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LINEAR REGRESSION WITH DOUBLY CENSORED DATA

By CuN-Hul ZHANG! AND XIN LI

Rutgers University

Linear regression with doubly censored responses is considered. Buck-
ley—James—Ritov-type estimators are proposed. Semiparametric informa-
tion and projective scores are discussed. An expansion of the estimating
equations is obtained under fairly general assumptions. Sufficient condi-
tions are given for the asymptotic consistency and normality of the
estimators.

1. Introduction. Consider the problem of estimating the slope in the
simple linear model

(1.1) Y, =X, +¢, i=1,...,n,

where ¢; are independent identically distributed (iid) random variables with
an unknown common survival function S_, and X,..., X, are (random or
degenerate) design variables or covariates. When (Y;, X;) are completely
observable, the least squares method is commonly used to estimate the
unknown B. However, in biometry, engineering and other applications, the
responses Y; are often not completely observable due to censoring, truncation
or other forms of sampling bias. Among such linear regression problems, the
right-censoring case (with possible left truncation) appears to be the best
understood one, which has been investigated by Buckley and James (1979),
James and Smith (1984), Koul, Susarla and Van Ryzin (1981), Lai and Ying
(1991), Miller and Halpern (1982), Prentice (1978), Ritov (1990), Tsiatis
(1990) and Ying (1993) among others. In most other incomplete data models,
we no longer have explicit expressions for nonparametric maximum likeli-
hood estimates of S, or a natural martingale structure as in the right-censor-
ing case, and different methods have to be used to analyze estimates of 8 in
(1.1). Alternatively to (1.1), one may also consider the proportional hazards
model of Cox (1972), but similar difficulties also arise when right censorship
does not describe the observation scheme.

In this paper we consider linear regression when the response variables Y
are subject to double censoring. Suppose vectors (Z,, §;, X;) are observed
instead of (Y;, X,) in (1.1), where, for some (possibly degenerate) censoring
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variables —» <V, < U, < =,
Zi = max(min(Yi’ Uz)’Vz)’

(1.2) 1, ?fVi<Zi=Yi$Ui,
8 =1{2, ifZ,=U<Y,

3, ifZ,=V,>Y,

such that e, is independent of (X, U,, V,). This is called double censoring, as
Y; is censored from the right- and left-hand sides when §, = 2 and §;, = 3,
respectively. The usual right-censoring model is a special case of (1.2) with
V.= —x for all i. Gehan (1965), Peto (1973) and Turnbull (1974) gave
examples in which double censoring might arise in medical and other applica-
tions. A real doubly censored data set was considered in Leiderman, Babu,
Kagia, Kraemer and Leiderman (1973). For the case of known B8 = 0, asymp-
totic properties of nonparametric likelihood estimators of S, were considered
in Tsai and Crowley (1985), Chang and Yang (1987), Chang (1990), Gu and
Zhang (1993) and van der Laan (1993). We shall derive estimating equations
which extend those of the Buckley—-James type in Ritov (1990) from the
right-censoring case to the double-censoring case in Section 2. In Section 3 we
discuss the semiparametric information for the estimation of B, projective
score functions and related operators. Under the compactness condition on
the support of a score function, an expansion of our estimating equations is
given in Section 4, which is analogous to the results of Ritov (1990) and Lai
and Ying (1991). Asymptotic consistency and normality of the estimators are
obtained in Section 5. Section 6 contains some discussion, including an
alternative smoothing method of estimating B, the choice and estimation of
nearly efficient score functions and the estimation of the error distribution.
The basic results in this paper can be easily extended to the case of multidi-
mensional B as in the right-censoring case.
We shall consider stochastic processes in the Banach spaces

D= {h(t): Slilg h(s) =h(t),t> —o», Slirg h(s) exists, t < OC},

D, = {heD: lim h(t) =0},

t— +x

3
D3 = {h(t,j): h(-,j)eD,j=1,2,3, Z h(t,j) € Do},
j=1
all equipped with the supreme norm ||&|l = sup,|A(x)| for functions of any
vector x [e.g., x = ¢, x = (¢, j)]. Convergence in distribution (weak conver-

gence) here is always defined in the sense of Hoffmann-Jorgensen (1984) as
described in Dudley (1985).

2. Estimating equations for 3. In this section we provide estimating
equations for 8 under (1.1) and (1.2). Our derivation is analogous to that of
Ritov (1990), who considered the right-censoring case, but the estimating
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equations here are given in the form of linear operators acting on stochastic
processes, which facilitates our calculations and greatly shortens the expres-
sions.

To motivate our estimators, let us assume the existence of the error
density f. = —S.. The log-likelihood function for the data (Z;, §;, X,) is

i’ Yo

E [31',110:‘3 fe(Zb,i) + 5i,210g Se(Zb,i) + Si,Slog{l - Ss(Zb,i)}]’

where §; ; = I{§, = j} and Z, ; = Z; — bX;. As in Ritov (1990), a score function
is obtalned 1 by dlfferentlatlng the log hkehhood with respect to b, centering
the X, at X, and then dividing each term by the sample size 7, Wthh can be
written by calculus and algebra as

1 = fz>Z (f)E(Z)SE(dZ)
— X, - X )|o Z, .) — 6, -~
n ig:l( i n) z,1¢s( b,l) 1,2 SE(ZIJ i)
(2.1)
-5 fngb’Ld)e(Z)Se(dZ)
" S(Zy,;) ’
where ¢, = —f!/f.. Since ¢. and S, are unknown, we cannot estimate 8 by

directly setting (2.1) to 0. In the right-censoring case, Buckley and James
(1979) proposed replacing ¢, by ¢y 1(2) =t and S, by its product-limit
estimator, while Ritov (1990) considered a predetermined ¢(-) satisfying
some general conditions. We shall extend their estimating equations to the
double-censoring case.
For £ =0,1,2, j = 1,2,3 and real numbers ¢, define

n
(2.2) QA%k)n = Qik)n(t’J) =n"! Z (Xi _Xn)kI{Zi -bX; >, =j}-

i=1
Here, Q(kll are considered to be functions as well as signed measures which
put mass — (X, — X,)*/n at (Z, — bX,, 8,), 1 <i < n. For survival functions

i’ l

S, define linear operators Bg acting on bounded Borel functions & = A(z, j)
by

3
(Bsh)(t) = L h(t,)) - [ S( )h(db ,2)
(2.3) =1 =

1-8(t)
+LMTT§77Mdz$

where [, _{S(#)/S(z)}h(dz,2) = 0 when S() =0, [,.A (1 - S&)/A —
S(z)h(dz,3) = 0 when S(¢) =1 and integration by parts is used when
h(z, j) are not of bounded variation in z. Set

S(t) 1-S(¢)

B(tle,j) =He >t} +1{j =2,z <t} g —1j=3, 2>} 75~
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which is the conditional survival function P{e; > t|Z,; =z, §; =j} when
S =8,. By (2.3), (Bgh)t) = — [Bg(¢|-) dh when L3_ h(OO,]) = 0, so that

(2.4) E[ -1 ZI{E > t)

i=1

data} = — [Bs(tl") dQg’, = (Bs. Q9. )(1)

and Bg can be viewed as a score operator for the estimation of S,. Further-
more, (2.1) can be written as

