SEARCHING PROBABILITIES FOR NONZERO EFFECTS IN SEARCH DESIGNS FOR THE NOISY CASE

By Teruhiro Shirakura, Tadashi Takahashi and
Jagdish N. Srivastava
Kobe University, Kobe University and Colorado State University
Consider search designs for identifying at most k nonzero effects under a search linear model. In the noisy case, the procedure for identifying these effects, which is based on the sum of squares due to error, is considered and its stochastic properties are studied. The errors of observations are assumed to be distributed independently with the normal distribution $N\left(0, \sigma^{2}\right)$ and, in particular, the case of $k=1$ is considered. Some results on a searching probability under the procedure are presented. Probabilities with respect to search designs which are main effect plus one plans constructed in earlier works, are presented. A comparison between two search designs is given by using a criterion based on probability.

1. Introduction. Consider the search linear model

$$
\begin{equation*}
\mathbf{y}=A_{1} \xi_{1}+A_{2} \xi_{2}+\mathbf{e}, \quad V(\mathbf{e})=\sigma^{2} I \tag{1.1}
\end{equation*}
$$

where $\mathbf{y}(N \times 1)$ is a vector of observations, $A_{i}\left(N \times \nu_{i}\right)$ are known design matrices and $\xi_{i}\left(\nu_{i} \times 1\right)$ are vectors of effects for $i=1,2, \mathbf{e}(N \times 1)$ is an error vector, σ^{2} is the error variance and I is the identity matrix of appropriate order. It is known that at most k effects of ξ_{2} are nonzero, where k is assumed to be a quite small positive integer compared with ν_{2}, and the remaining effects of ξ_{2} are zero. However, it is not known which are the nonzero effects. It is assumed that the effects of ξ_{1} are completely unknown. The problem is to search (or identify) the k nonzero effects of ξ_{2} and estimate them and also estimate the effects in $\boldsymbol{\xi}_{1}$. This concept was introduced by Srivastava (1975), who gave the following basic mathematical formulation of the problem.

Theorem 1.1. Consider the model (1.1) and let $\sigma^{2}=0$. A necessary and sufficient condition that the search and inference problem can be completely solved is that for every submatrix $A_{22}(N \times 2 k)$ of A_{2},

$$
\begin{equation*}
\operatorname{rank}\left(A_{1}: A_{22}\right)=\nu_{1}+2 k \tag{1.2}
\end{equation*}
$$

holds.

[^0]The case when $\sigma^{2}=0$ is called the noiseless case. However, in practical experiments, we have the noisy case $\sigma^{2}>0$, in which the condition (1.2) is still necessary. Henceforth, we consider a design (called a search design) such that condition (1.2) holds. For the noisy case, Srivastava (1975) also proposed a procedure for solving the problem, which corresponds to the minimization of the sum of squares due to error (SSE). The purpose of this paper is to study stochastic properties of SSE for a given search design. Under the procedure, it is interesting to learn how large the probability is that a search design could search the nonzero effects. Ghosh (1987) studied equivalence properties for the minimization of SSE and also gave an estimator of the number k of nonzero effects in ξ_{2}.

In Section 2, some results on the minimization of SSE are given and a search probability is discussed. In Sections 3 and 4, the components of the error vector \mathbf{e} are assumed to be distributed independently with the normal distribution $N\left(0, \sigma^{2}\right)$ and, in particular, the case of $k=1$ is considered. In Section 3, the searching probability is more deeply investigated and a criterion based on it is proposed for selecting a search design. Section 4 presents computational results of the searching probabilities with respect to search designs which are main effect plus one (MEP.1) plans for 2^{m} factorials given by Ghosh (1981), Ohnishi and Shirakura (1985), Shirakura (1991) and Shirakura and Tazawa (1991). A comparison between the two plans is given by using the criterion in Section 3.
2. Procedure for searching nonzero effects. Consider a search design T with N treatments. Suppose $\zeta(k \times 1)$ is a vector of nonzero effects of ξ_{2}. Then model (1.1) reduces to

