n− 1�!
∑

P: �P�=m

{ m∏
i=1

�ei − 1�!Bab�l�i�;y�i��
}
:

Proof. By the Pólya urn argument of Blackwell and MacQueen (1973),

P �ζ1; : : : ; ζn� =
n∏
i=1

α�ζi� +
∑i−1
j=1 δζj�ζi�

�α� + i− 1
:

Furthermore, it is clear that P �y1; : : : ; yn�ζ1; : : : ; ζn� =
∏n
i=1

(
li
yi

)
ζ
yi
i �1−ζi�li−yi :

Letting gi�ζi� = ζ
yi
i �1−ζi�li−yi and applying Lemma 2 of Lo (1984), we obtain

the result. The factor
(
li
yi

)
is of no interest and will be omitted in the later

context. 2

Theorem 2 (Clustering). Let N�z�; where z = �ζ1; : : : ; ζn�; be the number
of distinct values of ζ that are assumed to be drawn from a random distribution
function F ∼ D �α�. Then the posterior distribution of N�z� is

P �N�z� =m � y� = cmLm�y�/
n∑
j=1

cjLj�y�:

Proof. It is not difficult to see that P �y1; : : : ; yn; N�z� = m� ∝ cmLm

because, for fixed y,

P �y1; : : : ; yn; ζ1; : : : ; ζn� ∝
n∏
i=1

ζ
yi
i �1− ζi�li−yi

(
α�ζi� +

i−1∑
j=1

δζj�ζi�
)
;

and we can integrate out the z with the constraint that N�z� = m in the
expression. Hence the result follows from Theorem 1. 2
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Because of the above two theorems, we call Lm, m = 1; : : : ; n, the likelihood
of the m-spike model. Another reason is as follows. Suppose we fit the data to
an m-spike model

Gm�ζ� = a1δz1
�ζ� + · · · + amδzm�ζ�;(3)

with the constraint that each spike contributes at least one observation [i.e.,
the model cannot be reduced to an �m − 1�-spike model]. Then when an
improper prior with density �a1a2 · · ·am�−1 for the mixing proportion and a
Beta�a; b� prior for the zi are used, the pseudo (since the prior is improper)
predictive density for y in this model is proportional to Lm.

By a result of Antoniak (1974), however, the value of c also reflects the a
priori belief about the number of distinct ζ’s. How some changes in this belief,
as well as in the shape of the characteristic measure α; affect the posterior
distribution is of interest.

Theorem 3 (Sensitivity). If the continuous characteristic measure α of a
Dirichlet process is changed to the continuous measure β; then

Pβ�y; z�
Pα�y; z�

=
(n−1∏
i=0

�α� + i
�β� + i

)
β�ζ ′1� · · ·β�ζ

′
N�z��

α�ζ ′1� · · ·α�ζ
′
N�z��

;

where ζ ′i; i = 1; : : : ;N�z�; are the distinct ζ’s among ζ1; : : : ; ζn. Moreover, when
β = qα; where q > 0 is a weighting factor, the right-hand side simplifies to
qN�z�

∏n−1
i=0 ���α� + i�/�q�α� + i��.

Proof. It is obvious from the hierarchical setting that given z, y is no
longer relevant. The rest of the proof follows easily from the Pólya urn expla-
nation of the Dirichlet process [Blackwell and MacQueen (1973)]. 2

The parameter c can be treated as an unknown parameter and estimated by
maximum likelihood. To begin with, we can easily write the likelihood function
of c:

L�c;y� =
n∏
i=1

�c+ i− 1�−1
n∑

m=1

cmLm�y�:(4)

In the Appendix we prove the following result.

Theorem 4 (MLE). Let α = cBeta�a; b�. Then the maximum likelihood es-
timate of c satisfies the normal equation

E �N�z� � y1; : : : ; yn� = E �N�z��:

Furthermore, if we let d = log�c�; then the observed and the expected Fisher
information of d at log�ĉ� are, respectively,

iobs�d� = Var�N�z�� − Var�N�z� � y� and iexp�d� = Var�E�N�z� � y��:
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Note that (2) and (4) actually hold for α to be any finite measure (not neces-
sarily of Beta form), although the likelihood Lm�y�may not have a closed form.
Therefore, by reviewing its proof, we find that Theorem 4 holds for general α
with a given shape. This result can be regarded as a generalization of Theo-
rem 2.3 of Korwar and Hollander (1973) on the Borel space [0,1] with Lebesgue
measure. To see the point, we imagine that li→∞ and that yi/li = ζi. Then
the above theorem gives ĉ determined by

N�z� = c
n∑
i=1

1
c+ i− 1

≈ c log
(
c+ n
c

)
;

whereas the Korwar–Hollander estimate, N�z�/ log�n�, is approximately ĉ for
large n.