__1 i (X, - Xn)f¢e(t)BSE(dt|Zb,i7 §;) = ff‘ﬁe(t)Bsé(dﬂ ) dQ(bl,)n‘

Since Bg(*-) =0 and —/Bg(—o )dQ(l) =YX(X,-X)/n=0, we find
through 1ntegrat1ng by parts that (2.1) can be further written as

— [ [Bs(tl) dQS, ¢.(dt) = [(Bs @5, )(¢) b.(dt)

subject to regularity conditions. Substituting ¢. by a fixed score function ¢,
we may estimate 8 by

£(B,) =o(n™17?),
£.(b) = £,(b; ) = [(Bg, Q") (2) do(2),

where Sb satisfies the self-consistency equation Sb . = Bg Q(O) in
(2.6) below [cf, e.g., Tsai and Crowley (1985) and Gu and Zhang (1993)].
This is called a Buckley—James—Ritov-type estimating equation, since it
becomes that of Ritov (1990) when P{V, = —«} = 1 and that of Buckley and
James (1979) when, in addition, ¢(¢) = ¢. The B in (2.5) is also called an
M-estimator.

In general, the random function ¢,() is neither monotone nor continuous,
and, for a given measure Q® of the same form as Q(O) or its exception, the
self-consistency equation

S(1) = BsQO(¢)
3
= Z Q(O)(t’j) _f
Jj=1 z=

(2.5)

26) Q<°>(dz 2)

1-S(¢t) ©
+/2>t1 52 (dz,3)
may not have a unique solution [cf., e.g., Gu and Zhang (1993), page 612]. The
nonuniqueness of (2.6) can always be handled by choosing the NPMLE with
the same support as £3_;Q(dz, /). It will be shown in Section 4 that, under
certain regularity cond1t10ns all consistent solutions of (2.5) are asymptoti-
cally equivalent up to o(n "1/ 2) In practice, the estimator ,8 in (2.5) could be
the location of the infimum of |£,(b)| or a zero-crossing of the process &,(-) [cf.
(5.3) in Section 5], and the nonuniqueness of 8, does not seem to be a serious
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problem. The solutions of (2.6) can be computed by the EM algorithm, so that
the evaluation of £,(b) is relatively easy at each point 4. The uniqueness of
the NPMLE under double censoring was discussed by Zhan and Wellner
(1995).

3. Information and projective scores. A general asymptotic theory of
semiparametric estimation was considered by Bickel, Klaassen, Ritov and
Wellner (1993), with a detailed discussion of the right-censoring case. See
also Stein (1956), Bickel (1982), Begun, Hall, Huang and Wellner (1983),
Ritov and Wellner (1988), and Ritov (1990) among others. In this section we
study the minimum Fisher information, score functions and related linear
operators, for the estimation of 8 with unknown error distribution. We shall
consider throughout the section a single random vector (Z, §, X), related to
another vector (e, X,U,V) in the same manner as in (1.1) and (1.2). The
results here certainly apply when a sample from (Z, 8, X) is observed.

Let P be a fixed probability measure under which B is the true regression
coefficient in (1.1) and f. the true error density. Suppose E|X| < «. Consider
a subparametric family of our model such that

(d/dt)PAY — 60X < ¢t|X,U,V} =f,(¢t)
= (f{1 - (0= B)$})(t — (0 — B)EX),

where P = P, [ f.(¢)dt = 0 and [|¢’]l + l|$ll < . The log-likelihood func-
tion for the parameter 6 based on (Z, §, X) is

I(0) =IL;_ylog fo(Z — 60X) + I ;_5log S,(Z — 6X)
+ I5_s)log Fy(Z — 0X),

where F, and S, are the distribution and survival functions of f,. As in (2.1)
and (2.4), the score function for this parametric family at 6§ = 8 is

y, = 210 E*[(X - EX

b= |, B LX - ED) 0 (e) — a(e)].

where ¢, is as in (2.1) and E*[-] = E[:|Z, 8, X] is the conditional expectation
given the observable variables. Suppose E(l,)?* = E(X — EX)E*¢_(€))? < .
Let

7, = {¢: E[(X— EX)"¢(e)] = 0, B[(X - EX)'E*¢(e)] < oc}.
The minimum Fisher information for the estimation of 6 at 6 = 8 is
(3.1) I, =1,(8,8.) = inf{E(l)": ¢ € 5, }.
Define S = {S_, S{», S{), k = 0,1, 2} by
S(t) = E(X — EX)"I{U — BX > t},

(3.2)
S (t) = E(X — EX)"I{V — BX > ¢}.
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For ¢ € &,, define the projective scores

p(Z,j, x?d’) = P(Z,ja xyd),s(x))
(3.3) — (x — EX)E[d(€)Z — BX = 2, 6 = j]
- lp(Z,J, ¢, S(*))’
where ¢(Z — BX, 8;¢) = ¢(Z — BX, 8; $,S*)) is the projection of (X —
EX)E*¢(e) to #* = {E*¢(€): ¢ € Z,}. Here, the closure and projection are
both in the sense of L,(P). Note that ¥(z, j;¢) = 0 for all constants c. By
(2.4), E*¢ is a function of (Z — BX, 8). It will be shown in Theorem 3.1 that

the projection ¢(-; ¢) depends on P only through S‘*). The minimum in (3.1)
is achieved at the efficient score

l/* = p(Z - BXy 8>X; d)e)
= (X -EX)E*¢.(€) — ¢ (Z — BX,5;¢.).

(3.4)

In Sections 4 and 5 we provide sufficient conditions under which the asymp-
totic distribution of the B, in (2.5) is expressed in terms of the covariance

Ay, ) =A(¢1> (bz;S(*))
=E{p(Z - BX,5,X;¢1)p(Z — BX,5,X;d,)}.

In the rest of this section, we consider certain families of linear operators
closely related to the projective scores in (3.3). For any functions u and v of
bounded variation on the real line and survival function S, define linear
operators K, , by

(36) (K., h)(t) =K, ,()h(2), K, ,(t)=p(t) = v(¢)

for all Borel functions %, and define Rg , , by

(3.5)

S(¢)
(R, h)(t) = (K, ,h)(t) = [ S(z) M)
(3.7) ==
1-8(¢)
) .18 _S(z)h(z)v(dz)

in the sense of Lebesgue—Stieltjes integration. Suppose E|X|* < «. Set
K® = ng“,svﬂa K= K(O),

(3.8) R =Ry g . R=RO.

For h € D,, define functionals

Au(d) =A,(¢;8)

(3.9) _ —fqb(t)[{R(Q) — ROR'RW} ] (dt).
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Let b, ;(¢) be the centered Bg(¢|-) in (2.4), given by
b, (t)=Ple>tlZ-BX=2,56=j} —S.(1)
— By (tlz2,j) - S.(t).

The following theorem describes the connection of the operators R’ to the
projection (z, j; ) and therefore to the projective scores in (3.3) and their
covariance (3.5).

(3.10)

THEOREM 3.1. Suppose E|X|* < w. Let ¢(z, j; ¢) be the projection in (3.3),
R and R™ be given by (3.8), b, ; by (3.10), h(t) = [,. ,$,(2)F.(dz) for some
¢, €%, and A(-,-) and A,(-) be given by (3.5) and (3.9), respectively.

