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MEAN RESIDUAL LIFE PROCESSES

BY MIKLOS CSORGO1 AND RICARDAS ZITIKIS2´ ¨ ˝ ˇ
Carleton University

Yang and Hall and Wellner initiated investigations of the asymptotic
Ž .uniform behaviour of mean residual life MRL processes. They obtained

results holding true over fixed and expanding compact subintervals of
w .0, ` .

In this exposition we study MRL processes over the whole positive
w .half-line 0, ` . We describe classes of weight functions which enable us to

Ž . w . Ž .establish the a strong uniform-over- 0, ` consistency and b weak
w .uniform-over- 0, ` approximation of MRL processes. We give examples

which show the necessity of employing weight functions in order to have
Ž . Ž .a and b , and prove the optimality of the weight function classes which

Ž .we make use of. Extending our results concerning b , we discuss construc-
tions of asymptotic confidence bands for unknown MRL functions. The
width of the obtained confidence bands is regulated by weight functions
depending on the available information on the underlying distribution
function.

Ž1. Introduction and main results. The mean residual life MRL for
.short function or remaining life expectancy function at age x is defined to be

the expected remaining life given survival to age x. It is a concept of obvious
interest and, indeed, one of the most important notions in actuarial, reliabil-
ity and survivorship studies. For details on the variety of situations where
estimating MRL is of importance, we may, for example, refer to the proceed-

Ž .ings edited by Proschan and Serfling 1974 , Miller, Efron, Brown and Moses
Ž . Ž . Ž . Ž .MEBM 1980 , Crowley and Johnson 1982 and Krishnaiah and Rao 1988 .

Ž .Let X be a nonnegative random variable defined on a fixed probability
� 4 Žspace V, AA, P . Its distribution function F usually called life distribution
.function is assumed to be continuous, and E X - `. As just mentioned above,

Ž .the MRL function M at age x G 0 is defined byF

<M x [ E X y x X ) x , x G 0.Ž . Ž .F

Naturally, if F were known and completely specified, then M would be aF
computable function. This, of course, is rarely the case. A natural way,
therefore, to get to know the MRL function M is via constructing anF
empirical estimate for it and, based on the empirical estimate and whatever
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regularity conditions one may be willing to assume for F, like the existence of
moments andror regular tail variation, for example, one would then wish to
construct asymptotic confidence bands for the unknown M , using all theF
data that may be available. In this regard, we succeed in estimating the MRL
function over the whole positive half-line. This really is also the main
statistical message and implication of our paper. In this section we present
and discuss our results along these lines and in a historical context as well.
The proofs are given in Section 2.

Let X , . . . , X be independent copies of the random variable X; the1 n
corresponding right-continuously defined empirical distribution function is
denoted by F . If XU is a random variable having the distribution function Fn n
when X , . . . , X are fixed, then M is defined by the formula1 n n

U U < UM x [ E X y x X ) x , x G 0,Ž . Ž .n

where EU denotes the conditional expectation when X , . . . , X are fixed.1 n
w .In several papers, attempts to prove uniform-over- 0, `

a strong consistencyŽ .
and

b weak approximationŽ .

for the MRL process M y M were made. In particular, under somewhatn F
Ž . Ž . Ž .stronger than necessary conditions, Yang 1978 proved a and b for the

w xprocess M y M uniformly over the interval 0, x for any fixed x - x ,n F 0 0 F
where x is the, possibly infinite, end of the support of F, defined byF

x [ inf x : F x s 1 .� 4Ž .F

Ž . Ž .Later on, Hall and Wellner 1979 proved the just mentioned Yang 1978
Ž .results under optimal moment conditions. Also, Hall and Wellner 1979

Ž . Ž . w xshowed that a and b hold uniformly over the interval 0, x , where then
nonnegative numbers x possibly depending on F, are strictly less than xn F
and approach x as n ª `. For a discussion and new derivation of these andF
some other closely related results on the MRL process we refer to Hall and

Ž . Ž . Ž .Wellner 1981 , Burke, S. Csorgo and Horvath BCsH 1981, 1988 , M.¨ ˝ ´
Ž . Ž . Ž .Csorgo, S. Csorgo and Horvath CsCsH 1986 , Shorack and Wellner 1986¨ ˝ ¨ ˝ ´

Ž . Ž .and Bickel, Klaassen, Ritov and Wellner BKRW 1993 .
Ž . Ž .In this work we show that, in general, it is impossible to have a and b

w .uniformly over 0, ` without employing weight functions. In particular, we
Ž .refer to 1.7 and Corollary 1.4, as well as to Corollary 1.8 and Proposition 1.1

below, concerning the exponential distribution. This, in turn, suggests the
following two natural approaches to the problem of studying the MRL process

w .on 0, ` :

Ž . � 4A To describe sequences x , n g N of nonnegative numbers, or randomn
Ž . Ž .variables x , x F x , such that a and b would hold true uniformlyn n F

w xover the intervals 0, x .n
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Ž . Ž . Ž .B To describe classes of weight functions q which would allow a and b to
w .hold uniformly over 0, ` when the MRL process M y M is weightedn F

by q.

Ž .We have found the second approach B more natural for immediate
Ž .attention. Indeed, it turns out that in some cases like the exponential one

wwe have to push the MRL process M y M down in other words, to adjust itn F
Ž Ž .. x Ž . Ž .by a function q such that q F x ª 0 as x ª x in order to have a and bF

w Ž . xvalid, while in some other cases like, for example, the 0, 1 -uniform one we
Ž Ž ..have to adjust M y M by a function q such that q F x ª ` as x ª x ,n F F

in order to catch the true asymptotic behaviour of the process M y M .n F
Ž .Another compelling reason for choosing the second approach B is discussed

Ž .in more detail below when constructing confidence bands for the unknown
ŽMRL function M . We shall see cf. Theorem 1.3 and the related discussionsF

.around there that, using weight functions q, we are able to ‘‘regulate’’ the
width of confidence bands according to the nature of information available to
us on the distribution function F.

Ž .Thus, our goal here is to establish B . However, we recognize of course
Ž . Ž .that a resolution of A , just like that of B , is also of interest for the sake of

Ž .the manifold applications of the MRL process. Hall and Wellner 1979 made
Ž .important contributions in the first direction A . This also poses the intrigu-
Ž . Ž .ing question of unifying the two approaches A and B via constructing a

weighted approximation theory so that it would, for example, contain the
Ž .results of this paper as well as those of Hall and Wellner 1979 . Unfortu-

nately, posing the question this way also poses some mathematical difficulties
that we have not yet succeeded in overcoming.

w x w xWe assume that the weight functions q: 0, 1 ª 0, ` we deal with are
measurable and, for every d ) 0,

w x1.1 sup q t : t g 0, 1 y d - `.� 4Ž . Ž .

Ž .We note in passing that assumption 1.1 can be relaxed via making some
w xintegrability assumptions on q over the intervals 0, 1 y d , d ) 0. However,

at this stage, we do not see any immediate statistical or mathematical value
in such generalizations.

