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THE 2d H 4 SIMPLE QUADRATIC NATURAL
EXPONENTIAL FAMILIES ON R d

BY M. CASALIS1

Universite Paul Sabatier´
The present paper describes all the natural exponential families on

d Ž . Ž .R whose variance function is of the form V m s am m m q B m q C,
Ž . ² :with m m m u s u , m m and B linear in m. There are 2 d q 4 types of

such families, which are built from particular mixtures of families of
Ž .Normal, Poisson, gamma, hyperbolic on R and negative- multinomial

distributions. The proof of this result relies mainly on techniques used in
the elementary theory of Lie algebras.

1. Introduction. For an accurate presentation of the simple quadratic
natural exponential families, let us introduce some notation.

Let E be a real vector space with finite dimension d, let E* be its dual and
Ž . ² :let E* = E ª R: u , x ¬ u , x be the duality bracket. We denote by

Ž . w Ž .xLL E*, E respectively, LL E, E* the space of the symmetric linear opera-s s
Ž .tors from E* to E resp. from E to E* , that is, the space of linear operators

Ž . Ž .2 ² : ² : wV: E* ª E such that for a , b in E* , a , Vb s b, Va resp. c : E ª E*
Ž . 2 ² : ² :xsuch that for u, v in E , c u, v s c v, u .

For a positive Radon measure on E, we note

² :x wL : E* ª 0, ` : u ¬ exp u , x m dx ,Ž .Hm

Q m s interior u g E*; L u - q` ,Ž . Ž .� 4m

k s log L on Q m .Ž .m m

L and k are, respectively, the Laplace transform and the cumulant functionm m

of m.
Ž .Let MM E denote the set of m such that m is not concentrated on an affine

Ž . Ž .hyperplane of the space and Q m is not empty. Then, for m in MM E , the set
Ž . � Ž .Ž . �² : Ž .4 Ž .of probabilities F s F m s P u , m dx s exp u , x y k u m dx ; u gm

Ž .4 Ž .Q m is called the natural exponential family NEF generated by m. The
measure m is called a basis of F.

Ž . Ž .Since m is in MM E , k is strictly convex and real analytic on Q m , so thatm
X Ž .its first derivative k : Q m ª E:m

u ¬ kX u s xP u , m dxŽ . Ž .Hm
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2 d q 4 QUADRATIC NATURAL EXPONENTIAL FAMILIES 1829

Ž .defines a diffeomorphism from Q m to its range M , called the mean domainF
Ž . Žof F. Let c : M ª Q m be its inverse function, and for m in M , P m,m F F

. Ž Ž . . Ž .F s P c m , m . Now the covariance operator of P m, F is denoted bym

Ž .V m . Clearly,F

y1Y X1.1 V m s k c m s c m g LL E*, E .Ž . Ž . Ž . Ž . Ž .Ž .F m m m s

Ž .The function V : M ª LL E*, E is called the variance function of F. ThisF F s
function V plays an important role in the study of the NEF. Indeed, VF F
characterizes the NEF F in the following sense: if F and F are two NEF1 2
whose variance functions coincide on a nonempty open set of M l M , thenF F1 2

F s F .1 2
Several classifications of all the NEF whose variance functions have a

given form have appeared in the literature during the past 15 years. For
Ž .instance, the Morris class describes all the real NEF F such that V m is aF

wpolynomial of degree less than or equal to 2 in the mean m see Morris
Ž .x1982 . Other sets of NEF on R have also been classified as the Mora class of

wpolynomial variance functions with degree less than or equal to 3 Mora
Ž . Ž .x1986 ; see also Letac and Mora 1990 or various subsets of the class of VF'of the form PD q Q D , where P, D and Q are polynomials with degree less
than or equal to 1, less than or equal to 2 and less than or equal to 2,

w Ž . Ž .xrespectively Kokonendji 1993 ; Letac 1992 .
Several classifications have been realized in higher dimensions, which

concern more precisely the extension of the Morris and Mora classes in R d.
One paper on the subject is Bar-Lev, Bshouty, Enis, Letac, Li Lu and

Ž .Richards 1994 . However, a very different point of view is to consider the
quadratic class. It can be defined as the set of NEF F such that

1.2 V m s A m , m q B m q C ,Ž . Ž . Ž . Ž .F

Ž . Ž .where A: E = E ª LL E*, E is bilinear, B: E ª LL E*, E is linear, and C iss s
Ž .a constant element of LL E*, E .s

Classifying all these variance functions is an ambitious project and only a
Ž .few steps have already been performed: Letac 1989 has obtained the sub-

Ž .class A s 0 of the products of Normal and Poisson NEF; Casalis 1991
described the homogeneous quadratic case B s 0 and C s 0, generalizing the

w Ž . 2 xgamma NEF on R where V m s m rp by the Wishart NEF on symmetricF
cones. The present paper is one additional step toward this aim; it classifies
all the variance functions V of the formF

1.3 V m s am m m q B m q C ,Ž . Ž . Ž .F

² : Ž .with a in R and m m m: u ¬ u , m m in LL E*, E . Such variance functionss
Ž .1.3 and the corresponding NEF are called simple quadratic.

ŽIt may seem rather restrictive to keep the quadratic part as ‘‘simple’’ i.e.,
.of the form ‘‘a m m m’’ . Furthermore, one may feel a bit frustrated by the

relative simplicity of our results; indeed, all the simple quadratic NEF are
basically obtained by combination of conditional distributions of the one-
dimensional Morris class, which simply seems to indicate that to produce
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really new and genuinely multidimensional distributions with quadratic
Ž .variance e.g., the Wishart distributions , nature requires a more involved

a m m m quadratic part than a m m m. Furthermore, it should be pointed out
that, out of the Wishart NEF and their translates, or trivial products of them,

Ž .we have yet no other examples of quadratic and not simple NEF. Recall also
that the very classification of the Wishart distributions, that is, the homoge-
neous quadratic NEF, was a delicate process, involving the von Neumann]
Wigner]Jordan classification of Euclidean Jordan algebras. Therefore, many
new ideas are probably necessary to continue this program of classification of
quadratic variances.

However, the simple quadratic NEF remain quite interesting. Here is a list
of situations where they occur naturally.

1. They constitute an important tool in the determination of the so-called
d Ž .Mora class in R . Indeed, Hassaıri 1992, 1994 introduces some specific¨

Ž .action of the linear group G of R = E on the space LL E, E* . Observing thats
this action transforms a simple quadratic variance function into a polynomial
with degree less than or equal to 3, he defines the Mora class on R d as the set
of the NEF obtained in this way and describes it entirely using the present
list of simple quadratic NEF.

2. As for the real case, one easily checks that the uniformly minimum
Ž . Ž . Ž .variance unbiased UMVU estimator of the variance V m written in 1.3 isF

y1Ž . Ž .simply given by n n q a V X , where X is the sample mean of nF n n
Ž .random variables X , . . . , X with common distribution P m, F . This result1 n

d w Ž .xis not true for general quadratic NEF on R Casalis 1992a and it remains
a conjecture even in one dimension that this fact characterizes the simple

w Ž . xquadratic class Letac 1992 , page 61 .
3. The computation of the UMVU estimator of the generalized variance

Ž . wdetk0 m u is easy to get for the simple quadratic class see Kokonendji and
Ž .xSeshadri 1996 .