$$
\begin{equation*}
\mathbf{y}=A_{1} \xi_{1}+A_{21}(\zeta) \zeta+\mathbf{e} \tag{2.1}
\end{equation*}
$$

where $A_{21}(\zeta)$ is the $N \times k$ submatrix of A_{2} corresponding to $\zeta\left(\subset \xi_{2}\right)$. The BLUE of $\boldsymbol{\theta}=\left(\xi_{1}^{\prime}, \zeta^{\prime}\right)^{\prime}$ and the estimate of \mathbf{y} are given by

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}=\overline{\binom{\boldsymbol{\xi}_{1}}{\zeta}}=M(\zeta)^{-1} A(\zeta)^{\prime} \mathbf{y} \quad \text { and } \quad \hat{\mathbf{y}}=A(\zeta) \hat{\boldsymbol{\theta}} \tag{2.2}
\end{equation*}
$$

respectively, where

$$
\begin{equation*}
A(\zeta)=\left[A_{1}: A_{21}(\zeta)\right], \quad M(\zeta)=A(\zeta)^{\prime} A(\zeta) . \tag{2.3}
\end{equation*}
$$

Then the $\operatorname{SSE} s(\zeta)^{2}$ can be written as

$$
\begin{equation*}
s(\zeta)^{2}=\|\mathbf{y}-\hat{\mathbf{y}}\|^{2}=\mathbf{y}^{\prime}(I-Q(\zeta)) \mathbf{y}, \tag{2.4}
\end{equation*}
$$

where $\|\cdot\|$ is the length of a vector and

$$
Q(\zeta)=A(\zeta) M(\zeta)^{-1} A(\zeta)^{\prime}
$$

Note that $Q(\zeta)$ is an idempotent matrix of order N satisfying

$$
Q(\zeta)^{\prime}=Q(\zeta), \quad Q(\zeta)^{2}=Q(\zeta) \quad \text { and } \quad A(\zeta)=Q(\zeta) A(\zeta) .
$$

Srivastava (1975) proposed the folowing procedure for searching out the nonzero effects of ζ_{2} : for an observation vector \mathbf{y}, calculate $s(\zeta)^{2}$ for all possible $k \times 1$ vectors ζ of ξ_{2}. Find a vector $\zeta^{*}(k \times 1)$ for which $s\left(\zeta^{*}\right)^{2}$ turns out to be a minimum. Then take ζ^{*} as the possibly nonzero vector of ξ_{2}. Also, the BLUE of $\left(\xi_{1}, \zeta^{*}\right)$ is given by replacing ζ with ζ^{*} in $\boldsymbol{\theta}$ of (2.2).

Now assume the true model of (1.1) to be

$$
\begin{equation*}
\mathbf{y}=A_{1} \xi_{1}+A_{21}\left(\zeta_{0}\right) \zeta_{0}+\mathbf{e} \tag{2.5}
\end{equation*}
$$

where ζ_{0} is the $k \times 1$ vector of possibly nonzero effects of $\boldsymbol{\xi}_{2}$. Then it follows that the expectation of $s(\zeta)^{2}$ of (2.4) is given as

$$
E\left(s(\zeta)^{2}\right)=\boldsymbol{\theta}_{0}^{\prime} B\left(\zeta ; \zeta_{0}\right) \boldsymbol{\theta}_{0}+\left(N-\nu_{1}-k\right) \sigma^{2}
$$

where $\boldsymbol{\theta}_{0}=\left(\xi_{1}^{\prime}, \zeta_{0}^{\prime}\right)^{\prime}$ and

$$
B\left(\zeta: \zeta_{0}\right)=A\left(\zeta_{0}\right)^{\prime}(I-Q(\zeta)) A\left(\zeta_{0}\right)
$$

Therefore, the following theorem can easily be established:
Theorem 2.1. Under (2.5), $E\left(s(\zeta)^{2}\right) \geq\left(N-\nu_{1}-k\right) \sigma^{2}$. Furthermore, $E\left(s(\zeta)^{2}\right)=\left(N-\nu_{1}-k\right) \sigma^{2}$ holds for any values of elements in $\boldsymbol{\theta}_{0}$ if and only if $\zeta=\zeta_{0}$.