Even when the li are large, or the ζi are observed directly, the amount
of information for d is of order O�log�n��. More precisely, when the ζi are
observed directly, Var�N�z� � y� = 0. Hence the maximal possible Fisher
information on d = log�c� is

Var�N�z�� =
n∑

m=1

c�m− 1�
�c+m− 1�2 ≈ c

{
log

(
c+ n
c

)
− 1

}
:

3. Nonparametric Bayesian computation. We mentioned in Section 1
that the posterior distribution ofF is easily updated if all the ζi were observed.
As was noted by Berry and Christensen (1979) and Lo (1984), however, the
situation becomes extremely difficult when one has indirect observations as in
our Dirichlet–binomial setting. One helpful way of dealing with the problem is
to treat those unobservable ζ’s as missing data and use missing data method-
ology such as imputations to make computation feasible. A standard method
to handle Bayesian missing data problems is to approximate the actually in-
complete data posterior of the parameter vector by a mixture of complete data
posteriors. The multiple complete data sets used in the mixture are created
ideally by draws from the posterior distribution of the missing data condi-
tioned on the observed data. A popular way for doing this is, of course, data
augmentation, or the Gibbs sampler [see Tanner and Wong (1987) and Gelfand
and Smith (1990)], whose usefulness in nonparametric Bayesian problems has
been demonstrated by Escobar (1994), Doss (1994), West (1992) and others.
The sequential imputation method of Kong, Liu and Wong (1994) is an al-
ternative for creating multiple complete data sets. This procedure does not
require iterations and is a variation of importance sampling. Moreover, sen-
sitivity analysis and updating with new data can be done cheaply with the
method.

3.1. General method of sequential imputations. Let u denote the parame-
ter vector of interest with prior distribution p�u� and let x denote the com-
plete data in a model where the posterior distribution p�u � x� is assumed to
be simple. However, x is assumed to be only partially observed and can be
partitioned as �y; z�, where y denotes the observed part and z represents the
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missing part. Now suppose y and z can each be further decomposed into n
corresponding components so that

x = �x1; x2; x3; : : : ; xn� = �y1; z1; y2; z2; y3; z3; : : : ; yn; zn�;(5)

where xi = �yi; zi� for i = 1; : : : ; n. We note that

p�u � y� =
∫
p�u � y; z�p�z � y�dz:(6)

Hence, if M independent copies of z are drawn from the conditional distribu-
tion p�z � y� and denoted by z�1�; z�2�; : : : ; z�M�, we can approximate p�u � y�
by

1
M

M∑
j=1

p�u � x�j��;

where x�j� stands for the augmented complete data set �y; z�j�� for j =
1; : : : ;M. [Note that each z�j� has n components: z1�j�; : : : ; zn�j�.] However,
drawing from p�z � y� directly is usually difficult. The Gibbs sampler men-
tioned earlier achieves something close to that by using Markov chains. Se-
quential imputation, however, achieves a similar thing by imputing the zi
sequentially and using importance sampling weights. In general, sequential
imputation involves doing the following:

(A) For t = 1; · · · ; n; starting from t = 1, draw z∗t from the conditional
distribution

p�zt � y1; z
∗
1; y2; z

∗
2; : : : ; yt−1; z

∗
t−1; yt�:

Notice that the z∗’s have to be drawn sequentially because each z∗t is drawn
conditioned on the z∗1; : : : ; z

∗
t−1.

