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CHARACTERIZATION OF MINIMUM ABERRATION
2 nyk DESIGNS IN TERMS OF THEIR

COMPLEMENTARY DESIGNS

BY BOXIN TANG1 AND C. F. J. WU2

Statistics Canada and University of Michigan

A general result is obtained that relates the word-length pattern of a
2ny k design to that of its complementary design. By applying this result
and using group isomorphism, we are able to characterize minimum
aberration 2ny k designs in terms of properties of their complementary
designs. The approach is quite powerful for small values of 2ny k y n y 1.
In particular, we obtain minimum aberration 2ny k designs with 2ny k y
n y 1 s 1 to 11 for any n and k.

1. Introduction. Two-level fractional factorial designs are the most
commonly used designs for factorial experiments. The practical and theoreti-

wcal importance of this class of designs has long been established Box, Hunter
Ž .x nykand Hunter 1978 . A 2 design denotes a design with n factors, each at

two levels, and 2 nyk runs and is a 2yk fraction of the full factorial 2 n design.
Since the fraction can be chosen in many different ways, an important
concern is the choice of fractional factorial designs with good properties. The
most commonly used criterion for design selection is the minimum aberration
Ž . Ž . ŽMA criterion first defined by Fries and Hunter 1980 . Its definition will be

.given in Section 2. It includes the resolution criterion of Box and Hunter
Ž .1961 as a special case, and many design tables such as those in Box, Hunter

Ž .and Hunter 1978 satisfy the MA criterion. A detailed discussion on the MA
Ž .criterion can be found in Chen, Sun and Wu 1993 .

Although computing enables us to find many MA designs, especially the
small ones, it is important to have good theoretical results on the MA designs
because they will give us more insight into the structure of the MA designs
and also are not limited by the capacity of computing. Characterization of MA
designs is a challenging theoretical problem. There is a handful of papers in

Ž . Ž .the literature, for example, Fries and Hunter 1980 , Franklin 1984 , Chen
Ž . Ž .and Wu 1991 and Chen 1992 , which address this issue. Chen and Wu

Ž . nyk1991 gave a theoretical characterization of MA 2 designs with k s 3 and
Ž .4 and Chen 1992 solved the problem for k s 5 by using a combination of

theoretical and computational tools. Because of the technical difficulties,
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Ž . Ž .H. Chen and Hedayat 1996 proposed a modified and technically easier
version of the MA criterion and obtained some interesting results.

The main purpose of this paper is to propose a new approach for character-
izing MA designs in terms of their complementary designs. As will be shown
in Section 2, a 2 nyk design can be viewed as a subset s of n elements in a set
of 2 nyk y 1 elements and its complementary design corresponds to the
complementary set s of s. In Section 3 we present some general results
Ž . ŽTheorems 1 and 2 to relate the word-length pattern of s to that of s. The

.definition of word-length pattern is given in Section 2. If s is much larger
than s, we can study the properties of s by working with the much smaller
and simpler problem for s. Using some rules derived from Theorem 2 and
group isomorphism, we are able to characterize in Section 4 MA 2 nyk designs
with 2 nyk y n y 1 s 3 to 11 for any n and k.

2. Definitions, problem formulation and proposed approach. A
2 nyk fractional factorial design d is uniquely determined by k independent
defining relations. A defining relation is given by a word of letters which are
labels of factors denoted by 1, 2, . . . , n. The number of letters in a word is its
word-length and the group generated by the k independent defining words is

Ž . Ž Ž . Ž . Ž ..the defining contrast subgroup. The vector W d s A d , A d , . . . , A d1 2 n
Ž .is called the word-length pattern of the design d, where A d is the numberi

of words of length i in the defining contrast subgroup. The resolution of a
design is the smallest r satisfying A G 1. Two designs having the samer
resolution may have different word-length patterns. To further discriminate

nyk Ž .2 designs, Fries and Hunter 1980 proposed the minimum aberration
criterion. For two designs d and d , suppose r is the smallest value such1 2