We now state our main result on strong consistency. Denote

D q , F [ sup q F x M x y M x .Ž . Ž . Ž . Ž .Ž .n n F
w .xg 0, `

We assume that the function

q t 1Ž .
1.2 t ¬ logŽ . 21 y t 1 y t

is nondecreasing in a neighborhood of 1. We use the notation log x [2
Ž Ž ..log e k log e k x throughout the paper.
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Ž .THEOREM 1.1. If 1.2 obtains, E X - ` and

x x1 1F F
1.3 D q , F [ q F y log dy dF x -`,Ž . Ž . Ž . Ž .Ž .H H 2½ 51yF x 1yF yŽ . Ž .0 x

Ž .then D q, F ª 0 as n ª `.n a.s.

� Ž Ž ..4 Ž .We do not know whether the factor log 1r 1 y F x in D q, F could be2
omitted and the strong consistency result of Theorem 1.1 retained. However,
by slightly modifying the proof of Theorem 1.1, it is easy to show that if the

Ž . Ž .function t ¬ q t r 1 y t is nondecreasing in a neighborhood of 1 and the
condition

x x1F FX1.3 q F y dy dF x - `Ž . Ž . Ž .Ž .H H½ 51 y F xŽ .0 x

w Ž . x Ž .that is, condition 1.3 without the factor log ??? is satisfied, then D q, F2 n
ª 0 as n ª `. We omit further comments on this result, since they areP
quite in parallel with those given below in the case of the strong consistency
of Theorem 1.1. It will suffice to note only that, due to the above remark, if we

� Ž .4 Ž . Ž . Ž .omit the factor log 1r 1 y t in 1.5 , 1.6 and 1.8 below, then the state-2
ments of Corollaries 1.2]1.4 hold true ‘‘in probability’’ instead of ‘‘almost
surely’’ as stated now.

Ž .Concerning the monotonicity assumption on q given by 1.2 , we note that,
in order to have Theorem 1.1 hold true, it suffices to have a function h which

Ž . Ž .majorizes q and satisfies conditions 1.2 and 1.3 . We add also that such,
seemingly trivial, generalization of Theorem 1.1 has proved to be useful on

Ž .occasions cf., e.g., the proofs of Corollaries 1.1 and 1.5 .

w Ž . Ž .xCOROLLARY 1.1 Yang 1978 ; Hall and Wellner 1979 . For every fixed
x - x , as n ª `,0 F

1.4 sup M x y M x ª 0.Ž . Ž . Ž .n F a .s .
w xxg 0, x0

The next corollary to Theorem 1.1 shows what kind of weight functions
should be used to adjust the MRL process in order to assure strong consis-

w .tency uniformly over the whole positive half-line 0, ` when no information,
other than E X - `, on F is available.

COROLLARY 1.2. If q is the function

1.5 t ¬ 1 y t rlog 1r 1 y t ,� 4Ž . Ž . Ž .2

Ž .then D q, F ª 0 as n ª `.n a.s.

For further elucidation on Theorem 1.1, we formulate the following two
Ž .corollaries concerning the 0, 1 -uniform and exponential distributions, re-

spectively.
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Ž .COROLLARY 1.3. If F is the 0, 1 -uniform distribution function and q is
such that

1
1.6 q t log 1r 1 y t dt - `,� 4Ž . Ž . Ž .H 2

0

Ž .then D q, F ª 0 as n ª `.n a.s.

Ž .y1qaCorollary 1.3 allows us the use of weight functions t ¬ 1 y t , a ) 0,
Ž .in the 0, 1 -uniform case when proving strong consistency results for the

MRL processes M y M . We note that when a - 1, then this weight func-n F
tion goes to q` as t ª 1. In comparison with corresponding results by Yang
Ž . Ž . Ž .1978 and Hall and Wellner 1979 cf. Corollary 1.1 above , in this situation

Ž .we would have to require q t s 0 in a neighborhood of 1.
On the other hand, in the exponential case we must require

1.7 q t ª 0, as t ª 1,Ž . Ž .
Ž .as shown by the following argument: Let F be the Exp u -distribution

Ž . Ž . yx ru Ž .function u g 0, ` , that is, F x s 1 y e , x G 0. Then M x s u and,F
therefore,

D q , F G sup q F x M x s sup q F x u .Ž . Ž . Ž . Ž .Ž . Ž .n F
w . w .xg X , x xg X , xn: n F n : n F

Ž . Ž .Consequently, if D q, F ª 0 as n ª `, then we must have 1.7 . Here,n a.s.
and throughout, X F ??? F X denote the order statistics of X , . . . , X .1 : n n : n 1 n
In general, we have the following result for exponential distributions.

Ž . Ž .COROLLARY 1.4. If F is the Exp u -distribution function u g 0, ` and q is
such that

q t 1Ž .1
1.8 log dt - `,Ž . H 21 y t 1 y t0

Ž .then D q, F ª 0 as n ª `.n a.s.

The second goal of this exposition is to prove weak approximation results
for the MRL process M y M . Namely, we shall describe a class of weightn F

˜ ˜ ˜Ž . � 4functions q, such that on a possibly richer probability space V, AA, P there
� 4is a sequence G , n g N of Gaussian random processes such that then

quantity

'= q , F [ sup q F x n M x y M x y G x� 4Ž . Ž . Ž . Ž . Ž .Ž .n n F n
w .xg 0, `

converges in probability to 0 as n ª `. For notational simplicity, we will
˜ ˜ ˜� 4 � 4continue using the notation V, AA, P instead of V, AA, P . Furthermore, the

� 4probability space V, AA, P which the two sequences of random processes
' � 4n M y M and G live on is that of Theorem 1.1 of M. Csorgo, S. Csorgo,¨ ˝ ¨ ˝n F n
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Ž . Ž .Horvath and Mason CsCsHM 1986 . The approximating Gaussian pro-´
cesses G are defined as follows:n

`1 1
G x [ B F x M x y B F y dyŽ . Ž . Ž . Ž .Ž . Ž .Hn n F n1 y F x 1 y F xŽ . Ž . x

w . Ž . � 4for all x g 0, x , and G x [ 0 otherwise, where B , n g N denotes theF n n
wŽ .sequence of Brownian bridges that are constructed in CsCsHM 1986 ,

xTheorem 1.1, page 32 .
We assume that the function

1.9 t ¬ q t r 1 y tŽ . Ž . Ž .

is nondecreasing in a neighborhood of 1 and that E X 2 - `.