() If E(X — EX)*E*$(e)}® < o, then

(811)  — [&()(RPRh)(dt) = E{(X — EX)"E*¢,(€) E*d(e)}.

In particular, (R®h)¢t) = E(X — EX)*E*¢,(e)E*I{e > t}. Consequently, the
projection (-; ¢) and the projective score p(-; ¢) in (3.3) depend on P only
through S*).

(i) Suppose K(t — ) > 0 for all real t. Then the operator R is invertible,
and, for ¢ € &,

(3.12) W(2,J; 6, 8°) = = [$(){RVR b, }(dt),

— [¢(t){RVR'RVR)(dt)

Consequently, A,(¢) = A(p, ¢,) if d €%, and E(X — EX)?|E*$p(e)E*¢p,(€)|
< oo,

(3.13)

REMARK 3.1. The operator R is crucial in the analysis of nonparametric
estimation of S_ with known 6 =8 in Gu and Zhang (1993) and is the
D, — D, version of the information operator for that problem. The right-hand
side of (3.11) with & = 0 can be written as {I¢,, ¢, where I is the Ly(P) —
L,(P) version of R. It seems that the D, — D, version of R is convenient to
use here in view of our results in Section 4, where additional discussion about
R™ can be found.

REMARK 3.2. In the right-censoring case K*) = S{®),
(RMh)(t) h(t)
S.(¢) Sc(t)’

so that we have explicit formulas for R™!, ¢(:;¢), p(; ), A,(¢) and
A(¢;, dy). When there is no censoring A(¢;, ¢p,) = Var(X)Cov(p,(€), ¢py(e)).

K®(¢t —)d
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REMARK 3.3. Integrating by parts can be applied in (3.11)-(3.13) when ¢
is of bounded variation. In particular, for the b, ; in (3.10) and ¢,(¢) = e >
t} — S.(b),

(8.14) p(z,j,x;4,,8) = (x — EX)b, ;(¢) — (RPR™'b, ;)(t),
(3.15) Ay(¢) = Ay(bi;8) = (RPh)(t) — (RPRTIRDR)(¢),
and, for E¢(e) = 0,
p(z,J,x;¢) = fp(z,j,x;cbt)d)(dt),
(3.16)
An(@) = [Au(¢)d(dL).

Proor. (i) Let E} ['1=E[-|Z-BX =2, 6=j], F=F, and S =S,. By
definition, E7,¢,(e) = h(2)/S(2) and E7 ;¢,(e) = —h(z2)/F(z). By (3.7),
(R®n)(dt) equals

K(t —)h(dt) = [ S(dt)(E%,d,)S(dz)

+ [ F(dt)(E:3,)84(dz).

t<z
Let Q")X(z,j) = E(X — EX)*KZ — BX > z, 8 =j}. Since S(2)S{F(dz) =
Q"(dz,2) and F(2)S{¥(dz) = @*)(dz,3) by (1.2),

= [e()(B®R)(dt) = [o(£)KM(& =) dy(£)F(dt)
+fft> ¢(t)S(dt)(E:,2¢h)S§]k)(dz)

_fftszcﬁ(t)F(dt)(Ej’3¢h)S§/k)(dz)

= E{(X — EX)"E*¢(€)E*¢;(e€)}.

The projection depends only on S**) since the norm {E|E*(X¢, + ¢,)|*}/?
does by (3.11).

(i) The invertibility of R is given in Gu and Zhang (1993). Let (z, j)
be the right-hand side of (3.12). Since E[S(#)¢,(e)] = 0, (Rh)X?) =
E{b,_px s()E*$,(€)} by (i), so that

E{RYR™'b, sx ;E*¢,(e)} = RVUR™'Rh = RWh.
Integrating with ¢(¢), we find
Ey(Z - BX,8)E*¢, = Ey(Z — BX, 8; ¢, 8'V)E*¢,

for all ¢, € €, by (i). In particular, for the ¢, in (3.14) and (3.15), E*¢$, =
by_px, 5(t) and

RVDR'Eb, ,x ;¥(Z - BX, )
= RYR'Eb,_gx ;4(Z — BX,8;,587)),
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which implies
Ey*(Z - BX,08) =E¢(Z - BX,56;¢,S)¢(Z - BX, 9).

Therefore, (3.12) holds as ¢(-; ¢, S*)) is the projection to .#*. For (3.13), we
simply apply R"VR ™" to both sides of RMh = Eb, 4y s4(Z — BX, 8; ¢, S ™).
The final assertion follows from (3.3), (3.11) with £ = 2 and (3.13). O

4. Asymptotic linearity of £,(b). The main result of this section is
Theorem 4.2, which asserts that, under certain regularity conditions, the
process Bg, Q(l) in (2.5) is asymptotically linear in & on compact intervals
as random elements in D,. When (Z, X,) are iid random vectors, it implies

i’ l’

£(b5¢) = — (b= B)A(d)
o ZP(Z BX;, 8, X;3 0 — E¢(€)) + -

as (b,n) = (B,=),

where A,(¢) is given by (3.9) and p(:; ¢) is the projective score in (3.3).
Unless otherwise stated our results cover the “double array” case where the
observations (ZL n> 0 n» X; ) depend on both i and n, as we are interested in
convergence in probabﬂlty and in distribution. In the sequel we shall always
assume that ¢; , is independent of (X; ,,U; ,,V; ) for each 1 <i <n, and

that € ,,..., fn,n are identically distributed Wlth a common survival func—
tion Which may depend on n. The independence among the vectors
(Z; ,,8; ,,X; ,) is not explicitly assumed so that our methods may still be
useful in sequential designs.

Define S§7) = {S; ., St,, SV, k = 0,1,2} by S, () = Ple; , > 1},

(41) S%fk:)n = S[(J]i)n(t) = E|:n’_1 Z (Xi,n - EXn)kI{(]L,n - BXi,n > t} ’

15

(Xi,n - E)_(n)kl{‘/t,n - BXi,n > t} ’

(o

1

(42) S =8P (¢) = E[nl

with X’n =X/ ,X, ,/n,and, for k =0,1,2, j = 1,2,3 and real ¢, define
k k
bon = @y (2,
4.3 _
(4.3) = E[n‘l Y (X, - EX,)' Iz, ,-bX, ,>t5,, =j}}.
i=1

Suppose there exists a random vector (Z, §, X), related to (e, X, U, V) via
(1.1) and (1.2) as in Section 3, such that, for some ¢, > 0,

(4.4) lim Q) — @ll=0, k=0,1,2,16 - Bl < &,
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where Q{*)(t, j) = E(X — EX)*I{Z — bX > ¢, 6 = j}. Let 8 = {S,, S{”, S},
k =0,1,2} be given by (3.2) with S; = S_. Suppose further that
(45) SP.(t—)>8SY.(t—) and SP(t—-)>SY(t-) V¢

PROPOSITION 4.1. Let Bg be given by (2.3). Then
1w 5\
(46) (Bs, Q%))(1) =SB’n(t)E[n 'Y (X, - EX,) } ¢
i=1