Ž . Ž .that A d / A d . We say that d has less aberration than d ifr 1 r 2 1 2
Ž . Ž .A d - A d . If no design has less aberration than d , then d is said tor 1 r 2 1 1

have minimum aberration.
To illustrate the approach taken in this paper, consider a 24y1 design

which involves eight runs and is defined by any four out of seven orthogonal
columns 1, 2, 3, 12, 13, 23 and 123, where columns 1, 2 and 3 generate all
seven columns and column 12 is the product between column 1 and column 2,
and so on. See Table 1 for an illustration. In particular, the 24y1 design with
the defining contrast I s 1234, where I denotes the column of q’s, is defined
by the columns 1, 2, 3 and 123. If we denote these four columns by c , c , c1 2 3
and c , then obviously they satisfy the relation c c c c s I.4 1 2 3 4

Generally, the choice of the defining contrast subgroup in a 2 nyk design
Ž m .amounts to choosing n columns out of all possible N s 2 y 1 columns

generated by the m independent columns 1, 2, . . . , m, where m s n y k. In
coding theory, the collection of all the 2m y 1 columns corresponds to a

� 4mHamming code, denoted by H s c , c , . . . , c . Let s be the set of nm 1 2 2 y1
Ž . nyk Žcolumns or elements from H that represents the 2 design. For the restm

.of the paper, we will use the terms ‘‘column’’ and ‘‘element’’ interchangeably.
A word of length i consists of i elements c , . . . , c from s such thatj j1 i

c ??? c s I.j j1 i
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TABLE 1

Run 1 2 3 12 13 23 123

1 y y y q q q y
2 y y q q y y q
3 y q y y q y q
4 y q q y y q y
5 q y y y y q q
6 q y q y q y y
7 q q y q y y y
8 q q q q q q q

Our approach is based on two techniques. The first is the use of isomor-
phism to reduce the number of searches for optimal solutions. Consider
another 24y1 design which takes up the columns 2, 12, 23 and 123. These
four columns, denoted by d , d , d and d , satisfy the relation d d d d s I1 2 3 4 1 2 3 4
and the design is reduced to the previous one by the mapping: 2 ª 1, 12 ª 2,
23 ª 3, 123 ª 123. An isomorphism f is a one]one mapping from H to Hm m

Ž . Ž . Ž . nyksuch that f c c s f c f c for any c and c . Two 2 designs, onei i i i i i1 2 1 2 1 2

consisting of the columns c , . . . , c from H and the other of the columns1 n m
d , . . . , d from H , are said to be isomorphic if there is an isomorphic1 n m

Ž .mapping f that maps c to d , that is, d s f c for i s 1, . . . , n. The twoi i i i
24y1 designs given before are isomorphic. Isomorphic designs are treated as
the same design. For example, they are equivalent according to the aberra-
tion criterion.

Let us now turn our attention to the second technique. Consider a 24y1

design of resolution III defined by I s 124, which is inferior to the 24y1

design of resolution IV with I s 1234. The former has the columns s s1
� 4 � 41, 2, 3, 12 out of H and the latter has the columns s s 1, 2, 3, 123 out of3 2

� 4H . If we look at the complement of s , s s H _ s s 13, 23, 123 and,3 1 1 3 1
� 4similarly, s s H _ s s 12, 13, 23 , the three elements in s are indepen-2 3 2 1

Ž .Ž .Ž .dent while those in s satisfy the relation 12 13 23 s I. Intuitively, one2
would argue that when the elements in the complementary set s are more
‘‘dependent,’’ those in the design given by s should be less ‘‘dependent’’ and
thus may have less aberration. A rigorous version of this intuition turns out
to be true and is supported by a general theory to be developed later. As will

m < <be seen later, this technique is particularly useful when 2 y 1 y n s s is
< <much smaller than n s s , that is, when the number of factors n is much

larger than 2 nyky1, half of the run size.
The following lemma is crucial to the application of the two techniques.

