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Let F̂n be the Kaplan–Meier estimator of a distribution function F
computed from randomly censored data. It is known that, under certain
integrability assumptions on a function ϕ, the Kaplan–Meier integral∫
ϕdF̂n, when properly standardized, is asymptotically normal. In this

paper it is shown that, with probability 1, the jackknife estimate of
variance consistently estimates the (limit) variance.

1. Introduction and main results. Let X1; : : : ;Xn be a sample of in-
dependent random variables from some unknown distribution function (d.f.)
F. In survival analysis the Xs usually may be interpreted as the times from
the entry into a followup study until failure. Due to other causes of failure, it
may then happen that not all Xs are observable. Rather one obtains variables
Z1; : : : ;Zn and indicators δ1; : : : ; δn such thatZi =Xi only if δi = 1. The non-
parametric estimator of F that adapts the (unknown) empirical d.f. Fn of the
Xs to the present situation is the time-honoured Kaplan–Meier product limit
estimator F̂n defined as

1− F̂n�x� =
n∏
i=1

[
1−

δ�ixn�
n− i+ 1

]1�Zixn≤x�
:

Here Z1xn ≤ · · · ≤ Znxn are the order statistics of the Z-sample and δ�ixn� is the
δ associated with Zixn, that is, δ�ixn� = δj if Zixn = Zj. When ties are present,
lifetimes within censored �δi = 0� and uncensored �δi = 1� data are ordered
arbitrarily, while ties among lifetimes and censored times are treated as if the
former precedes the latter.

In statistics the investigation of estimators or test statistics may often be
reduced, via a linearization and Cramér–Slutsky, to empirical integrals

∫
ϕdFn = n−1

n∑
i=1

ϕ�Xi�:

Here ϕ is a proper score function depending on the quantity of interest. Con-
sistency and asymptotic normality may then be obtained, of course, from the
classical SLLN and CLT applied to the independent and identically distributed
(i.i.d.) random variables ϕ�X1�; : : : ; ϕ�Xn�.

Naturally, under random censorship, the role of
∫
ϕdFn is played by the

Kaplan–Meier integral
∫
ϕdF̂n. Unfortunately, unlike the sample mean,
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Kaplan–Meier integrals are no longer (weighted) sums of i.i.d. random vari-
ables. For this, let Win denote the mass attached to Zixn under F̂n. It is
readily seen that

Win =
δ�ixn�

n− i+ 1

i−1∏
j=1

[
n− j

n− j+ 1

]δ�jxn�
:

Hence

Sn ≡
∫
ϕdF̂n =

n∑
i=1

Winϕ�Zixn�

is a sum of randomly weighted functions of the ordered Z-sample. Interest-
ingly enough, the assertions of the SLLN and the CLT could be extended to
the more complicated setup. To properly describe the results, introduce the
distributional characteristics of the observed �Z;δ�, the d.f. of Z and the con-
ditional expectation of δ given Z:

H�x� = P�Z ≤ x�; m�x� = P�δ = 1�Z = x�:
H and m together determine the joint distribution of �Z;δ�. Stute and Wang
(1993) then showed that, with probability 1 and in the mean,

lim
n→∞

∫
ϕdF̂n ≡ S =

∫
ϕ�t�m�t� exp

{∫ t−
−∞

1−m�x�
1−H�x�H�dx�

}
H�dt�;(1.1)

provided that
∫
�ϕ�dF <∞. Traditionally, it has always been assumed in the

literature that Zi = min�Xi;Yi�, where Y1; : : : ;Yn is another sequence of
independent random variables from some unknown censoring d.f. G, being
also independent of the Xs. In this situation the limit in (1.1) collapses to∫
ϕdF̃, where

F̃�x� =
{
F�x�; if x < τH;
F�x−� + 1�τH∈A��F�τH� −F�τH−��; if x ≥ τH;

(1.2)

τH = inf�x: H�x� = 1� �≤ ∞� is the least upper bound for the support of H
and A is the set of H-atoms (possibly empty).

Tsiatis (1975), among others, showed the fully nonparametric character of
this model in that independence of X and Y cannot be checked from the data.
Hence it might be preferable to obtain results like (1.1), which do not rely on
the assumption of independent competing risks.

The CLT for censored data is due to Stute (1995). Again, the methodology
works for general censorship and not just for Zi = min�Xi;Yi�:

n1/2
[∫
ϕdF̂n −S

]
−→ N �0; σ2

1 � in distribution:(1.3)

Of course, the limit variance σ2
1 equals the familiar expression

σ2
0 =

∫
ϕ2 dF−

[∫
ϕdF

]2
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if there is no censorship �m ≡ 1�, but becomes much more complicated in the
general case. It is an important quantity if one wants to compute confidence in-
tervals for the target S, respectively,

∫
ϕdF. For example, if ϕ�x� = x,

∫
ϕdF̂n

is an estimator of the mean lifetime. For ϕ = 1�−∞; x0�, x0 < τH, the resulting
integral becomes F̂n�x0�. Other examples are mentioned in Stute and Wang
(1993). Unlike the indicator, most other ϕs are not of bounded variation (on
the whole line) nor do they vanish right of some T < τH. When these two as-
sumptions are satisfied, Kaplan–Meier integrals can be readily handled using
integration by parts and the Breslow and Crowley (1974) invariance principle.

Now, (1.3) suggests that

Var
[∫
ϕdF̂n

]
∼ σ

2
1

n
as n→∞:

It is the purpose of the present paper to show that the jackknife, under optimal
conditions on ϕ, provides a second order consistent estimate of σ2

1 :

n V̂ar�Jack� → σ2
1 with probability 1:(1.4)

Before we give details, we need to (very) briefly discuss several aspects of
the jackknife in the “complete data” situation. For more details, see Gray and
Schucany (1972) and Efron and Tibshirani (1993). The jackknife has been pro-
posed to serve two purposes [cf. Quenouille (1956) and Tukey (1958)], namely,
to provide a methodology to reduce a possible bias of an estimator S�Fn� and,
second, to yield an approximation for its variance. The jackknife incorporates
the so-called pseudovalues which result from applying the statistic of interest
to the n subsamples of X1; : : : ;Xn with Xk, 1 ≤ k ≤ n, deleted one after
another.

The crucial thing about this approach is that the statistic of interest is a
function of Fn and therefore attaches mass 1/n to each of the data. Conse-
quently deletion of one point just results in a change of the mass from 1/n to
1/�n − 1�. For the Kaplan–Meier integral, the situation is completely differ-
ent, since now the statistic is a sum of (functions of) order statistics weighted
by the complicated (random) Win. So, if we denote by F̂�k�n the Kaplan–Meier
estimator from the entire sample except �Zkxn; δ�kxn��, then S

�k�
n ≡ S�F̂�k�n �

does not only involve changes of the standard weights, but also incorporates
replacement of the weights Win by new ones depending on the labels δ�ixn�,
1 ≤ i ≤ n. This may be one reason why the jackknife under random censor-
ship has been dealt with only in a few papers. Gaver and Miller (1983) showed
that the jackknife-corrected Kaplan–Meier estimator at a fixed point x < τH
has the same limit distribution as F̂n�x�. Stute and Wang (1994) investigated
an arbitrary ϕ and derived an explicit formula for the jackknife modification
of
∫
ϕdF̂n. In particular, the mean of the pseudovalues equals