4. Another property is related to the Bayesian theory and states the
equality of two conjugate prior distributions families of a simple quadratic

Ž .NEF. For a given NEF F m , let P be the family of prior distributions on
Ž .Q m :

² :p du s C exp t u , m y k u | u du ,Ž . Ž . Ž .� 4t , m t , m 0 m QŽ m .0 0

where t ) 0, m g M and C a normalizing constant, as considered by0 F t, m0
Ž .Diaconis and Ylvisaker 1979 . The family P is said to be conjugate if the

Ž . Ž . Ž .Ž .posterior distributions of u , given X when u , X is P du P u , m dxt, m0

distributed, still belongs to P.
Ž . Ž .Besides P, Consonni and Veronese 1992 consider at least on R two

˜other families of prior distributions on M . The first one, P, is defined by aF
Ž .similar construction as for P, that is, for suitable t, m ,0

˜ ² :p dm s C exp t c m , m y k c m | m dm,Ž . Ž . Ž . Ž .˜ � 4Ž .t , m t , m m 0 m m M0 0 F
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X Ž .while the second one, P*, is just the set of the images k p of p of Pm t, m t, m0 0
X ˜by k . Then, considering real NEF, Consonni and Veronese state that P sm

Ž .P* if and only if the initial NEF F m is in the Morris class.
d ˜On R , the situation is much more complicated. Here, the equality P s P*

is still satisfied by the simple quadratic and the Wishart NEF. Actually, up to
now, we have not been able to determine the whole class of NEF for which
P̃ s P*. The only available criteria are that there is equivalence between the
three following facts:

˜Ž .i P s P*.
Ž . Ž . 2ii There exists B, b, c in E = R , such that for all m in M ,F

Ž . �² Ž . : Ž . 4det V m s exp c m , B q bk m q c .F m m

Ž . Ž .iii There exists B, b in E = R such that for all m in M and any basisF
Ž .d Ž U .de of E with dual basis e , we havei is1 i is1

d
X UV m e e s B q bm.Ž .Ý F i i

is1

A similar statement has been independently established by Gutierrez-Pena˜
Ž .and Smith 1995 . These authors have also extended Consonni and Veronese’s

Ž . Ž . Ž .problem to any parametrization Q m ª L: u ¬ l s w u of F m .
5. Finally, different characterizations of the Morris class involving orthog-

Ž . Ž .onal polynomials are due to Feinsilver 1986 , Meixner 1934 and Shanbhag
Ž . w Ž . x1979 see also Letac 1992 for a presentation in terms of NEF . They have

d Ž .been recently extended to R by Pommeret 1995 . For this, the simple
quadratic class is the natural object to replace Morris class. The whole
quadratic class can also be characterized similarly but with weaker hypothe-

Ž .sis on polynomials. Using these orthogonal polynomials, Feinsilver 1991
deduced an interesting correspondence between the simple quadratic class
and three Lie algebras with finite dimension. In particular, the Gaussian
families are put in one-to-one correspondence with self-adjoint operators of
the Heinsenberg]Weyl algebra, the Poisson families with those of the oscilla-
tor algebra and the simple quadratic NEF with a nonnull quadratic part with

Ž . w Ž .xthose of SL d q 1 see also Pommeret 1995 . Such work done with other Lie
algebras would enable us to get new quadratic NEF.

We now come to our results. Section 2 presents 2 d q 4 particular NEF on
R d. They are important because when we take affinities and powers of each of
them, we actually get all simple quadratic NEF; this is the essence of our
Theorem 2.1, the main theorem of the present paper. Its proof is long and
technical and is given in Section 3. However, the discussion relies only on
algebraic arguments from the following three simple necessary conditions:

² : ² :i a , V m b s b , V m a symmetry of V ,Ž . Ž . Ž . Ž .F F F
X X1.4Ž . ii V m V m a b s V m V m b a ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .F F F F

iii V m is positive definite on M .Ž . Ž .F F
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Ž . YŽ . Ž Ž .y1 . w Ž .xCondition ii comes from the symmetry of c m s V m 9 see 1.1m F
as a Hessian operator. We have gathered in Appendixes A and B some
delicate points of our arguments.

( )2. The 2d H 4 types of simple quadratic NEF.

Ž .2.1. We begin first by defining what we call a type. Let GA E denote the
Ž .affine group of E and let w be in GA E , w: E ª E: x ¬ gx q v, with linear

Ž .part g in the linear group GL E and translation vector v. If F is a NEF on
Ž .E, then w F defined as the set of images by w of each probability of F is still

a NEF characterized by

M s w MŽ .wŽF . F

V m s gV wy1 m g t ,Ž . Ž .wŽF . F

2.1Ž .

t Ž .where g denotes the transpose of g acting on E*. All the NEF w F with w
Ž .varying in GA E are called the affinities of F.

Ž . pNow, if m generates F and if p is a positive real number such that L ism

Ž . Ž .still the Laplace transform L of some m in MM E , then the NEF F s F mm p p pp
Žis called the pth convolution power of F. Note that p is not necessarily an

.integer . F is characterized byp

M s pMF Fp

m
V m s pV .Ž .F Fp ž /p

The set of possible p is called the Jorgensen set of F.
Now, two NEF, F and F9, are said to be of the same type if there exist an

Ž . Ž .affinity w in GA E and a positive real number p such that F s w F9 .p
Note that any affinity or convolution power of a simple quadratic NEF is

simple quadratic, too. Hence, to describe the class of simple quadratic NEF in
R d, we only have to specify one NEF for each of its different types. We will
say that this NEF generates the corresponding type.

2.2. We now present 2 d q 4 simple quadratic NEF in R d. For each of
Žthem, we specify the variance-function and a basis or occasionally its Laplace

.transform . These NEF generate 2 d q 4 different types. The first ones, d q 1,
Ž . Ž .correspond to affine variance functions, that is, V m s B m q C, and have

Ž .already been determined by Letac 1989 . The last ones, d q 3, correspond to
Ž . Ž .simple quadratic variance functions V m s am m m q B m q C with a /F

Ž .0. When d s 2, we find again the five types given in Casalis 1992b . It was
Žproved there that these eight NEF five corresponding to the case a / 0 and

.three to the case a s 0 generate the whole class of simple quadratic NEF in
R2. The main result of the present paper is to prove the following theorem
for R d.
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THEOREM 2.1. Any simple quadratic NEF in R d is one of the 2 d q 4 types
described below.

Ž . Ž . Ž .a The d q 1 Poisson]Gaussian types PG , k s 0, . . . , d. They arek
Ž . Ž .defined from the following d q 1 NEF characterized by Letac 1989 as the

only NEF with an affine variance function.
� 4For k in 0, 1, . . . , d , let F be the family of the products of k Poisson

Ž .distributions and d y k normal distributions. Hence, F is also determined
by

k dykM m s 0, ` = RŽ . Ž .F

V m s diag m , . . . , m , 1, . . . , 1Ž . Ž .F 1 k

m¡ ¦1

0
. . .

mks .
1

. . .
0¢ §

1

Ž . Ž . Ž .b The d q 1 negative multinomial-gamma types NM-ga , k s 0, . . . , d.k
We shall first introduce the well known negative-multinomial distributions
on R d as distributions of a natural exponential family. For a detailed bibliog-

Ž .raphy about them, see Ratnaparkhi 1988 . The following representation
Ž .comes from Letac 1989 .

� 4 dLet e , . . . , e denote the canonical basis of R and let e be the null1 d 0
Ž . d U nvector. Then consider the measure n dx s Ý d and for n in N, n the0 is1 e 0i

Ž U 0 .nth-convolution of n with the convention n s d . Now form0 0 e0

`
U n y12.2 n s n s d y n * .Ž . Ž .Ý 0 e 00

ns0

Clearly, the Laplace transform of n is given by

y1d d
d u iL u s 1 y exp u on Q n s u g R ; e - 1 .Ž . Ž . Ž .Ý Ýn i ½ 5ž /

is1 is1

Ž .The family F n is the analogue of the real family of the geometric distribu-
Ž . dtions. It is composed by the probabilities P m, F defined on N by the

statement: if S s m q ??? qm , then1 d

P m , F n e q ??? qn eŽ . Ž .1 1 d d

n n1 d1 m mn q ??? qn 1 d1 ds ??? .ž / ž /n , . . . , nž /1 q S 1 q S 1 q S1 d

2.3Ž .
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Ž . � d 4The variance function of F n is given on M s m g R ; ; j, m ) 0 byF Žn . j

V m s m m m q diag m , . . . , m .Ž . Ž .F Žn . 1 d

For p ) 0, the pth power n of n generates the family of the negative-multi-p
d Ž . Ž .nomial distributions with parameter p on R . F n is the NM]ga family.d

Ž .To define the NM]ga family, we consider the following mixture of ady1
Ž .d y 1 -dimensional negative-multinomial family and a gamma family on R.

