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ON THE DIMENSION OF THE BOUNDARY OF CLUMPS
IN A MULTI-TYPE BOOLEAN MODEL

BY PETER HALL1 AND JORG POLZEHL¨
Australian National University

In a fascinating article on models for particulate microstructure,
Hermann and Ohser argue that the superposition of stochastically inde-
pendent Boolean models may be thought of as producing sets whose
boundaries have unusual properties of dimension. Hermann and Ohser
employ such superposition models to analyse the particulate structure of
rust. In the present paper we provide a theoretical foundation for their
work, with respect to both the definition of dimension and its statistical
estimation. We argue that the dimension of set boundaries is not well
defined in either the Minkowski or capacity senses. It can, however, be
properly defined using a mathematical formalization of the practical
notion of analysing a spatial pattern at different resolution levels. Adopt-
ing this as a basis, we consider properties of estimators of dimension.

1. Introduction. The dimension of a curve or a surface is a very conve-
nient way of characterizing its roughness. It is canonical, in at least the sense
that it is scale-invariant. In this respect it is unlike other commonly used
descriptors of irregularity. Its application to engineering problems involving

Ž .curves is well known; see, for example, Berry and Hannay 1978 , Mandel-
Ž . Ž .brot, Passoja and Paullay 1984 , Carter, Cawley and Mauldin 1988 , Thomas

Ž . Ž .and Thomas 1988 , Dubuc, Zucker, Tricot, Quiniou and Wehbi 1989 and
Ž .Ling 1990 . There the random curves under analysis are typically obtained

by drawing a stylus or optical profilometer across a surface, and are often
modelled as functions of Gaussian processes.

Ž .Hermann and Ohser 1993 also address irregular curves arising in prob-
lems of engineering origin, but depart from tradition by treating genuinely
two-dimensional patterns and employing intrinsically geometric models. The
statistical problem that Hermann and Ohser discuss is motivated by a need
to develop models for finely particulated processes in the plane, such as
appear in a section through clumps of oxidized material. Clumps are pro-
duced by an aggregation of overlapping particles whose centers have been
laid down independently and at random. This strongly motivates the use of
Boolean models. There particle centers may be treated as points of indepen-
dent marked Poisson processes in the plane, and the particles themselves are

Received April 1994; revised August 1995.
1 Also affiliated with CSIRO, Division of Mathematics and Statistics, Sydney, Australia.
AMS 1991 subject classifications. Primary 62H11, 62M30; secondary 62M40.
Key words and phrases. Poisson processes, roughness, scaling model, self-similarity, spatial

pattern.

1521



P. HALL AND J. POLZEHL1522

random shapes whose configurations, like those of the actual particles, are
independently distributed, with scales depending on the marks of the point
processes.

Unlike the usual Boolean model, where the sizes of most particles are
within a relatively narrow band, the data analysed by Hermann and Ohser
demand an extremely broad distribution of particle size. The model that they
develop produces a spatially homogeneous pattern where the number of
particles within any given region is infinite with probability 1, yet the
expected proportion of the region covered by particles is strictly less than 1.
This is achieved by having a sequence of independent marked Poisson
processes in the plane, with geometrically increasing intensities, and center-
ing at those points a sequence of random sets with geometrically decreasing
sizes. Appropriate choice of set diameters and point process intensities pro-
duces the properties noted above. As Hermann and Ohser point out, there is a
sense in which the relationship between particle scale and point process
intensity may be ascribed a ‘‘dimension’’ which characterizes the critical
features of the model.

In the present paper we develop the concept of multitype Boolean models,
where the total number of set centers in each nondegenerate region is infinite
with probability 1. The notion of dimension is investigated in that context. It
may be shown that the Minkowski dimension of the total boundary of the
Boolean model within any finite region is not well defined, except as the value
2. This is related to the fact that Minkowski dimension is not countably

w Ž .xstable e.g., Falconer 1990 . There are similar problems in defining capacity
dimension. Nevertheless, the geometric relationship between the sizes of
random sets and point process intensity, at all levels of a scaling model,
clearly has features of self-similarity. Motivated by this property and by
Hermann and Ohser’s practical suggestion that the coverage pattern be
analysed at varying levels of resolution, we suggest a concise definition of
dimension. A rigorous mathematical argument shows that the definition is
meaningful for a wide range of multitype Boolean models, including those
employed by Hermann and Ohser. We discuss estimation of dimension.

Our theoretical development of multitype Boolean models and their prop-
erties is presented in Section 2. There we define dimension, introduce estima-
tors and describe their properties. The theoretical results discussed in Sec-
tion 2 are illustrated in a numerical study in Section 3. Outlines of proofs are
deferred to Section 4.