S̄n = Sn − ϕ�Znxn�
δ�nxn��1− δ�n−1xn��

n

n−2∏
i=1

[
n− i− 1
n− i

]δ�ixn�
:
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Hence S̄n does not necessarily coincide with Sn. This will have some impact
on the statistical properties of V̂ar(Jack) to the effect that, for (1.4), some
slight modification of V̂ar(Jack) will be required. Moreover, the bias-corrected
jackknife substitute for Sn equals

S̃n = Sn +
n− 1
n

ϕ�Znxn�δ�nxn��1− δ�n−1xn��
n−2∏
i=1

[
n− i− 1
n− i

]δ�ixn�
;

that is, S̃n results from Sn by replacing Wnn with

WJ
nn =Wnn +

n− 1
n

δ�nxn��1− δ�n−1xn��
n−2∏
i=1

[
n− i− 1
n− i

]δ�ixn�
:

The second summand of S̄n appeared for the first time in Lemma 2.2 of Stute
and Wang (1993). It also played an important role in analyzing the bias of a
Kaplan–Meier integral [see Stute (1994)] and, as seen above, in the expres-
sions for S̃n and S̄n.

Needless to say, as n→∞, S̄n eventually coincides with Sn almost surely
provided that ϕ vanishes right of some x0 < τH. For finite sample size n,
S̄n may differ from Sn, even if this support condition is satisfied. As we will
see from Theorem 1.1, the extra term in S̄n may destroy the consistency of
V̂ar(Jack) for a general ϕ not satisfying the support condition or may lead to
an unstable behavior for a fixed sample size. Now, whatever ϕ may be, S̄n also
coincides with Sn unless

�∗� δ�n−1xn� = 0 and δ�nxn� = 1:

So if, under �∗�, we artificially set δ∗�nxn� = 0, we arrive at a modified estimate of

variance which will be denoted V̂ar
∗
(Jack). By construction the corresponding

S∗n and S̄∗n coincide. This redefinition seems a little surprising in view of the
fact that in the past many authors have proposed to reduce the bias of the
Kaplan–Meier estimator by artificially putting δ∗�nxn� = 1 if δ�nxn� happens to be
zero, which is just the other way around. In this paper, however, our principal
goal is to estimate the variance and not to reduce the bias of Sn. Also our choice
of δ∗�nxn� may be well motivated by the finite sample formula in Theorem 1.1,

while for the bias reduction, our formula for S̃n points out that the jackknife
is much more cautious about attributing mass to the largest Z.

Now, compared with the bias, a rigorous treatment of the variance estimator
is much more complicated. Since

n V̂ar�Jack� = �n− 1�
n∑
k=1

�S�k�n − S̄n�2

= �n− 1�
n∑
k=1

�S�k�n �2 − n�n− 1�S̄2
n;

we need a careful investigation of the sum of squares. This will be done in
Theorem 1.1. In order to compare the resulting expression for n V̂ar(Jack)
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with σ2
1 , we finally have to discuss the structure of σ2

1 and the assumptions
needed for (1.3). For this, introduce the subdistribution functions

H̃0�x� = P�Z ≤ x; δ = 0� =
∫ x
−∞
�1−m�dH

and

H̃1�x� = P�Z ≤ x; δ = 1� =
∫ x
−∞

mdH:

Set

γ0�x� = exp
{∫ x−
−∞

H̃0�dz�
1−H�z�

}
= exp

{∫ x−
−∞

1−m
1−H dH

}
;

γ1�x� =
1

1−H�x�
∫

1�x<w�ϕ�w�γ0�w�H̃1�dw�

= 1
1−H�x�

∫
1�x<w�ϕ�w�γ0�w�m�w�H�dw�

and

γ2�x� =
∫ ∫ 1�v<x; v<w�ϕ�w�γ0�w�

�1−H�v��2 H̃0�dv�H̃1�dw�

=
∫ x−
−∞

γ1�v�
1−H�v� �1−m�v��H�dv�:

In terms of these quantities, Corollary 1.2 in Stute (1995) then implies that
(1.3) holds with

σ2
1 =

∫
ϕ2�x�γ2

0�x�m�x�H�dx� −
∫
γ2

1�x��1−m�x��H�dx� −S2

+
∫ γ2

1�v��1−m�v��2
1−H�v� H�v�H�dv�;

(1.5)

where H�v� =H�v� −H�v−�. Clearly, the last integral vanishes for a contin-
uous H.

As to the assumptions needed for (1.3), recall that for the classical CLT one
requires

∫
ϕ2 dF <∞. Under censorship, two conditions are needed. The first

is
∫
ϕ2�x�γ2

0�x�m�x�H�dx� <∞:(1.6)

This integral is part of σ2
1 . Hence (1.6) guarantees that σ2

1 is finite. When
there is no censorship, m ≡ 1 and, therefore, γ0 ≡ 1. In other words, (1.6)
becomes the familiar

∫
ϕ2 dF < ∞. The other condition needed for (1.3) is a
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first moment assumption. It is mainly to control the bias of a Kaplan–Meier
integral, which is not an issue when the Xs are completely observable, but is
of some concern when the data are at risk of being censored. See Stute (1994)
for a detailed discussion of this topic. Since the present paper only deals with
the variance, it is likely that the variant of (1.4) holds only under the condition
(1.6). As will be made clear by Theorem 1.2, this will, in fact, be the case.

It is instructive to compute σ2
1 when Z = min�X;Y�, where Y ∼ G is

independent of X. To simplify things, assume continuity throughout. Then we
have [cf. Stute and Wang (1993)] γ0�x� = 1/�1−G�x�� and, therefore,

σ2
1 =

∫ ϕ2�x�
1−G�x�F̃�dx� −

[∫
ϕ�x�F̃�dx�

]2

−
∫ [∫ ∞

x
ϕ�w�F̃�dw�

]2 1−F�x�
�1−H�x��2G�dx�;

(1.7)

where F̃ has been defined in (1.2). Condition (1.6), which now becomes

∫ ϕ2�x�
1−G�x�F̃�dx� <∞;(1.8)

ensures (among other things) that, in the right tails, censoring does not have
enough of a dominating influence that the variability of the estimator would
get out of control.

From (1.7) the asymptotic variance of F̂n�x0�, x0 < τH, is obtained if we set
ϕ = 1�−∞; x0�. The plug-in estimator of σ2

1 together with a correction for dis-
continuities then immediately leads to the time-honoured Greenwood formula
[cf. Kaplan and Meier (1958) and Klein (1991)].

As a conclusion of our discussion, we see that the jackknife, when applied
to indicators, yields a new estimate of variance which (i) is strongly consistent
under no conditions on F and G and (ii) compared with the already existing
estimators, is not a plug-in estimator based on asymptotic expressions, but, in
view of the definition of V̂ar

∗
(Jack), automatically adapts for the variability of

the data. Moreover, and most importantly, the jackknife (iii) may be applied for
much more general ϕs and (iv) is valid without the assumption of independent
competing risks.