Ždy1. Ž . dy1Let n denote the measure given in 2.2 on R , and for p ) 0 let g bep
the following measure on R:

1
py12.4 g dx s x | x dx .Ž . Ž . Ž .p Ž0 , `.G pŽ .

We then introduce

mŽdy1. dx , . . . , dx s n Ždy1. dx , . . . , dx g dy 1 dxŽ . Ž . Ž .1 d 1 dy1 Ý x q1 dis 1 i

with Laplace transform on

dy1
Ždy1. dQ m s u g R ; exp u q u - 0 ,Ž .Ž . Ý i d½ 5

is1

y1dy1

Ždy1.L u s yu y exp u .Ž . Ž .Ým d iž /
is1

Ž Ždy1.. Ž .dThe variance function of F s F m is defined on M s 0, ` byF

V m s m m m q diag m , . . . , m , 0 .Ž . Ž .F 1 dy1

The powers F of F are generated by the measuresp

mŽdy1. dx , . . . , dx s n Ždy1. dx , . . . , dx g dy 1 dxŽ . Ž . Ž .p 1 d p 1 dy1 Ý x qp dis 1 i

for all p ) 0. They are composed by the distributions of the random variables
Ž . Ž .X , . . . , X , where X , . . . , X has a negative-multinomial distribution1 d 1 dy1

Ž .with parameter p and X , conditionally on X , . . . , X , has a gammad 1 dy1
distribution with parameter Ýdy1X q p.is1 i

Ž .The d y 1 other NM]ga families admit a Gaussian part in addition. Letk
� 4 Žk . kk be in 0, 1, . . . , d y 2 . We still denote n and g the measures on R andp

Ž . Ž . Ždyky1.R, respectively, given by 2.2 and 2.4 . Let l be the normal distribu-p
tion on R dyky1 with mean 0 and covariance pI . Then we put, if k G 1,dyky1

mŽk . dx , . . . , dx s n Žk . dx , . . . , dx g k dxŽ . Ž . Ž .1 d 1 k Ý x q1 kq1is 1 i

=lŽdyky1. dx , . . . , dxŽ .x kq2 dkq 1

and

mŽ0. dx , . . . , dx s g dx lŽdy1. dx , . . . , dx .Ž . Ž . Ž .1 d 1 1 x 2 d1
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Then we have

d k
1Žk . d 2Q m s u g R ; u q u q exp u - 0 ,Ž .Ž . Ý Ýkq1 i i2½ 5

iskq2 is1

y1d k
1 2

Žk .L u s yu y u y exp u ,Ž . Ž .Ý Ým kq1 i i2ž /
iskq2 is1

kq1 dyky1
Žk .M s 0, ` = R ,Ž .F Ž m .

V Žk . m s m m m q diag m , . . . , m , 0, m , . . . , m .Ž . Ž .F Ž m . 1 k kq1 kq1

Ž .Note that a / 0 and C s 0 for these NEF .
Ž Žk ..Here again, the powers F of F m are generated byp

mŽk . dx , . . . , dx s n Žk . dx , . . . , dx g k dxŽ . Ž . Ž .p 1 n p 1 k Ý x qp kq1is 1 i

= lŽdyky1. dx , . . . , dxŽ .x kq1 nkq 1

Ž .for all p ) 0. They are composed by the distributions of X , . . . , X , where1 d
Ž .X , . . . , X has a negative-multinomial distribution with parameter p, X1 k kq1

Ž . kgiven X , . . . , X is gamma distributed with parameter Ý X q p, and1 k is1 i
Ž . Ž .X , . . . , X given X , . . . , X are d y k y 1 real independent Gauss-kq2 d 1 kq1
ian variables with mean 0 and variance X .kq1

Note that the cases where the three negative-multinomial, gamma and
2 Ž Ž1.. 2Gaussian families are mixed do not appear in R . The family F m on R

appears the first time in the paper of Bar-Lev, Bshouty, Enis, Letac, Li Lu
Ž .and Richards 1994 as one of the NEF whose margins are in two different

Morris families.
We now describe two isolated types.
Ž .c The multinomial type M. We take again the representation of the

Ž .multinomial distributions from Letac 1989 and refer the reader to Ratna-
Ž .parkhi 1988 for a bibliography about them.
� 4 dLet e , . . . , e denote the canonical basis of R and let e be the null1 d 0

Ž . d dvector. Then the measure m dx s Ý d on N generates a NEF F withis0 e i
� d d 4variance function on M s m g R , ; j, m ) 0, Ý m - 1 equal toF j js1 j

V m s ym m m q diag m , . . . , m .Ž . Ž .F 1 d

� 4For any p in N _ 0 , the pth power F of F is the set of probabilitiesp
Ž .P m, F defined byp

P m , F n e q ??? qn eŽ .Ž .p 1 1 d d

n n0 jnÝm mp j js 1 y ,Łn , n , . . . , n ž /ž / ž /0 1 d p pjs1

2.5Ž .

where n , n , . . . , n are positive integers with sum p.0 1 d
Ž . Ž .d The hyperbolic type H. Similar to the NM-ga type, this last case isdy1

built from the following mixture of a negative-multinomial family on R dy1
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and the Morris family of the hyperbolic cosine distributions on R. Let n Ždy1.

Ždy1. Ž .be the measure on R given in 2.2 and for p ) 0, let a be defined by itsp
x w Ž . Ž .ypLaplace transform on y pr2, pr2 equal to L u s cos u . Now weap

introduce

m dx , . . . , dx s n Ždy1. dx , . . . , dx a dy 1 dx .Ž . Ž . Ž .1 d 1 dy1 ŽÝ x q1. dis 1 i

Then
dy1

dQ m s u g R ; exp u - cos u ,Ž . Ž .Ý i d½ 5
is1

y1
L u s cos u y exp u y ??? yexp u ,Ž . Ž . Ž .Ž .m d 1 dy1

dy1M s 0, ` = R,Ž .F

dy1

V m s m m m q diag m , . . . , m , m q 1 .Ž . ÝF 1 dy1 iž /
is1

The powers F of F are generated by the measuresp

m dx , . . . , dx s n Ždy1. dx , . . . , dx a dy 1 dxŽ . Ž . Ž .p 1 d p 1 dy1 Ý x qp dis 1 i

Ž .for all p ) 0. Therefore, F is composed with the distributions of X , . . . , X ,p 1 d
Ž .where X , . . . , X has a negative-multinomial distribution and X , condi-1 dy1 d

Ž .tioned by X , . . . , X , has the hyperbolic cosine distribution with parame-1 dy1
ter Ýdy1X q p.is1 i

Note that here we have a simple quadratic NEF with a / 0 and C / 0.
However, let us indicate that there exists an affinity for which C s 0. This
fact will be used in Section 4.

Let t denote the translation of vector v; let g be the linear operator suchv
that ge s e q e for i s 1, . . . , d y 2, ge s e and ge s e and leti i dy1 dy1 dy1 d d
w be the affinity g (t . Thenedy 1

m¡ ¦1

0
. . .V m s m m m q .Ž .wŽF . mdy2

ym ymdy1 d¢ §0 ym md dy1

Ž .With the previous notation, w F is generated by m defined by˜
m dx , . . . , dxŽ .˜ 1 d

s n Ždy2. dx , . . . , dx t dy 2 n Ž1.a dx a dy 1 dx .Ž . Ž . Ž .dy 2ž /1 dy2 ŽÝ x q1. dy1 Ý x q1 dÝ x q1is 1 i is1 iis1 i

An interpretation in terms of random variables is easily gotten from the
previous description.