(B) For t = 2; : : : ; n; compute

p�yt � y1; z
∗
1; : : : ; yt−1; z

∗
t−1�:

After the whole process is finished, we compute

w = p�y1�
n∏
t=2

p�yt � y1; z
∗
1; : : : ; yt−1; z

∗
t−1�:(7)

Note that (A) and (B) are usually done simultaneously. Both (A) and (B) are
computationally simple if the predictive distributions p�xt � x1; : : : ; xt−1�; t =
1; : : : ; n; are simple. Now suppose (A) and (B) are done repeatedly and in-
dependently M times. Let the results be denoted by z∗�1�; : : : ; z∗�M� and
w�1�; : : : ;w�M�, where z∗�j� = �z∗1�j�; : : : ; z∗n�j�� for j = 1; : : : ;M. We will
now estimate the posterior distribution p�u � y� by the weighted mixture

1
W

M∑
j=1

w�j�p�u � x∗�j��;(8)

where W = ∑
w�j� and x∗�j� denotes the augmented data set �y; z∗�j�� for

j = 1; : : : ;M. Refer to Kong, Liu and Wong (1994) for more details.
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3.2. Sequential imputation in nonparametric Bayes problems. In our
Dirichlet–binomial nonparametric setting, the unobservable z = �ζ1; : : : ; ζn�
can be regarded as a missing value, and the unknown function F as the
parameter of interest “u.” Sequential imputation requires that it be easy to
sample from the distribution

P �ζt � y1; : : : ; yt; ζ1; : : : ; ζt−1�

and to compute P �yt � y1; : : : ; yt−1; ζ1; : : : ; ζt−1� to update the importance
weights. First, we note that, conditional on ζ1; : : : ; ζt−1, F is distributed as
D �αt−1� with αt−1 = α+

∑t−1
i=1 δζi . This implies that

�ζt � ζ1; : : : ; ζt−1� ∼
1

c+ t− 1

(
α+

t−1∑
i=1

δζi

)
;(9)

which should be interpreted as a probabilistic mixture of α and point masses
concentrated at the ζi’s. It follows that, if the prior measure α is chosen to be
cBeta�a; b�,

�ζt � ζ1; : : : ; ζt−1; yt�

∼
[
cBab�lt; yt�Beta�yt + a; lt − yt + b� +

t−1∑
i=1

ζ
yt
i �1− ζi�lt−ytδζi

]
;

(10)

where Bab�lt; yt� is defined in (1) and �cBab�lt; yt�+
∑t−1
i=1 ζ

yt
i �1− ζi�lt−yt�−1 is

the normalizing constant. Note that (10) is a mixture of a Beta distribution
and discrete point masses. From (9), we also get

P �yt � ζ1; : : : ; ζt−1� =
c

c+ t− 1
Bab�lt; yt� +

1
c+ t− 1

t−1∑
i=1

ζ
yt
i �1− ζi�lt−yt;

which is the term we need to compute when updating the importance weights.
So, as demonstrated, both steps (A) and (B) of sequential imputation can

be easily implemented. We note that a direct application of Gibbs sampling is
difficult since drawing the infinite-dimensional parameter F cannot be done
cheaply [this step is done approximately in Doss (1994)]. Escobar (1994) de-
scribes a Gibbs sampler with the F integrated out, which takes advantage of
the simplicity of the predictive distribution (10).

Having sampled ζt by means of sequential imputation and computed the
associated importance weights M independent times, we have M imputed
complete data sets with associated weights:

z�j� = �ζ1�j�; : : : ; ζn�j�� and w�j� for j = 1; : : : ;M:

Let w = �w�1�; : : : ;w�M�� and W = w�1� + · · · + w�M�. What follows is a
summary of what we can do with these imputed z’s.
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Theorem 5 (Sequential imputation). (a) The posterior distribution of F
can be approximated by a weighted mixture of Dirichlet processes:

P �F � y� ≈ 1
W

M∑
j=1

w�j�D
(
α+

n∑
i=1

δζi�j�

)
:

(b) The posterior expectation of F; which is also the predictive distribution
for a future ζ; can be expressed as a weighted mixture of α and point masses:

E �F � y� ≈ 1
�α� + n

{
α+ 1

W

M∑
j=1

n∑
i=1

w�j�δζi�j�
}
:

(c) Posterior means and variances of the ζ’s can be approximated by

E �ζi � y� ≈
1
W

M∑
j=1

w�j�ζi�j�

and

Var�ζi � y� ≈
1
W

M∑
j=1

w�j��ζi�j��2 − �E �ζi � y��2:

(d) The posterior distribution of N�z� can be approximated by

P �N�z� = k � y� ≈ 1
W

M∑
j=1

w�j�Ik�N�z�j���;

where Ik is an indicator function such that Ik�x� is 1 if x = k and 0 otherwise.