We are now in the position to formulate Theorem 1.1. As mentioned ear-
lier, Theorem 1.1 provides a proper representation of the sum of squares,∑n
k=1�S

�k�
n �2. Put, for 1 ≤ j ≤ n− 2,

bj = bjn =
1

�n− j− 1�2 −
1

�n− j�2 +
1

�n− j− 1� −
1

n− j

and recall Win.
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Theorem 1.1. We have
n∑
k=1

�S�k�n �2

=
{
n

[
n

n− 1

]2δ�1xn�[n− 2
n

]δ�1xn�
+ �δ�1xn� − 1� n

�n− 1�2
}
S2
n

+
n−2∑
j=1

�δ�jxn� − 1�bj
j−1∏
k=1

[�n− k− 1��n− k+ 1�
�n− k��n− k�

]2δ�kxn�[ n∑
i=j+1

ϕ�Zixn�Win

]2

+
n−1∑
i=1

ϕ2�Zixn�δ�ixn�
1

�n− i�2
i−1∏
j=1

[
n− j− 1
n− j

]2δ�jxn�
+Rnϕ

2�Znxn�W2
nn;

(1.9)

where

Rn =
n

�n− 1�2 −
n−2∑
j=1

�δ�jxn� − 1�bj
j−1∏
k=1

[�n− k− 1��n− k+ 1�
�n− k��n− k�

]2δ�kxn�

+
n−1∑
j=1

δ�jxn�
n− j+ 1
�n− j�3

j−1∏
k=1

[�n− k− 1��n− k+ 1�
�n− k��n− k�

]2δ�kxn�

−
n−1∏
k=1

[�n− k− 1��n− k+ 1�
�n− k��n− k�

]2δ�kxn�
:

Before we proceed it is worthwhile to compare the right-hand side of (1.9)
with (1.5), assuming continuity ofH for a moment. The first term of (1.9), when
inserted into the formula for V̂ar(Jack), will contribute to −S2. The second
sum will be in charge of −

∫
γ2

1�1−m�dH, while the last sum corresponds to∫
ϕ2γ2

0mdH. Finally the term containing Rn will be asymptotically negligible.
As a recommendation, if one has no time to go through the proof, it would be
instructive to check (1.9) for n = 2 and n = 3 though.

To formulate the main result of this paper, recall V̂ar
∗
(Jack), the jackknife

estimate of variance with δ∗�nxn� = 0 if �∗� holds.

Theorem 1.2. Under (1.6) [respectively, (1.8)], we have, with probability 1,

lim
n→∞

n V̂ar
∗�Jack� = σ2

1 :

The proof of Theorem 1.2 proceeds by showing that each of the three lead-
ing terms of (1.9) corresponds to a slightly disturbed (sub-, super-) martin-
gale in reverse time, to which a proper convergence theorem may be applied
(Lemma A from the Appendix), and that the remainder term is negligible.

It should be noted that, for the plug-in estimator, no general result cor-
responding to Theorem 1.2 is known so far. Simulation results for the mean
lifetime estimator indicate that it might be very unstable.
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Remark. A reader familiar with the so-called delta method [see Andersen,
Borgan, Gill and Keiding (1993), page 109] may wonder about the necessity
to investigate linear functionals of the Kaplan–Meier estimator. Actually, the
discussion of the (truncated) mean-lifetime estimator on page 275 of Ander-
sen, Borgan, Gill and Keiding (1993) may be misleading in that one gets the
impression that it is only the nonlinearity of a statistic which causes troubles
and that a clever linearization could do the job. This is not so, just because the
concept of compact differentiability as elaborated there only involves smooth
functionals of the Kaplan–Meier estimator when restricted to a given compact
set. The mean-lifetime estimator is the simplest of many other examples of
a (linear) functional of the Kaplan–Meier estimator, which is not even con-
tinuous (in the weak topology). To this author, a general theory of quadratic
functionals of F̂n, for example, is completely missing. A detailed study of such
basic statistics would require deep probabilistic investigations, however, which
could not be replaced by purely topological arguments.

2. Proofs. Since n will be kept fixed throughout, we may omit it nota-
tionally and write

Wi ≡Win =
δ�i�

n− i+ 1

i−1∏
j=1

[
n− j

n− j+ 1

]δ�j�

for short. Similarly, with Z�i� ≡ Zixn,

Sn =
n∑
i=1

Wiϕ�Z�i��

and, for 1 ≤ k ≤ n,

S
�k�
n =

k−1∑
i=1

ϕ�Z�i��δ�i�
n− i

i−1∏
j=1

[
n− j− 1
n− j

]δ�j�

+
n∑

i=k+1

ϕ�Z�i��δ�i�
n− i+ 1

k−1∏
j=1

[
n− j− 1
n− j

]δ�j� i−1∏
j=k+1

[
n− j

n− j+ 1

]δ�j�
:

After some simple algebraic manipulations, we obtain

n∑
k=1

�S�k�n �2 = 2
∑

1≤i<r≤n
ϕ�Z�i��ϕ�Z�r��δ�i�δ�r��Air +Bir +Cir�

+
n−1∑
i=2

ϕ2�Z�i��δ�i��Di +Ei� + ϕ2�Z�1��δ�1�D1 + ϕ2�Z�n��δ�n�En

≡ I+ II+ ϕ2�Z�1��δ�1�D1 + ϕ2�Z�n��δ�n�En:
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Here, for 1 ≤ i < r ≤ n,

Air =
1

n− i
i−1∏
j=1

[
n− j− 1
n− j

]2δ�j� r−1∏
j=i

[
n− j− 1
n− j

]δ�j�
;

Bir =
r−1∑
k=i+1

1
�n− i��n− r+ 1�

i−1∏
j=1

[
n− j− 1
n− j

]2δ�j�

×
k−1∏
j=i

[
n− j− 1
n− j

]δ�j� r−1∏
j=k+1

[
n− j

n− j+ 1

]δ�j�
;

Cir =
i−1∑
k=1

1
�n− i+ 1��n− r+ 1�

k−1∏
j=1

[
n− j− 1
n− j

]2δ�j�

×
i−1∏

j=k+1

[
n− j

n− j+ 1

]2δ�j� r−1∏
j=i

[
n− j

n− j+ 1

]δ�j�
;

Di ≡ Din =
1

n− i
i−1∏
j=1

[
n− j− 1
n− j

]2δ�j�
; 1 ≤ i ≤ n− 1;

and

Ei ≡ Ein =
i−1∑
k=1

1
�n− i+ 1�2

k−1∏
j=1

[
n− j− 1
n− j

]2δ�j�

×
i−1∏

j=k+1

[
n− j

n− j+ 1

]2δ�j�
; 2 ≤ i ≤ n:

We shall first simplify the sum I. Lemma 2.1 provides a recursion formula in
r for the factor �· · ·�, with i fixed.

Lemma 2.1. We have, for 1 ≤ i < r < n;

Ai; r+1 +Bi; r+1 +Ci; r+1 =
(
n− r+ 1
n− r

)(
n− r

n− r+ 1

)δ�r�
�Air +Bir +Cir�:

Proof. Check that

Bi; r+1 =
n− r+ 1
n− r

(
n− r

n− r+ 1

)δ�r�
Bir +

1
n− rAir;

Ci; r+1 =
n− r+ 1
n− r

(
n− r

n− r+ 1

)δ�r�
Cir;

and

Ai; r+1 =
(
n− r− 1
n− r

)δ�r�
Air:
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Since

1
n− r +

[
n− r− 1
n− r

]δ�r�
= n− r+ 1

n− r

[
n− r

n− r+ 1

]δ�r�
;

the conclusion of the lemma follows. 2

Corollary 2.2. For 1 ≤ i < r ≤ n; we have

Air +Bir +Cir =
n− i

n− r+ 1

r−1∏
j=i+1

[
n− j

n− j+ 1

]δ�j�
�Ai; i+1 +Ci; i+1�:

Proof. Apply Lemma 2.1 and use induction on r. Also note that
Bi; i+1 = 0. 2

For the following text, put

Ai x= Ai; i+1 =
1

n− i
i−1∏
j=1

[
n− j− 1
n− j

]2δ�j�[n− i− 1
n− i

]δ�i�

and

Ci x= Ci; i+1 =
i−1∑
k=1

1
�n− i+ 1��n− i�

k−1∏
j=1

[
n− j− 1
n− j

]2δ�j�

×
i−1∏

j=k+1

[
n− j

n− j+ 1

]2δ�j�[ n− i
n− i+ 1

]δ�i�
:

The next lemma provides a useful representation of Ai +Ci.