A very accessible and concise account of the definition of dimension is
wŽ . x wŽ .given by Taylor and Taylor 1991 , page 354 . See also Barnsley 1988 , page

x Ž .172ff . The theory of Boolean models is developed by Ripley 1981 , Stoyan,
Ž . Ž .Kendall and Mecke 1987 and Hall 1988 , among others. These monographs

do not address the topic of the dimension of clusters in a Boolean model, and
the notion of a multitype model is not discussed; it appears to be mentioned
for the first time in the present paper. Properties of estimators of dimension

Ž .in more familiar settings have been developed by Ogata and Katsura 1991
Ž .and Taylor and Taylor 1991 .
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2. Multitype Boolean models and scaling models.

Ž .2.1. Discrete multitype Boolean disc model. Hermann and Ohser’s 1993
discrete multitype Boolean disc model may be described as follows. For each
i G 1, let QQ denote a homogeneous Poisson process in the plane with inten-i
sity C b i. At the points of QQ , center discs of radius C a i. We assume that1 i 2

2.1 a - 1, b ) 1, ab G 1, a 2b - 1,Ž .
that C and C are arbitrary fixed positive constants and that the Poisson1 2
point processes QQ are stochastically independent. Write CC for the resultingi
coverage process}CC is the collection of discs in the plane and is a special
case of the multitype Boolean models that we shall introduce in Section 2.3.
The condition a 2b - 1 is necessary and sufficient for CC to not cover the entire
plane. Indeed, the expected proportion of the plane that is not covered by any

� 2Ž 2 .y14discs from CC equals p s exp yp C C 1 y a b . Since ab G 1, then with1 2
probability 1, each line segment in the plane is cut by an infinite number of
disc boundaries from CC.

Ž .Motivated by Hermann and Ohser’s 1993 analysis of rust deposits, one
might consider studying a multitype Boolean model at a sequence of different
levels of resolution. Suppose that at level « , only discs of radius « or more are

Ž . nvisible. Let n s n « denote the largest integer such that a G « , and
consider this new coverage process of discs; call it CC . Draw a tube of«

thickness « around the perimeter of that part of the boundary of the coverage
Ž .pattern produced by CC which lies within the region RR. Let A « equal the«

area of this tube. It may be shown that with probability 1, conditional on RR
not being completely covered by discs,

y12.2 log A « rlog « ª L s 2 q log b log aŽ . Ž . Ž . Ž .
as « ª 0; see Theorem 2.1. Therefore we might define the dimension of the

Ž . Ž .multitype Boolean model to be D s 2 y L s y log b r log a . Assumption
Ž .2.1 guarantees that 1 F D - 2, which is the appropriate range for fractal
dimension of a curve in the plane.

Ž . Ž . LResult 2.2 is a consequence of the fact that, for small « , A « f const. « .
Ž . Ž . LThis should not be interpreted as meaning that the ratio r « s A « r«

converges to a constant as « tends to 0; it does not, on account of the discrete
Ž . Ž .nature of the function n « . However, with probability 1, r « is bounded

away from zero and infinity as « tends to zero, and that result is sufficient to
Ž .give 2.2 . Furthermore, it is possible to choose a sequence of « ’s tending to

Ž . Lzero such that for a fixed C ) 0, A « r« ª C, and, as we shall show in
Theorem 2.2, there exist realistic models of particulate processes with a

Ž . Lcontinuum of particle radii, for which A « r« ª C with probability 1 as
Ž .« ª 0 along any deterministic sequence. In such cases, 2.2 may be strength-

ened to

2.3 log A « y L log « s log C q o 1Ž . Ž . Ž .
with probability 1.
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Another way of interpreting D is as the exponent of sy1 in a formula for
the intensity of discs of radius s or more. The process of centers of discs of
radius greater than or equal to s is homogeneous and Poisson with intensity
function

0, for s ) a ,
l s sŽ . iq1 iq1 i½ C b y 1 r b y 1 , for a - s F a .Ž .Ž .1

We call l the cumulative intensity function of the multitype Boolean model.
Ž . yD Ž . yDNote particularly that l satisfies l s 7 s , meaning that the ratio l s rs

is bounded away from 0 and ` as s ª 0.
˜ y1� Ž .4Ž .While the naive estimator D s 2 y log A « log « is consistent for D,

it is often not of practical use because it is heavily biased. In some instances a
more effective estimator may be based on the approximate linear regression

Ž .obtained by taking logarithms of both sides of the equation A « f
const. « 2yD. Indeed, let « s c « , 1 F j F k, where k G 2 and the constantsj j

y1 2c are all positive and distinct, and define y s log c , y s k Ýy , s sj j j j y
y1 2 ˆ ˆŽ .k Ý y y y and D s 2 y u , wherej

k
y2 y1û s s k y y y log A « .Ž .Ž .Ýj j j

js1

Ž .Result 2.3 ensures that with probability 1, conditional on RR not being
ˆcompletely covered, D ª D as « ª 0. Alternative approaches to dimension

Ž . Ž .estimation are considered by Cutler 1991 and Serinko 1994 . Many general-
izations are possible, for example, with weights and with integrals instead of
series.