LEMMA 1. Suppose H s s j s s s j s . If s and s are isomorphic,m 1 1 2 2 1 2
then s and s are also isomorphic.1 2

Its proof follows a simple group-theoretic argument. A simple result like
Lemma 1 can be used to yield some very useful results as follows.
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COROLLARY 1. Any two 2 nyk designs with n s 2 nyk y 2 are isomorphic.
The same holds for n s 2 nyk y 3.

PROOF. Any 2 nyk design with n s 2 nyk y 2 is defined by a set s of
nyk2 y 2 columns out of H , with m s n y k. Its complement s consists ofm

only one column in H . Since any two sets of one column are isomorphic, them
sets like s must be isomorphic to each other according to Lemma 1. Similarly,

nykfor n s 2 y 3, the complementary set s consists of two distinct columns.
Since any sets of two columns are isomorphic, any two designs with n s
2 nyk y 3 are also isomorphic. I

The mathematical results in Lemma 1 and Corollary 1 can also be found in
Ž .Chen 1990 in a different context. To further exploit the power of Lemma 1,

we need to relate the word-length pattern of the design s to that of the
complementary design s. A general result along these lines will be given next.

3. Main results. As in Section 2, let H be the Hamming code gener-m
ated by m independent columns, and let s be a 2 nyk design consisting of n
columns from H , where m s n y k. Then its complementary design sm
consists of the remaining 2 m y 1 y n columns. In this section we establish

Ž . Ž Ž . Ž . .the relationship between the word-length pattern W s s A s , A s , . . .1 2
Ž . Ž Ž . Ž . .of the design s and the word-length pattern W s s A s , A s , . . . of the1 2

complementary design s. The result is mathematically elegant as well as
practically useful since it enables us to identify a design in terms of proper-
ties of its complementary design. Its value is particularly significant when
applied to give an explicit characterization of minimum aberration designs as
will be demonstrated in Section 4.

Our proof starts with the following combinatorial calculations. For a fixed
Ž .s, let N p denote the number of words of length q in H that consist of pq m

Ž . Ž .elements from s and q y p elements from s. Thus we have A s s N qq q
Ž . Ž .and A s s N 0 . Now, take p distinct elements c , . . . , c from s and q y pq q 1 p

fndistinct elements d , . . . , d from s. Altogether there are ways of1 qyp ž /p ž /q y p

drawing such elements, where f s 2 m y 1 y n, which can be classified ac-
cording to the value of the product c s c ??? c d ??? d . It is obvious that1 p 1 qyp
one and only one of the following five situations can occur:

Ž .i c s I;
Ž . � 4ii c g c , . . . , c , say c s c ;1 p i
Ž . � 4iii c g s _ c , . . . , c ;1 p
Ž . � 4iv c g d , . . . , d ;1 qyp
Ž . � 4v c g s _ d , . . . , d .1 qyp

Ž . Ž .Situation i gives a word of length q and there are N p such words.q
Ž .Situation ii gives a word of length q y 1 but any other set of p elements

� 4 � 4c , . . . , c , c9, c , . . . , c with c9 g s _ c , . . . , c , in combination with1 iy1 iq1 p 1 p
� 4d , . . . , d , also gives the same word c ??? c c ??? c d ??? d . Since1 qyp 1 iy1 iq1 p 1 qyp
there are n y p q 1 subsets of p elements that can give the same word and
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fnŽ .the number of such words is N p y 1 , the total contribution toqy1 ž /p ž /q y p

Ž . Ž . Ž . Ž .by ii is n y p q 1 N p y 1 . Situation iii gives a word of length q q 1,qy1
with p y 1 columns from s and q q p columns from s. Any other set of p

� 4elements c , . . . , c , c, c , . . . , c with i s 1, . . . , p, in combination with1 iy1 iq1 p
� 4d , . . . , d , also gives the same word c ??? c d c. Noting that there are1 qyp 1 p qyp

fnŽ . Ž . ŽN p q 1 such words, the total contribution to by iii is p qqq1 ž /p ž /q y p