We study more deeply the stochastic properties of $s(\zeta)^{2}$. Let

$$
M=A_{1}^{\prime} A_{1} \quad \text { and } \quad Q=A_{1} M^{-1} A_{1}^{\prime}
$$

and define

$$
\begin{equation*}
h(\zeta, \mathbf{y})=\mathbf{y}^{\prime}(Q(\zeta)-Q) \mathbf{y} \tag{2.6}
\end{equation*}
$$

Then $s(\zeta)^{2}$ can be expressed as

$$
s(\zeta)^{2}=\mathbf{y}^{\prime}(I-Q) \mathbf{y}-h(\zeta, \mathbf{y}) .
$$

We thus establish the following theorem.
Theorem 2.2. For an observation vector \mathbf{y}, the minimization of $s(\zeta)^{2}$ on ζ $\left(\subset \boldsymbol{\xi}_{2}\right)$ is equivalent to the maximization of $h(\zeta, \mathbf{y})$ on $\zeta\left(\subset \boldsymbol{\xi}_{2}\right)$.

In view of the procedure considered here for searching ζ_{0} in (2.5), it is most desirable that if $\zeta^{*}\left(\subset \boldsymbol{\xi}_{2}\right)$ maximizes $h(\zeta, \mathbf{y})$, then $\zeta^{*}=\zeta_{0}$ is obtained exactly. However, this is not ensured for the noisy case. So, for \mathbf{y} composed of random variables, consider the minimum probability

$$
\begin{equation*}
P=\min _{\zeta_{0} \subset \xi_{2}} \min _{\zeta \in \mathscr{A}\left(\xi_{2} ; \zeta_{0}\right)} P\left(h\left(\zeta_{0}, \mathbf{y}\right)>h(\zeta, \mathbf{y})\right), \tag{2.7}
\end{equation*}
$$

where $\mathscr{A}\left(\xi_{2} ; \zeta_{0}\right)$ denotes the set of all possible ζ of $\boldsymbol{\xi}_{2}$, of which at least one effect is not of ζ_{0}. This means that the larger the value of P, the higher the confidence with which the true vector could be searched by the procedure. In this sense, P is called a searching probability.

Since the matrix $M(\zeta)$ in (2.3) is positive definite, the following two lemmas can easily be obtained.

Lemma 2.3. The inverse of $M(\zeta)$ is expressed as
$M(\zeta)^{-1}$

$$
=\left[\begin{array}{c:c}
M^{-1}+M^{-1} A_{1}^{\prime} A_{21}(\zeta) C(\zeta) A_{21}(\zeta)^{\prime} A_{1} M^{-1} & -M^{-1} A_{1}^{\prime} A_{21}(\zeta) C(\zeta) \\
\hdashline-C(\zeta) A_{21}(\zeta)^{\prime} A_{1} M^{-1} & C(\zeta)
\end{array}\right],
$$

where

$$
C(\zeta)=\left(A_{21}(\zeta)^{\prime}(I-Q) A_{21}(\zeta)\right)^{-1}
$$

Lemma 2.4. $\quad h(\zeta, \mathbf{y})$ of (2.6) can be expressed as

$$
\begin{equation*}
h(\zeta, \mathbf{y})=\mathbf{y}^{\prime}(I-Q) A_{21}(\zeta) C(\zeta) A_{21}(\zeta)^{\prime}(I-Q) \mathbf{y} \tag{2.8}
\end{equation*}
$$