ˆThe estimator D is really a regression-based version of the well-known
box-counting estimators, albeit in an unconventional setting. For accounts of
the advantages of adopting a regression approach, see Sullivan and Hunt
Ž . Ž .1988 and Hunt 1990 .

� Ž . 42.2. General multitype Boolean models. Let PP s PP s , s ) 0 denote a
Ž .sequence of marked point process in the plane, with the marks of PP s being

Ž . w .values of r, SS , where r g s, ` and SS is a realization of a random set S.
Ž . Ž .The point processes are assumed nested, in the sense that PP s : PP s2 1

whenever s - s . With each point x from one of the processes in the1 2
Ž .sequence PP, having mark r, SS , we associate the translated, scaled set

� 4x q r SS s x q ry: y g SS . The general multitype grain model is the collection
of all these sets.

The character of a multitype grain model is determined by the nature of
the point processes PP and by the way in which marks are distributed among

Ž .the points. To define a multitype Boolean model in which PP has cumulative
Ž .intensity l s , for a decreasing function l, we ask that for any sequence of

positive numbers 0 - s - s - ??? - s - s , all the differenced point1 2 2 ny1 2 n
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Ž . Ž .processes PP s _ PP s , 1 F i F n, be stochastically independent Poisson2 iy1 2 i
Ž . Ž .processes with respective intensities l s y l s . We further assume2 iy1 2 i

Ž . Ž .that points associated with the infinitesimal difference d PP r s PP r _
Ž . Ž .PP r q dr have mark r, SS for some SS chosen independently and at random

from the range space of a random set S.
Ž .It is perhaps pedantic to insist that the distribution of S in the mark r, S

not depend on r, and indeed it is straightforward to produce versions of our
theory for cases where such dependence is allowed. The reason for not doing
so is simply to reduce the level of complexity of our analysis, particularly of
notation. If we allow S to depend on r, then we have to impose assumptions
of uniformity on the way in which the dependence alters with varying r, and

ˆthen the notation for describing bias and variance of the estimator D be-
comes much more cumbersome.

We shall argue later in this section that a general multitype Boolean
model exhibits the character noted in Section 2.1 and has dimension D if
Ž . yD Ž .l s 7 s as s ª 0. Indeed, the somewhat weaker assumption at 2.6 below

is permissible. To obtain precisely the discrete multitype Boolean disc model
described in Section 2.1, take S to be the fixed disc of radius C centered at2

Ž . Ž .the origin, let PP s be empty if s ) a and put PP s s D QQ for s F a ,1F iF i is
Ž . Ž .where i equals the integer part of log s r log a and the QQ s are indepen-s i

dent Poisson processes with respective intensities C b i.1
Ž .Next we define a version of A « for the general context. Let b denote any

fixed positive number, let RR be any bounded open subset of the plane, let
Ž .TT x, r, SS s x q r SS denote one of the translated, scaled sets comprising the

Ž . Ž . wmodel and write UU « for the union of all sets TT x, r, SS with r G b« . The
Ž . x «Poisson point at x has mark r, SS . Define SS to be the set of all points

« Ž . Ž .distant « or less from SS , put SS s SS _ SS , put TT x, r, SS , « s x q r SS and« «

Ž .let A « denote the area of the intersection with RR and the complement of
Ž . Ž . Ž . ŽUU « of the union VV « of all the sets TT x, r, SS , « with r G b« . The latter

requirement serves to identify those sets from the original model whose scale
.is no less than b« .

Ž .For any measurable subset SS of the plane let R SS denote the infimum of
5 5the radii of all discs that contain SS , and write SS for the area of SS . In a

5 5 Žslight abuse of notation, if x is a 2-vector, we write x for the length i.e.,
. Ž .Euclidean norm of x. In stating our strong law for log A « rlog « , we

� Ž . 4 Ž .suppose that for some C ) 0, P R S ) C s 0, that is R S is essentially
Ž5 « 5 .bounded, and that P S _ S ) C« s 0 for all « ) 0. The boundedness

condition may be relaxed by employing a longer proof involving a truncation
argument, but we shall not elaborate that point further here. In place of
Ž . yDl s 7 s we impose the weaker condition that for some 1 - D - 2,

for all d)0, l s sO syDyd andŽ . Ž .
2.4Ž .

syDqdsO l s as sª0.� 4Ž .