. Ž . Ž . Ž .1 N p q 1 . Similar calculations for situations iv and v lead to theqq1
following identity:

fn s N p q n y p q 1 N p y 1Ž . Ž . Ž .q qy1pž / ž /q y p

q p q 1 N p q 1 q f y q q p q 1 N pŽ . Ž . Ž . Ž .qq1 qy1
1Ž .

q q y p q 1 N p .Ž . Ž .qq1

Ž .We first note that N p s 0 for q s 1, 2 and 0 F p F q. Next, letq

fnA p , q s y N p y n y p q 1 N p y 1Ž . Ž . Ž . Ž .q qy1pž / ž /q y p2Ž .
y f y q q p q 1 N p .Ž . Ž .qy1

Ž .Then 1 can be rewritten as

3 q y p q 1 N p q p q 1 N p q 1 s A p , q ,Ž . Ž . Ž . Ž . Ž . Ž .qq1 qq1

Ž . Ž . Ž . Ž .with A p, q given in 2 . Noting that A p, q is determined by N p , withq 9

0 F p F q9 and q9 F q, we now have the following theorem.

Ž Ž . Ž . .THEOREM 1. Given the word-length pattern N 0 , N 0 , . . . of the design3 4
Ž Ž . Ž ..s, the vector N 1 , . . . , N q q 1 for q s 2, 3, . . . can be determinedqq1 qq1

recursively by

q q 1pq1N p q 1 s y1 N 0 q B p , qŽ . Ž . Ž . Ž .qq1 qq1ž /p q 14Ž .
for p s 0, 1, . . . , q ,

where
p qqy1 pqj5 B p , q s p q 1 y1 A j, q .Ž . Ž . Ž . Ž . Ž .Ýž /p ž /j

js0

Ž .In particular, taking p s q in 4 gives
qq16 N q q 1 s y1 N 0 q B q , q .Ž . Ž . Ž . Ž . Ž .qq1 qq1

PROOF. The proof can be easily carried out by mathematical induction.
Ž .Taking p s 0 in 4 gives

N 1 s y q q 1 N 0 q B 0, q ,Ž . Ž . Ž . Ž .qq1 qq1
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Ž . Ž .which reduces to 3 with p s 0. Next assume that 4 holds for p y 1, that
is,

p q q 1
7 N p s y1 N 0 q B p y 1, q .Ž . Ž . Ž . Ž . Ž .qq1 qq1ž /p

Ž . Ž . Ž . Ž .Combining 7 with 3 and 5 , we obtain 4 . I

Ž .By successively applying Theorem 1, we see that N q q 1 can beqq1
expressed as a sum of a constant and a linear combination of
Ž Ž . Ž . Ž ..N 0 , N 0 , . . . , N 0 . In addition, it can be proved that the two leading3 4 qq1

Ž .qq1coefficients have the same value y1 . These are summarized as follows.

Ž .THEOREM 2. The number N q q 1 of words of length q q 1 in theqq1
design s can be expressed as

qq1

N q q 1 s C q C N 0 ,Ž . Ž .Ýqq1 0 j j
js3

or, equivalently,
qq1

8 A s s C q C A s ,Ž . Ž . Ž .Ýqq1 0 j j
js3

where the coefficients C , C , . . . , C are functions of n, f and q. Moreover,0 3 qq1
we have

qq19 C s C s y1 .Ž . Ž .qq1 q

Ž .qq1 Ž .PROOF. We only need to prove C s y1 . From 6 , the terms withq
Ž .N 0 are contained inq

q qy1 qqjB q , q s q q 1 y1 A j, q .Ž . Ž . Ž . Ž .Ý ž /j
js0

Ž .From 2 , we obtain

q qy1 qqjq1B q , q s B q q q 1 y1 N j ,Ž . Ž . Ž . Ž .Ý1 q ž /j
js0

Ž .where B only contains N terms with r F q y 1. From 4 , the equation1 r
above can be expressed as

q q qy1 qqjq1 jB q , q s B q q q 1 y1 y1 N 0Ž . Ž . Ž . Ž . Ž .Ý2 qž / ž /j j
js0

qq1s B q y1 N 0 ,Ž . Ž .2 q

where B only contains N terms with r F q y 1. This completes the proof. I2 r
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Ž .Note that in Theorems 1 and 2 we implicitly assume q q 1 F min n, f .
Ž . wThe result in 8 is similar to the MacWilliams identities in coding theory see