Ž . 2THEOREM 1.2. If 1.9 holds, E X - ` and

2
x x1F F

1.10 = q , F [ q F y dy dF x - `,Ž . Ž . Ž . Ž .Ž .H H½ 51 y F xŽ .0 x

Ž .then = q, F ª 0 as n ª `.n P

Ž .Just as in the case of Theorem 1.1, assumption 1.10 in Theorem 1.2 can
Ž . Ž .be replaced by = h, F - `, where h is a function such that q F h, and 1.9

holds with the h instead of q.
'Ž . Ž .Weak approximations for the normalized MRL processes n M y Mn F

Ž . Ž . Ž .by G were studied by Yang 1978 , Hall and Wellner 1979 , BCsH 1981 ,n
wŽ . x wŽ .CsCsH 1986 , Chapter 4 and Shorack and Wellner 1986 , Section 5 in

xChapter 23 . For some related discussions of MRL processes we refer to
Ž . Ž . Ž .BKRW 1993 . Corollaries 1.5, 1.6 and the statements 1.13 , 1.14 below

relate our Theorem 1.2 to these works.

w Ž . Ž .xCOROLLARY 1.5 Yang 1978 ; Hall and Wellner 1979 . For every fixed
x - x , as n ª `,0 F

'1.11 sup n M x y M x y G x ª 0.� 4Ž . Ž . Ž . Ž .n F n P
w xxg 0, x0

The next corollary to Theorem 1.2 answers the question of what kind of
weight functions should be used in the weak approximation of MRL when the
only available information on F is E X 2 - `.

COROLLARY 1.6. If q is the function

1.12 t ¬ 1 y t ,Ž .

Ž .then = q, F ª 0 as n ª `.n P
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This corollary implies the first part of Theorem 4 of Hall and Wellner
wŽ . x 21979 , page 9 which, under somewhat stronger assumptions than E X - `,
states that

'1.13 sup 1 y F x n M x y M x y G x ª 0� 4Ž . Ž . Ž . Ž . Ž .Ž . n F n P
w xxg 0, xn

� 4 Ž .as n ª `, where x : n g N is a sequence of numbers such that 1 y F xn n
� Ž .4 wŽ .ª 0 and n 1 y F x ª `, n ª `. Furthermore, Hall and Wellner 1979 ,n

2 xTheorem 3 on page 9, under somewhat stronger assumptions than E X - `
wŽ . Ž .and CsCsH 1986 , Theorem 4.1 iv on page 39, under only the assumption

2 xE X - ` proved the result

'sup 1 y F x n M x y M x� 4 � 4Ž . Ž . Ž .n n F
w .xg 0, `1.14Ž .

y 1 y F x G x ª 0, n ª `,� 4Ž . Ž .n P

Ž .which is slightly different from those given in Corollary 1.6 and 1.13 .
Ž .Clearly, 1.14 is implied by Corollary 1.6. We shall see later on that results

Ž .like 1.14 are very useful when investigating the problem of constructing
Ž .asymptotic confidence bands for the unknown MRL function M .F

We now state some further corollaries to Theorem 1.2 that are of interest.

Ž .COROLLARY 1.7. If F is the 0, 1 -uniform distribution function and
1 21.15 q t dt - `,Ž . Ž .H

0

Ž .then = q, F ª 0 as n ª `.n P

Ž . Ž .COROLLARY 1.8. If F is the Exp u -distribution function u g 0, ` and
2q tŽ .1

1.16 dt - `,Ž . H ½ 51 y t0

Ž .then = q, F ª 0 as n ª `.n P

Ž .In particular, Corollary 1.8 says that = q, F ª 0, n ª `, for any weightn P
Ž . Ž .1r2qafunction q t s 1 y t , a ) 0. On the other hand, the next proposition

Ž .states that = q, F ª 0, n ª `, fails to hold in case a s 0.n P

Ž . Ž .PROPOSITION 1.1. If F is the Exp 1 -distribution function, and q t s
'1 y t , then there exists a constant c ) 0 such that

11.17 L [ lim inf P = q , F G G c ) 0.Ž . Ž .� 4n 2
nª`

Based on Theorem 1.2, we now discuss several constructions of asymptotic
Ž .confidence bands for the MRL function M . Fix any confidence level a g 0, 1F

and let z be the smallest number z such thata

1.18 P z [ P sup q F x G x F z s 1 y a ,Ž . Ž . Ž . Ž .Ž .½ 5
w .xg 0, xF



¨ ˝M. CSORGO AND R. ZITIKIS1724

Ž . � Ž . 4 � Ž .where G ? is a Gaussian process such that G x , 0 F x - ` s G x ,DD n
40 F x - ` for each n G 1.

We note in passing that the function P is continuous provided that q is
w . w Ž .xnot identically equal to 0 on 0, x cf. Tsirel’son 1975 . Some furtherF

details and remarks on this and other related topics can be found in Bickel
Ž . Ž . Ž .and Freedman 1981 , M. Csorgo, S. Csorgo and Mason CsCsM 1984 and¨ ˝ ¨ ˝

Ž .S. Csorgo and Mason 1989 .¨ ˝
Ž .In our next theorem cf. Theorem 1.3 we will also assume that

1.19 q is continuous on 0, 1 ,Ž . .
Ž .and that for every c g 0, 1 ,

1.20 sup h ct rh t - ` where h t [ q 1 y t .Ž . Ž . Ž . Ž . Ž .
Ž .tg 0, 1

Ž .We note that assumption 1.20 is a technical one needed in the proof of
Theorem 1.3 and, roughly speaking, it says that if the function q diverges to
q` as t ª 1, then it should diverge with a polynomial rate.

Ž .THEOREM 1.3. Under the assumptions of Theorem 1.2, and those of 1.19
Ž .and 1.20 we have

za
P M x g M x y ,Ž . Ž .F n½ 'n q F xŽ .Ž .n

za
M x q , x g 0, XŽ . .n n : n 5'n q F xŽ .Ž .n

1.21Ž .

s 1 y a q o 1 , n ª `.Ž .

In order to use Theorem 1.3 in practical situations, we have to discuss two
problems. Namely, in applications we need to choose q and to estimate z . Asa

Ž .to the weight function q, it has to satisfy the conditions = q, F - `, and thus
its choice depends on the unknown F. If x - `, then, roughly speaking, onep

Ž . Žcan choose q as if the distribution function F were 0, 1 -uniform cf. Corol-
.lary 1.7 . In the case of x s `, the problem is more complicated. Forp

Ž . Ž .example, if F is the Exp u -distribution, then any q satisfying 1.16 can be
w Ž .used in Theorem 1.3. Other parametric families cf., e.g., Miller 1981 for an

xaccount of them could be investigated in a similar way. When we do not
know the parametric family from which F comes, but we know, or can guess,
the number of moments F has, then one may choose q according to the
following proposition.

PROPOSITION 1.2. Let n ) 1r2 be any number and let

1.22 E X 2rŽ2ny1. - `.Ž .
Then for any weight function q such that

n w x1.23 q t F c 1 y t for all t g 0, 1 ,Ž . Ž . Ž .
Ž .the condition = q, F - ` is satisfied.
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In the case of n s 1, Proposition 1.2 results in the same conclusion as that
Ž .of Corollary 1.6 cf. also the remark right after Theorem 1.2 above . The case

n ) 1 is of no interest, since E X 2 - ` is assumed for the validity of Theorem
1.2. Thus, without loss of generality, the value of n ) 1r2 in Proposition 1.2

Ž xcan be restricted to n g 1r2, 1 . We recall also that, due to Proposition 1.1
and Theorem 1.2, the value n s 1r2 cannot be accommodated by Proposition

r Ž . Ž .n Ž x1.2. Naturally, if E X - `, r G 2, then with q t s 1 y t and n g 1r2, 1
Ž .such that r s 2r 2n y 1 , we have Theorem 1.3.