Let us end the section with the following remark about the structure of the
Ž .simple quadratic NEF. It is easy to check that if X , . . . , X is a random1 d
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Ž . Ž .variable with a negative-multinomial law P m, F given by 2.3 , then, for
Ž .any k s 1, . . . , d y 1, X , . . . , X still has a negative-multinomial distribu-1 k

w Ž . xtion still given by 2.3 on replacing d by k , while X conditionally onkq1
Ž .X , . . . , X has a negative-binomial distribution with Jorgensen parameter1 k
1 q Ýk X . The same remark holds true for a multinomial distributionis1 i
Ž . Ž . Ž . ŽŽ . .P m,F given in 2.5 : X , . . . , X has the distribution P m , . . . , m , Fp 1 k 1 k p

k w Ž .x Ž .in R still given by 2.5 , while X conditionally on X , . . . , X has akq1 1 k
binomial distribution with Jorgensen parameter p y Ýk X . Hence, anyis1 i
simple quadratic distribution presented in this section has the following

Ž .remarkable property: if X , . . . , X is so distributed, then the law of X1 d 1
belongs to a Morris family and for any k s 2, . . . , d, the law of X condition-k

Ž .ally on X , . . . , X is also a Morris distribution with Jorgensen parameter1 ky1
Ž .depending on an affinity of X , . . . , X . Nevertheless, such mixtures do1 ky1

not always give simple quadratic NEF.

3. The classification of the simple quadratic variance functions.
This section is entirely devoted to the proof of Theorem 2.1 giving all the

Ž . Ž .types of simple quadratic variance functions V m s am m m q B m q CF
on R d.

Ž .The case a s 0 has already been developed by Letac 1989 and yields the
Ž . Ž .d q 1 Poisson]Gaussian types PG . Therefore we only consider the casek
a / 0. Via the following lemma, whose proof is reported in Appendix A, the
problem is reduced to the case where C s 0.

d Ž .LEMMA 3.1. Let F be a NEF on R with variance function V m s am mF
˜ dŽ .m q B m q C with a / 0 and let V be the polynomial function on RF

d ˜ Ž .defined by V . Then, if d G 2, there exists m in R such that V m s 0.F 0 F 0

Consequently, if t denotes the translation of vector ym , then fromym 00

Ž . Ž .2.1 , the variance function of t F clearly isym 0

˜V m s am m m q B mŽ . Ž .t ŽF .ym 0

with
B̃ m s a m m m q m m m q B m .Ž . Ž . Ž .0 0

ŽIn Section 2 we have written the d q 3 variance functions corresponding to
a / 0 with a C null. For the hyperbolic type, we have done the translation

.t .edy 1

Theorem 2.1 is now reduced to the following statement:

PROPOSITION 3.2. Let F be a NEF on E with variance function
3.1 V m s am m m q B m a / 0 .Ž . Ž . Ž . Ž .F

Ž .Then F belongs to the M, H or NM-ga types.k

PROOF. The proof is divided into several steps. In the first one, we
� Ž . 4 Ž .introduce some linear endomorphisms Q a , a g E* of LL E* in a one-to-
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� Ž . 4 Ž .one correspondence with the operators B m , m g E of 3.1 , so that know-
Ž .ing Q: a ¬ Q a will be equivalent to knowing B and hence, given the real

Ž . Ž .number a, to knowing V: m ¬ V m s am m m q B m . We also write the
Ž .necessary conditions 1.4 satisfied by V in terms of Q and then deduce

Ž .the different possible forms of the Q a .
In order to classify the functions V in types, we have to simplify the

functions Q as much as possible by some action of affinities on V. Hence, in a
Ž .second step, we translate the action of affinities on the operators Q a

Ž .Lemma 3.4 .
Ž .In a third step, we examine each possible form of Q a separately, simplify

it and finally recognize the corresponding V and hence F.
Ž .First step. Let F be a NEF with variance function of the form 3.1 . Then

Ž .the three conditions 1.4 satisfied by V can simply be writtenF

² : ² :i a , B m b s b , B m a ,Ž . Ž . Ž .
ii B B m a b s B B m b a ,Ž . Ž . Ž .3.2 Ž . Ž .Ž .

iii for m in M , V m is positive-definite.Ž . Ž .F F

Ž . Ž .Let us define the unique linear map Q: E* ª LL E* such that for a , b in
Ž .2E* and m in E,

² : ² :3.3 Q a b , m s b , B m a ,Ž . Ž . Ž .
tŽ . Ž .that is, Q a m s B m a .

Ž .For example, the Q a corresponding to the d q 3 simple quadratic NEF
with a / 0 presented in Section 2 are as follows.

Ž . Ž .a For the NM-ga NEF,k

if k s d , Q a s diag a , . . . , a ;Ž . Ž .1 d

a 0¡ ¦
. . .

ak

0if 0 F k F d y 1, Q a s .Ž .
a ??? akq2 d

0 ??? 0
? ??? ?¢ §

0 0 ??? 0
Ž . Ž . Ž .b For the M.NEF: Q a s diag a , . . . , a .1 d
Ž .c For the H.NEF,

a 0¡ ¦1

. . .Q a s .Ž .
ady2

ya ady1 d¢ §0 ya yad dy1

Ž .Ž .From 3.2 iii , we derive the following necessary condition.
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Ž .LEMMA 3.3. Let V be a variance function such that V m s am m m qF F
Ž . Ž .B m and let Q be the linear endomorphism of E* defined in 3.3 . If H is a

Ž .subspace of E* such that for all a in H, we have Q a a s 0, then H has
dimension 0 or 1.

² Ž . :PROOF. For any m in M and a in H, we have Q a a , m sF
² Ž . : ² Ž . : ² :2 Ha , B m a s 0, thus a , V m a s a a , m . Let m denote the sub-F
space of E* orthogonal to m. Then if the dimension of H is greater than or

H � 4equal to 2, the intersection m lH is not reduced to 0 and for any a in
H ² Ž . :m lH, a , V m a s 0. Hence V is not positive-definite on M , whichF F F

Ž .Ž .contradicts 3.2 iii . I

Ž .Ž . Ž .Written with Q, 3.2 i and ii become

i Q a b s Q b a ,Ž . Ž . Ž .
3.4Ž .

ii Q a Q b s Q b Q a .Ž . Ž . Ž . Ž . Ž .

� Ž . 4Thus, the vector space Q s Q a , a g E* generates a commutative subalge-
Ž . w Ž .bra of LL E* . Using the theory of nilpotent Lie algebras Dynkin 1950 ,

xTheorem II, page 380 , we can split the space E* into a direct sum of r
subspaces EU of dimension n , i s 1, . . . , r, invariant under the endomor-i i

Ž . � 4phisms Q a and for which there exists r in 0, 1, . . . , r such that the0
following hold.

U Ž U . U i1. If 0 F i F r , there exist a basis e s e of E and vectors d0 i i j js1, . . . , n ii

and w i , 1 F j - k F n , of E such that the matrix in eU of the restrictionjk i i
Ž . Uof Q a to E is exactlyi

² i: ² i :a , d a , wjk
. .3.5 Q a s .Ž . Ž .i .� 0i² :0 a , d

2. If r q 1 F i F r, then n r2 s p g N and there exist a basis eU s0 i i i
Ž U . U i i i ie of E , and vectors a , b , s , t , 1 F j - k - p , such that,i j js1, . . . , n i jk jk ii

writing

² i : ² i :i i a , s a , t² : ² : jk jka , a a , bi i3.6 D s and W s ,Ž . jki i i iž /² : ² : ² : ² :ž /y a , b a , a y a , t a , sjk jk

U Ž . Uthe matrix in e of the restriction of Q a to E isi i

D i W i
jk

.3.7 Q a s ..Ž . Ž .i .� 0i0 D

Ž .See also Appendix B.
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Ž .Moreover, the relations 3.4 are equivalent to

2Ui Q a b s Q b a for a , b g E ,Ž . Ž . Ž . Ž . Ž .i i i
Uii Q a s 0 if a g E ,Ž . Ž . [i j3.8Ž .

j/i

iii Q a Q b s Q b Q a .Ž . Ž . Ž . Ž . Ž .i i i i

Ž .Ž . i iThe second equality, 3.8 ii , clearly implies that the vectors d , w orjk
ai, b i, s i and t i are vectors of the dual space E of EU. We note byjk jk i i

Ž . Ue s e the dual basis of e .i i j js1, . . . , n ii

Ž . Ž . Ž .Second step. To simplify the matrices 3.5 , 3.6 and 3.7 , we can only
work with affinities which preserve the types of NEF. Therefore, we have to
know their action on the operator Q.