The proof of the theorem is almost transparent and therefore omitted. It
is noted that the approximations of the posterior means and variances of the
ζ in �c� can be improved by incorporating Rao-Blackwellization [Gelfand and
Smith (1990) and Liu, Wong and Kong (1994)], as has been implemented in
Escobar (1994) for the Gibbs sampler. Let z�−t� denote �ζi; i 6= t�. Then instead
of using the ζt�j� directly to estimate E �ζt�y�, for example, we can estimate
it by

1
W

M∑
j=1

w�j�E �ζt � y; z�−t��j��:

The value of E �ζt � y; z�−t�� can be found by using a distribution similar to
(10). More precisely,

E �ζt � y; z�−t�� =
c�yt + a�/�lt + a+ b� +

∑
i6=t ζ

yt+1
i �1− ζi�lt−yt

cBab�lt; yt� +
∑
i6=t ζ

yt
i �1− ζi�lt−yt

:
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Similarly, we can compute Var�ζt�Y; z�−t��. Then, by variance decomposition,

Var�ζt � y� ≈
1
W

M∑
j=1

w�j�Var�ζt�y; z�−t��j��

+ 1
W

M∑
j=1

w�j��E �ζt�y; z�−t��j�� − E �ζt�y��2:

An implementation of the above estimates on the baseball data set of Efron
and Morris (1975) showed a significant improvement over the raw approxi-
mations in Theorem 5. This improvement is expressed in a Monte Carlo cal-
culation requiring fewer imputations to achieve the desired accuracy. Some of
these results are shown in Kong, Liu and Wong (1994).

If we let the total prior mass c diminish to 0, then the posterior mean of F
converges, in the limit as c→ 0, to Beta�Y+a;L−Y+b�, whereL = l1+· · ·+ln,
Y = y1 + · · · + yn. Actually,

P �F � y1; : : : ; yn� ∝
∫ 1

0
ζY+a�1− ζ�L−Y+bD �nδζ�dζ:

The posterior means of the ζ’s all shrink to the same value ζ0 = �Y+a�/�L+
a + b�: This phenomenon is clear from the Pólya urn viewpoint of Blackwell
and MacQueen (1973). When c = �α� is close to 0, all the balls drawn from
the Polya urn scheme will be of the same “color,” and the “color” is a priori
distributed as Beta�a; b� by convention. Hence the model is reduced to a 1-
spike model.

Suppose, on the other hand, the total a priori mass c = �α� increases to∞.
Then, by the same Pólya urn argument, the posterior mean of F approaches
the mixture

1
n+ c

[
α+

n∑
i=1

Beta�yi + a; li − yi + b�
]
:

The posterior distribution of ζi converges to Beta�yi + a; li − yi + b�.

Proposition 1 (Reweighting). If the continuous prior characteristic mea-
sure α of a Dirichlet process is changed to the continuous measure β; then the
sequential imputation weights for the imputed vector z can be adjusted by

wβ�z� = wα�z�
Pβ�y; z�
Pα�y; z�

;

where Pα�y; z� and Pβ�y; z� can be evaluated by Theorem 3.

The above result is also applicable for sensitivity analysis when using the
Gibbs sampler, where we note that wα�z� ≡ 1 to begin with. The result can as
well be used to conduct empirical Bayes analysis under the Dirichlet process
model. Suppose that under a prior D �α0� process, the imputation weights are
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w�1�; : : : ;w�M�. Then, by subsection 2.4 of Kong, Liu and Wong (1994), the
predictive density of the data, when using the prior α0, can be estimated by

Pα0
�y� ≈ 1

M

M∑
j=1

w�j�:

If, however, we change our prior to be D �qα0�, where q > 0, then the ratio of
the predictive density is, by Theorem 3 and the above reweighting proposition,

Pqα0
�y�

Pα0
�y� =

∫ Pqα0
�y; z�

Pα0
�y; z� Pα0

�z � y�dz =
n∑
k=1

P �N�z� = k � Y�qk
n−1∏
i=0

�α0� + i
q�α0� + i

and can be approximated by

1
W

M∑
j=1

qN�z�j��w�j�
n−1∏
i=0

�α0� + i
q�α0� + i

;

where N�z�j�� is the number of distinct ζ’s in the jth imputed vector z�j� =
�ζ1�j�; : : : ; ζn�j��.