In particular, for k = 1, Bg @4, = 0. Furthermore, if (4.5) holds, then S
and S, are, respectwely, the unique solutions of (2. 6) with @ = QY, and
Q(O) = Q(O)

Proor. Set q; , =q, (t,)) =KZ, , — BX; ,>t, § ,=j}. By (4.3), (2.3)
and (2.4),

B Q(k) = I: ! i (Xi,n _EX")kBSB,nqi’n}

i=1
= E|:n_1 Z (Xi,n - EXn)kP{ > t|Zz ns l n’Xi,n}}'
i=1

This implies (4.6) due to the independence of ¢, , and X; ,. For £ =1, we
obtain B QP =0,as EX}_ (X, - EX) =0. The umqueness of (2. 6) fol-

lows from Gu and Zhang (1993), proof of Theorem 1, or Lemma 4.6 below. O

Let K, ,, Rg , ,, K, K®, R and R® be the linear operators in (3.6) and
(3.8). Set

(47) KPP =Kg s, RS), = =Rg s s R, = R(k)

. (0 © 5(0) )(1
with K, = K., Rg , = RS, and R, , = R}”,. For the expansion of Bg, Q%)
we assume

Sy’ (2) dsy'(2)
[ L
:<t K (Z) z<t K(Z)
(48) (0) (0)
dSy ,(z) dsy z)

Lxe L xwke

as n — o, with the limits being finite for all ¢, and there exist functions
h® = B*)(¢, j) € D3, k = 0,1, such that, as (b, n) - (B8,%),

(49) 195", — @4, — (b = BYR®I = o(lb — Bl + n"1/2),

Define W) = W, (b, ¢, J,k) by Wik =V (@), — Q)), k =0,1. We shall
further assume

(4.10) Wiki(t,J) = Wu(b,t,j, k) =5 W(b,¢,j,k)
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in the supreme norm, as processes of (b,¢, j, k) € (B — &,, B+ &5) X (—, )
x {1,2,3} x {0, 1} for some &, > 0 such that

lim  lim P{ sup sup [W(b,t,j, k) — W(B,t,j, k)| > e"}
(411) g" >0+ &' >0+ ‘b-ﬁlSé"hj,k ( ) ( )
=0.
With the p(-;-,-) given by (3.3) and S§) by (4.1) and (4.2), define

n,(b) = n,( b5 S57))
= ﬁizzlp(zi,n - BXL',n’ 5i,n’Xi,n; d)’S[g,,kI;)’

and, for the processes W*)(¢, j) = W(B, t, j, k) in (4.10), define

(4.12)

(413) () = [n(2)$(dz), n=Bsg W~ ROVR By W®.

We shall consider expansions of stochastic processes such that the remainder
is dominated by |&,(b)I(|16 — B| + n~1/?) satisfying

(4.14) lim lim 1imsupP{ sup le,(b)> a”} = 0.

e" >0+ &' >0+ n—ow |b—8|58'

THEOREM 4.2. Let S§") be given by (3.2), A,(-) = A,(-;S)) by (3.9), n,(-)
by (4.12) and n(-) by (4 13). Suppose P{sup,_,;_,|X; ,|> M} =0 for all n
and some M, <=, 0 < Sy(¢) <1 for all t, X, — EX, = 0p(1) and the func-

tions f = —S’ and Q(O)( 7)), j=1,2,8, are ‘all continuous. Suppose (4.4),
(4.5) and 4. 8) (4.11) hold

() Let BSAMQ(I) be as in (2.5). Then
Bg, Q.(8) =n" V() — (b= B)As(,)

(4.15)
+2,(b,t)(1b = Bl +n"1/?)

such that
M,( d’t,n)I(—Ml* <t<Mj) "9 n( qbt)I{—M{" <t< Mj}

as processes in D, and (4.14) holds for &,(b) = supy, . y18,(b, )| for every
M} < =, where ¢, () = K->t} — Sz (t) and ¢,(-) = [-> t} — S,(2).

(ii) Let A(-,-) = A(-,-;8™)) be gwen by (3.5) and ¢ and ¢; be functions
of bounded variation. Then Af(q'>) Af((f) E¢(e)) = A(q’) o) if ¢ =
—f3/fs € Ly(fp), and n(¢) are normal *variables with En(¢) =0 and
COV(”?(dh) ”](d’z)) = A(d, — Edy(€), by — Edy(€)) if (ZL,n’ i,ns Xion ) 1l<is<

n, are independent vectors.

REMARK 4.1. Suppose the observations are iid vectors from (Z, §, X) of
Section 3 such that (e, X) are independent of each other and of (U, V). It will
be shown in the proof of Theorem 5.2 that conditions (4.9)-(4.11) hold when
X, U and V all have uniformly continuous marginal densities.
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REMARK 4.2. Clearly, by (4.12) and (3.16), n,(¢ + [P dS; ,) =
(e, )(di) and Ay (¢ — Ed(e)) = [A.($)¢(di). By (4.13), ”fl(d)) =
fn(¢t)¢(dt)

A real number b = b, is a zero-crossing of a function A(d) if
lim inf{A(b):16 — byl < A} <0
A—0+
and
lim sup{h(d):|b — byl < A} > 0.
A—-0+

COROLLARY 4.3. Suppose the conditions of Theorem 4.2(i) hold and ¢, =
—f3/fs € Ly(fp). Let £,(b; ¢) be given by (2.5) for some ¢ with [|$(dt)l < =
and ¢(dt) = 0 outside a compact interval. Then

£(b;d) =n""’n(¢p—E,b) — (b—B)A(, b.)
+ £,(b)(1b — Bl + n"1/2)

such that n,(¢ — E,$) =4 n(¢) and &,(b) satisfies (4.14), where E,$ =
—[¢dS; . F urthermore, if A(¢, ) # 0, then there exist B and events (),
with P{Q } — 1 such that B is a zero-crossing of &,(b; ¢) with ¢, (,Bn, ¢b) =

o(n~2) on Q,, and Vn (B, — B) =5 1(d)/Ald, ). In addition, if B, is a
sequence of zero-crossings of &, (b; @) converging in probability to B, then

Vn (B, — B,) = 0 in probability.

(4.16)

REMARK 4.3. If ¢ is close to ¢, in Ly(f3), then A(¢, ¢.) > 0 by (3.5). For
technical reasons, our conditions on ¢ may exclude the efficient scores ¢, for
some densities [e.g., ¢ () =t for € ~ N(u, o?)], but they allow a choice of ¢
close to ¢,. See Remarks 5.1 and 5.3 and Section 6 for further discussion. In
particular, Theorem 6.1 allows the use of an estimated ¢.

REMARK 4.4. In the right-censoring case, Ritov (1990) obtained the expan-
sion (4.16) for b — B = O(n"1/?), Lai and Ying (1991) covered the neighbor-
hoods b — 8= 0(n"*) with some A >0 for ¢(t) =¢, while Ying (1993)
established an expansion over b — 8 = o(1) in the sense of (4.14) for rank-
based estimating functions.

The proof of Theorem 4.2 is based on strong continuity and invertibility of
the information operators and the following identity.