Ž .LEMMA 3.4. Let F be a NEF on E with variance function given by 3.1 .
Ž .Let g be in GL E and let t be the translation of E of vector ym suchym 00

Ž . Ž . Ž .that V m s 0. Then the variance functions of g F and t F are also ofF 0 ym0
Ž .the form 3.1 . Moreover, the associated operators Q and Q satisfyg m0

y1t t tQ a s g Q g a g ,Ž . Ž . Ž .g

² :Q a s Q a q a a , m id q aa m m .Ž . Ž .m 0 00

Ž .PROOF. The result follows from an obvious calculation using 2.1 and
Ž .3.3 . I

Ž .Therefore, given a NEF F with variance function 3.1 and Q as given in
Ž .3.3 , the only translations that we are allowed to use to simplify Q are the

Ž .translations of vectors ym such that V m s 0. The following lemma0 F 0
describes the set of such vectors.

Ž . Ž .LEMMA 3.5. Let be V m s am m m q B m and let Q be as defined in
Ž .3.3 . Then we have the following statements:

Ž . Ž . � ² : 4i If V m s 0, the hyperplane H s a g E*; a , m s 0 is stable0 m 00

under Q.
Ž . Ž .ii Conversely, let H be a hyperplane of E* invariant by the Q a . Let be

H � ² : 4e g H s x g E; ; a g H a , x s 0 with e / 0 and e* g E* such that
² : Ž Ž² Ž . : . .e*,e s 1. Then we have V y Q e* e*, e ra e s 0.

PROOF. Here again, the result comes from the definitions through a
simple calculation. I

Ž .Third step. We will now study and simplify each form of Q given in 3.5i
Ž .and 3.7 separately by affinities. Observe that a linear operator acting on a
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U Ž U .E only and hence equal to the identity on [ E does not change the Qi j jj/ i
for j / i. However, this is no longer true for a translation and the whole
matrix Q has to be modified in that case. We thus successively examine the
three following cases:

Ž .1. Q has the form 3.7 ;i
Ž . i2. Q has the form 3.5 with d g E ;i i
Ž . i3. Q has the form 3.5 with d s 0.i

Ž .CASE 1. We consider the situation where Q has the form 3.7 .i

LEMMA 3.6. Suppose that n s 2 p is even and that Q has the formi i
Ž . U Ž U XU U XU U XU . �3.7 in the basis e s f , f , f , f , . . . , f , f . Let e si 1 1 2 2 p p i
Ž X X X .4 � U4f , f , f , f , . . . , f , f be the dual basis of e . Then p s 1 and there1 1 2 2 p p i i i
exists a linear operator g of E acting only on EU such thati

² : ² X:y a , f a , f1 1
3.9 Q a s .Ž . Ž .Ž . Xg i ² : ² :ž /y a , f y a , f1 1

U Ž .PROOF. We have only to consider E . Then, with the notations of 3.6 andi
Ž .3.7 , writing

p p
X X X Xi ia s a f q a f , s s s f q s fŽ . Ž .Ý Ýk k k k jk jk , l l jk , l l

ks1 ls1

i i Ž .and with similar notation for b and t , we get from 3.8 , for p G 2,jk

Q f U f U s Q f U f U ª a s b s 0Ž . Ž .1 2 2 1 1 1

Q f XU f XU s Q f XU f XU ª aX s bX s 0.Ž . Ž .1 2 2 1 1 1

U XU Ž .Hence, if H is the subspace generated by f and f , we have Q a b s 0 for1 1
Ž . 2a , b in H . From Lemma 3.3, Q does not yield a variance function. Hence

Ž . Ž . X Xp s 1. Now, since Q a b s Q b a , we also get a s b , b s ya and1 1 1 1
Ž . Ž .a , b / 0, 0 . The linear transformation g of matrix1 1

1 ya yb1 1
2 2 ž /b yaa q b 1 11 1

Ž X . Ž .in the basis f , f and equal to the identity on [ E simplifies Q a into1 1 jj/ i
Ž . Ž .Q a given in 3.9 . Ig

Ž .PROPOSITION 3.7. Let F be a NEF with variance function 3.1 , let Q be the
Ž . r Uassociated operator defined by 3.3 and let E* s [ E be the decomposi-iis1

tion of E* into invariant subspaces. Then, there exists at most one EU suchi
Ž .that Q has the form 3.7 .i
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PROOF. If it is not the case, suppose that on EU and EU, Q and Q have1 2 1 2
Ž .the form 3.7 . Then n s n s 2 and, after a linear transformation, Q and1 2 1

Ž . Ž U XU . Ž U XU .Q can be written as in 3.9 in the basis f , f and f , f . Then the2 1 1 2 2
Ž . Ž Ž .. Ž . Žcorresponding function V m s V m s am m m q B m satisfies withi j

. Ž . 2 Ž . X Xobvious notations , for i s 1, 2, V m s am y m , V m s am m y m ,i i i i i i9 i i i
Ž . X2 Ž .V m s am q m and V m s am m , so that the principal minorsi9i9 i i 12 1 2

V m s am y 1 m i s 1, 2 ,Ž . Ž . Ž .i i i i

V Vi i i i9 X22s am y 1 m q m i s 1, 2 ,Ž . Ž .Ž .i i iV Vi i9 i9i9

V V11 12 s m m 1 y am y amŽ .1 2 1 2V V12 22

are not all positive. So V is positive-definite on no open subset of E and,
hence, V is not a variance function. I

Ž .CASE 2. We now examine the triangular form 3.5 .
Let us begin with the following lemma.

U Ž U .LEMMA 3.8. Suppose that in the basis e s e , the restriction ofi i j js1, . . . , n i

Q to EU is the triangular matrixi

² i: ² i :a , d a , wjk
. .Q a s ,Ž .i .� 0i² :0 a , d

i i Ž . i Ž .where d and w are in the dual space E . Then i d s d e and ii ifjk i i in ii Žd / 0, there exist a linear operator g acting on E and then equal to thei
. Ž i .identity on [ E and vectors w of E such that˜j jk 1F j- k F n ij/ i i

² i :a a , w̃in jki

. .Q a s .Ž .Ž .g .i � 00 ain i

Ž . Ž U . U Ž U . U Ž .PROOF. i comes from the relation Q e e s Q e e and ii is ob-i j ik ik i j
Ž .tained with g s id q 1rd id . I[ E i Ej ij/ i

Ž .PROPOSITION 3.9. Let F be a NEF with variance function 3.1 , let Q be the
Ž . Uassociated operator defined in 3.3 and let E* s [ E be the decompositioni i

of E into invariant subspaces. Then the following hold.

Ž . Ui There exists at most one E with dimension greater than 1 such that Qi i
Ž .has the triangular form 3.5 .
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Ž . U Ž . Ž .ii If there exists such a E , then for any other Q j / i of the form 3.5 ,i j
d j / 0.