Lemma 2.3. We have, for 1 ≤ i < n;

Ai +Ci = A1

i∏
j=2

aj +
i−1∑
j=1

Aj

δ�j� − δ�j+1�
�n− j− 1�2

i∏
k=j+2

ak;

where, for 2 ≤ k < n;

ak =
n− k+ 2
n− k

[
n− k+ 1
n− k+ 2

]δ�k−1�[ n− k
n− k+ 1

]δ�k�
:

Proof. The assertion is trivially true for i = 1. The general case follows
by induction on i. Actually, we have

Ai+1 =
n− i

n− i− 1

[
n− i− 1
n− i

]δ�i�[n− i− 2
n− i− 1

]δ�i+1�

Ai
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and

Ci+1 =
n− i+ 1
n− i− 1

[
n− i

n− i+ 1

]δ�i�[n− i− 1
n− i

]δ�i+1�

Ci

+ 1
�n− i��n− i− 1�

i−1∏
j=1

[
n− j− 1
n− j

]2δ�j�[n− i− 1
n− i

]δ�i+1�

:

We conclude that

Ai+1 +Ci+1 = ai+1Ci +
{

n− i
n− i− 1

[
n− i− 1
n− i

]δ�i�[n− i− 2
n− i− 1

]δ�i+1�

+ 1
n− i− 1

[
n− i

n− i− 1

]δ�i�[n− i− 1
n− i

]δ�i+1�}
Ai:

Now, for any choice of δ�i� and δ�i+1�, the term in brackets equals

n− i+ 1
n− i− 1

[
n− i

n− i+ 1

]δ�i�[n− i− 1
n− i

]δ�i+1�

+
δ�i� − δ�i+1�
�n− i− 1�2 :

From this, we get

Ai+1 +Ci+1 = ai+1�Ai +Ci� + �δ�i� − δ�i+1��
Ai

�n− i− 1�2 :

Apply induction on i to complete the proof. 2

For further analysis, note that

A1

i∏
j=2

aj =
n

�n− i��n− i+ 1�

[
n− 2
n

]δ�1� i−1∏
j=2

[
n− j

n− j+ 1

]2δ�j�[ n− i
n− i+ 1

]δ�i�

and, under δ�j� − δ�j+1� 6= 0, that is, δ�j� + δ�j+1� = 1,

Aj

�n− j− 1�2
i∏

k=j+2

ak =
n− j

�n− j− 1�2�n− i��n− i+ 1�

[
n− i

n− i+ 1

]δ�i�

×
j∏
k=1

[
n− k− 1
n− k

]2δ�k� i−1∏
k=j+1

[
n− k

n− k+ 1

]2δ�k�
:

Thus, from Corollary 2.2 and Lemma 2.3,

I = 2
∑

1≤i<r≤n
ϕ�Z�i��ϕ�Z�r��WiWr�· · ·�i;

with

�· · ·�i = n
[

n

n− 1

]2δ�1�[n− 2
n

]δ�1�

+
i−1∑
j=1

�δ�j� − δ�j+1��
n− j

�n− j− 1�2
j∏
k=1

[�n− k− 1��n− k+ 1�
�n− k��n− k�

]2δ�k�
:
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Change the order of summation to get

I = 2n
[

n

n− 1

]2δ�1�[n− 2
n

]δ�1� ∑
1≤i<r≤n

ϕ�Z�i��ϕ�Z�r��WiWr

+ 2
n−2∑
j=1

�δ�j� − δ�j+1��
n− j

�n− j− 1�2
j∏
k=1

[�n− k− 1��n− k+ 1�
�n− k��n− k�

]2δ�k�
Ij;

where

Ij =
∑

j<i<r

ϕ�Z�i��ϕ�Z�r��WiWr:

We now rewrite the second sum in the representation of I in such a way that
it will be tractable in an asymptotic analysis.

Lemma 2.4. We have

n−2∑
j=1

�δ�j� − δ�j+1��
n− j

�n− j− 1�2
j∏
k=1

[�n− k− 1��n− k+ 1�
�n− k��n− k�

]2δ�k�
Ij

= �δ�1� − 1�I1
n

�n− 1�2

+
n−2∑
j=1

�δ�j� − 1�bj
j−1∏
k=1

[�n− k− 1��n− k+ 1�
�n− k��n− k�

]2δ�k�
Ij;

(2.1)

where, as in Section 1,

bj ≡ bjn x=
1

�n− j− 1�2 −
1

�n− j�2 +
1

�n− j− 1� −
1

n− j:

Proof. Summation by parts readily shows that (2.1) equals

δ�1�
n− 1
�n− 2�2

[�n− 2�n
�n− 1�2

]2δ�1�
I1 − δ�n−1�

2
12

n−2∏
k=1

�· · ·�2δ�k�In−2

+
n−2∑
j=2

δ�j�
n− j+ 1
�n− j�3

j−1∏
k=1

�· · ·�2δ�k�Ij

+
n−2∑
j=2

δ�j�
n− j+ 1
�n− j�2

j−1∏
k=1

�· · ·�2δ�k��Ij − Ij−1�:

(2.2)

Note that

Ij − Ij−1 = −
n∑

r=j+1

ϕ�Zjxn�ϕ�Zrxn�WjWr
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and Wj vanishes unless δ�j� = 1. Hence the sum (2.2) remains the same if in
each summand the factor δ�j� is replaced by 1. Another summation by parts
yields, for (2.2), the expression

−
n−2∑
j=2

δ�j�
n− j+ 1
�n− j�3

j−1∏
k=1

�· · ·�2δ�k�Ij −
n−2∑
j=2

�1− δ�j��bj
j−1∏
k=1

�· · ·�2δ�k�Ij

+ 2
12

n−2∏
k=1

�· · ·�2δ�k�In−2 −
n− 1
�n− 2�2 �· · ·�

2δ�1�I1:

Since the second term in the expansion of (2.1) also remains unchanged if we
replace δ�n−1� by 1, collecting terms completes the proof of the lemma. 2

Obviously

�δ�1� − 1� n

�n− 1�2 I1 = �δ�1� − 1� n

�n− 1�2
∑

1≤i<r≤n
ϕ�Z�i��ϕ�Z�r��WiWr;

whence, from Lemma 2.4,

I =
{
n

[
n

n− 1

]2δ�1�[n− 2
n

]δ�1�
+ �δ�1� − 1� n

�n− 1�2
}∑
i6=r
ϕ�Z�i��ϕ�Z�r��WiWr

+ 2
n−2∑
j=1

�δ�j� − 1�bj
j−1∏
k=1

�· · ·�2δ�k�Ij:
(2.3)