We shall say that RR is not completely covered by the multitype Boolean
model if the area of that subset of RR which is not covered is strictly positive.
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THEOREM 2.1. Assume that sets are laid down according to a multitype
Boolean model satisfying the conditions announced in the previous paragraph.
Then with probability 1, conditional on RR not being completely covered,

lim log A « rlog « s 2 y D.Ž .
«ª0

Ž . Ž .Should 2.4 hold for a value of D which lies outside the range 1, 2 , then
it is generally inappropriate to interpret that D as dimension. This is most
clearly seen in the case of the discrete disc model of Section 2.1. There,
Minkowski dimension and capacity dimension are well defined and equal 1

Ž . Ž . Ž .when ab - 1, but the formula D a , b s y log b r log a suggests that
Ž .D - 1. Assuming the conditions in 2.1 except for ab G 1, it may be shown

Ž .that in the discrete disc model the formula for D a , b is appropriate if and
only if ab G 1 and a 2b - 1.

˜Statistical consistency of the estimator D follows from Theorem 2.1. That
result may be derived as a corollary of a more refined theorem for a multitype
Boolean model with a continuous, regularly varying cumulative intensity
function. To describe such a result, first define a particular cumulative
intensity function,

`
ya2.5 l s s r f r dr ,Ž . Ž . Ž .H

s

Ž .where 2 - a - 3 and f G 0 is bounded on r, ` for each r ) 0, is slowly
Ž . Ž ay6. wvarying at the origin and satisfies f r s O r as r ª `. See Bingham,

Ž .Goldie and Teugels 1987 for extensive discussion of slow and regular
xvariation. Let RR be as before, define p to equal the proportion of RR not

covered by the multitype Boolean model and put

`
2ya5 5p s E p s exp yE S r f r drŽ . Ž .H½ 5

0

and
`

1r r 2ya5 5 5 5C s RR p E S _ S r dr .H0
b

ˆConsistency of D for D follows from the following result, noting that it
Ž .implies 2.3 .

THEOREM 2.2. Assume the conditions of Theorem 2.1, except that condi-
Ž . Ž .tion 2.4 on l is replaced by asking that l admit the definition at 2.5 , where

Ž .a and f satisfy the conditions stated in the previous paragraph. Then EA « ;
3ya Ž . Ž . Ž .C « f « and, with probability 1, A « rEA « ª prp, both results hold-0

ing as « ª 0.

ˆ2.3. Properties of D.
ˆ2.3.1. Preliminaries. As a prelude to describing the main properties of u ,

ˆ w Ž .xand hence of D, let p respectively, p « denote the proportion of RR covered
wby the multitype Boolean model by those sets in the model whose centers
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Ž . x Ž . Ž . � Ž .4have mark r, SS satisfying r G b« . Put p s E p , p « s E p « , p sj
Ž . Ž . � Ž . Ž . Ž .4 Ž .p « , p s p « and Q s A « y p rp EA « rEA « , and observe thatj j j j j j j j j

if p ) 0, then, as « ª 0,

k
22ˆ ˆ2.6 u s u q Q q O Q q pp y p p ,Ž . Ž .Ý ½ 5« « p j j j

js1

where

k
y2 y1u s s k y y y log EA « ,Ž .� 4Ž .Ý« y j j

js1

k
y2 y1 y1Q̂ s s k y y y p rp Q q p p y p .Ž .Ž .� 4Ž .Ý« y j j j j j j j

js1

ˆThe term u is the major contributor to bias; the term Q is the major« «

contributor to error about the mean.
2.3.2. Size of u . We ask that the cumulative intensity function, l, be«

Ž .expressible by 2.5 , where as r ª 0,

2.7 f r s a q a r aya1 q o r aya1 .Ž . Ž . Ž .10 11

In this formula, 2 - a - a - 3, 0 - a - `, y` - a - `. Put1 10 11

`
1r r 2ya15 5a E S _ S r drH11

ba s ,1 `
1r r 2ya5 5a E S _ S r drH10

b

` `y11r t 2ya 3ya 1r t 2ya5 5 5 5 5 5E S _ S t E S 3ya b y E S _ S r dr dtŽ .H H½ 5
b t

a sa2 10 `
1r r 2ya5 5E S _ S r drH

b

k k
y2 y1 3ya y2 y1 aya1t s a s k y y y c , t s a s k y y y c .Ž . Ž .Ý Ý0 2 y j j 1 1 y j j

js1 js1

Ž . Ž .It is proved by Hall and Polzehl 1994 that, assuming 2.7 ,

2.8 u q D y 2 s t « 3ya q t « aya1 q o « 3ya q « aya1 .Ž . Ž .« 0 1

ˆ Ž .2.3.3. Size of Q . We assume the conditions of Theorem 2.2, with f r ª«

a ) 0 as r ª 0, and that there exist functions g and g such that10 0

y1 5 « 5« E S _ S l x q S ª g x ,Ž . Ž . Ž .
y2 5 « « 5« E S _ S l x q S _ S F g x ,� 4Ž . Ž . Ž .0