Ž .Concerning the problem of z in 1.21 , we now discuss some methods ofa

construction for its estimation. The first approach is taken from Hall and
wŽ . x w Ž . xWellner 1979 , Section 7 cf. also Shorack and Wellner 1986 , page 779 .

Ž .Their idea is based on the fact that the distribution of the process x ¬ G x
is equal to that of the process

s x 1 y F x s 2 x� 4Ž . Ž . Ž .
x ¬ W ,2ž /1 y F x s 0Ž . Ž .

2Ž . Ž < .where s x [ Var X y x X ) x and W is a standard Wiener process on
w x w Ž .0, 1 cf. Exercise 1 on pages 778]779 of Shorack and Wellner 1986 for

xfurther details on this topic . Now, using empirical estimates for F and s ,
� < Ž . < Ž .4and the fact that the distribution of sup W t : t g 0, 1 is known, we arrive

Ž .at an empirical estimator of z , denoted by z . For more details anda a , n
Ž .properties of the estimator z we refer to Hall and Wellner 1979 anda , n

Ž .Shorack and Wellner 1986 .
An alternative approach to constructing an estimator for z is provided bya

bootstrapping the MRL process M y M as follows. Let XU, . . . , XU ben F 1 n
independent and identically distributed random variables with the distri-
bution function F , where X , . . . , X are fixed. Furthermore, let FU ben 1 n n
the empirical distribution function corresponding to the random sample
XU, . . . , XU. Then we define1 n

`1
U UM x [ 1 y F y dy� 4Ž . Ž .Hn nU1 y F xŽ . xn

w U . U Ž .for all x g 0, X , and M x [ 0 otherwise. In other words, we haven : n n

U UU UU < UUM x s E X y x X ) x , x G 0,Ž . Ž .n

Ž .where the notation corresponds to that used in the definition of M x . If wen
now denote

U U UP x [ P sup q F x M x y M x F z ,Ž . Ž . Ž . Ž .Ž .n n n n½ 5
Uw .xg 0, Xn : n

where PU stands for the conditional probability when X , . . . , X are fixed,1 n
then the bootstrap based estimator zU for z is defined as the smallesta , n a

number z such that

PU z G 1 y a .Ž .n
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There has been a lot of material published on various aspects of the bootstrap
Ž .since Efron 1979 . Investigations of bootstrapping MRL and other related

Ž .empirical processes began in CsCsM 1984 and continued with further
Ž . Ž . wdevelopments in CsCsH 1986 and S. Csorgo and Mason 1989 cf. also¨ ˝

Ž . Ž .xChung 1989 and Yu 1993 . For example, using ideas and techniques
Ž . Ž . Ždeveloped in CsCsH 1986 and S. Csorgo and Mason 1989 , one can prove in¨ ˝

.the spirit of Theorem 1.3 that
Uza , n

P M x g M x y ,Ž . Ž .F n½ 'n q F xŽ .Ž .n

Uza , n UM x q , x g 0, XŽ . .n n : n 5'n q F xŽ .Ž .n

1.24Ž .

G 1 y a q o 1 , n ª `,Ž .
under the conditions of Theorem 1.3.

We conclude this section by calling attention to the interesting and mathe-
matically challenging problem of investigating mean residual life under

Ž .random censorship from the right . Concerning this subject, we refer to the
Ž .recent research monographs Andersen, Borgan, Gill and Keiding ABGK

Ž . Ž .1993 , BKRW 1993 and the references in these works. The very first steps
in constructing confidence bands for the MRL function under random censor-

Ž . Ž . Ž .ship were made by Yang 1977 , Hall and Wellner 1980 and BCsH 1981 . In
Ž .these and subsequent papers, results are proved over fixed or expanding

compact intervals. Thus, in the spirit of the present paper, it would be of
interest to obtain ‘‘a.s.’’ and ‘‘in P’’ results for MRL under random censorship

w .which would hold over the whole half-line 0, ` . This, in turn, would first
require carrying out another challenging research program on studying
weighted ‘‘a.s.’’ and ‘‘in P’’ approximations of empirical processes under
random censorship, using various empirical distribution estimators of F, like

Ž . Ž .for example those of Berman 1963 and Kaplan and Meier 1958 . That is to
say, one would need results along the lines of those that are already available
in the case of uncensored empirical processes.

2. Proofs. We start with some general remarks. First, without loss of
generality, we may and do assume throughout that the weight function q is

Ž . Ž .such that for every d ) 0 there is a constant c s c d g 0, 1 such that

w x2.1 c - q t - 1rc for all t g 0, 1 y d .Ž . Ž .
Ž . Ž . Ž . Ž . Ž .Indeed, D q, F F D q, F , where q t [ q t for every t ) 1 y d and q t [

w x � Ž . w x4l for every t g 0, 1 y d , and where l denotes sup q t q 1: t g 0, 1 y d ,
Ž .which is finite on account of 1.1 . The same arguments are applicable for

Ž .studying the quantity = q, F as well. The second remark is the simplen
observation that

`1
2.2 M x s 1 y F y dy� 4Ž . Ž . Ž .HF 1 y F xŽ . x
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w . Ž .for all x g 0, x and M x s 0 for all x G x . Also,F F F

`1
2.3 M x s 1 y F y dy� 4Ž . Ž . Ž .Hn n1 y F xŽ . xn

w . Ž .for all x g 0, X and M x s 0 for all x G X .n : n n n : n

PROOF OF THEOREM 1.1. We have

D q , F F sup q F x M x y M xŽ . Ž . Ž . Ž .Ž .n n F
w .xg 0, Xn : n

q sup q F x M x y M xŽ . Ž . Ž .Ž . n F
w .xg X , xn : n F

\ L q L .2 1

For proving the theorem, we show that L , L ª 0, n ª `. The fact1 2 a.s.
Ž .L ª 0, n ª `, is immediate. Indeed, since M x s 0 for all x G X ,1 a.s. n n : n

L s sup q F x M x .Ž . Ž .Ž .1 F
w .xg X , xn : n F

Ž .Also, we have that X ª x , n ª ` and that the function in 1.2 isn : n a.s. F
w .nondecreasing in a neighborhood of 1, say on 1 y d , 1 for some d ) 0. Given
Ž .such a d ) 0 and n large enough, we get using the above remarks the

following bound:

x 1 1F
L F q F y log dyrlog .Ž .Ž .H1 2 21 y F y 1 y F XŽ . Ž .X n : nn : n

Ž .This bound, along with the assumption 1.3 and the fact that X ª x ,n : n a.s. F
n ª `, completes the proof of L ª 0, n ª `.1 a.s.