Ž . U UPROOF. i If it is not the case, suppose that E and E are subspaces of1 2
Ž .dimension greater than 1 such that Q and Q have the form 3.5 in the1 2

Ž U . Ž U .basis e and e . Then from Lemma 3.8, for i s 1, 2,1 j js1, . . . , n 2 j js1, . . . , n1 2
Ž U . U UQ e s 0. Hence, if H is the subspace generated by e and e , we havei i1 11 21
Ž .Q a s 0 on H. From Lemma 3.3, Q does not yield a variance function.
Ž . Ž . j Ž U . Ž U .ii If Q has the form 3.5 with d s 0, then Q e s Q e s 0 and wej i1 j1

conclude by using Lemma 3.3, with H generated by eU and eU . Ii1 j1

To summarize, if there exists a subspace EU with dimension n ) 1 suchi i
Ž .that Q has the triangular form 3.5 , then, up to a linear transformation,i

Ž U . rthere exist a basis e of E*, a scalar « equal to 1 or 0 and vectors w of Ei j r jk r
Ž U .such that the matrix of Q in the basis of e* s e is exactlyi j

Q a 0Ž .1
. .Q a sŽ . e* .� 00 Q aŽ .r

with

² : ² :y a , e a , e11 12² :Q a s a , e or ,Ž . Ž .1 11 ² : ² :ž /y a , e y a , e12 11

² :Q a s a , e for i s 2, . . . , r y 1,Ž . Ž .i i1

² : ² r :« a , e a , wr r n jkr

. .Q a s .Ž .r .� 0² :0 « a , er r n r

� ² : 4In particular, the hyperplane H s a g E*; a , e s 0 is invariant underr n r
Ž .the Q a . From Lemma 3.5, the vector

Q eU eU , e² : «Ž .r n r n r n rr r rm s y e s y e0 r n r nr ra a

Ž .satisfies V m s 0. If m / 0, that is, « s 1, by the translation t , Q is0 0 r ym0˜changed into the operator Q defined in Lemma 3.4 by

Q̃ a s Q a y a id y a m e ,Ž . Ž . r n r nr r
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and having the matrix form in the basis e*:

˜ ² :Q a y a , eŽ .1 11
?
?Q̃ a s ,Ž . .e* ² :. y a , ery1, n ry 1.� 0˜0 Q aŽ .r

where

˜ UQ a s Q a y a id for i / rŽ . Ž .i i r n Er i

and

˜ t
UQ a s Q a y a id y a , . . . , a m eŽ . Ž . Ž .r r r n E r1 r n r nr r r r

² r : ² r :0 a , w ya q a , wjk r1 1, n r

r² :0 ya q a , wr 2 2, n r

s .? ? ? ? ?
r² :0 0 ? 0 ya q a , wr n n y1, nry 1 r r� 0

0 0 ? 0 yar n r

U U Ž .Clearly, E , . . . , E are still invariant subspaces on which Q a has either1 ry1
² :complex eigenvalues or the simple eigenvalues a , e y e . The otheri1 r n r

Ž . ² :eigenvalues of Q a are 0 and y a , e s ya . From Appendix B, E*r , n r nr rrq1 ˜U Ž .can be split as a direct sum [ E of r q 1 invariant subspaces such thatiis1
˜U U ˜U ˜U Ž .E s E for i s 1, . . . , r y 1, E is a real line and on E , Q a has thei i r rq1
unique eigenvalue 0. Therefore, in a suitable basis of E*, that is, e* s
Ž U U U U . Ž U XU U U U .e , . . . , e , e , . . . , e or e* s e , e , e , e , . . . , e , we have1 r rq1 n 1 1 2 3 n

Q̂ a 0Ž .1Q a sŽ . e* ˆž /0 Q aŽ .rq1

with

ya a X
1 1Q̂ a s a or ,XŽ . Ž .1 1 ya až /1 1

Q̂ a s a for i s 2, . . . , r y 1Ž . Ž .i i3.10Ž .

² rq1:0 a , wŽ .jkQ̂ a s .Ž .rq1 ž /0 0

˜UCASE 3. We now restrict our attention to the only subspace E , onrq1
ˆŽ . Ž . Ž .which Q a is given by the matrix Q a in 3.10 .rq1
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˜U ˆŽ . Ž .To simplify the notation, we write E* and Q a for E and Q a ,rq1 rq1
respectively. We will prove by induction that there exists a linear transforma-
tion g of E changing Q into Q , with matrixg

0 a ??? a2 n

0 0 ??? 03.11 Q a s .Ž . Ž .g e* ?� 0
0 0 ??? 0

Write
² :0 a , wi j

.Q a s ,Ž . .e* .� 0
0 0

n Ž U . U Ž U . Uwith w s Ý w e . The relations Q e e s Q e e imply here thati j ks1 i j, k k k j j k

w ,ik , j
3.12 w sŽ . i j , k ½ � 40, if i G inf j, k .

We will kill the w for j ) 1 successively by induction.i j, j
Step 1. j s 2. Then w / 0. If not, on the subspace generated by eU and12, 2 1

U Ž .e , Q a b s 0, which is impossible from Lemma 3.5. Let us denote « s2 1
Ž . Ž .sign w and consider the transformation g such that g e s « e ,12, 2 1 1 1 1 1

r« e w1 2 12, j
g e s y e ,Ý1 2 j1r2 w< <w 12 , 2js312 , 2

Ž .and for i G 3, g e s e . Then a simple calculation gives1 i i

y1t t tQ a s g a Q g a gŽ . Ž .Ž . Ž .1 1 1 1

² Ž1.:0 a , wi j
.s . .� 0

0 0
with wŽ1. s e .12 2

Step 2. Suppose that there exists a linear transformation g of E suchŽk .
that

y1t t tQ a s g Q g a gŽ . Ž . Ž .k Žk . Žk . Žk .

² Žk .:0 a , wi j
.s . .� 0

0 0

3.13Ž .

with w s e for j F k and w s 0 for i G 2 and j F k. Then we will prove1 j j i j
the following:

1. for i G 2, w s 0;ikq1
2. w / 0;1kq1, kq1
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Ž .3. if « s sign w and g is the transformation such that forkq1 1kq1, kq1 kq1
Ž .i F k, g e s « e ,kq1 i kq1 i

« e wkq1 kq1 1kq1, j
g e s y e ,Ž . Ýkq1 kq1 j1r2 w< <w 1kq1, kq1jGkq21kq1, kq1

Ž . Ž . Ž .and for j G k q 2, g e s e , then the property 3.13 for k q 1 iskq1 j j
obtained with g s g g .Žkq1. kq1 Žk .

Ž . Ž . Ž U . U Ž U . Ž . UTo prove 1 , we only write the equality Q b Q e e s Q e Q b e ,i kq1 i kq1
Ž . Ž U . U Ufor any b. For 2 , we have Q e e s w e . If w s 0,kq1 kq1 1kq1, kq1 1 1kq1, kq1

U U Ž .then for any a , b in the subspace generated by e and e , Q a b s 0.1 kq1
From Lemma 3.5 this is impossible. From this, a simple calculation yields the

Ž . Ž .property 3.13 for k q 1 . Consequently, for k s n, we get

0 a ??? a2 n

0 0 ??? 0Q a s .Ž .n
? ? ??? ?� 0
0 0 ??? 0

4. Conclusion. Here up to affinities we summarize the only operators Q
Ž . Ž .which yield a symmetric nondegenerate function V m s am m m q B m

Ž .Ž .satisfying the relation of symmetry 1.4 ii . The last property of positive-
definiteness is now used to exclude some cases. Thus we get the following.

Ž . Ž . Ž . ŽCase 1. Q a s diag a , . . . , a leads to V m s am m m q diag m ,1 d 1
.. . . , m , which is the variance function of a multinomial or negative-d

multinomial family.
Case 2.

a1

?
akQ a sŽ .

0 a ??? akq2 d� 00 0 ??? 0
0 0

Ž . Ž .leads to V m s am m m q diag m , . . . , m , 0, m , . . . , m , which is the1 k kq1 kq1
Ž . Ž .variance function of a NM-ga family with 0 F k F d y 1 .k

Case 3.

a1
. . 0.

Q a sŽ . any2

0 ya any1 n� 0
ya yan ny1
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leads to

m1
. . 0.