PROPOSITION 4.4. Let S; and S, be survival functions and q = q(t, j) be
such that the functions u(t) = —[,. {S(2)} " 1q(dz,2) and v(t) = —/,. {1 —
S,(2)} 'q(dz, 3) are both of bounded variation. Then

(Bsz - le)q - :U“(_oc)(sz - Sl) = _RSZ,/.L,V(SZ - Sl)
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REMARK 4.5. For ¢ = Q" and S, =S,, Proposition 4.4 describes the
relationship between the information operators and the expectation of score
differences. For £ = 0 and S, = S, this identity is (2.11) of Gu and Zhang
(1993). See also (2.5) of Vardi and Zhang (1992) and (21) of Tsai and Zhang
(1995) for analogous key identities in some other models with incomplete
data. van der Laan (1993) considered a similar identity for linear parameters
in general convex models.

Throughout the sequel we shall denote by M any finite positive constant,
by &,(b) any processes of b satisfying (4.14), by &,(b, x) any processes of
(b, x) satisfying sup,le,(b, x)| = £,(b), where the second variable x can be
any vector [e.g., €,(b, t, j) for x = (¢, j) and ¢,(d, ¢, j, k) for x = (¢, j, k)]. The
definitions of M, £,(b) and ¢,(b, - ) may change from one place to another. We
need three lemmas to describe properties of the score and information
operators.

LEMMA 4.5 (Uniqueness and continuity of the self-consistency equation).
Suppose the second part of (4.5) holds. Then the equation S = BgQ® in (2.6)
has a unique solution S =8, for Q® = QY and the solution of (2.6) is
continuous at Q;so) in the sense that IS — S4ll = 0 as QW — Qf;O)H - 0.

LEMMA 4.6 [Properties of the score operators Bg in (2.3)]. Suppose the
second part of (4.5) holds, ||IS, — SBII =0(1) and 0 < S <1 for all t. Let
h, =h(t,j) € D® and h = hit, j) € D>

@) IBgll < 5 for all survival functions S.

Gi) If A, — hll = o(1), then ||Bg h, — Bg hll = o(1).

LEMMA 4.7 [Properties of the information operators R(Sk,)n in (4.7)]. Sup-
pose the conditions of Theorem 4.2 hold. Let K, and K be given by (4.7) and
(3.8), respectively, and let h, = h,(¢t) and h = h(¢) be members of D,. Suppose
I, — hll = o(1) and IS, — S,ll = o(1).

(i) The operator Rg ,, is invertible for all survival functions S.
(ii) The operator KR! is bounded from D, to D, and

lim |K,R5" ,h, — KR 'All = 0.

n—ow

(iii) Let M > 0. The operator I,_y » \RVR™" is bounded from D, to D, and
Hm Ty (RS ,Rs',h, — ROR™ A}l = 0.

Lemma 4.5 follows from the proof of Theorem 1 in Gu and Zhang (1993).
The proof of Proposition 4.4 is essentially algebra and is omitted. Lemma 4.6
is step 3 of the proof of Theorem 2 in Gu and Zhang (1993), Section 4. Lemma
4.7 is proved in the Appendix. Notice that conditions (4.9)—-(4.11) are actually
not needed for Lemma 4.7.
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PrOOF OF THEOREM 4.2. By (4.1) and (4.2), S{f),(—) =1 — k for k = 0, 1,
so that, by (4.7) and Proposition 4.4 with ¢ = Q{),, u = S{), and v = S{}),,
(Bs,, —Bs, )@Y, = —R(S,,, = Ss.) + (1 = k)(S,,, = Ss.)-

By Proposition 4.1, B Q). = 0. It follows that
Bs,, Qb n = Bsb (Q(l) - Q(Bl,)n) - é(bl,)n(gb,n - SB,n)'

Similarly by the self-consistency (2.6) of SA,”L and S; ,, we obtain

(4.17) Ry (Sh., — S5..) = Bs, (@2, - QP,)-
Since R ».n i invertible by Lemma 4.7(),
Bs, Q1. = B, (Q, - @) ~ B[R, L] Bs, (@1, - Q).

Since @), — QY), = n 'PWH) + Q) — QF),, we have
(4.18) Bg, @, = —(b—B)A, , +n' %, ,,
where Ab,n = Ab,n(t) and 7, , = 7, ,(¢) are given by
~(b = B)A, = Bs, (Q, - Q) — B[R, ] Bg, (@1 - @),
= B, Wil — B[Ry ] By, W,

Letting n — o« first in (4.9), we find Q" — QY — (b — BIALM|| = o(|b —
B by (4.4), so that by direct computation
(4.19) Bg, ") = (9/b) Bs, @4l

' = —R{Vfy - EXRE)f,,

as the exchange between J/db and the integrations of BSBQ(k) in (2.3) is
allowed by the continuity assumption. This and (3.15) imply

B, h® — RVR™'Bg h® = —{R@f, - RVR'RVf, }

(4.20)
= —Ap(¢)-
Define #, = Bs, W;%) - Rg}; R5! .Bs, W and W) = Wih(z, j) by
Wi (e, ) =n""/? Z( . — EX,)

X[I{Zi,n_BXi,n>t7 6L',n =]} (0) (t .])]
By (4.12), (2.3), (2.4) and (3.14),
(421) nn( d’t,n) = BSBEHWB(,lt)z - Rg;yn,nRE;n,nBSﬁanB(f)r)L'
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By (2.2), W) — W) = (EX, - X)W,°) — Vn Q%",, so that, by (4.6) with
k = 1, Lemma 4.6(i), (4.10) and the condition X, — EX, = 0p(1),

1m.(¢r,) = Tll = I EX,, — X,,) Bs,Ws%, — Vn B, Q)
(4.22) < 5|EX, — X, | IW %l
— 0,(1)IEX, - X,| = 0,(1).
It follows from (4.10), (4.13) and the continuous mapping theorem that
I sz a0z Bs,Wilh = ROR B Wi} =5 I ary sy

in D,, as Bg and I_y; y;RWR™'Bg are both bounded linear operators
from D?® — D, by Lemmas 4.6(i) and 4.7(iii). This and (4.18), (4.22) and (4.20)
imply that the expansion (4.15) is a consequence of

(4.23) L mg gy Ts,n = I[—Mf,Mf){BSﬁWB(,lr)l - R(l)R_lBSﬁWB(,Or)L} +&,(b,1),
(4.24) I e eyt = Loaar (B, Wi — RVR™'Bg WO} + &,(b, ¢),
(4.25)  —I_ait iy Ay, = sy aap{ Bs, Y = ROR™1Bg O} + 5,(b, 1),

We shall only prove (4.23), as the proofs of (4.24) and (4.25) are similar and
simpler in view of the definition of 7, in the previous paragraph and (4.9).
By (4.10) and (4.11), Wkt j) — WB(,kn)(t,j) = £,(b, t, j). This and (4.4) and
(4.9) imply @Y, — QY = £,(b,t, ), so that S, , — S; = £,(b,¢) by Lemma
4.5. These and Lemmas 4.6(ii) and 4.7(iii) with 2, = ¢, and 2 = 0 imply

(426) I[—Mf‘,Mf)'?]b,n = [—Mf‘,Mf‘){BS?b’nWB(,lr)z _‘é(bl,)nél:,lnBSAbanB(?r)z> + gn(ba t)
Since Wi*) -, W(B,t,j, k) and P(W*) € D’} = 1, for a given &> 0, there
exist a compact set C, in D? and &, — 0 + such that P{W{") & C,(&))} < &
for £ =0,1, where C.(s,) = U, ccfh €D? ||h —h'l <¢). By Lemmas
4.6(ii) and 4.7(iii) and the fact that S, , — Sy = &,(b,t), we have

sup
h,h'eC, ()

= ¢&,(b).