Now suppose that sequential imputations are implemented based on a spe-
cific prior characteristic measure (not necessarily the best one from a compu-
tational point of view), say, α0 = c0Beta�a; b�. In many practical situations we
tend to choose the initial c0 = 1. Then let c = qc0, and from the above argu-
ment we see that the maximum likelihood estimate of c, that is, the “best”
weight to put in front of the prior measure α with shape Beta�a; b�, can be
found by maximizing the function

l̂�c� = log
{

1
W

M∑
j=1

w�j�
(
c

c0

)N�z�j��}
−
n−1∑
i=0

log�c+ i�;

which is an approximation of the log-likelihood function log�L�c;y�� intro-
duced in Section 2. The maximizer c̃ of l̂�c� is an approximation of the max-
imum likelihood estimate ĉ. Since, as M → ∞, l̂�c� converges almost surely
to log�L�c;y�� pointwise on a dense set, by an argument similar to that of
Geyer and Thompson (1992), the maximizer of l̂�c� converges to the true maxi-
mizer of log�L�c;y�� almost surely, provided that the latter is unique. Letting
d = log�c� and differentiating log�L�log�d�;y�� twice with respect to d, we
can easily show that log�L�log�d�;y�� is a concave function in d and therefore
has a unique maximum. Hence the maximizer of log�L�c;y�� is also unique.

What initial α0 should we choose so as to best estimate the weight pa-
rameter c? Our experience shows that the larger the initial c0 is, the smaller
the variance of the importance sampling weights for sequential imputations.
Therefore, c0 should be chosen slightly larger than the maximum likelihood
estimate of c to obtain a more stable result. However, if c0 is too large, the
actual value of q tends to be too small and its coefficient of variation tends to
increase. For instance, it is understood that c = 0 and c = ∞ are two singular
solutions to the normal equation in Theorem 4, which also implies that in
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practice �α0� should be neither too small nor too large. If we let �α0� � n, for
example, then all the imputed ζ’s are distinct. As a consequence, the function
l̂�c� is monotone increasing and ĉ does not exist.

Remark. We decide to follow a “rule of thumb” in sampling theory [see
details in Kong, Liu and Wong (1994) and Liu (1996)] to assess the efficiency
of a general importance sampling plan. The rule suggests that the efficiency
of an importance sampling plan is measured by the coefficient of variation of
the importance weight (i.e., the variance of the renormalized weights). More
precisely, a sample of sizeM drawn from the trial density f�z� can be regarded
as “equivalent” to an effective sample of size M∗ from the true distribution p,
where

M∗ = M

1+ var�w∗� ;

in which w∗�z� = p�z�/f�z� and the variance is taken under f. Usually, w∗

can only be computed up to a norming constant and is often approximated
by renormalization. Other measures of efficiency, for example, the entropy
measure, are also possible, but will not be used in our case.

4. Binary data analysis using Dirichlet process.

4.1. Rolling thumbtacks. Beckett and Diaconis (1994) generated binary
strings from rolls of common thumbtacks. A 1 was recorded if the tack landed
point up and a 0 was recorded if the tack landed point down. All tacks started
point down. Each tack was flicked or hit with the fingers from where it last
rested. Each tack was flicked 9 times. The data, consisting of 320 9-tuples,
are reproduced in Table 1. The actual data arose from 16 different tacks,
2 “flickers” and 10 surfaces. For simplicity, we treated the data as though
they came from 320 different tacks. We further assume that, conditioned on a
certain tack, the results of the 9 different flips are independent. In their paper,

Table 1
Tack data taken from Beckett and Diaconis (1994)