P. HALL AND J. POLZEHL1528

w Ž . Ž5 5where Hg - `. The assumptions of Theorem 2.2 imply that g x F C I x0 1
.F C , for constants C , C ) 0. The reasonableness of the displayed condi-2 1 2

Ž . xtions is discussed by Hall and Polzehl 1994 . Define

Q « s A « y p « rp « EA « rEA « ,� 4Ž . Ž . Ž . Ž . Ž . Ž .
y1N « s pp « pp « y p « p ,� 4 � 4Ž . Ž . Ž . Ž .

in which notation
k

y2 y1 y1Q̂ s s k y y y p rp Q « q p N « .Ž . Ž .Ž .� 4Ž .Ý« y j j j j j
js1

Ž .It is shown by Hall and Polzehl 1994 that for constants B , B ) 0,1 2

2 22 2Ž3ya. 5ya 2Ž3ya.2.9 E Q « ; B « s o « , E N « ; B « s o « .Ž . Ž . Ž . Ž . Ž .� 4 � 41 2

ˆ 2 2Ž . �Ž . 4 Ž . Ž .Therefore, E Q s o D y 2 q u ; compare 2.8 and 2.9 .« «
ˆ 2Ž .2.3.4. Implications of formulae for u and E Q . Combining results from« «

Sections 2.3.1]2.3.3 we see that one may write

ˆ 3ya aya1 3ya aya1D s D y t « q t « q o « q « .Ž .Ž .0 1 p

ˆThis provides a particularly detailed account of the rate of convergence of D
to D.

3. Numerical results. To investigate properties of the proposed estima-
tors, we ran simulations for various setups of parameters, differently shaped
patterns and varying resolution levels. In the first study we used the discrete
multitype Boolean disc model described in Section 2.1. A value of b s 1.001
was employed in order to obtain a process approximating a continuous
Boolean model. The dimension D, the proportion p not covered by pattern
and the maximal disc radius C were fixed in order to describe different2
situations. We obtained a and C using the equations for p and D given in1

ˆ ˆSection 2.1. Write D for D to indicate dependence on k-point linear regres-k
Ž . Ž .sion c s j . Results are given in terms of bias, standard deviation s.d. andj

ˆŽ . Ž .mean squared error mse of estimators D . We approximated A « by Montek
Carlo methods, using 5 = 105 random points. This restricted the contribution

ˆof the approximation error to no more than 25% of the variance of D in worst
possible situations.

Table 1 summarizes, in the case p s 0.5, a much larger simulation study
˜ ˆ ˆof the relative performance of D and D , . . . , D . The results there show that2 5
ˆboth the bias and variance of D increase with increasing k. The increase ink

variance is a consequence of strong positive correlation between values of
Ž .log A « .k

We also examined the effect of set shape. Initially we replaced the discs by
ellipses of equal area in the coverage process. The ellipses were chosen to

Ž . Žhave either random uniform orientation or fixed orientation larger half-axis
.in the horizontal direction . Eccentricities were taken to have a logarithmic

Normal distribution with logarithmic mean m and logarithmic standard
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TABLE 1
ˆ ˆŽ . Ž .Bias, standard deviation s.d. and mean squared error mse of estimators D and D2 5

Bias s.d. mse

ˆ ˆ ˆ ˆ ˆ ˆD C « D D D D D D2 2 5 2 5 2 5

1.1 0.4 0.001 0.128 0.142 0.045 0.044 0.0185 0.022
0.01 0.242 0.292 0.114 0.134 0.0715 0.1035

1.1 0.2 0.001 0.151 0.168 0.029 0.026 0.0235 0.0288
0.01 0.294 0.352 0.092 0.1 0.0951 0.1342

1.1 0.1 0.423 0.183 0.206 0.024 0.023 0.0342 0.043
0.01 0.387 0.547 0.084 0.11 0.1571 0.3109

1.25 0.4 0.001 0.075 0.084 0.049 0.048 0.0081 0.0094
0.01 0.149 0.19 0.112 0.118 0.0348 0.05

1.25 0.2 0.001 0.093 0.108 0.03 0.032 0.0095 0.0127
0.01 0.207 0.263 0.082 0.11 0.0495 0.0815