These two lemmas may be useful in evaluating the searching probability P.
3. Searching probabilities for one nonzero effect. Consider the case of $k=1$, where there exists at most one nonzero effect in $\boldsymbol{\xi}_{2}$. Then model (2.1) becomes

$$
\mathbf{y}=A_{1} \boldsymbol{\xi}_{1}+\mathbf{a}(\zeta) \zeta+\mathbf{e}
$$

where ζ is an effect in $\boldsymbol{\xi}_{2}$ and $\mathbf{a}(\zeta)$ [$=A_{21}(\zeta)$] is the $N \times 1$ column of A_{2} corresponding to ζ. Suppose now the components of the error vector e are distributed independently with a normal distribution $N\left(0, \sigma^{2}\right)$. The $h(\zeta, \mathbf{y})$ of (2.8) reduces to

$$
\begin{equation*}
h(\zeta, \mathbf{y})=\left\{\mathbf{a}(\zeta)^{\prime}(I-Q) \mathbf{y}\right\}^{2} / r(\zeta) \tag{3.1}
\end{equation*}
$$

where $r(\zeta)=\mathbf{a}(\zeta)^{\prime}(I-Q) \mathbf{a}(\zeta)$ is a positive value for any ζ. By (3.1), it is clear that the true model

$$
\mathbf{y}=A_{1} \boldsymbol{\xi}_{1}+\mathbf{a}\left(\zeta_{0}\right) \zeta_{0}+\mathbf{e}
$$

yields

$$
\begin{aligned}
h(\zeta, \mathbf{y}) & =\left(\frac{\mathbf{a}(\zeta)^{\prime}(I-Q) \mathbf{a}\left(\zeta_{0}\right)}{\sqrt{r(\zeta)}} \zeta_{0}+\frac{\mathbf{a}(\zeta)^{\prime}(I-Q) \mathbf{e}}{\sqrt{r(\zeta)}}\right)^{2} \\
& =\left\{\mathbf{b}(\zeta)^{\prime} \mathbf{b}\left(\zeta_{0}\right) \sqrt{r\left(\zeta_{0}\right)} \zeta_{0}+\mathbf{b}(\zeta)^{\prime} \mathbf{e}\right\}^{2}
\end{aligned}
$$

where $\mathbf{b}(\zeta)=(I-Q) \mathbf{a}(\zeta) / \sqrt{r(\zeta)}$, which is the unit vector, that is, $\|\mathbf{b}(\zeta)\|$ $=1$. Denote

$$
Z=\mathbf{b}(\zeta)^{\prime} \mathbf{e}+\mathbf{b}(\zeta)^{\prime} \mathbf{b}\left(\zeta_{0}\right) \delta_{0} \quad \text { or } \quad Z_{0}=\mathbf{b}\left(\zeta_{0}\right)^{\prime} \mathbf{e}+\delta_{0}
$$

according as $\zeta \neq \zeta_{0}$ or $\zeta=\zeta_{0}$, where $\delta_{0}=\sqrt{r\left(\zeta_{0}\right)} \zeta_{0}$. Then it is easy to see that for $\zeta \neq \zeta_{0}$,

$$
\begin{align*}
P\left(h\left(\zeta_{0}, \mathbf{y}\right)>h(\zeta, \mathbf{y})\right) & =P\left(Z_{0}^{2}>Z^{2}\right) \\
& =P\left(\left(Z_{0}+Z\right)\left(Z_{0}-Z\right)>0\right) \tag{3.2}\\
& =P\left(X_{1}>0, X_{2}>0\right)+P\left(X_{1}<0, X_{2}<0\right)
\end{align*}
$$

where

$$
\begin{align*}
& X_{1}=Z_{0}-Z=\left(\mathbf{b}\left(\zeta_{0}\right)-\mathbf{b}(\zeta)\right)^{\prime} \mathbf{e}+\left(1-\mathbf{b}(\zeta)^{\prime} \mathbf{b}\left(\zeta_{0}\right)\right) \delta_{0} \tag{3.3}\\
& X_{2}=Z_{0}+Z=\left(\mathbf{b}\left(\zeta_{0}\right)+\mathbf{b}(\zeta)\right)^{\prime} \mathbf{e}+\left(1+\mathbf{b}(\zeta)^{\prime} \mathbf{b}\left(\zeta_{0}\right)\right) \delta_{0}
\end{align*}
$$