We now derive the corresponding representation for II. To this end note that,
for 2 ≤ i ≤ n− 1,

δ�i�Ei = δ�i�Ci
and

δ�i�Di = δ�i�Ai + δ�i�
1

�n− i�2
i−1∏
j=1

[
n− j− 1
n− j

]2δ�j�
:

Hence

II =
n−1∑
i=2

ϕ2�Z�i��δ�i��Ai +Ci�

+
n−1∑
i=2

ϕ2�Z�i��δ�i�
1

�n− i�2
i−1∏
j=1

[
n− j− 1
n− j

]2δ�j�
:



2692 W. STUTE

Apply Lemmas 2.3 and 2.4 to show, in complete analogy to the arguments
leading to (2.3), that the first sum equals

{
n

[
n

n− 1

]2δ�1�[n− 2
n

]δ�1�
+ �δ�1� − 1� n

�n− 1�2
} n−1∑
i=2

ϕ2�Z�i��W2
i

+
n−2∑
j=1

�δ�j� − 1�bj
j−1∏
k=1

[�n− k− 1��n− k+ 1�
�n− k��n− k�

]2δ�k�
Jj;

with

Jj =
n−1∑
i=j+1

ϕ2�Z�i��W2
i :

Collecting terms we obtain

n∑
k=1

�S�k�n �2 =
{
n

[
n

n− 1

]2δ�1�[n− 2
n

]δ�1�
+ �δ�1� − 1� n

�n− 1�2
}
S2
n

− �· · ·�ϕ2�Z�1��W2
1 − �· · ·�ϕ2�Z�n��W2

n

+
n−2∑
j=1

�δ�j� − 1�bj
j−1∏
k=1

�· · ·�2δ�k�
[ n∑
i=j+1

ϕ�Z�i��Wi

]2

−
n−2∑
j=1

�δ�j� − 1�bj
j−1∏
k=1

�· · ·�2δ�k�ϕ2�Z�n��W2
n

+ ϕ2�Z�1��δ�1�D1 + ϕ2�Z�n��δ�n�En

+
n−1∑
i=2

ϕ2�Z�i��δ�i�
1

�n− i�2
i−1∏
j=1

[
n− j− 1
n− j

]2δ�j�
:

(2.4)

In the next lemma we obtain a useful representation of En to the effect that
some of the terms in the last expansion cancel out.

Lemma 2.5. We have

En =
{
n

[
n− 2
n

]δ�1�[ n

n− 1

]2δ�1�
+ δ�1�

n2

�n− 1�3
} n−1∏
j=1

[
n− j

n− j+ 1

]2δ�j�

×
{

1
2
δ�n−1� − �1− δ�n−1��

} n−2∏
j=1

[
n− j− 1
n− j

]2δ�j�

+
n−2∑
j=2

δ�j�
n− j+ 1
�n− j�3

j−1∏
k=1

[
n− k− 1
n− k

]2δ�k� n−1∏
k=j

[
n− k

n− k+ 1

]2δ�k�
:



JACKKNIFE OF KAPLAN–MEIER INTEGRALS 2693

Proof. We will rewrite En in terms of An−1 and Cn−1 and then apply
Lemma 2.3. To this end observe that

En = 2
(

1
2

)δ�n−1�

�An−1 +Cn−1� −
n−2∏
j=1

[
n− j− 1
n− j

]2δ�j�
�−1�δ�n−1� :

By Lemma 2.3, the right-hand side becomes, after some by now obvious ma-
nipulations,

n

[
n− 2
n

]δ�1�[ n

n− 1

]2δ�1� n−1∏
j=1

[
n− j

n− j+ 1

]2δ�j�

+
n−2∑
j=1

�δ�j� − δ�j+1��
n− j

�n− j− 1�2
j∏
k=1

[
n− k− 1
n− k

]2δ�k� n−1∏
k=j+1

[
n− k

n− k+ 1

]2δ�k�

−
n−2∏
j=1

[
n− j− 1
n− j

]2δ�j�
�−1�δ�n−1� :

The middle sum is readily seen to be equal to

δ�1�
n− 1
�n− 2�2

(
n− 2
n− 1

)2δ�1� n−1∏
k=2

[
n− k

n− k+ 1

]2δ�k�

− δ�n−1�2
n−2∏
k=1

[
n− k− 1
n− k

]2δ�k�[1
2

]2δ�n−1�

+
n−2∑
j=2

δ�j�
n− j+ 1
�n− j�3

j−1∏
k=1

�· · ·�2δ�k�
n−1∏
k=j
�· · ·�2δ�k�;

whence the result. 2

Proof of Theorem 1.1. Theorem 1.1 follows from (2.4) and Lemma 2.5
upon collecting and rearranging terms. 2

We now study the sequence

Tn = �n− 1�
n−1∑
i=1

δ�ixn�ψ�Zixn��n− i�−2
i−1∏
j=1

[
n− j− 1
n− j

]2δ�jxn�
;

with ψ = ϕ2 ≥ 0. Since we will investigate the stochastic behavior of Tn as
n varies in time, it will sometimes be necessary to use the notation Zixn and
δ�ixn� again instead of Z�i� and δ�i�. Put

Fn = σ�Zixn; δ�ixn�; 1 ≤ i ≤ n; Zi; δi; i > n�:

Clearly, Tn is adapted to Fn. Moreover, the Fns are nonincreasing. In the
following text we study the conditional expectation of Tn w.r.t. Fn+1. For this,
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note that (for a continuous H)

E
{
δ�ixn�ψ�Zixn��n− i�−2

i−1∏
j=1

[
n− j− 1
n− j

]2δ�jxn�
�Fn+1

}

= E
{
· · ·1�Zixn+1<Zn+1��Fn+1

}
+

i∑
k=1

E
{
· · ·1�Zn+1=Zkxn+1��Fn+1

}

= δ�ixn+1�ψ�Zixn+1�
n− i+ 1

�n− i�2�n+ 1�
i−1∏
j=1

[
n− j− 1
n− j

]2δ�jxn+1�

+ δ�i+1xn+1�ψ�Zi+1xn+1�
1

�n− i�2�n+ 1�

×
i∑

k=1

k−1∏
j=1

[
n− j− 1
n− j

]2δ�jxn+1� i∏
j=k+1

[
n− j

n− j+ 1

]2δ�jxn+1�

:

Conclude that

E�Tn�Fn+1� = �n− 1�
n−1∑
i=1

δ�ixn+1�ψ�Zixn+1�Vi; n+1

+ �n− 1�δ�nxn+1�ψ�Znxn+1�
1

n+ 1

n−1∑
k=1

k−1∏
j=1

�· · ·�2δ�jxn+1�
n−1∏
j=k+1

�· · ·�2δ�jxn+1�;

where, for 1 ≤ i ≤ n− 1,

Vi; n+1 =
n− i+ 1

�n− i�2�n+ 1�
i−1∏
j=1

[
n− j− 1
n− j

]2δ�jxn+1�

+ 1
�n− i+ 1�2�n+ 1�

i−1∑
k=1

k−1∏
j=1

[
n− j− 1
n− j

]2δ�jxn+1� i−1∏
j=k+1

[
n− j

n− j+ 1

]2δ�jxn+1�

:

The following lemma will be crucial to show that �Tn;Fn�n≥2 (almost) is a
reverse-time submartingale.