V m s am m m qŽ . mdy2

0 ym ymdy1 d� 0
ym md dy1

which is the V of a hyperbolic family.F
Case 4.

a¡ ¦1
. . 0.

ady3Q a sŽ .
0

ya ady1 d¢ §0 ya yad dy1

leads to

m¡ ¦1
. . 0.

mdy3V m s am m m q .Ž .
0

ym ymdy1 d¢ §0 ym md dy1

Here the principal minors

V V V Vdy2, dy2 dy2, dy1 dy2, dy2 dy2, dand
V V V Vdy1, dy2 dy1, dy1 d , dy2 d , d

have opposite signs and V is not positive-definite. This case has to be
excluded.

Case 5.

a¡ ¦1
. . 0.

ak

ya akq1 kq2
Q a sŽ . ya yaž /kq2 kq1

0 a ??? akq4 d

? ? ??? ?0
0 0 ??? 0� 0¢ §0 0 ??? 0
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leads to
V m s am m mŽ .

m¡ ¦1
. . 0.

mk

ym ymkq1 kq2q .ym mž /kq2 kq1

mkq3
.0 . .¢ §mkq3

As for Case 4, V is not positive-definite and this case has also to be excluded.
This concludes the proof of Proposition 3.2. I

Up to Lemma 3.1, the classification of the simple quadratic variance-
functions given in Theorem 2.1 is therefore complete.

APPENDIX A

This Appendix is devoted to the proof of Lemma 3.1. Let F be a simple
Ž .quadratic NEF on E. Let m be in M . Then V m is positive-definite from0 F F 0

Ž .y1E* to E and hence V m defines a Euclidean structure on E with scalarF 0
Ž . ² Ž .y1 :product x, y s V m x, y . The variance function of F, written as aF 0

y1 ˜Ž . Ž . Ž .symmetric operator of E, becomes V m V m s V m and satisfiesF F 0 F
˜ ˜ ˜Ž . Ž .V m s id . We still denote by V m the extension of V to E. Since F isF 0 E F F

˜ ˜ ˜Ž . Ž . Ž .simple quadratic, V m s am m m q B m q C. We now define V m sF
˜ ˜ŽŽ . . Ž . Ž . Ž .aV m q m ra s m m m q B m q id with B m s B m q m m m qF 0 E 0

m m m. Note that V is not necessarily a variance function on some open0
subset of E. However, Lemma 3.1 can be reformulated in terms of V as
follows.

LEMMA A. Let E be a Euclidean space with dimension d. Let c be a real
Ž .number and let B: E ª LL E be a linear operator such thats

i B u v s B v u ,Ž . Ž . Ž .
A.1Ž . � 4ii B u , B v s c u m v y v m u .Ž . Ž . Ž .

Ž . Ž . Ž .If V: E ª LL E is defined by V m s m m m q B m q c id and then ifs E
Ž .d ) 1, there exists m in E such that V m s 0.0 0

˜Ž .Of course, c s 1 gives the function V built from the previous V . TheF
hard part of Lemma A is the following lemma.

LEMMA B. Let E be a Euclidean space with dimension d G 2 and let
Ž . Ž .B: E ª LL E be a linear operator satisfying A.1 . Then there exists a nonnulls

Ž .vector u which is a eigenvector of B u .
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Let us accept Lemma B for a while.

PROOF OF LEMMA A. We proceed by induction on the dimension of E.
Ž .Step 1. Suppose that d s 2 and c / 0 if c s 0, m s 0 is a solution . From0

Ž .Lemma B, there exists u such that u is a eigenvector of B u . Then put
5 5 Ž .e s ur u and e such that e s e , e is an orthonormal basis of E. From1 2 1 2

Ž . Ž .A.1 and the symmetry of B e , we can write2

a 0 0 b1B e s , B e s .Ž . Ž .1 2e e b až / ž /20 b

Ž .Ž . w Ž . Ž .x 2Moreover, from A.1 ii , B e , B e s yce implies that b y a b q c s 0.1 2 2 1
Ž . Ž .Since c / 0, we have also b / 0 and B e s a y b e m e q b id . We1 1 1 1 E

Ž Ž . .then easily check that V y crb e s 0.1
Step 2. Suppose now Lemma A proved for any E of dimension k with

2 F k F d. We will prove it for an E of dimension d q 1. Let us introduce
5 5e s ur u , where u satisfies the conclusion of Lemma B and let us complete0

Ž .d Ž .e in an orthonormal basis e s e of E which diagonalizes B e . We0 i is0 0
w Ž .x Ž . Ž .write B e s diag a , b , . . . , b . Then, from A.1 , we have successively,0 e 1 1 d

w Ž . Ž .x w Ž . Ž .xfor i, j G 1, B e , B e e s yce and B e , B e e s 0, which imply,0 i 0 i i j 0
respectively,

A.2 b2 y a b q c s 0 for i G 1,Ž . i 1 i

A.3 b y b B e e s 0 for i , j G 1.Ž . Ž .Ž .j i i j

Ž . Ž .Hence, if b s b for any i G 1, then B e s a y b e m e q b id andi 0 1 0 0 E
Ž Ž . . Ž .V y crb e s 0 comes from A.2 . If the b are not all equal, up to a0 i

permutation of e , . . . , e , we can write1 d

a 01

bIA.4 B e sŽ . Ž . k0 e � 00 a y b IŽ .1 dyk

< < < <with a y b / b and a y b F b . Let E be the vector space generated by1 1 k
e , . . . , e , let p be the orthogonal projection onto E and, for m in E ,1 k k k k

˜ 2 ˜Ž . Ž . Ž . Ž .define B m s p B m p . It is easy to verify that for x, y in E , B x y sk k k
Ž . ² :B x y y b x, y e , so that0

˜ ˜B x y s B y xŽ . Ž .
2˜ ˜ � 4B x , B y s c x m y y y m x with c s c y b .Ž . Ž . ˜ ˜

Ž . Ž .Now, for m in E , let us write m s ybe q m. Then from A.2 and A.3 we˜ ˜k 0 0
˜ ˜Ž . Ž . Ž Ž . . w Ž .xget V m e s V m e s m m m q B m q c id e . Therefore, V m is˜ ˜ ˜ ˜ ˜0 i i E i 0 ek

reduced to a nonnull k = k diagonal block,

0 0 0
˜V m s .Ž . 0 V m 0Ž .˜0 e � 00 0 0
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˜ 2Ž .If k s 1, the equation V m s m q a m q c s 0 admits a real root m ,˜ ˜ ˜ ˜ ˜2 0
ŽŽ . . Ž .since c s b a y b y b - 0 from A.4 . Hence there exists m s ybe q m˜ ˜1 0 0 0
Ž .such that V m s 0. If k ) 1, we use the induction hypothesis and we0

conclude as before. I

We now prove Lemma B.

Ž .PROOF OF LEMMA B. Under A.1 axioms, we first prove the equivalence
between the following two properties.

Ž .i There exists a nonnull vector u which is an eigenvector
Ž .of B u .

A.5Ž . Ž .ii There exist two nonnull orthogonal vectors u, v such
Ž .that v is an eigenvector of B u .

Ž .Ž .We will prove A.5 ii later.
Ž . Ž . Ž .The implication i « ii is trivial, since B u , as a symmetric operator, is

diagonalizable in a orthonormal basis of E. For the converse implication
Ž . Ž . Ž .Ž . Ž Ž .ii « i , let us consider u as given in A.5 ii and note E s [ ker B u yl

. Ž Ž . .l id , the orthogonal decomposition of E into the eigenspaces Ker B u y l id
Ž .of B u .

Ž Ž . . H � 4 Ž Ž . . HNote first that if Ker B u y l id l u / 0 , then Ker B u y l id ; u .
Ž . Ž Ž Ž . ..2 H w Ž . Ž .xIndeed, if v, w g Ker B u y l id and if v g u , then B u , B v w s

Ž . Ž . Ž . Ž . Ž . Ž . w Ž . Ž .xB u B v w y lB v w s B u B w v y lB w v s B u , B w v. Using
Ž .Ž . ² : ² :A.1 ii and u, v s 0, we get u, w s 0.