It follows from condition (1.2) that $\mathbf{b}\left(\zeta_{0}\right) \neq \pm \mathbf{b}(\zeta)$ for any ζ_{0} and $\zeta\left(\neq \zeta_{0}\right) \in$ $\boldsymbol{\xi}_{2}$. Furthermore, $\left(\mathbf{b}\left(\zeta_{0}\right)-\mathbf{b}(\zeta)\right)^{\prime}\left(\mathbf{b}\left(\zeta_{0}\right)+\mathbf{b}(\zeta)\right)=0$. Therefore, the following result is true.

LEMMA 3.1. Random variables X_{1} and X_{2} defined in (3.3) are stochastically independent and have the normal distributions $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $N\left(\mu_{2}, \sigma_{2}^{2}\right)$, respectively, where

$$
\begin{aligned}
& \mu_{1}=\left(1-\mathbf{b}(\zeta)^{\prime} \mathbf{b}\left(\zeta_{0}\right)\right) \delta_{0}, \quad \mu_{2}=\left(1+\mathbf{b}(\zeta)^{\prime} \mathbf{b}\left(\zeta_{0}\right)\right) \delta_{0}, \\
& \sigma_{1}^{2}=2\left(1-\mathbf{b}(\zeta)^{\prime} \mathbf{b}\left(\zeta_{0}\right)\right) \sigma^{2}, \quad \sigma_{2}^{2}=2\left(1+\mathbf{b}(\zeta)^{\prime} \mathbf{b}\left(\zeta_{0}\right)\right) \sigma^{2} .
\end{aligned}
$$

By this lemma, the following theorem is now established.
Proposition 3.2. The probability of (3.2) can be written as

$$
\begin{align*}
G(x, d)= & 1-\Phi(d \sqrt{1-x})-\Phi(d \sqrt{1+x}) \\
& +2 \Phi(d \sqrt{1-x}) \Phi(d \sqrt{1+x}) \tag{3.4}
\end{align*}
$$

where

$$
\begin{align*}
x & =\mathbf{b}(\zeta)^{\prime} \mathbf{b}\left(\zeta_{0}\right), \quad-1 \leq x \leq 1 \\
d & =\frac{\delta_{0}}{\sqrt{2} \sigma}=\sqrt{\frac{r\left(\zeta_{0}\right)}{2}} \frac{\zeta_{0}}{\sigma} \tag{3.5}
\end{align*}
$$

and $\Phi(x)$ is the distribution function of the standard normal distribution $N(0,1)$.

THEOREM 3.3. The function $G(x, d)$ of (3.4) has the following properties:
(i) $G(-x, d)=G(x, d)$ and $G(x,-d)=G(x, d)$ for $-1 \leq x \leq 1$.
(ii) $G(1, d)=0.5$ and $G(x, 0)=0.5$ for $-1 \leq x \leq 1$.
(iii) For a fixed $d(\neq 0), G(x, d)$ is strictly decreasing on $0<x<1$.
(iv) For a fixed $x(-1<x<1), G(x, d)$ is strictly increasing on $d>0$.