7 4 6 6 6 6 8 6 5 8 6 3 3 7 8 4 5 5 7 8 5 7 6 5 3 2 7 7 9 6 4 6
4 7 3 7 6 6 6 5 6 6 5 6 5 6 7 9 9 5 6 4 6 4 7 6 8 7 7 2 7 7 4 6
2 4 7 7 2 3 4 4 4 6 8 8 5 6 6 6 5 3 8 6 5 8 6 6 3 5 8 5 5 5 5 6
3 6 8 6 6 6 8 5 6 4 6 8 7 8 9 4 4 4 4 6 7 1 5 6 7 2 3 4 7 5 6 5
2 7 8 6 5 8 4 8 3 8 6 4 7 7 4 5 2 3 7 7 4 5 2 3 7 4 6 8 6 4 6 2
4 4 7 7 6 6 6 8 7 4 4 8 9 4 4 3 6 7 7 5 5 8 5 5 5 6 9 1 7 3 3 5
7 7 6 8 8 8 8 7 5 8 7 8 5 5 8 8 7 4 6 5 9 8 6 8 9 9 8 8 9 5 8 6
3 5 9 8 8 7 6 8 5 9 7 6 5 8 5 8 4 8 8 7 7 5 4 2 4 5 9 8 8 5 7 7
2 6 2 7 6 5 4 4 6 9 3 9 4 4 1 7 4 4 5 9 4 7 7 8 4 6 7 8 7 4 3 5
7 7 4 4 6 4 4 2 9 9 8 6 8 8 4 5 7 5 4 6 8 7 6 6 8 6 9 6 7 6 6 6
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Beckett and Diaconis (1994) provide a spectral analysis of the data and reject
the ordinary iid model of rolling. Here we would like to review the problem
from a hierarchical Bayesian viewpoint. The numbers shown in Table 1 are
the number of up’s out of 9 flips for each of the 320 binary strings. A histogram
of the data is shown in Figure 1.

The binomial–Dirichlet nonparametric Bayes model is applicable. In this
example, li = 9 for all i and n = 320. Of course, in general, we do not require
that all the li’s be equal. Clearly, we would not expect that all ζi’s are the
same, but rather assume an unknown distribution F to govern the value of
the ζ’s. One may think that a histogram as shown in Figure 1 is enough to
explain the data. Our later result, however, shows an unusual feature.

Choosing M = 10;000, we applied sequential imputations to estimate the
posterior processes, with each of 4 prior measures α = cBeta(1;1�, where
the weight factor c was taken as 0:1, 1, 5 and 10, respectively. Since F is
an infinite-dimensional parameter, there is no easy way of displaying its full
posterior distribution. Its posterior mean, which can also be viewed as the
predictive distribution of a future tack, is demonstrated to reveal a surprising
bimodality. Clearly, this feature is unexpected and cannot be revealed by a
regular parametric hierarchical analysis using the Beta–binomial priors. A
superficial explanation for this might be that the tack data were produced by
two persons with some systematic difference in their flipping.

Plots of the four posterior mean densities of F corresponding to dif-
ferent c’s are shown in Figure 2. More precisely, F was approximated by∑
jw�j�D �α�j��/W, where α�j� = α + ζ1�j� + · · · + ζn�j�, j = 1; : : : ;M, and

Fig. 1. Histogram of the tack data produced by Beckett and Diaconis (1994).
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Fig. 2. Approximated posterior means of F; that is, E �F�y�; based on four different prior weights.

the curve in Figure 2 is just

1
W

M∑
j=1

w�j�α�j�:

The smoothness of the curves is due to a Gaussian kernel smoothing of the
weighted histogram indicated in the above formula. It is seen that when c is
increased, the bimodality of the curve is reduced. The coefficients of variation
of the importance weights in the four situations, that is, c = 0:1, 1, 5 and 10,
were 378, 43, 34 and 33, respectively. With M = 10;000, the effective sample
sizes in the four situations were about 26, 227, 286 and 300, respectively.