The proof of

2.4 L ª 0, n ª `,Ž . 2 a .s .

Ž .is a bit more complicated. We start with Corollary 7 i on page 81 of Wellner
Ž .1978 , which states that, given t ) 1, for almost all elementary events v one

Ž .can find a number N [ N v, t such that

1
2.5 1 y F x G 1 y F x t log� 4Ž . Ž . Ž .n 2½ 51 y F xŽ .

w . Ž . Ž . Ž .for all x g 0, X and all n G N. Now, using 2.2 , 2.3 and 2.5 , we easilyn : n
arrive at the bound

2.6 M x y M x F tc x q tc x , x g 0, X ,Ž . Ž . Ž . Ž . Ž . .n F 1 2 n : n
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where

M x 1Ž .F
c x [ log F x y F x ,Ž . Ž . Ž .1 2 n1 y F x 1 y F xŽ . Ž .

`1 1
c x [ log F y y F y dy .� 4Ž . Ž . Ž .H2 2 n1 y F x 1 y F xŽ . Ž . x

We show that

2.7 L [ sup q F x c x ª 0, n ª `,Ž . Ž . Ž .Ž .3 1 a .s .
w .xg 0, Xn : n

2.8 L [ sup q F x c x ª 0, n ª `.Ž . Ž . Ž .Ž .4 2 a .s .
w .xg 0, Xn : n

Ž . Ž .It is easy to arrive at 2.7 . Let d ) 0 be such that the function in 1.2 is
w .nondecreasing on 1 y d , 1 . Given such a d ) 0 and n large enough, we get

L F sup q F x c xŽ . Ž .Ž .3 1
y1w Ž ..xg 0, F 1yd

q sup q F x c xŽ . Ž .Ž . 1
y1w Ž . .xg F 1yd , Xn : n

2.9Ž .

\ L q L .5 6

Ž .Applying first the assumption 1.1 and then the Glivenko]Cantelli theorem,
we conclude that L ª 0 as n ª `. Furthermore, since the function in5 a.s.
Ž . w . Ž .1.2 is nondecreasing on 1 y d , 1 and 1.3 is assumed, using the weighted

Ž . Ž .Glivenko]Cantelli theorem due to Lai 1974 and Wellner 1977 , we get that
Ž . Ž .L ª 0, n ª `. Now 2.9 completes the proof of 2.7 .6 a.s.

Ž .Proving now 2.8 , with the same d ) 0 as above and n large enough, we
get

L F sup q F x c xŽ . Ž .Ž .4 2
y1w Ž ..xg 0, F 1yd

q sup q F x c xŽ . Ž .Ž . 2
y1w Ž . .xg 0, F 1yd , Xn : n

2.10Ž .

\ L q L .7 8

Ž .Because of 1.1 , we have
`

2.11 L F c F y y F y dy,Ž . Ž . Ž .H7 n
0

Žand by Kolmogorov’s strong law of large numbers in the separable Banach
. Ž . ` < Ž . Ž . <space L 0, ` we get H F y y F y dy ª 0, n ª `, since E X - ` is1 0 n a.s.

w Ž .xassumed cf. Corollary 7.10 on page 189 of Ledoux and Talagrand 1991 .
Ž .Hence by 2.11 , L ª 0, n ª `. For showing that L ª 0 as n ª `, we7 a.s. 8 a.s.

denote
q F x 1Ž .Ž .

c x [ log .Ž .3 21 y F x 1 y F xŽ . Ž .
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Ž .Then, on account of the function in 1.2 assumed to be nondecreasing on
w .1 y d , 1 , we have

xF
2.12 L F c x F x y F x dx .Ž . Ž . Ž . Ž .H8 3 ny1Ž .F 1yd

Ž .By Kolmogorov’s strong law of large numbers in L 0, ` and assumption1
Ž . Ž .1.3 , we get that the right-hand side of 2.12 goes to 0 a.s. as n ª `. Hence,

Ž .L ª 0 and, via 2.10 , we have L ª 0, as n ª `. This also completes8 a.s. 4 a.s.
the proof of Theorem 1.1. I

Ž Ž ..PROOF OF COROLLARY 1.1. Let the weight function q be as follows: q F x
s 1 for all x F x and0

q F x s 1 y F x rlog 1r 1 y F x� 4 � 4Ž . Ž . Ž .Ž . Ž .2

Ž .for all x ) x . Theorem 1.1 implies that D q, F ª 0 as n ª `. However,0 n a.s.

2.13 D q , F G sup M x y M x ,Ž . Ž . Ž . Ž .n n F
w xxg 0, x0

and hence the corollary. I

Ž .PROOF OF COROLLARY 1.2. Note that with the function q as in 1.5 ,
Ž . 1 Ž Ž .. 1 Ž Ž ..D q, F F H M Q t dt. Since E X - `, we have that H M Q t dt - ` by0 F 0 F

Hardy’s inequality:
p11 t 1 p

2.14 f s ds dt F c f t dt .Ž . Ž . Ž .H H Hpt0 0 0

wŽ . xFor details we refer to CsCsH 1986 , page 40 . I

PROOF OF COROLLARIES 1.3 AND 1.4. Use Theorem 1.1 and Hardy’s inequal-
Ž .ity 2.14 with p s 1. I

PROOF OF THEOREM 1.2. We have

'= q , F F sup q F x n M x y M x y G x� 4Ž . Ž . Ž . Ž . Ž .Ž .n n F n
w .xg 0, Xn : n

'q sup q F x n M x y M x y G x� 4Ž . Ž . Ž . Ž .Ž . n F n
w .xg X , `n : n

\ L q L .9 10

We first prove that L ª 0 as n ª `. Denote9 P

'e t s n F Q t y t ,� 4Ž . Ž .Ž .n n

where Q stands for the quantile function corresponding to F and let

`1
1M x [ e F x M x y e F y dy .Ž . Ž . Ž . Ž .Ž . Ž .Hn n F n½ 51 y F xŽ . x
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With this notation we have

1 y F xŽ .
1 1'2.15 n M x y M x s y 1 M x q M x� 4Ž . Ž . Ž . Ž . Ž .n F n n½ 51 y F xŽ .n

w . Ž .for all x g 0, X . The representation 2.15 impliesn : n

q F x M xŽ . Ž .Ž . F
L F sup e F x y B F xŽ . Ž .Ž . Ž .9 n n1 y F xŽ .w .xg 0, Xn : n

`q F xŽ .Ž .
q sup e F y y B F y dy� 4Ž . Ž .Ž . Ž .H n n1 y F xŽ . xw .xg 0, Xn : n

1 y F x q F xŽ . Ž .Ž .
q sup y 1 e F y M xŽ . Ž .Ž .n F1 y F x 1 y F xŽ . Ž .w . nxg 0, Xn : n

2.16Ž .