This and (4.26) imply (4.23) on N}_{W*) € C,(&,)} and therefore on the
entire probability space as P{(W,") & C,(&)} < & for arbitrarily small & > 0.

The formula Afﬁ(d>) = A(¢, ¢,) is in Theorem 3.1(i1). Suppose
(Z; ,, 8, ., X; ,) are independent vectors and ¢ is of bounded variation. Since
[-d¢ is a continuous functional on D,, n,(¢ — E,¢) =4 n(d) by (3.16),
(4.12) and (4.13). By (4.12), n,(¢ — E,$)/ Vn is an average of uniformly
bounded independent random variables, so that n(¢) is normal and
Var(n,(¢ — E,¢)) — Var(n($)). By (2.4) and (3.10), EXi}?ani,n_BXi,mﬁi,n(t) =
Cov(XF  IHe. = > t}) = 0, which implies by (3.14) that Ep(Z, , —

i,n’ i,n

BX; n» 8 > Xi 3¢ — E,¢,85") = 0,1 <i <n.Hence, by (4.12), (3.5) and the

‘I[—Mf‘,Ml*){(BSﬁ,,n - Bsﬁ)h/ - (égl,)nél;,lnBSAb,n - R(l)R_lBSﬁ)h}H



CENSORED REGRESSION 2735

continuity of the operators,
12 _
Var(nn(d) - End’)) = ; Z Ep2( - IBXL n’ l n’Xi,n; d) - End)’S/gTrz)
i=1

=A(é¢—E, ¢, 6 - E,$;5("))
—A(¢—E¢, b — Ed; 8).

The covariance of n(¢) is determined by the variance as n(¢) is linear in ¢.
O

5. Consistency and asymptotic normality. In this section we con-
sider asymptotic properties of estimators of g in (1.1) under double cen-
sorship (1.2). Sufficient conditions for asymptotic consistency are given in
Theorem 5.1. Corollary 4.3 is used to obtain the asymptotic normality of
B, in Theorem 5.2 when (Z; X, ), 1 <i <n, are independent ran-
dom vectors.

Let @), and Q" be as in (4.3) and (4.4), and let S, be a solution of the
self-consistency equation (2.6) with @ = Q. Suppose
(5.1)  sup Q%) — QPl=o0p(1), k=0,1,V —0<b, <b, <o,

bi<b<b,

lﬂ’ ln’

and

Q(O)(dz 3) Q(O)(dz 2)
2 ) =
(52) K,(t-)= f 18,2 fzz S C0 Vb

Condition (5.2) implies the uniqueness of S, and is a consequence of
QY(dz,1) > 0, as Q(dz,1) = K,(z — )S,(dz). Let 3, be some preliminary
(and possibly asymptotically inconsistent) estimates of 8 such that B - B=
O,(1). For example, ,8 could be the naive least squares estimator based on
those (Z; ,, X; ,) with §; , = 1, or the one given by (6.1) below. With the ¢,(b)

ln’

in (2.5), deﬁne

(53) B, €C(&). |B, - Bl=min{lb - B,: b € C(&,))},
where C(%) is the (always closed) set of zero-crossings of A (cf. Corollary 4.3).

THEOREM 5.1.  Let 3, be given by (5.3) with £,(b) = [Bg, Q) d¢ in (2.5).
Suppose E|X| < », QY = QV(t, j) is continuous in (b, t) and (5.1) and (5.2)
hold. Then

(5.4) _[up IBg, @, — Bs,@Pll=0p(1) V-2 <by <by <o,
1009

and Bs Q'Y is a D,-valued continuous function of b. Moreover, P{| ,8 - Bl >
e} -0 for all € > O provided that [|d(dt)l < « and

(55) £(b1)i(by) <0 Vb, <B<by, (b)= [(Bs,@V)(2)e(dt).
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REMARK 5.1. Suppose (Z; ,, §; ,,
holds via Glivenko and Cantelh if

X, ,) are independent vectors. Then (5.1)

limsup, ..n" ' Y EIX; |[{IX; ,|>M}=o0(1)
i-1

as M — « and

(5.6) sup Q) —Q¥FlI=0(1), k=0,1,V—0<b; <b,<c.
bi<b<b,y

Condition (5.5) is analogous to (5.30) of Lai and Ying (1991) and the condition
m(b) # 0 in C,\ { B} of Theorem 4() of Ying (1993). In the right-censoring
case, Ying (1993) proved that his condition holds for certain ¢ if X is a
zero—one variable or f. has increasing failure rate, and his method may also
give A(¢, ¢.) > 0. It is not clear if (5.5) holds or A(¢, ¢.) > 0 in the case of
double censoring under similar conditions. Further discussion of consistent
estimation of B can be found in Section 6.

Proor oF THEOREM 5.1. The asymptotic consistency of [3 follows easily
from (5.4) and (5.5) as [{(b) — &,(b) <||Bg, Q(l) — Bg Q(l)lljlqﬁ(dt)l and
Bg Q(l) = 0 by (4.6). Taking subsequences if necessary, we. may assume (5.4)
holds in the sense of almost sure conyergence Let b be a finite number and
b, = b. It suffices to show [|Bg, Q1 — Bg Q(l)ll — 0. By (5.4) and the

boundedness of {b,}, IIQ(’“ Q(k)ll — 0. Since EIXI < and QY is decreas-
ing in ¢ and continuous in (b, t), Q(k)( J) is continuous in b as elements of D
for all j and % = 0,1, so that IIQ(k) — @Ml > 0. By Lemma 4.5 and (5.2),
IS, » = S,ll = 0. Hence B, Qb . — Bg,Q§"Il = 0 by Lemma 4.6(ii). O

In the rest of this section, we shall assume (Z, ,, §; ,, X; ,), 1 <i <n, are
independent vectors and the common survival function S 2 =Sp of €, does
not depend on n.

THEOREM 5.2. Let ,én be given by (5.3) with ¢,(b) = ¢,(b; ) such that
[lp(de)| < © and $(dt) = 0 outside a compact interval. Let A(p, ¢) and n(p)
be as in Theorem 4.2. Suppose P{sup, _;_,|X; ,| > M,} = 0 for all n and some
M, <x,0<8;() <1 forallt, .= —f3/fs € Ly(fp) and A(, ¢.) # 0. Sup-
pose (4.5), (4.8) and (5.6) hold, and

1 n
lim limsup sup sup — ). Elfj,i’n(s + in,n|Xi,n)
(5.7) 20" now ji-si<elb-plse T i=1

(t + BX, X, )l =0

j i,n
for j = 2,3, where f, ; (t|1X; ) and f5 ; (t|1X; ,) are conditional densities of
U, , andV; ,, respectively, given X; ,, 1 < i < n. If either (5.2) and (5.5) hold
or B, = B+ 0p(1), then Vn (B, — B) =4 N(0, 0% with o% = A(¢ — Ed, ¢ —
E$)/A*(¢, §,), where Ep = — [¢ dS,.
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REMARK 5.2. Suppose (Z; ,, §; ,, X; ,) are iid vectors from (Z, §, X) such
that X and e are independent of each other and of (U, V). Then (5. 7) holds if
U and V both have uniformly continuous marginal densities, and (4.8) can be
replaced by the finiteness of [,_,K '(2)S{P(dz) and f2>tK‘1(z)S§9)(dz) for
all ¢. Condition (5.7) is slightly stronger than (3.5) of Lai and Ying (1991),
who essentially assumed the uniform boundedness of the densities of the
censoring variables.