Proof. The proofs for (i) and (ii) are trivial. For (iii), the differential of $G(x, d)$ on x is

$$
\begin{aligned}
\frac{\partial}{\partial x} G(x, d)=\frac{d}{\sqrt{2 \pi}}\{ & \exp \left(-\frac{d^{2}(1-x)}{2}\right) \frac{0.5-\Phi(d \sqrt{1+x})}{\sqrt{1-x}} \\
& \left.-\exp \left(-\frac{d^{2}(1+x)}{2}\right) \frac{0.5-\Phi(d \sqrt{1-x})}{\sqrt{1+x}}\right\}
\end{aligned}
$$

For any $d \neq 0$, it can easily be checked that this function is negative on $0<x<1$. Similarly, we can prove (iv).

From Theorems 3.2 and 3.3(iii), note that, for an effect ζ_{0} and any $\zeta\left(\neq \zeta_{0}\right) \in \xi_{2}$, the probability of (3.2) is larger (or smaller) when the value of $|x|=\left|\mathbf{b}(\xi)^{\prime} \mathbf{b}\left(\zeta_{0}\right)\right|$ in (3.5) is smaller (or larger). For a fixed $\zeta_{0} \in \xi_{2}$, therefore, denote

$$
\begin{equation*}
x\left(\zeta_{l_{0}}\right)=\left|\mathbf{b}\left(\zeta_{l_{0}}\right)^{\prime} \mathbf{b}\left(\zeta_{0}\right)\right|=\max _{\zeta \in \mathscr{A}\left(\xi_{2} ; \zeta_{0}\right)}\left|\mathbf{b}(\zeta)^{\prime} \mathbf{b}\left(\zeta_{0}\right)\right| . \tag{3.6}
\end{equation*}
$$

Then the searching probability of (2.7) can be written as

$$
\begin{equation*}
P=G\left(x_{0}, q_{0} \rho\right)=\min _{\zeta_{0} \in \xi_{2}} G\left(x\left(\zeta_{l_{0}}\right), \sqrt{\frac{r\left(\zeta_{l_{0}}\right)}{2}} \rho\right) \tag{3.7}
\end{equation*}
$$

[$=P_{T}(\rho)$, say; clearly, P is dependent on a searching design T], where ρ is the actual quantity of the effect ζ_{0} / σ. Since $P_{T}(\rho)=P_{T}(-\rho)$ from Theorem $3.3(\mathrm{i}), P_{T}(\rho)$ can be considered only for $\rho>0$. From Theorem 3.3(ii) and (iv), also note that $P_{T}(\rho)>0.5$ and is strictly increasing for $\rho>0$. Besides taking an interest in the amount of $P_{T}(\rho)$ for a given T and for each ρ, the searching probability may be used for competing search designs.

Definition 3.1. Let T_{1} and T_{2} be two search designs with N treatments. Then T_{1} is said to be better (for searching the true effect) than T_{2} if $P_{T_{1}}(\rho) \geq P_{T_{2}}(\rho)$ holds for each $\rho>0$.

Theorem 3.4. Suppose $r(\zeta)$ is constant for $\zeta \in \xi_{2}$. Then the searching probability $P_{T}(\rho)$ of (3.7) can be expressed as

$$
\begin{equation*}
P_{T}(\rho)=G\left(x_{0}^{*}, q \rho\right), \tag{3.8}
\end{equation*}
$$

where $q=\sqrt{r(\zeta) / 2}$ and for $x\left(\zeta_{l_{0}}\right)$ in (3.6),

$$
x_{0}^{*}=\max _{\zeta_{0} \in \xi_{2}} x\left(\zeta_{l_{0}}\right) .
$$

The proof follows easily from Theorem 3.3(iii).
The utility of this theorem will be presented in the next section.
4. Searching probabilities with respect to MEP. 1 plans. Consider a factorial experiment with m factors each at two levels. A treatment is represented by $\left(t_{1}, \ldots, t_{m}\right)$, where t_{i}, the level of i th factor, equals 0 or 1 . Note that a design can be written as a $(0,1)$ matrix whose rows are treatments. In model (1.1), consider ξ_{1} to be a vector composed of the general mean and the main effects $\left(\nu_{1}=m+1\right)$ and ξ_{2} to be of certain ν_{2} interactions. This implies that the remaining interactions are assumed negligible in advance. In this setting, a search design [satisfying (1.2)] is called a main effect plus k (MEP.k) plan. In particular, consider the case of $k=1$. Let T be a MEP. 1 plan with N treatments. In the following discussion, consider two types of $\boldsymbol{\xi}_{2}$ according to the situations for the effects in which a nonzero effect should be searched and estimated.