1.25 0.1 0.001 0.114 0.134 0.02 0.02 0.0135 0.0183
0.01 0.292 0.463 0.077 0.12 0.0914 0.2288

1.5 0.4 0.001 0.007 0.014 0.038 0.042 0.0015 0.002
0.01 0.053 0.092 0.142 0.167 0.0229 0.0364

1.5 0.2 0.001 0.02 0.029 0.031 0.034 0.0014 0.002
0.01 0.113 0.179 0.121 0.16 0.0274 0.0576

1.5 0.1 0.001 0.031 0.044 0.021 0.024 0.0014 0.0025
0.01 0.197 0.364 0.101 0.115 0.0491 0.1454

1.75 0.4 0.001 y0.03 y0.033 0.028 0.039 0.0017 0.0026
0.1 0.003 0.036 0.172 0.198 0.0294 0.0406

1.75 0.2 0.001 y0.029 y0.022 0.023 0.029 0.0013 0.0013
0.01 0.047 0.144 0.131 0.21 0.0194 0.0649

1.75 0.1 0.001 y0.027 y0.02 0.022 0.023 0.0012 0.0009
0.01 0.107 0.318 0.125 0.183 0.0271 0.1343

deviation m1r2. The ellipses were assigned to CC if the smaller half-axis«

exceeded « . Figure 1 illustrates the coverage process at level « s 0.001 for
parameters D s 1.5, p s 0.5, C s 0.1, b s 1.001 and m s 1. Results are2
given in Table 2 for random orientation. Details of the case of fixed orienta-
tion, of the effect of resolution level misspecification and of other matters are

Ž .available from Hall and Polzehl 1994 .

w4. Outline proofs of Theorems 2.1 and 2.2. Details are available
Ž . xfrom Hall and Polzehl 1994 . Since Theorem 2.1 may be derived as a

corollary of Theorem 2.2, we prove the latter first.

OUTLINE PROOF OF THEOREM 2.2. Let « , « , . . . denote a strictly decreas-1 2
ing sequence of positive numbers such that « ª 0 andi

4.1 inf EA « sup EA « ª 1Ž . Ž . Ž .½ 5 ½ 5
Ž .i Ž .i
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Ž .FIG. 1. Multitype Boolean ellipse model D s 1.5, p s 0.5 .

as i ª `, where inf and sup denote, respectively, the infimum andŽ i. Ž i.
w xsupremum over « g « , « . It suffices to show thatiq1 i

4.2 A « y prp EA « EA « ª 0,� 4Ž . Ž . Ž . Ž . Ž .i i i

< <4.3 sup A « y A « EA « ª 0Ž . Ž . Ž . Ž .iq1 i½ 5
Ž .i

with probability 1.
X Ž X.Given 0 - « - « , write B « , « for the area of the region within RR1

Ž « «
X. Ž . Ž .covered by sets x q r SS _ SS , where x g PP b« has mark r, SS for some

Ž X.r G b« , and write B « , « for the area of the region within RR covered by sets2
Ž «

X . Ž X. Ž . Ž .x q r SS _ SS , where x g PP b« _ PP b« has mark r, SS for some r g
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TABLE 2
ˆ Ž .Effects of shape on D ellipses with random orientation2

ˆ ˆ ˆ( ) ( ) ( )Bias D s.d. D mse D2 2 2

D m « s 0.001 « s 0.01 « s 0.001 « s 0.01 « s 0.001 « s 0.01

1.1 0.5 0.136 0.223 0.051 0.132 0.021 0.0673
1.1 1 0.147 0.269 0.053 0.136 0.0245 0.0908
1.25 0.5 0.08 0.186 0.047 0.16 0.0086 0.0602
1.25 1 0.083 0.185 0.051 0.178 0.0095 0.0659
1.5 0.5 0.017 0.085 0.046 0.16 0.0024 0.0327
1.5 1 0.018 0.117 0.043 0.197 0.0022 0.0526
1.75 0.5 y0.038 0.022 0.041 0.224 0.0031 0.0505
1.75 1 y0.028 0.057 0.041 0.214 0.0025 0.0491

w X . < Ž . Ž . < Ž . Ž .b« , b« . If « F « F « , then A « y A « F B « , « q B « , « .iq1 i iq1 1 i iq1 2 i iq1
Ž . Ž .Therefore, 4.2 and 4.3 will follow if we prove that

4.4 EB « , « q EB « , « rEA « ª 0,� 4Ž . Ž . Ž . Ž .1 i iq1 2 i iq1 i

� 44.5 A « y prp EA « rEA « ª 0, D y ED rEA « ª 0� 4Ž . Ž . Ž . Ž . Ž . Ž .i i i i i i