REMARK 5.3. For ¢(¢) =a, + a,;¢.(¢) [e.g., ¢(t)=It> 0} for double-
exponential errors], the estimators in Theorem 5.4 are asymptotically semi-
parametric efficient, as 02 = 1/A(¢,, ¢.) = 1/I,, by (3.1), (3.4) and (8.5).

Proor orF THEOREM 5.2. We shall verify the conditions of Corollary 4.3
and Theorem 5.1. Clearly, (5.6) implies (4.4), ¢, € L,(f;) implies uniform
continuity of f; and (5.6) and the uniform boundedness of X, , imply (5.1)
(Remark 5.1). It suffices to show (4.9)-(4.11) and the continuity of QwM,

Let S, ,(t,0) = [,..f; ;. .(z + bX, ,|X; ) dz. By (4.3), h}"), = (&/&b)Q},’fL

Jzn
exist and
WD) - = L E[(X,, - B (e (b BIX,.)
i=1

X{SZ,i,n(t’ b) - SS,i,n(t’ b)}]>

—1 n _
h(bk)n(t’z) = Z E[(Xz n EXn)ka i n(t + sz n|XL n)
, n /0 , s > ,
XSﬁ(t + (b - B)Xi,n)]a
—1 n _
h(bk)n(t’?’) = Z E[(Xz N EXn)kfs i n(t + in n|Xi n)
, n /0 , s > ,

X{1 = 8,(t+ (b - ,B)Xi,n)}].

It follows from (5.7), the uniform continuity of f; and the uniform bounded-
ness of X; , that [|A{"), — Y|l = £,(b) and AY) (t Jj) are uniformly continu-
ous in ¢. By (5.6) and the fact Sg.n=85,8:, —En'y, iSs.i 2C, B) > Sy and
S; ., =En"'%L;S;, ,(,B)—~ Sy unlformly This and the uniform continuity
of(d/dt) (t) imply sup,l(d/dt)S; ()| > 0 as ¢ > +o, which then implies
sup, |h{), (t _])| — 0 as t > +x for all j and k, in view of the uniform
continuity of f; and the expressions of h{) above. Thus {hg‘”n, n > 1} are

compact in D3 Letting ||h(k) — ™| - 0 along a subsequence of n, we find

r® = (9/d0)Q¥|,- 5 by the argument leading to (4.20). This uniqueness of
the limit point of {hY),, n > 1} gives (4.9). Since the X, ,’s are bounded,
condition (4.10) follows from standard results in empirical process theory,

especially the equicontinuity of the empirical processes with uniformly
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bounded VC classes of functions [cf. e.g., Giné and Zinn (1986) and Pollard
(1984), page 157]. Condition (4.11) follows from (4.10) and the continuity of
the covariance function of the limiting process W(b, ¢, j, k). The proof of the
continuity of @{*® is omitted as it is simpler than that of (4.9). O

6. Discussion and some additional results. In this section we discuss
the asymptotic consistency and the choice and estimation of a “good” score
function ¢. The estimation of the error distribution is also considered.

As mentioned in Remark 4.1, the expansion (4.15) holds under explicit
conditions on the marginal distributions of €, X, U and V in the iid case.
However, condition (5.5) is assumed in Theorem 5.1 for asymptotic consis-
tency, A(é, ¢.) # 0 is assumed in Corollary 4.3 and Theorem 5.2 for the
asymptotic normality and ¢ = a, + a,¢,. is needed for the asymptotic effi-
ciency by Remark 5.3. As indicated by the results of Miller and Halpern
(1982), these may not be serious problems in practice when a suitable
preassigned ¢ is chosen. For example, if there is reason to believe S, =
N(0, 6.%), we may use ¢(¢) = ¢p(¢t; M) = max(—M, min(M, ¢)) with some M >
20..

Under strong explicit regularity conditions, smoothing methods might be
used to produce (preliminary) estimators B, of B which are asymptotically
consistent. For example, we may estimate 8 by solving

n

(6.1) Y (X, - X,) [Bscx,(t1Z:, 8,) d, (¢ — bX,) = 0,

i=1
with a monotone ¢ and a reasonable decreasing estimator S(t|x) of P{Z >
t|X = x}. Since S(¢|x) does not depend on b, the left-hand side of (6.1) is
monotone in b, so that the asymptotic consistency is a direct consequence of a
Glivenko—Cantelli-type law of large numbers for the estimating equation.
One way of estimating P{Z > t|X = x} is solving (2.6) with

(6.2) Q¥ = Lk, (X;—x)[{Z;> 1,5 =j}/2_kn(Xi - x)

for some positive kernels %,(-). In view of Lemma 4.5, we believe that the
asymptotic consistency of the S(#|x) based on (6.2) and therefore (6.1) can be
obtained under some conditional versions of (4.5) given X.

Since the projection ¢(:; ¢, S*)) is a function of Z — BX and §, by (3.5)
and (3.8),
(63) E[Var(X|Z - BX, 8){E*d(¢)}’] <A(4, ) < Var(X)E¢>(e).
Since A(¢,, ¢,) is an inner product, by the Cauchy—Schwarz inequality,

- d)e: ¢ - d)e)
A( e, &)

We may use (6.3) and (6.4) to bound A(¢, ¢), A(d, ¢.) and the relative
efficiency (o 2I,)" ! of the estimators in (2.5) and (5.3), where ¢? is as in
Theorem 5.2 and I, is given by (3.1).

A(o
(64) A((;ba d)e) 2A(¢e? ¢€){1_ \/
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If we wish to use a score function ¢(¢) = ¢(¢; 8, f.,...) depending on
unknown parameters, we may also estimate it. We do not pursue this in
Sections 4 and 5 for the sake of space as well as the lack of optimal
estimation and selection of ¢ under our regularity conditions. For finite
positive M and M, let ®(M;, M¥) be the collection of functions ¢ such
that ¢(dt) = 0 for |t| > Mf and [lp(de)l < M¥. Let ¢>b , be such that, for
every real t and &" > 0,

lim limsupP{ U ({d;bn §E(I)(]W{k,z‘/fik)}

;
e' -0+ n—w

(65) b-Bl<e’
O(,.(0) = (1)1 > &7)) =

THEOREM 6.1. Suppose (6.5) holds. Then the conclusions of Theorem 4.2,
Corollary 4.3 and Theorem 5.2 hold under the respective conditions when

£,(b) = £,(b; ¢) is replaced by én(b) = f(BsAbynQ%l,)n)(t)cﬁb,n(dt).