Type 1. ξ_{2} is the vector composed only of two-factor interactions where $\nu_{2}=\binom{m}{2}$.

Denote by $\Omega(m, j)$, the $\binom{m}{j} \times m$ matrix composed of all distinct treatments in which the number of ones is $j(j=0, \ldots, m)$. Then, as shown by Shirakura and Tazawa (1991), the deisgns

$$
T= \begin{cases}{\left[\Omega(4,0)^{\prime}: \Omega(4,1)^{\prime}: \Omega(4.3)^{\prime}\right]^{\prime},} & \text { for } m=4, \tag{4.1}\\ {\left[\Omega(m, 1)^{\prime}: \Omega(m, m-1)^{\prime}\right]^{\prime},} & \text { for } m>5\end{cases}
$$

are MEP. 1 plans with $N=9$ and $N=2 m$ treatments, respectively. These MEP. 1 plans are considered here. After some claculations, it is easy to observe that $r(\zeta)$ is constant for all $\zeta \in \boldsymbol{\xi}_{2}$; that is,

$$
\mathbf{r}(\zeta)= \begin{cases}112 / 13, & \text { for } m=4 \\ 16(m-2) / m, & \text { for } m \geq 5\end{cases}
$$

and that $|x|=\left|\mathbf{b}(\zeta)^{\prime} \mathbf{b}\left(\zeta_{0}\right)\right|$ in (3.5) have two values for each m as follows:

$$
|x|= \begin{cases}\frac{1}{14} \text { and } \frac{6}{7}, & \text { for } m=4 \\ \frac{(m-4)}{2(m-2)} \text { and } \frac{2}{m-2}, & \text { for } m \geq 5\end{cases}
$$

Therefore, by Theorem 3.4, $P_{T}(\rho)$ in (3.8) can be expressed as

$$
P_{T}(\rho)= \begin{cases}G\left(\frac{6}{7}, \sqrt{\left.\frac{56}{13} \rho\right),}\right. & \text { for } m=4, \\ G\left(\frac{2}{m-2}, \sqrt{\frac{8(m-2)}{m}} \rho\right), & \text { for } 5 \leq m \leq 8, \\ G\left(\frac{m-4}{2(m-2)}, \sqrt{\frac{8(m-2)}{m}} \rho\right), & \text { for } m \geq 9,\end{cases}
$$

In Table 1, the values of $P_{T}(\rho)$ with respect to T in (4.1) are given for $\rho=1.0,1.5,2.0$ and 2.5 for each $m(4 \leq m \leq 9)$. It turns out that the searching probabilities are larger than 0.94 except for the cases of ($m=4$; $\rho=1.0,1.5$) and ($m=5 ; \rho=1.0$). In particular, for $m \geq 6$ and $\rho \geq 1.5$, the search designs can almost exactly identify the nonzero effect in $\boldsymbol{\xi}_{2}$ under the procedure.

Type 2. ξ_{2} is the vector composed of the two-factor and three-factor interactions, where $\nu_{2}=\binom{m}{2}+\binom{m}{3}$.