`1 y F x q F xŽ . Ž .Ž .
q sup y 1 e F y dyŽ .Ž .H n1 y F x 1 y F xŽ . Ž . xw . nxg 0, Xn : n

\ A q A q A q A ,1 2 3 4

� Ž . 4where the Brownian bridges B t : 0 F t F 1 are the ones constructed inn
Ž .Theorem 1.1 of CsCsHM 1986 . We now prove A ª 0, as n ª `, for alli P

i s 1, . . . , 4.
Ž . Ž .Step 1 A ª 0, n ª ` . Since the function in 1.9 is nondecreasing in a1 P

Ž . Ž Ž .. Ž .neighborhood of 1, t ¬ q t M Q t r 1 y t is a Chibisov]O’Reilly functionF
Ž . wŽ .by 1.10 . Hence A ª 0, n ª `, by CsCsHM 1986 , Theorem 4.2.1, page1 P

x65 . This ends Step 1.
Ž .Step 2 A ª 0, n ª ` . We start with an elementary bound2 P

q tŽ . 1yd
A F sup e s y B s dQ s� 4Ž . Ž . Ž .H2 n n1 y t tŽ .tg 0, 1yd

q tŽ . 1
q 2 sup e s dQ sŽ . Ž .H n1 y t tw .tg 1yd , 12.17Ž .

q tŽ . 1
q 2 sup B s dQ sŽ . Ž .H n1 y t tw .tg 1yd , 1

\ A q 2 A q 2 A , d g 0, 1 .Ž .21 22 23

Ž . < Ž . Ž . <Because of assumption 1.1 and the fact that sup e t y B t ª 0t g Ž0, 1. n n P
as n ª `, we conclude that A ª 0, n ª `. We now show that for every21 P
« , « ) 0 there exists a d ) 0 and N g N such that1 2

� 4 � 42.18 P I ) « - « , I g A , AŽ . 2 1 22 23

for all n G N.
Ž .Clearly, 2.18 will also complete the proof of A ª 0, n ª `. Since the2 P

Ž .proof of 2.18 is the same for both I s A and I s A , we shall carry it out22 23
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in the case of I s A only. Toward this we need some elementary calcula-23
tions. We have

q tŽ . 1
B s dQ sŽ . Ž .H n1 y t t

sq t 1 y s q vŽ . Ž .1
s d B v dQ vŽ . Ž .H Hs n½ 51 y t q s 1 y vŽ .t 1yd

2.19Ž .

s q vŽ .
F 2 c q 1 sup B v dQ v ,Ž . Ž . Ž .H n 1 y v1ydw .sg t , 1

Ž .where, on account of 1.9 , the constant c ) 0 is such that

q t 1 y sŽ .
lim F c

1 y t q ssª1 Ž .
w . Ž .for all t g 1 y d , 1 . Using 2.19 , with the same constant c ) 0 we arrive at

q sŽ .t
2.20 I F 2 c q 1 sup B s dQ s .Ž . Ž . Ž . Ž .H n 1 y s1ydw .tg 1yd , 1

Furthermore,

q s B sŽ . Ž .t t 1n
B s dQ s s d y q z dQ zŽ . Ž . Ž . Ž .H H Hn s½ 51 y s 1 y s1yd 1yd s

t
B sŽ . 1nsy q z dQ zŽ . Ž .H1 y s s 1yd

2.21Ž .

B sŽ .1 1 nq q z dQ z d .Ž . Ž .H H½ 5 1 y s1yd s

Ž . 1 Ž . Ž . Ž .Since the function t ¬ c t [ H q z dQ z r 1 y t is square integrable by4 t
Ž . Ž . Ž . w1.10 , it is a Chibisov]O’Reilly function. Thus, B t c t ª 0 as t ª 1 cf.,n 4 P

Ž . Ž . Ž .e.g., CsCsHM 1986 or see M. Csorgo, Shao and Szyszkowicz CsShSz 1991¨ ˝
Ž . xand M. Csorgo and Horvath 1993 on this and related problems . Thus, on¨ ˝ ´

Ž . Ž . Ž .combining the latter with 2.21 and 2.20 , we see that 2.18 follows from

2.22 J [ P sup C t ) « - « ,Ž . Ž .n 2 1½ 5
w .tg 1yd , 1

where

B sŽ .t 1 n
C t [ q z dQ z d .Ž . Ž . Ž .H Hn ½ 5 1 y s1yd s

w x Ž .Fix z g 0, 1 for a moment and let FF z denote the s-algebra generated by
� Ž . w x4 �Ž Ž . Žthe random variables B v , v g 0, z . It is well known that B z r 1 yn n

. Ž .. w .4z , FF z : z g 0, 1 is a martingale for each n g N. Thus, for each n g N,n
�Ž Ž . Ž .. w .4C z , FF z : z g 0, 1 is also a martingale. Therefore, and because ofn n
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Ž .1.10 , we may use the Birnbaum]Marshall inequality to estimate the quan-
Ž . Ž .tity J in 2.22 . We get that J does not exceed up to a constant the quantity

2 z 11 1
q v dQ v d duŽ . Ž .H H Hz 2½ 5 ½ 51yd z 0 1 y uŽ .

2.23Ž .
211 1

s q v dQ v dz ,Ž . Ž .H H½ 51 y z1yd z

Ž .which clearly goes to 0 as d ª 1, since 1.10 is assumed. This completes the
Ž .proof of 2.18 and that of the statement A ª 0, n ª `, as well. We note in2 P

zŽ .y2 Ž .passing that for an interpretation of z ¬ H 1 y u du in 2.23 one may0
wŽ . xhave a look at Al-Hussaini and Elliot 1984 , top of page 612 .

Ž .Step 3 A ª 0, n ª ` . Fix any d ) 0. Since X ª x as n ª `,3 P n : n a.s. F
� y1Žthe statement A ª 0, n ª `, reduces to the statement 1 X G F 1 y3 P n : n

.4d A ª 0, n ª `. Hence we assume throughout that3 P

2.24 X G Fy1 1 y dŽ . Ž .n : n

and show that A ª 0, n ª `, under this assumption. For notational3 P
simplicity, we let

c t [ q t M Q t r 1 y tŽ . Ž . Ž . Ž .Ž .5 F

and

1 y F xŽ .
a x [ y 1 c F x e F x .Ž . Ž . Ž .Ž . Ž .3 5 n1 y F xŽ .n

Then

A s sup a xŽ .3 3
w .xg 0, Xn:n

F sup a x q sup a xŽ . Ž .3 3
y1 y1w Ž .. w Ž . .xg 0, F 1yd xg F 1yd , Xn : n

2.25Ž .

\ A q A .31 32

Ž . Ž Ž .. w y1Ž ..On noting that, by 1.1 , c F x F c for all x g 0, F 1 y d and that5
< Ž . < Ž .sup e t s OO 1 , n ª `, by the Glivenko]Cantelli theorem, we con-t g Ž0, 1. n P

clude A ª 0, n ª `.31 P
To complete the proof of A ª 0, n ª `, we need to show that for every3 P

« , « ) 0 there exists d ) 0 and N g N such that1 2

� 42.26 P A G « - «Ž . 32 2 1

Ž .for all n G N. The main idea of the proof of 2.26 is based on the following
observation: Since c is a Chibisov]O’Reilly function, using Lemma 4.2.1 of5

wŽ . x UCsCsHM 1986 , page 66 we can find a local function c such that5

2.27 c t rc U t ª 0 as t ª 1.Ž . Ž . Ž .5 5

We note in passing that a function c U that satisfies the latter relationship5
Ž .would be called an Erdos-Feller-Kolmogorov-Petrovski EFKP upper-class¨
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Ž .function in CsCsHM 1986 . Calling it simply a local function here is in
wŽ . x wagreement with CsShSz 1991 , page 239 cf. also M. Csorgo and Horvath¨ ˝ ´