Ž . Ž .with probability 1, where D s B « , « or B « , « .i 1 i iq1 2 i iq1
Ž . Ž .Recall the definitions of TT x, r, SS and TT x, r, SS , « given three para-

Ž .graphs above Theorem 2.1. Given t G b« , let UU « , t denote the union of all
Ž . Ž .those sets TT x, r, SS with b« F r - t, write VV « , t for the union of all those

Ž . Ž .sets TT x, r, SS , « with r ) t and let WW « , t be the union of all those sets
Ž . Ž . Ž .; Ž .TT x, r, SS j TT x, r, SS , « with r ) t. Put AA s UU « , ` lVV « , b« , where

Ž .the tilde denotes complementation. Note that A « equals the area of AA l RR.
Ž . 5 5 Ž .Therefore, EA « s q RR , where q s P O g WW and O denotes the origin0 0

in the plane. It may be proved that

5 5y1 3ya4.6 q ; RR C « f « ,Ž . Ž .0 0

� Ž .4 3ya Ž .whence it follows that E A « ; C « f « . Here C is as defined in0 0
Ž .Section 2. Therefore, 4.1 will follow if the « ’s are chosen such thati

4.7 « r« ª 1Ž . i iq1

Ž . Ž .as i ª `. Similarly it may be proved that 4.7 is sufficient for 4.4 . Result
Ž .4.5 will follow via the Borel]Cantelli lemma if we show that for all h ) 0,

`

< <P A « y prp EA « ) hEA «� 4Ž . Ž . Ž . Ž .Ý i i i
is1

`

< <q P D y ED ) hEA « - `.� 4Ž .Ý i i i
is1

4.8Ž .

Ž .We shall consider only the finiteness of the first series in 4.8 .
w j . w j .Let 0 - j - 1 be fixed, define the intervals II s « , ` and II s b« , «1 2

Ž . w Ž .xand for a general interval II let ZZ II respectively, ZZ II denote the union1 2
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Ž . w Ž .x Ž . Ž .of sets TT x, r, SS TT x, r, SS , « with r g II. Put XX s ZZ II and YY s ZZ II ,i 1 i i 2 i
Ž . 5 ; 5 Ž . 5 5 Ž . 5 5A « s RR l XX lYY , A « s RR l YY , A « s RR l XX l YY . Then1 1 2 2 1 3 2 2

< <A « y prp EA « y A « y prp EA «� 4Ž . Ž . Ž . Ž . Ž . Ž .1 1

3

F A « q EA « .Ž . Ž .� 4Ý j j
js2

4.9Ž .

Let C , C , . . . denote generic positive constants. It may be proved that1 2
� Ž .4 1qj Ž2ya. Ž j . � Ž .4 Ž3ya.Ž1qj .� Ž . Ž j .42E A « F C « f « and E A « F C « f « q f « .2 1 3 2

Ž . � Ž .4 � Ž .4From these results and 4.6 it follows that E A « rE A « ª 0 for j s 2j
Ž . Ž .and 3. Hence, in view of 4.9 , to show that the first series in 4.8 is finite

Ž .when D s A « it suffices to show that for all h ) 0 and j s 2 and 3,i i

`
3ya4.10 P A « ) h« f « - `,Ž . Ž . Ž .� 4Ý j i i i

is1
`

3ya< <4.11 P A « y prp EA « ) h« f « - `.Ž . Ž . Ž . Ž . Ž .� 4Ý 1 i 1 i i i
is1

Ž . Ž . Ž j .To derive 4.10 for j s 2, observe that A « F C « N « , where2 3
Ž . Ž . Ž .N r equals the number of points in PP r that are within ess sup R S q 1

� Ž . 3ya Ž j .4 � Ž j .of the boundary of RR. Therefore, P A « ) h« f « F P N « )2
y1 2ya Ž j .4 � Ž j .4 j Ž1ya. Ž j .C h« f « . Furthermore, E N « ) C « f « . Hence, if 0 - j -3 4

Ž . Ž .a y 2 r a y 1 , then large deviation theory for the Poisson distribution may
be used to prove that for all l ) 0 and j s 2,

4.12 P A « ) h« 3yaf « j F C l « l.Ž . Ž . Ž . Ž .� 4j 5

Ž .This proves 4.10 , provided that for some l ) 0,

`
l4.13 « - `.Ž . Ý i

is1

Ž . Ž . Ž .Similarly, 4.10 for j s 3 follows from 4.13 , after establishing 4.12 in
that case.