Consider MEP. 1 plans ($4 \leq m \leq 8$) listed in Table 2 of Ohnishi and Shirakura (1985), which are the corrected results of Ghosh (1981). In Table 2, the computational results for $P_{T}(\rho)$ in (3.7) for each MEP. 1 plan T are given

TABLE 1
The searching probabilities of $P_{T}(\rho)^{*}$

	\boldsymbol{m}						
$\boldsymbol{\rho}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
1.0	0.78228	0.89519	0.94666	0.96577	0.97501	0.97550	0.97581
1.5	0.88033	0.97109	0.99283	0.99274	0.99863	0.99864	0.99864
2.0	0.94166	0.99429	0.99945	0.99989	0.99996	0.99996	0.99996
2.5	0.97506	0.99921	0.99997	0.99999	0.99999	0.99999	0.99999

*The figures are omitted below the sixth of decimals.
in the same format as Table 1.
Next let

$$
T_{1}=\left[\begin{array}{lllllllllllllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right] .
$$

Then, as shown by Shirakura (1991), the design composed of the first 15 rows of T_{1} is a MEP. 1 plan for $m=7$ and $N=15$. Therefore, this T_{1} is also a MEP. 1 plan for $N=17$. Note that the plan of the first eight rows of T_{1} is the same as in the example in Ghosh (1980). For the plan T_{1}, the searching probability can also be given by

$$
\begin{array}{r}
P_{T_{1}}(\rho)=0.91365,0.98134,0.99726 \text { and } 0.99974 \\
\quad \text { according to } \rho=1.0,1.5,2.0 \text { and } 2.5 .
\end{array}
$$

As a competitive search design, let T_{2} be a MEP. 1 plan for $m=7$ and $N=17$ [of Ohnishi and Shirakura (1985)] considered above. Figure 1 gives the graphs of $P_{T_{1}}(\rho)$ and $P_{T_{2}}(\rho)$ for $\rho>0$. Clearly, T_{1} is better than T_{2} for searching the true effect in $\boldsymbol{\xi}_{1}$.

Table 2
The searching probabilities of $P_{T}(\rho)$

		\boldsymbol{m}			
$\boldsymbol{\rho}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
		0.85898	0.79747	0.83819	0.72546
1.0	0.95469	0.89942	0.93136	0.81713	0.75268
2.0	0.98824	0.95595	0.97622	0.88610	0.84769
2.5	0.99764	0.98349	0.99337	0.93416	0.91446

Fig. 1. Searching probabilities of $P_{T_{1}}(\rho)$ and $P_{T_{2}}(\rho)$.

Acknowledgment. The authors thank the referee for useful comments and suggestions.

REFERENCES

Ghosh, S. (1980). On main effect plus one plans for 2^{m} factorials. Ann. Statist. 8 922-930.
Ghosh, S. (1981). On some new search designs 2^{m} factorial experiments. J. Statist. Plann. Inference 5 381-389.
Ghosh, S. (1987). Influential nonnegligible parameters under the search linear model. Comm. Statist. Theory Methods 16 1013-1025.
Ohnishi, T. and Shirakura, T. (1985). Search designs for 2^{m} factorial experiments. J. Statist. Plann. Inference 11 241-245.
Shirakura, T. (1991). Main effect plus one or two plans for 2^{m} factorials. J. Statist. Plann. Inference 27 65-74.
Shirakura, T. and TAZAWA, S. (1991). Series of main effect plus one or two plans for 2^{m} factorials when three-factor and higher order interactions are negligible. J. Japan Statist. Soc. 21 211-219.
Srivastava, J. N. (1975). Designs for searching non-negligible effects. In A Survey of Statistical Design and Linear Models (J. N. Srivastava, ed.) 507-519. North-Holland, Amsterdam.

Teruhiro Shirakura
Tadashi Takahashi
Department of Mathematics and Informatics
Faculty of Human Development
Kobe University
NADA, KOBE 675
JAPAN

Jagdish Srivastava
Department of Statistics
Colorado State University
Fort Collins, Colorado 80523
E-mAIL: jsrivas@lamar.colostate.edu

[^0]: Received January 1994; revised January 1996.
 AMS 1991 subject classification. Primary 62K15.
 Key words and phrases. Search designs, noisy case, sum of squares due to error, normal distribution, searching probability.