Lemma 2.6. For 1 ≤ i ≤ n− 1; we have

�n− 1�Vi; n+1 ≥ n�n+ 1− i�−2
i−1∏
j=1

[
n− j

n− j+ 1

]2δ�jxn+1�

:

Proof. For i = 1, the inequality reduces to n/�n− 1��n+ 1� ≥ 1/n, which
is trivially true. Use induction on i for the general case. Assuming that the
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inequality holds true for i, observe that

�n− 1�Vi+1; n+1

= �n− 1��n− i�
�n− i− 1�2�n+ 1�

i∏
j=1

�· · ·�2δ�j�

+ n− 1
�n− i�2�n+ 1�

i∑
k=1

k−1∏
j=1

�· · ·�2δ�j�
i∏

j=k+1

�· · ·�2δ�j�

= n− 1
n+ 1

{
n− i

�n− i− 1�2
[
n− i− 1
n− i

]2δ�i�
+ 1
�n− i�2

} i−1∏
j=1

[
n− j− 1
n− j

]2δ�j�

+ n− 1
n+ 1

1
�n− i�2

[
n− i

n− i+ 1

]2δ�i� i−1∑
k=1

k−1∏
j=1

�· · ·�2δ�j�
i−1∏

j=k+1

�· · ·�2δ�j� :

Now,

[
n− i

�n− i− 1�2
[
n− i− 1
n− i

]2δ�i�
+ 1
�n− i�2

] �n− i�2
n− i+ 1

≥
[
n+ 1− i
n− i

]2[ n− i
n− i+ 1

]2δ�i�
:

Actually, both sides equal 1 if δ�i� = 1, while for δ�i� = 0 the resulting inequality
is satisfied if and only if

�n− i�5 + �n− i�2�n− i− 1�2 ≥ �n− i+ 1�3�n− i− 1�2:

The difference between the left- and the right-hand side is, however, 3�n −
i�2 − �n− i� − 1 ≥ 0. It follows that

�n− 1�Vi+1; n+1 ≥ �n− 1�Vi; n+1

[
n+ 1− i
n− i

]2[ n− i
n− i+ 1

]2δ�i�
:

Now apply the induction hypothesis to complete the proof. 2

Neglecting the last sum in the representation of E�Tn�Fn+1� for a moment,
Lemma 2.6 would imply

E�Tn�Fn+1� ≥ Tn+1;

that is, �Tn;Fn�n is a reverse-time submartingale. Unfortunately, this last
sum may be strictly less than the target value, as is readily seen for the first
few n. The following lemma will be needed to show that the submartingale
property is only slightly violated.
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Lemma 2.7. For each choice of labels we have

Enn =
n−1∑
k=1

k−1∏
j=1

[
n− j− 1
n− j

]2δ�j� n−1∏
j=k+1

[
n− j

n− j+ 1

]2δ�j�

≥ �n− 1�
n−1∏
j=1

[
n− j

n− j+ 1

]2δ�j�
:

Proof. The assertion will be shown by induction on n. For n = 1 both
sides equal zero. Assume now that the lemma holds true for sample size n.
We then obtain, for n+ 1,

n∑
k=1

k−1∏
j=1

[
n− j

n− j+ 1

]2δ�j� n∏
j=k+1

[
n− j+ 1
n− j+ 2

]2δ�j�

=
n∏
j=2

[
n− j+ 1
n− j+ 2

]2δ�j�
+
(
n− 1
n

)2δ�1� n∑
k=2

k−1∏
j=2

�· · ·�2δ�j�
n∏

j=k+1

�· · ·�2δ�j� :

After a proper index transformation, the last term becomes

n∏
j=2

[
n− j+ 1
n− j+ 2

]2δ�j�

+
(
n− 1
n

)2δ�1� n−1∑
k=1

k−1∏
j=1

[
n− j− 1
n− j

]2δ�j+1� n−1∏
j=k+1

[
n− j

n− j+ 1

]2δ�j+1�

:

Application of the induction hypothesis yields the lower bound

n∏
j=2

[
n− j+ 1
n− j+ 2

]2δ�j�
+
(
n− 1
n

)2δ�1�
�n− 1�

n−1∏
j=1

[
n− j

n− j+ 1

]2δ�j+1�

=
{

1+ �n− 1�
(
n− 1
n

)2δ�1�} n∏
j=2

[
n− j+ 1
n− j+ 2

]2δ�j�
:

Check that the term in brackets always exceeds

n

(
n

n+ 1

)2δ�1�
:

The proof is complete. 2

Corollary 2.8. We have

E�Tn�Fn+1� ≥ Tn+1 − 3δ�nxn+1�ψ�Znxn+1�
n−1∏
j=1

[
n− j

n− j+ 1

]2δ�jxn+1�

:
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Proof. Corollary 2.8 follows from Lemmas 2.6 and 2.7 upon noting that

�n− 1�2
n+ 1

≥ n− 3: 2

Next we study the sequence Rnϕ
2�Znxn�W2

nn. It is readily seen that Rn =
O�1�, so that

nRnϕ
2�Znxn�W2

nn = O�nϕ2�Znxn�W2
nn�:(2.5)

Lemma 2.9. With the same filtration as before,

E�nϕ2�Znxn�W2
nn�Fn+1� ≥ �n+ 1�ϕ2�Zn+1xn+1�W2

n+1; n+1

− 2ϕ2�Zn+1xn+1�W2
n+1; n+1:

Proof. As in the discussion of Tn, we obtain

E�· · · �Fn+1�

≥ n

n+ 1
ϕ2�Zn+1xn+1�δ�n+1xn+1�

n∑
k=1

k−1∏
i=1

[
n− i

n− i+ 1

]2δ�ixn+1� n∏
i=k+1

[
n− i+ 1
n− i+ 2

]2δ�ixn+1�

= n

n+ 1
ϕ2�Zn+1xn+1�δ�n+1xn+1�En+1; n+1

and, therefore, by Lemma 2.7,

E�· · · �Fn+1� ≥
n2

n+ 1
ϕ2�Zn+1xn+1�W2

n+1; n+1

≥ �n+ 1�ϕ2�Zn+1xn+1�W2
n+1; n+1 − 2ϕ2�Zn+1xn+1�W2

n+1; n+1: 2

By Corollary 2.8 and Lemma 2.9, Tn and nϕ2�Znxn�W2
nn, n ≥ 2, are (slightly

disturbed) reverse-time submartingales. A variant of the martingale conver-
gence theorem (cf. Lemma A in the Appendix) will guarantee that both se-
quences converge with probability 1. Lemma 2.10 will be needed in order to
justify the applicability of that lemma.

Lemma 2.10. Under (1.6), we have:

(i) nE�ϕ2�Znxn�W2
nn� → 0.