Ž .Next we derive 4.11 . Let FF denote the s-field defined by the process of
Ž . w j . Xsets TT x, r, SS with r g « , ` , and write E for expectation conditional on

Ž .FF. Assume, without loss of generality, that ess sup R S F 1. Divide RR into a
j Žlattice of squares of edge width 4« . Of course, toward the perimeter of RR

.the squares will be only partly within RR. We may distribute the squares
among four classes in such a manner that for the jth class, no two squares
are closer than 4« j at their nearest point and the total number of squares in

y2 j Ž .that class equals m ; C « as « ª 0. Write A « for the contribution toŽ j.j 6
Ž .A « from squares in the jth class and let A , 1 F k F m , be theŽ j, k .1 j

Ž .contribution to A « from the kth square in the jth class. Then for k / k ,Ž j. 1 2
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Ž . Ž .and conditional on FF, A « is independent of A « . Let t ) 0 and letŽ j, k . Ž j, k .1 2

n G 2 be an even integer. In view of the properties just noted,

4
yn< <a ' P A « y prp EA « ) 5t F t a q a ,� 4Ž . Ž . Ž . Ý1 1 1 j 2ž /js1

< X < na s E A « y E A « ,Ž . Ž .� 41 j Ž j. Ž j.

4.14Ž .

< X < na s E E A « y prp EA « .� 4Ž . Ž . Ž .2 1 1

To bound a , observe that by the conditional independence noted above,1 j

nr2m j
2X X< <a F C n E E A « y E A «Ž . Ž . Ž .½ 5Ý1 j 7 Ž j , k . Ž j , k .½ ž /ks1

m j
nX< <q E A « y E A « ,Ž . Ž .Ý Ž j , k . Ž j , k . 5

ks1

4.15Ž .

from which it may be proved that
4

n�1qŽ1r2.j Ž3ya.44.16 a F C n « .Ž . Ž .Ý 1 j 8
js1

To bound a , define p X to equal the proportion of RR covered by XX and put2 1

« j
« r r 2ya 3ya5 5u s 1 y exp y E S _ s r f r dr s O « f « ,� 4Ž . Ž .H½ 5

b«

Ž X. Y Ž . X� Ž .4 Ž . � Ž .4 Xv s E p and p s prp v. Then E A « y prp E A « s p u y1 1
Ž . Ž X Y .prp uv s p y p u and so

n n2 nX Y3ya 3ya l4.17 a F C n « f « E p y p F C n « f « « ,� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .2 9 10

Ž .where l s l n may be chosen arbitrarily large by taking n sufficiently large.
1 3ya Ž . Ž . Ž . Ž .Taking t s h« f « in 4.14 and noting 4.16 and 4.17 , we deduce5

that

< < 3yaP A « y EA « ) h« f «Ž . Ž . Ž .� 41 1

ny11y�1yŽ1r2.j 4Ž3ya. lF C n , h « f « q « ,Ž . Ž .� 411

Ž l.which, since 2 - a - 3, equals O « if n is sufficiently large. Therefore,
Ž . Ž .4.11 follows from 4.13 . It remains only to determine decreasing constants

Ž . Ž . yC« such that 4.7 and 4.13 hold. A suitable choice is « s i , for arbitraryi i
C ) 0.

OUTLINE PROOF OF THEOREM 2.1. Let l denote a cumulative intensity
Ž . Ž .function satisfying 2.4 and assume initially that l vanishes on 1, ` . Let CC

be a multitype Boolean model corresponding to this particular intensity
Ž Ž ..function. Define a s D q 1, let h g 0, min D y 1, 2 y D denote an arbi-

trarily small positive number and choose 0 - B - B - `, depending on h,1 2
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Ž . yDqh Ž . Ž . yDyhin such a way that l s ' B s F l s F l s ' B s for all s g1 1 2 2
Ž x Ž .0, 1 . Define l s s 0 if s ) 1, let CC denote a multitype Boolean model withj j
cumulative intensity l and let A be the corresponding version of thej j

Ž .random function A. We may write l in the form at 2.5 , with f identicallyj
Ž x Ž .constant on 0, 1 and vanishing on 1, ` , and a s D q 1 y h or D q 1 q h

according to whether j s 1 or 2. The process CC may be constructed by1
removing sets from CC, and CC may be constructed by adding sets of CC. If the2
CC ’s are derived in this way, then A F A F A . Applying Theorem 2.2 to thej 1 2

w x Ž .Boolean models CC we see that the lim inf respectively, lim sup of log A « rj
w x w xlog « is bounded below above by 2 y D y h 2 y D q h . Letting h ª 0 we

Ž .deduce that lim log A « rlog « exists and equals 2 y D, as claimed in Theo-
Ž .rem 2.1. The case where l does not vanish on 1, ` may be treated by

incorporating a simple subsidiary argument; large-radius sets have negligible
Ž .impact on the value of A « .

Acknowledgment. Helpful comments by a referee have led to this more
succinct version of the paper.
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