The estimated posterior distribution of N�z�, when c = 1, is shown in Fig-
ure 3, with the posterior mean and variance being 6:342 and 3:495. They are
compared with the prior mean

E �N� =
320∑
i=1

1
i
= 6:347
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Fig. 3. Approximation of P �N�z��y�.

and the prior variance

Var�N� =
319∑
i=1

i

�i+ 1�2 = 4:705:

Based on this estimated distribution, we computed the approximate MLE of
the weight parameter as ĉ = 1:02. The estimated variance of log�ĉ�, that is,
the inverse of the observed Fisher information, is as large as 0:826. The log-
likelihood surface of c is plotted in Figure 4 based on our sequentially imputed
complete data sets and the associated weights. The maximum likelihood so-
lution for c seems to suggest that the bimodal feature is “real.” On the other
hand, however, the relatively large variance of d = log�c� at c = 1:02 suggests
that a better representation of the distribution of ζ may be a weighted mix-
ture of the posterior mean curves over a wide range of different values of c.
In other words, the weighting factor c can be subjected to a Bayesian analysis
assuming a reasonable prior.

As a comparison, we applied Laird’s (1978) method, the so-called NPMLE
(nonparametric MLE), to the tack data via an EM algorithm using an m-spike
model. Starting with m = 3; : : : ;10;13;30, we found that it always converged
to a 3-spike model with spikes at �0:4385;0:6013;0:8144� and mixing weights
0:1906, 0:4402 and 0:3692. Chernoff (1994) reexamined the data by assuming a
mixture of two beta distributions for F and obtained some interesting results.

One may have noticed that the expected number of clusters for the ζ’s from
our nonparametric Bayesian analysis is about 6, while the MLE solution is
3. The mean density of F shown in panel �1;2� of Figure 2, however, reveals
only two modes. To investigate these apparent discrepancies, we decided to fit
an m-spike model for F using the Bayes method, which is equivalent to our
Dirichlet process model conditioned onN�z� =m. Precisely, we assume thatF
follows model (3), with unknown a’s and z’s. A Dirichlet �1/m; : : : ;1/m� prior
was used for the a’s and independent Beta�1;1� priors were assumed on all
the z’s. We ask the same question: what would be the posterior mean density
of F? To our surprise, for m = 2; : : : ;6, 10 and 12, this density is always
bimodal (almost), just like panels �1;1� and �1;2� of Figure 2. The two modes
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Fig. 4. Approximate log-likelihood curve for the weight c. The maximum is attained at c = 1:02.

are always around 0.52 and 0.79. When m increases, the magnitude of the two
modes decreases and the probability mass between the two modes increases.
When m ≥ 6, a third small mode appears at about 0.65 between two large
modes. It persists when m = 10 but disappears when m = 12. Comparing the
fits for m = 5, 6 and 10, we find that the density shape seems to be “stabilized”
after m is 5 or 6.

These results may provide some insight into the connections between
NPMLE and Dirichlet process modeling. First, N�z� = 6 seems to be best
supported by the data and, conditioned on which, the mean density of F
resembles panel �1;2� of Figure 2, revealing not only two major modes but
also a substantial amount of probability mass between them. A full Dirichlet
process model weighted averages over all different N�z�’s. Second, the third
minor mode in the mean shape of F for the 6-spike model seems to be echoing
the result of the NPMLE. Nevertheless, further theoretical studies are called
for to completely understand these subtle connections and either to confirm
or to invalidate the above explanations.

4.2. Gibbs sampling and sequential imputations. Gibbs sampling can also
be applied to treat the same problem. Since drawing the infinite-dimensional
parameter F is infeasible, one needs to “collapse down” (integrate out) F
in the sampler [Escobar (1994)]. General forms of “collapsing” in Bayesian
computations are treated in Liu, Wong and Kong (1994) and Liu (1994). A
better collapsing scheme for the Dirichlet process problems is proposed by
MacEachern (1994), which produces a much more efficient Gibbs sampler. It is
not easy to make a general comparison between Gibbs sampling strategy and
the sequential imputation method because there are many variations for each
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method. We only note here that, since sequential imputation is advantageous
in updating posterior distributions when new data (incomplete) arrive, Gibbs
sampling and sequential imputation can be complementary to each other.

To conclude, we present the following observation in an extreme situation.
Suppose we want to draw a sample of size n, ζ1; : : : ; ζn, from an F that follows
D �α� with α being uniform (this corresponds to the situation where all the y’s
are missing). The goal can be achieved by either running a Gibbs sampler or
doing sequential imputation. Each sequence of sequential imputation draws
is equivalent to a Pólya urn sequence and is therefore an exact draw from
D �α� that results in full efficiency [Blackwell and MacQueen (1973)]. For the
Gibbs sampler, we prove the following theorem in the Appendix.