Ž . x Ž .1993 , Proposition 1.3, page 194 . As a consequence of 2.27 we have that

sup c t rc U t ª 0, d ª 1.Ž . Ž .5 5
w .tg 1yd , 1

Ž . Ž .Combining the latter with Remark 1 ii on page 75 of Wellner 1978 , which
tells us that

1 y F xŽ .
2.28 sup s OO 1 , n ª `,Ž . Ž .P1 y F xŽ .w . nxg 0, Xn : n

wŽ . x Ž .and with CsCsHM 1986 , Theorem 4.2.3 , we arrive at 2.26 .
Ž .Step 4 A ª 0, n ª ` . Denote4 P

`1 y F x q F xŽ . Ž .Ž .
a x [ y 1 e F y dy .Ž . Ž .Ž .H4 n1 y F x 1 y F xŽ . Ž . xn

Ž .Then, for every d g 0, 1 ,

A s sup a xŽ .4 4
w .xg 0, Xn : n

F sup a x q sup a xŽ . Ž .4 4
y1 y1w Ž .. w Ž . .xg 0, F 1yd xg F 1yd , Xn : n

\ A q A .41 42

The proof of A ª 0, n ª `, goes along the lines of that of A ª 0,41 P 31 P
1 Ž . Ž . Ž .n ª `, in Step 3, only now use H e t dQ t s OO 1 , n ª `, instead of0 n P

< Ž . < Ž . � 4sup e t s OO 1 . The proof of the fact that we have P A ) « - «t g Ž0, 1. n P 42 2 1
w Ž .xis given in Step 2 cf. 2.18 . These remarks conclude the proof of A ª 0,4 P

n ª `.
Ž .Steps 1]4 and 2.16 complete the proof of L ª 0, n ª `. Consequently,9 P

Theorem 1.2 will be proved if we show that L ª 0 as n ª `. To start10 P
with, we note that

'L F sup q F x n M xŽ . Ž .Ž .10 F
w .xg X , xn : n F

q sup q F x B F x M x r 1 y F x� 4Ž . Ž . Ž . Ž .Ž . Ž .n F
w .xg X , xn : n F2.29Ž .

xq F xŽ .Ž . F
q sup B F y dyŽ .Ž .H n1 y F xŽ . xw .xg X , xn : n F

\ B q B q B .1 2 3

Ž . w .Fix any d ) 0 such that the function in 1.9 is nondecreasing on 1 y d , 1 .
� y1Ž .4Since 1 X - F 1 y d ª 0, n ª `, we assume below thatn : n a.s.

X G Fy1 1 y d ,Ž .n : n

Ž .which is equivalent, of course, to F X G 1 y d .n : n
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Ž . ŽStep 5 B ª 0, n ª ` . It is well known and easy to show that n 1 y1 P
Ž .. Ž .F X s OO 1 , n ª `. Hence B ª 0, n ª `, ifn : n P 1 P

'2.30 sup q F x M x r 1 y F x ª 0, n ª `.Ž . Ž . Ž . Ž .Ž . F P
w .xg X , xn : n F

Ž . Ž .We now prove 2.30 . First, note that the function in 1.9 is nondecreasing on
w . Ž Ž .. Ž . x F Ž Ž .. Ž .1 y d , 1 . Hence, q F x M x F H q F y dy. Due to 1.10 , the functionF x

1 1
t ¬ c t [ q s dQ sŽ . Ž . Ž .H6 1 y t t

'Ž .is a Chibisov]O’Reilly function. Hence, c t 1 y t ª 0 as t ª 1 by CsCsHM6
wŽ . Ž . x1986 , Proposition 3.1 i , page 56 . These remarks conclude the proof of
Ž .2.30 , since X ª x as n ª `.n : n a.s. F

Ž . Ž . Ž Ž .. Ž .Step 6 B ª 0, n ª ` . Since the function t ¬ q t M Q t r 1 y t is a2 F
Chibisov]O’Reilly function and X ª x as n ª `, we obtain B ª 0,n : n a.s. F 2 P

w Ž .xn ª `, as desired cf. Remark 3.2 on page 56 of CsCsHM 1986 .
Ž . y1Ž .Step 7 B ª 0, n ª ` . Because of the assumption X G F 1 y d3 P n : n

made above, we have

q tŽ . 1
B F sup B s dQ s .Ž . Ž .H3 n1 y t tw .tg 1yd , 1

Ž .Now the statement 2.18 completes the proof of B ª 0, n ª `.3 P
Ž .Because of Steps 5]7 and 2.29 , we have that L ª 0, n ª `. This also10 P

completes the proof of Theorem 1.2. I

Ž Ž ..PROOF OF COROLLARY 1.5. Let q be such that q F x s 1 for all x g
w x Ž Ž .. Ž .0, x and q F x s 1 y F x for all x G x . According to Theorem 1.2,0 0
Ž .= q, F ª 0 as n ª `, which completes the proof, due to havingn P

= q , F G sup M x y M x . IŽ . Ž . Ž .n n F
w xxg 0, x0

Ž .PROOF OF COROLLARY 1.6. With the weight function q defined by 1.12 ,
Ž . 1 2Ž Ž ..we have = q, F s H M Q t dt. However, the latter quantity is finite0 F

because of the assumption E X 2 - `; this is seen by using Hardy’s inequality
Ž .2.14 with p s 2. For more details we refer to calculations presented on page

Ž .40 of CsCsH 1986 . I

PROOF OF COROLLARIES 1.7 AND 1.8. Follows from Theorem 1.2 and Hardy’s
Ž .inequality 2.14 with p s 2. I

Ž .PROOF OF PROPOSITION 1.1. Since F is the Exp 1 -distribution function, we
Ž Ž .. Ž . Ž Ž .. w .have M Q t s 1 for all t g 0, 1 . Also, M Q t s 0 for all t g U , 1F n n : n

Ž .where U [ F X . Thus, with the weight function q as in the proposi-n : n n : n
tion,
2.31 D q , F G I U ,Ž . Ž . Ž .n n : n
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Ž .where, for every « g 0, 1 ,

B t 1 B sŽ . Ž .1n n' 'I « [ sup 1 y t n q y ds .Ž . H1 y t 1 y t 1 y stw .tg « , 1

Ž .Because of 2.31 ,

12.32 L G lim inf P I U G .Ž . Ž .� 4n : n 2
nª`

Ž xIt is easy to show that, for any fixed d g 0, 1 ,

1 d 1 d
P I U G G P I 1 y G y P U G 1 yŽ .n : n n : n½ 5 ½ 5½ 5ž /2 n 2 n

� 4 ydand that P U G 1 y drn converges to 1 y e as n ª `. Thus, in viewn : n
Ž .of 2.32 ,

d 1
yd2.33 L G L y 1 y e , where L [ lim inf P I 1 y G .Ž . Ž .11 11 ½ 5ž /n 2nª`