(ii)
∑
n≥2 E�ϕ2�Znxn�W2

nn� <∞:

Proof. The method of proof is an adaptation of arguments elaborated, in
a different context, in Stute (1994). First, by incorporating the usual quantile
transformation, we may assume without loss of generality, that the Zs are
uniformly distributed on �0;1�. By the distributional theory of uniform order
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statistics and Lemma 2.1 in Stute and Wang (1993), we then obtain

E
{
ϕ2�Znxn�δ�nxn�

n−1∏
i=1

[
n− i

n− i+ 1

]2δ�ixn�}

= n
∫ 1

0
ϕ2�u�m�u�E

{
1�Zn−1xn−1≤u�

n−1∏
i=1

[
n− i

n− i+ 1

]2δ�ixn−1�}
du

= 1
n

∫ 1

0
ϕ2�u�m�u�E

{
1�Zn−1xn−1≤u�

n−1∏
i=1

[
1+ 1−m�Zixn−1�

n− i

]21�Zixn−1<u�
}
du:

For ease of notation we restrict ourselves to the case Z = min�X;Y� with
Y ∼ G. By Lemma 2.6 of Stute and Wang (1993), the inner product converges
to �1−G�u��−2 with probability 1 for each 0 < u < 1. Apply Cauchy–Schwarz
to bound the E-term and use a dominated convergence argument to show that
finally the above term is bounded from above, up to a constant factor, by

n−1
∫
ϕ2�u�m�u��1−G�u��−2u�n−1�/2 du = n−1

∫ ϕ2�x�
1−G�x� �H�x��

�n−1�/2F̃�dx�:

Details are omitted. Another application of dominated convergence yields (i).
Item (ii) is also standard. 2

Corollary 2.11. Under (1.6),

nRnϕ
2�Znxn�W2

nn→ 0 with probability 1:

Proof. The proof follows from an application of (2.5), Lemma A and Lem-
mas 2.9 and 2.10 upon noting that, by the Hewitt–Savage 0–1 law,

lim
n→∞

nϕ2�Znxn�W2
nn = lim

n→∞
nE�ϕ2�Znxn�W2

nn� = 0: 2

Remark. When Z = min�X;Y� and (1.8) holds, convergence in probabil-
ity rather than convergence with probability 1 may also be obtained in the
following way: Conclude from the Stute and Wang (1993) SLLN that, under
(1.8),

ϕ2�Znxn�Wnn

�1−G�Znxn��
→ 0 with probability 1:

Then apply Gill’s inequality [cf. Shorack and Wellner (1986), page 317] to the
Kaplan–Meier estimator of G to get stochastic boundedness of

1−G�Znxn�
1− Ĝn�Znxn−�

as n→∞:

Finally

n�1− Ĝn�Znxn−��Wnn = n�1−Hn�Znxn−�� = OP�1�:
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Note that this separation argument does not yield the assertion of Corol-
lary 2.11, since, with probability 1, �1−G�/�1− Ĝn� is unbounded.

We now determine the limit T of Tn, as n → ∞. Again, by the Hewitt–
Savage 0–1 law, it will be constant. This constant will be part of the asymptotic
variance σ2

1 . The following lemma provides a formula for the expectation of
Tn. It corresponds to Lemma 2.4 in Stute and Wang (1993), where the first
moment of a Kaplan–Meier integral was dealt with. Since we prefer to state
our result for Zs without ties, continuity of H will be assumed. In the final
proof of Theorem 1.2, this assumption may be dropped again.

Lemma 2.12. Assume that H is continuous. Then

ETn =
n

n− 1
E�ϕ2�Z�m�Z�gn−1�Z��;

where

gn�t� = Eϕn�t�

and

ϕn�t� =
n−1∏
i=1

[
1+ 2�1−m�Zixn��

n− i + 1−m�Zixn�
�n− i�2

]1�Zixn<t�
1�t<Znxn�:

Proof. Let Rjn denote the rank of Zj among Z1; : : : ;Zn. By Lemma 2.1
of Stute and Wang (1993),

E�Tn� = �n− 1�E
{n−1∑
i=1

δ�ixn�ψ�Zixn��n− i�−2
i−1∏
j=1

[
1−

δ�jxn�
n− j

]2}

= �n− 1�E
{n−1∑
i=1

δ�ixn�ψ�Zixn��n− i�−2
i−1∏
j=1

[
1−

2δ�jxn�
n− j +

δ�jxn�
�n− j�2

]}

= �n− 1�E
{n−1∑
i=1

m�Zixn�ψ�Zixn��n− i�−2
i−1∏
j=1

[
1− 2m�Zjxn�

n− j + m�Zjxn�
�n− j�2

]}
:

After some elementary algebraic manipulations, the last term becomes

E
{n−1∑
i=1

m�Zixn�ψ�Zixn�
n− 1

i−1∏
j=1

[
1+ 2�1−m�Zjxn��

n− j− 1
+ 1−m�Zjxn�
�n− j− 1�2

]}

= n

n− 1
E
[
m�Z1�ψ�Z1�1�Z1<Znxn�

×
n∏
j=1

[
1+ 2�1−m�Zj��

n−Rjn − 1
+ 1−m�Zj�
�n−Rjn − 1�2

]1�Zj<Z1�
]
:
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Since Z1 < Znxn if and only if Z1 < Zn−1xn−1, the largest order statistic in
the sample Z2; : : : ;Zn, and (in an obvious notation) Rjn = Rj;n−1 on �Zj <
Z1�; 2 ≤ j ≤ n, the assertion of the lemma follows by first conditioning on
Z1 = t and then integrating out. 2

For further analysis of ϕn�t�, fix t such that H�t� < 1. Then there exists
a small ε > 0 and a subset �0 of � with P��0� = 1 such that Z�n�1−ε���ω� >
t for all ω ∈ �0 and n ≥ n0�ω�. In such a situation, we may restrict the
multiplication in the definition of ϕn from 1 to �n�1− ε��. Conclude that

ϕn�t� − ϕ0
n�t� −→ 0 as n→∞ with probability 1;

where

ϕ0
n�t� =

n−1∏
i=1

[
1+ 2�1−m�Zixn��

n− i

]1�Zixn<t�
:

Lemma 2.13. With probability 1, for each t < τH;

lim
n→∞

ϕ0
n�t� = exp

{∫ t
−∞

2�1−m�x��
1−H�x� H�dx�

}
:

The proof is similar to Lemma 2.6 in Stute and Wang (1993).

Corollary 2.14. For a continuous H we have, under (1.6), with prob-
ability 1,

lim
n→∞

Tn = lim
n→∞

ETn =
∫
ϕ2�x�γ2

0�x�m�x�H�dx�:

Proof. The proof is similar to that of Corollary 2.11. Just replace
Lemma 2.9 by Corollary 2.8 and apply Lemmas 2.12 and 2.13. 2

Note that the last integral is an essential part of σ2
1 .

Proof of Theorem 1.2. We shall first give the proof for a continuous H
when ϕ satisfies the condition

�c� ϕ vanishes right of x0 for some x0 < τH:
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Since Znxn→ τH with probability 1, ϕ�Znxn� = 0 eventually with probability 1
so that S̄n = Sn and V̂ar

∗�Jack� = V̂ar�Jack�. Conclude that, by Theorem 1.1,

n V̂ar�Jack�

= �n− 1�
n∑
k=1

�S�k�n �2 − n�n− 1�S2
n

=
{
�n− 1�n

[
n

n− 1

]2δ�1xn�[n− 2
n

]δ�1xn�
+ �δ�1xn� − 1� n

n− 1
− n�n− 1�

}
S2
n

+ �n− 1�
n−2∑
j=1

�δ�jxn� − 1�bj
j−1∏
k=1

[�n− k− 1��n− k+ 1�
�n− k��n− k�

]2δ�kxn�

×
[ n∑
i=j+1

ϕ�Zixn�Win

]2

+ �n− 1�
n−1∑
i=1

ϕ2�Zixn�δ�ixn�
1

�n− i�2
i−1∏
j=1

[
n− j− 1
n− j

]2δ�jxn�
:

(2.6)

Check that �· · ·�, for each choice of δ�1xn�, equals −n/�n−1�. Thus, by the SLLN
for Kaplan–Meier integrals, the first term converges to −S2 with probability 1
as n→∞. The last sum equals Tn, so that Corollary 2.14 applies. Finally, as
to the middle term, we may restrict, under (c), summation to 1 ≤ j ≤ n�1− ε�
for some appropriate 0 < ε < 1, at least for all large n. It is then easy to see
that the sum is, with probability 1, asymptotically equivalent to

n
n∑
j=1

�δ�jxn� − 1��n− j− 1�−2
[ n∑
i=j+1

ϕ�Zixn�Win

]2

:

This in turn may be rewritten as

−
∫ 1
�1−Hn�x−��2

[∫
�y>x�

ϕ�y�F̂n�dy�
]2

H̃0
n�dx�;

where

Hn�x� =
1
n

n∑
i=1

1�Zi≤x� and H̃0
n�x� =

1
n

n∑
i=1

1�Zi≤x; δi=0�:

For each fixed x, the SLLN for Kaplan–Meier integrals yields, with probabil-
ity 1,

lim
n→∞

∫
�y>x�

ϕ�y�F̂n�dy� =
∫
�y>x�

ϕ�y�γ0�y�m�y�H�dy�:(2.7)

A standard Glivenko–Cantelli argument may be applied to show that the con-
vergence in (2.7) is uniform in x. By (c) we may restrict integration to x’s which
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are bounded away from τH. In such a situation the factor �1−Hn�x−��−2 also
creates no problems, so that in summary, with probability 1,

lim
n→∞

∫ 1
�1−Hn�x−��2

[∫
�y>x�

ϕ�y�F̂n�dy�
]2

H̃0
n�dx� =

∫
γ2

1�x��1−m�x��H�dx�:

This completes the proof of Theorem 1.2 when H is continuous and (c) holds.
To deal with a general ϕ, note that, by Corollary 2.11,

nRnϕ
2�Znxn�W2

nn→ 0 with probability 1:

If �∗� applies, this remainder term is zero anyway. Therefore, it remains to
study (2.6) with S∗n and δ∗�nxn� = 0 rather than Sn and δ�nxn�. Since along with
Sn, S∗n also converges to S and the last sum in (2.6) does not contain δ�nxn�
at all, only the sum containing the bjs needs some special care. This term,
however, is always less than or equal to zero; it vanishes if there is no censor-
ship. Since V̂ar

∗
(Jack) is nonnegative, we may conclude that n V̂ar

∗
(Jack) is,

with probability 1 (uniformly in n), continuous in ϕ, whenever ϕ satisfies the
integrability assumption (1.6). Because the functions satisfying the support
condition (c) are dense with respect to the L2-norm, this completes the proof
of Theorem 1.2 when H is continuous. Finally, the general case is obtained by
a quantile transformation. See, for example, Stute and Wang (1993) and Stute
(1995). 2

Remark. We conclude this section by discussing a possible inconsistency
of V̂ar(Jack). Whenever ϕ�Znxn� 6= 0,

n V̂ar�Jack� = �n− 1�
n∑
k=1

�S�k�n �2 − n�n− 1�S̄2
n;

so that, in general, the expansion (2.6) contains an additional summand

+ 2�n− 1�Snϕ�Znxn�δ�nxn��1− δ�n−1xn��
n−2∏
i=1

[
n− i− 1
n− i

]δ�ixn�
:

Under �∗�, this term is not negligible; on the contrary, it may dominate the
other terms appearing in (2.6).

APPENDIX

The following lemma constitutes an adaptation of a result by Van Ryzin
(1969) to the case of reverse-time submartingales. Let Fn, n ≥ 1, be a nonin-
creasing sequence of sub-σ-fields such that Mn is integrable and adapted to
Fn. Also, let M′n be another integrable random variable adapted to Fn.

Lemma A. Assume:

(i) E�Mn�Fn+1� ≥Mn+1 +M′n+1.
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(ii)
∞∑
n=1

E��M′n�� <∞.

(iii) infn E�Mn� > −∞:
Then Mn converges almost surely and in the mean to a finite limit.

Proof. Put

Tn =Mn + E
( n∑
k=1

M′k�Fn

)
:

From (i) and by monotonicity of �Fn�n,

E�Tn�Fn+1� ≥Mn+1 +M′n+1 + E
( n∑
k=1

M′k�Fn+1

)

= Tn+1;

that is, �Tn;Fn�n is a reverse submartingale. Moreover by (iii),

E�Tn� ≥ E�Mn� −
n∑
k=1

E�M′k�

≥ inf
k
E�Mk� −

∞∑
k=1

E�M′k� > −∞:

Hence, �Tn�n converges almost surely and in the mean to a finite limit. How-
ever,

∑n
k=1M

′
k → M almost surely and in the mean. Hence, by the reverse

martingale version of the corollary of Chow and Teicher [(1978), page 233],

E
( n∑
k=1

M′k�Fn

)
→ E�M�F∞�

almost surely and in the mean, where F∞ =
⋂
n≥1 Fn. This proves the

lemma. 2

Acknowledgments. Thanks to my students Silke Thies and Sandra
Ziegler for their assistance in a simulation study. Without their help the
special effects in the extreme right tails probably would not have been
discovered.

REFERENCES

Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on
Counting Processes. Springer, New York.

Breslow, N. and Crowley, J. (1974). A large sample study of the life-table and product limit
estimates under random censorship. Ann. Statist. 2 437–453.

Chow, Y. S. and Teicher, H. (1978). Probability Theory. Independence, Interchangeability, Mar-
tingales. Springer, Berlin.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall,
New York.



2704 W. STUTE

Gaver, D. P. and Miller, R. G. (1983). Jackknifing the Kaplan–Meier survival estimator for cen-
sored data: simulation results and asymptotic analysis. Comm. Statist. Theory Methods
12 1701–1718.

Gray, H. L. and Schucany, W. R. (1972). The Generalized Jackknife Statistics. Dekker, New York.
Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations.

J. Amer. Statist. Assoc. 53 457–481.
Klein, J. P. (1991). Small sample moments of some estimators of the variance of the Kaplan–

Meier and Nelson–Aalen estimators. Scand. J. Statist. 18 333–340.
Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43 353–360.
Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics.

Wiley, New York.
Stute, W. (1994). The bias of Kaplan–Meier integrals. Scand. J. Statist. 21 475–484.
Stute, W. (1995). The central limit theorem under random censorship. Ann. Statist. 23 422–439.
Stute, W. and Wang, J.-L. (1993). The strong law under random censorship. Ann. Statist. 21

1591–1607.
Stute, W. and Wang, J.-L. (1994). The jackknife estimate of a Kaplan–Meier integral. Biometrika

81 602–606.
Tsiatis, A. A. (1975). A nonidentifiability aspect of the problem of competing risks. Proc. Nat.

Acad. Sci. U.S.A. 72 20–22.
Tukey, J. W. (1958). Bias and confidence in not quite large samples (abstract). Ann. Math. Statist.

29 614.
Van Ryzin, J. (1969). On strong consistency of density estimates. Ann. Math. Statist. 40

1765–1772.

Mathematisches Institut
Universität Giessen
Arndtstrasse 2
D-35392 Giessen
Germany
E-mail: winfried.stute@math.uni-giessen.de