REMARK 6.1. Let 0 < &, < 1 be a small given number. Since U . ,®(c, c)
is dense in L,(f,), there exist estimates M,, M,, qbb , and ¢b . Such that
”d)b n ¢ ”2 = g (b) Ab n(d)b n d)b no’ d)b n d)b,n) = SOAb n(d)b n» d) )
b, , € D(M,, M,), M Op(1) and |¢>b 2(8) — d(B)] < &,(b) for every ¢, where
£ (b) satisfies (4.14), || ||2 is the norm of L,(f,) and Ab LGh ) = AC, ,SAI(,*,Q)
is given by (3.5) with S ) being the self-consistent estimator of S¢*) based on
Q(kll and Sb .- These guarantee (6.5) and A(¢p — ¢, b — ¢.) < e2A(., ).
By (6.4) and Theorem 6.1, A(¢, ) = (1 — &) A(¢,, ¢.), and the zero-cross-
ings of f (b) with such qbb » Will be highly efficient under the other conditions
of Theorem 5.2. We may also use qu (1) = ¢(t + bX,) to stabilize the center
of qbb , for large |b — B. It is possible to derive efﬁc1ent estimators of B8 by
this method, if one finds suitable upper bounds for the rate of convergence of
the remainder in (4.15) when M (slowly) converges to « along with n.

Proor. By (6.5), ¢ € ®(M;¥, M3). By Theorem 4.2 it suffices to show

lim lim limsupP{ sup  sup /hd ¢>b n ¢)‘ > gw} =0
e20+ &'=20+ oo lb-Bl<e’ heCls)

for all compact sets C in D, and positive &”, where C(e) = U, cc{h € D,:
IR — Rh'|| < &}. Since d)b . € fI)(M M3) with large probability and step func-
tions A with finite jumps are dense in D,, this is a consequence of ¢, () =

o) + &,(b). O

The identities (4.17)-(4.19) and (4.21) are also useful for the expansions of
other statistics of interest such as estimates of the error survival function.
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THEOREM 6.2. Suppose 0 < S;(¢) < 1 for all ¢ and conditions (4.4), (4.5)
and (4.8)—(4.11) hold for 2 = 0. Then, with the notation of Theorems 4.2 and
5.2,

Kn(sb,n - Sﬁ,n)
(6.6) - n\?K,R5! ,Bs W — (b - B)K(g.+ EXFf.)
+ £,(b,t)(16 = Bl +n"1/?)

such that K, Rg! ,Bs W) —; KH as elements in D, and (4.14) holds for
£,(b) = sup,le, (b t)l where f,=f,;, g.(t) = ¥(2,2; $.)S,(¢t) for the projec-
tions in (8.3) and H = R 'Bg W(O) Furthermore, if all condltlons of Theorem
5.2 hold, then

K ‘/_( ,n B n) = KnRgﬁln,nBS WB(,Or)L

B.n
(6.7) 1.(¢ — E,$)
A(p, o)
such that ||z, || = 0p(1), (KnRgﬁln,nBSB W, n.(¢ — E,$) -5 (KH, n($)) in
D, X (—»,») and H(¢) is a Gaussian process independent of m(¢$) with

EH(t) =0 and EH(:)H(s) = (R"'v,X¢), where v/ (¢) = Sy(max(s, ) —
S5(8)8,(2).

K(g.+ EXf) + 5,()

REMARK 6.2. The independence of H(#) and n(¢) is a consequence of
Theorem 3 of Gu and Zhang (1993).

ProOOF. Similar to the proof of (4.15), by (4.17) and Lemmas 4.63ii) and
4.7(i1),

K,(S,,, = Sp..) =n V2K,R5}, W) + (b~ B)KR 'Bg h® + -

By Theorem 3.1, (R(l)f X¢) = E(X — EX)E*$,E*¢. = (Rg Xt), so that, by
(4.19), —R'Bg h(o) = R"'RYf, + EXf, = g, + EXf,. Hence we have (6.6)
and (6.7).

Since ¢(z, j; ¢, ,,S§) is the projection, by (2.4), (3.3) and (4.12),

Bg, Wi =n"'* Y E[ 4, ,(e,,)ldata]
’ i=1
is uncorrelated to n,(¢p — E, ¢), so that EH(¢)n(¢) = 0 for all ¢. Since v (¢) =
— [{$,(2)S.(dz), by Theorem 3.1(),
E(BggW®)(6)(Bs,W ) (5) = EE*¢,E*d, = (Bv,)(2),

so that EH(¢)(Bg W©)s) = (R 'Rv )t) = v(t) = v,(s) and EH(-)H(s) =
E(R™'Bg,W)H(s) =R 'v,. O

S
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APPENDIX

PROOF OF LEMMA 4.7. As 0 < S; < 1 for all ¢, our (4.5) implies (2.6) of Gu
and Zhang (1993) and our (4.8) implies (2.13) and (4.3) of Gu and Zhang
(1993). Part (i) follows from step 1 of the proof of Theorem 2 in Gu and
Zhang (1993). Part (ii) is an immediate consequence of Lemma 2 of Gu and
Zhang (1993) by standard methods in functional analysis. Let g, = K, Rg' %,
and g = KR 'h. By part (i), g, > g in D,, so that part (iii) follows if
Iy )RS K" strongly converge to I,_, 5, RVK™' as linear operators in
D,. It suffices to show |1,y 5 RS , K, 'l = OD), I3 1) RPK || < = and
11 -y, RS K, ' — RVKY)gll = o(1) for all g of bounded variation, as
these g are dense in D,.

It follows from (4.8), (4.1), (4.2) and the condition P{|X; ,| <M} = 1 that

IKWD(¢) S (dz)] SP (dz)]
o K6 |j§%{fz<t k() fz>t K, () }
(A1) S{,(dz) SV).(dz)

<2M, + 2M, sup
ltl<M

fz < K, (1) fz>t K,(z)

<M* <o

as 1S (d2)| < 2M,1S) (d2)|, 18P, (d2)| < 2M,]S( (d2)| and

S| =

K1) =|= ¥ B(X,, - EX,) I{V, , - BX, , <t <U,, - BX, ,}
i=1

< (2M,)"K©.

By (4.8) and 3.7, II,_ 5 5 RS’ , K, *|l is bounded by (A.1). We can also obtain
by the same method |I1,_,, M)R(I)K < M=

Let g be a function of bounded variation in D,. Since |[K®¥ — K®|| - 0
and |[KP(H)|/K (t) < 2M,, III[,M’M){R“:, K;! R(I)K Bgllis bounded by a
sum of a o(1) term and the norms involving two integrations in view of the
definitions in (4.7) and (3.7). By symmetry, we shall only deal with the first
one, which is bounded by

S.(1) SP.(dz)  S,(t) S(dz)
s [ 850G K  5,(2) K(2)

<o(1) + sup

ten|z=tSs(2) | K, (2)  K(2)

[ g(Z)(S&l,’n(dZ) SS)(dZ))‘
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as S,(¢)/8S,(2) converge uniformly to S,(¢)/S;(2) for z <t < M. The proof is
finished via integrating by parts, as

S, (dz) Qg{’n( dz,2) S(l)( dz)
fzst K,.(z) '/;StSB,n(Z)Kn(Z) f < K(z)

uniformly for ¢ < M by (4.5) and (A.1). O
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