Ž .Let now E and E denote the sums of the eigenspaces of B u which are,1 2
respectively, not orthogonal to u and orthogonal to u. Under the hypothesis
Ž .Ž . � 4 Ž .A.5 ii , we have E / 0 . Moreover, E and E are stable under the B x ,2 1 2

Ž Ž . .x g E . Indeed, for w in Ker B u y l id ; E and for x in E , using1 2 1
Ž .Ž . w Ž . Ž .x Ž Ž . . Ž . Ž .A.1 ii , we have 0 s B u , B x w s B u y l id B x w so that B x w g

Ž Ž . . Ž .Ker B u y l id ; E . From the symmetry of B x , E is also invariant.2 1
Ž .Ž . Ž .Now, from A.1 ii , the restriction to E of the B x , x g E , commute.2 1

Consequently, there exists an eigenvector v in E which is common to all2
Ž .B x , x g E , and a vector a in E such that1 1

² :A.6 ; x g E , B x v s a, x v.Ž . Ž .1

Ž . w Ž . Ž .x ² :Now, since B x x g E , the relation B x , B v x s yc x, x v given by1
Ž .Ž . ² :2 ² Ž . : ² :A.1 ii yields a, x y a, B x x q c x, x s 0 and this is equivalent to

A.69 a m a y B a q c id s 0.Ž . Ž .Ž . E1

Ž . Ž . Ž² : . Ž . Ž .Applying A.69 to x s a, we finally get B a a s a, a q c a. Thus ii « i
is demonstrated.

Ž .Ž .We now prove the statement A.5 ii . Let us fix any unitary vector e of E1
Ž . Hand choose e , . . . , e an orthonormal basis of e which diagonalizes the2 d 1
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Ž . H Ž .drestriction of B e to e . In such a basis e s e , we write1 1 i is1

a c ??? c1 2 d

c b 02 2
A.7 B e s .Ž . Ž . . .1 e . .. .� 0

c 0 bd d

Ž . Ž .Ž .If one c is 0, then B e e s b e : this is A.5 ii with u s e and v s e . Ifi 1 i i i 1 i
Ž . Ž .Ž .one b is 0, then B e e s c e , which is A.5 ii , again with u s e andi i 1 i 1 i

Ž .Ž .v s e . If there exist i, j such that i / j and b s b , then we still get A.5 ii1 i j
with u s e and v s c e y c e . We now suppose that1 j i i j

A.8 c , . . . , c / 0, b , . . . , b / 0 and for i / j, b / b .Ž . 1 d 1 d i j

Ž . Ž Ž . .Let us introduce P l s det B e y l id , the characteristic polynomial of1 E
Ž . Ž . Ž .B e and D l , the matrix of cofactors of B e y l id in the basis e. We1 1 E

shall prove that there exists u s Ýd u e such thatis1 i i

i B e y u id is invertible.Ž . Ž .1 1 E
A.9Ž .

ii B e y u id u s ce .Ž . Ž .Ž .1 1 E 1

Ž . Ž Ž . .In this case, we will have V yu e s u m u y B u q c id e s 0 and1 E 1
Ž .from A.1 , for i G 2,

A.10 B e y u id V yu e s B e y u id V yu e s 0,Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 1 E i i i E 1

Ž . Ž .Ž . Ž .so that V yu e s 0 from A.9 i . Consequently, for any v, V yu v s 0, andi
Ž .Ž . Ž . Ž² : . Ž .Ž .this gives A.5 i , since B u u s u, u q c u, as well as A.5 ii , since

Ž .B u v s cv for any v orthogonal to u.
Ž . Ž Ž . .To get A.9 , consider the equation B e y u id u s ce and apply the1 1 E 1
Ž .matrix D u to each of its members. We get1

P u u s cD u e .Ž . Ž .1 1 1

Taking the coordinate with respect to e yields1

² :yP u u q c D u e , e s 0.Ž . Ž .1 1 1 1 1

Ž .From A.7 , it is easy to see that

d

² :i D l e , e s b y l ,Ž . Ž . Ž .Ł1 1 i
is2

d d
2ii P l s a y l b y l y c b y lŽ . Ž . Ž . Ž . Ž .Ł Ý Ł1 i i k

is2 k/iis2

A.11Ž .

d d 2cis b y l ? a y l y .Ž .Ł Ýi 1ž /b y lis2 iis2
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Hence, u is a root of the following polynomial of degree d q 2:1

d

Q l s ylP l q c b y l ,Ž . Ž . Ž .Ł i
is2

which can also be written

d d d 2c bi i2 2A.12 Q l s b y l l y a l q c y c y .Ž . Ž . Ž .Ł Ý Ýi 1 iž /l y bis2 iis2 is2

Ž .It is now easy to prove that under the hypothesis A.8 the rational function
2 d 2 d Ž 2 . Ž .l ¬ l y a l q c y Ý c y Ý c b r l y b has real roots in R _1 is2 i is2 i i i

� 4 Ž .b , . . . , b . Let u be such a root. Then u is not an eigenvalue of B e . If2 d 1 1 1
Ž . Ž . Ž . � 4not, Q u s P u s 0 and from A.12 , u g b , . . . , b , which is impossible1 1 1 2 d
Ž . Ž . Ž Ž .from A.11 . Hence, B e y u id is invertible and u s c B e y1 1 E 1
.y1 Ž .u id e , which is well defined, satisfies A.9 . This concludes the proof of1 E 1

Lemma B. I

APPENDIX B

Let E* be a real linear space with dimension d, with dual space E and let
Ž .Q: E* ª LL E* be a linear operator such that

Q a b s Q b aŽ . Ž .
B.1Ž .

Q a Q b s Q b Q aŽ . Ž . Ž . Ž .

ˆ ˆ ˆ ˆ ˆŽ . Ž .We denote by E, E* and Q: E* ª LL E* , respectively, the complexified
vector spaces of E, E* and the complexified operator of Q. Then the set

ˆ ˆ� Ž . 4 Ž .Q s Q a ; a g E* generates a nilpotent subalgebra of LL E* . By Theorem
ˆŽ .II, page 380 of Dynkin 1950 , we can decompose E* into a direct sum of

ˆ ˆ ˆŽ . Ž . Ž .subspaces F invariant under the Q a and such that Q a has only onek
ˆ ˆŽ .complex eigenvalue on each F . Since Q is linear in a , there exist vectorsk

j j ˆ ˆ ˆŽ .d and w of E and a suitable basis of E* such that, in this basis, Q a hass, t
the matrix

Q̂ a 0Ž .1
. .Q̂ a sŽ . .� 0ˆ0 Q aŽ .r

with

² j: ² j :a , d a , ws , t
.ˆ .Q a s .Ž .j .� 0j² :0 a , d
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ˆ kŽ . Ž . ² :Since Q a is the complexified operator of Q a , it is known that if a , d is
ˆa real number, F is the complexified characteristic subspace of F . In thatk k

Ž .case, the restriction of Q a to F can be writtenk

² : ² :a , d a , wst
. . .� 0² :0 a , d

Ž .with d, w in E as given in 3.7 .st
k k k² : ² : ² :If a , d is not real, the conjugate number a , d s a , d for a in E*

ˆ jŽ . ² :is still an eigenvalue of Q a , say a , d . The corresponding characteristic
ˆ ˆsubspaces F and F are conjugate, too, and hence have the same dimension.k j

ˆ ˆŽ . Ž .It is then possible to choose the basis f s f and f s f of F and Fk k s s j js s k j
1ˆ ˆŽ . Ž . Ž .to get conjugate submatrices Q a and Q a . Choosing e s f q fk j k s k s js2

Ž .Ž . Ž .and e s 1r2 i f y f yields a basis e , e , e , e , . . . , e , e of thejs k s js k1 j1 k 2 j2 k s js
Ž .real subspace F [ F in which the restriction of Q a can be writtenk j

D Wst
. . .� 00 D

for which there exists a, b, u , v in E such thatst st

² : ² :a , u a , v² : ² :a , a a , b st stD s and W sstž /² : ² : ² : ² :ž /y a , b a , a y a , v a , ust st

Ž .as given in 3.8 . I
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