Let us suppose that we have proved the inequality

2.34 L G c ) 0Ž . 11 0

Ž .for a universal constant c ) 0. Then 2.33 implies the bound0

L G c y 1 y eyd ,Ž .0

which is the claim of Proposition 1.1 if we take d ) 0 small enough. Hence, in
Ž .order to complete this proof, it suffices to show 2.34 . Denote

t
W t [ B 1 y t y B 1 y s rs ds,Ž . Ž . Ž .H

0

Ž .where B ? is a Brownian bridge. It is well known and easy to show that W is
w x Ž .'a Wiener process on 0, 1 . Thus, G [ nrd W drn is a Gaussian random

variable with mean 0 and variance 1. Now, with this notation and remarks
we easily arrive at the following bounds:

d 1 W t 1Ž .'P I 1 y G s P sup nt q G½ 5ž / ½ 5'n 2 2tw xtg 0, drn

W t 1Ž . 'G P sup y d G½ 5' 2tw xtg 0, drn

1 3'< < < <G P G G q d G P G G½ 5 ½ 52 2

3Ž . � < < 4as claimed in 2.34 with c s P G G . I0 2
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PROOF OF THEOREM 1.3. The following elementary inequality holds for all
random variables j and h, and numbers z and d G 0:

< < < <� 4 � 4P j F z y P h F z
2.35Ž .

< < < <� 4F P h g z y d , z q d q P j y h G d .� 4Ž

Throughout the proof we use the following values of j , h and z:

'j [ n sup q F x M x y M x ,Ž . Ž . Ž .Ž .n n F
w .xg 0, Xn : n

'h [ n sup q F x G x ,Ž . Ž .Ž . n
w .xg 0, xF

z [ z .a

Ž .The value of d ) 0 is not fixed yet. We continue with several remarks,
� < < 4leading to the proof of the theorem. First, we have P h F z s 1 y a by

� < < Ž x4definition. Second, P h g z y d , z q d converges to 0 as d ª 0 by conti-a a

nuity. Third, assuming that we can show

2.36 j y h ª 0, n ª `,Ž . P

Ž .then, because of the first two remarks and the inequality 2.35 , the theorem
Ž .is proved. Consequently, we are left with proving 2.36 . Denote

'L [ sup q F x y q F x n M x y M x .Ž . Ž . Ž . Ž .Ž .Ž .12 n n F
w .xg 0, Xn : n

Ž .Now it is evident that 2.36 is a consequence of Theorem 1.2 and the fact that
Ž .L ª 0 n ª ` , which, in turn, is a consequence of12 P

L , L ª 0, n ª `,13 14 P

where

L [ sup q F x y q F x M x e F x r 1 y F x ,� 4Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .13 n F n n
w .xg 0, Xn : n

`

L [ sup q F x y q F x e F y dy r 1 y F x .� 4Ž . Ž . Ž . Ž .Ž . Ž .Ž . H14 n n n
xw .xg 0, Xn : n

Hence Steps 8 and 9 deal with showing this convergence in probability to zero
for the two random variables L and L .13 14

Ž .Step 8 L ª 0, n ª ` . Let the function inside the sup of L be denoted13 13
Ž .by c , that is to say, L s sup c x . We may again assume13 13 x gw0, X . 13n : n

Ž .without loss of generality that, for some d g 0, 1 and n large,

X G Fy1 1 y d .Ž .n : n

Thus,

2.37 L F sup c x q sup c x \ C q C .Ž . Ž . Ž .13 13 13 1 2
y1 y1w Ž .. w Ž . .xg 0, F 1yd xg F 1yd , Xn : n
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The proof of C ª 0, n ª `, is based on1 P

2.38 sup q F x y q F x ª 0, n ª `,Ž . Ž . Ž .Ž .Ž .n P
y1w Ž .xxg 0, F 1yd

which follows from the Glivenko]Cantelli theorem and the continuity as-
Ž . < Ž . < Ž .sumption 1.19 , and on having sup e t s OO 1 , n ª `.t g Ž0, 1. n P

To complete the proof of L ª 0, n ª `, we show that for every « , « ) 013 P 1 2
there exists a d ) 0 and N g N such that

� 42.39 P C G « - «Ž . 2 2 1

Ž .for all n G N. The main ingredients of the proof of 2.39 are assumption
Ž . Ž . Ž .1.20 and Inequality 1 3 on page 419 of Shorack and Wellner 1986 , which

Žstates that for every « ) 0 there exists a subset V ; V ' the set of all«

. Ž .elementary events such that P V - « and, on V ,« «

2.40 F x F 1 y c 1 y F x for all x g 0, x ,Ž . Ž . Ž . .Ž .n F

Ž . Ž . Ž .where c g 0, 1 is a nonrandom constant. Now, the proof of 2.39 can be
completed as follows. Since d ) 0 can be taken arbitrarily small, we may

Ž . w .assume the function in 1.9 to be nondecreasing on 1 y d , 1 . It is easy to see
Ž .that for proving 2.39 it is enough to show that

� 42.41 P C G « l V - « .Ž . Ž .2 2 « 11

However, on the set V we have the bounds«1

q F x q 1 y c 1 y F x q F xŽ . Ž . Ž .Ž . Ž .Ž .Ž .n
2.42 F F CŽ .

1 y F x c 1 y F x 1 y F xŽ . Ž . Ž .Ž .n

w y1Ž . .for all x g F 1 y d , X , where the first and second inequalities inn : n
Ž . Ž . Ž .2.42 are due to 2.40 and 1.20 , respectively. Consequently, on the set V ,«1

2.43 C F c sup q F x M x e F x r 1 y F x ,� 4Ž . Ž . Ž . Ž . Ž .Ž . Ž .2 F n
y1w Ž . .xg F 1yd , Xn : n

where constant c G 0 is nonrandom and does not depend on n. The estimate
Ž . Ž . Ž .2.43 together with 2.26 completes the proof of 2.41 and that of the

Ž .statement 2.39 as well. This completes the proof of L ª 0, n ª `.13 P
Ž .Step 9 L ª 0, n ª ` . The proof of L ª 0, n ª `, is very similar to14 P 14 P

Ž .that of L ª 0, n ª `. The main difference is the use of bound 2.1813 P
Ž .instead of 2.26 . We omit further details which, in the light of the above

calculations, are elementary.
This completes the proof of L ª 0, n ª `, as well as that of Theorem12 P

1.3. I

Ž . Ž .PROOF OF PROPOSITION 1.2. Because of 1.23 , we have D q, F - ` if

211 1 n
2.44 1 y s dQ s dt - `.Ž . Ž . Ž .H H½ 51 y t0 t
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Ž .Using the integration by parts formula, we get that 2.44 follows from
211 1 ny12.45 Q s 1 y s ds dt - `.Ž . Ž . Ž .H H½ 51 y t0 t

Ž . Ž .Using now Hardy’s inequality 2.14 with p s 2, we get that 2.45 is a
consequence of

` 2ny222.46 s 1 y F s dF x - `.Ž . Ž . Ž .Ž .H
0

Ž . y2rŽ2ny1. 2rŽ2ny1. Ž .However, 1 y F s F s E X . Hence assumption 1.22 com-
Ž .pletes the proof of 2.46 and that of the proposition as well. I
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