Theorem 6. Let α be uniform on �0;1�. A Gibbs sampler with a random
scan is applied to draw n exchangeable samples ζ1; : : : ; ζn from a Pólya urn
with parameter α. Then the average regeneration time of the chain is π2n2/6.
Here the random scan refers to the one that visits each component at random
with equal probability.

APPENDIX

Proof of Theorem 4. By differentiating the log-likelihood function of c
and setting it to 0, we get

∑n
m=1mc

m−1Lm∑n
m=1 c

mLm

−
n∑
i=1

1
c+ i− 1

= 0:

By Lemma 2.1 of Korwar and Hollander (1973), it follows that
∑n
m=1mc

mLm∑n
m=1 c

mLm

= E �N�z��:

The first conclusion then follows from Theorem 2. Furthermore, since iobs�d� =
−∂2l�d�/∂d2, where

l�d� = log
{ n∑
m=1

emdLm

}
−

n∑
i=1

log�ed + i− 1� + const.;

the second conclusion follows from the observations that

∂2

∂d2
log

{ n∑
m=1

emdLm

}
= Var�N�z� � y1; : : : ; yn�

and

∂2

∂d2

n∑
m=1

log�ed +m− 1� =
n∑

m=1

ed�m− 1�
�ed +m− 1�2 :
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The right-hand side is just Var�N�z�� by Korwar and Hollander (1973). Next,

iexp�d� = E �iobs�d�� = Var�N�z�� − E �Varα�N�z� � y1; : : : ; yn��
= Var�E �N�z� � y1; : : : ; yn��:

Thus the conclusion follows. 2

Proof of Theorem 6. For a starting vector z�0� = �ζ�0�1 ; : : : ; ζ
�0�
n �, we real-

ize that the time when all these “old” values are replaced by the new draws is
a regeneration time, that is, the first time T such that the sets �ζ�T�1 ; : : : ; ζ

�T�
n �

and �ζ�0�1 ; : : : ; ζ
�0�
n � have an empty intersection. This regeneration time does

not depend on the actual value of z�0�. Therefore, we can couple our nonsta-
tionary chain with a chain started from stationarity so that the both chains
have a common regeneration time. Thus, the regeneration time is the time
needed for convergence.

Now we calculate this regeneration time. At any stage t, we classify the
elements in z�t� into two groups, one of which is

Z
�t�
old = �ζ

�t�
1 ; : : : ; ζ

�t�
n � ∩ �ζ�0�1 ; : : : ; ζ

�0�
n �;

and the other is Z�t�new. We denote the number of elements in Z
�t�
new as V�t�.

Then V�t� is a birth–death chain with transition probabilities

ak = P�V�t+1� = k+ 1 � V�t� = k� = �n− k��k+ 1�
n2

;

bk = P�V�t+1� = k− 1 � V�t� = k� = k�n− k�
n2

:

The reason, for example, for the first probability is that in order to increase
the size of Znew, our sampler needs to visit an “old” component first, which has
a probability �n − k�/n; and then either a draw from α or a draw from Z

�t�
new

has to happen, the probability of which is �k + 1�/n. The regeneration time
is now equal to the time from V�0� = 0 to some T such that V�T� = n. When
the endpoint n is regarded as an absorbing boundary, we have the recurrence
relation

Dk = 1+ akDk+1 + bkDk−1 + �1− ak − bk�Dk; k = 1; : : : ; n− 1;

and D0 = 1 + p0D1 + �1 − p0�D0, Dn = 0. Here Dk denotes the expected
duration of the chain before hitting n when started from k. It is apparent that
E�T� = D0. Furthermore, we find that

Dk −Dk+1 =
n2

k+ 1

{
1

n− k + · · · +
1
n

}
:

This together with Dn = 0 provides us with

D0 = n2
n−1∑
k=0

n∑
j=k+1

1
�n− k�j = n

2
(

1+ 1
22
+ · · · + 1

n2

)
→ π2

6
n2:

The second equality can be easily proved by induction. 2
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