Ž .xPless 1982 . In coding theory the design s is treated as a linear code.
MacWilliams identities relate the A values of s to those of the dual code of sq
while ours relate to the A values of the complementary design s. The proofq
of MacWilliams identities exploits the linearity of both codes.

We now discuss the application of Theorem 2 to characterize minimum
Ž . Ž .aberration designs. By 8 and 9 , it is immediate that

A s s constant y A s ,Ž . Ž .3 3

A s s constant q A s q A s .Ž . Ž . Ž .4 3 4

With some elementary algebra, we can show that

my 1A s s constant y 2 y n A s y A s y A s .Ž . Ž . Ž . Ž . Ž .5 3 4 5

Ž .In a recent paper, H. Chen and Hedayat 1994 independently obtained the
first two equations above. By employing combinatorial enumerations, they
gave separate proofs for each of the two equations. Our proof follows a
different approach and works for general q.

Using these three equations, we can give the following rules for identifying
minimum aberration designs.

RULE 1. A design s* has minimum aberration if:

Ž . Ž . Ž . < <i A s* s max A s over all s s f and3 3
Ž . Ž . Ž .ii s* is the unique set up to isomorphism satisfying i .

RULE 2. A design s* has minimum aberration if:

Ž . Ž . Ž . < <i A s* s max A s over all s s f ,3 3
Ž . Ž . � Ž . Ž . Ž .4ii A s* s min A s : A s s A s* and4 4 3 3
Ž . Ž . Ž .iii s* is the unique set up to isomorphism satisfying ii .

RULE 3. A design s* has minimum aberration if:

Ž . Ž . Ž . < <i A s* s max A s over all s s f ,3 3
Ž . Ž . � Ž . Ž . Ž .4ii A s* s min A s : A s s A s* ,4 4 3 3
Ž . Ž . � Ž . Ž . Ž . Ž . Ž .4iii A s* s max A s : A s s A s* and A s s A s* and5 5 3 3 4 4
Ž . Ž . Ž .iv s* is the unique set up to isomorphism satisfying iii .

Ž .If words of length q G 6 are of interest, one can develop similar rules using
Theorem 2. We now present an example to illustrate the use of Rule 1.

i � 4 � 4EXAMPLE 1. Let f s 2 y 1. Clearly, if I j s is a subgroup of I j H ,m
fŽ . Ž . Žthen A s s r3 is maximized. Since this group is unique up to isomor-3 2

. nykphism , we thus obtain a sequence of minimum aberration 2 designs with
n s 2 m y 2 i columns, i s 1, . . . , m y 1 and m s n y k.
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Application of Rules 1]3 allows us to construct many minimum aberration
designs, some of which will be reported in the next section.

4. Minimum aberration 2nI k designs with f FFFFF 11. In this section
we obtain minimum aberration 2nyk designs for general n and k with f s
2 nyk y 1 y n s 3, 4, . . . , 9 by applying Rule 1 and with f s 10, 11 by applying

Ž .Rule 2. Note that the cases f s 1 and f s 2 are covered by Corollary 1.

Ž .i f s 3. This case is covered by Example 1.
Ž .ii f s 4. There are three nonisomorphic choices for s:

� 4 � 4 � 4s s a, b , c, ab , s s a, b , c, abc , s s a, b , c, d .1 2 3

Ž .Since s is the only one with positive A s s 1, any design whose s is of the1 3 1
type s has minimum aberration. For the sake of brevity, we will say that s1 1
gives minimum aberration designs.

Ž . � 4iii f s 5. First consider the complementary set, s s a, b, c, ab, ac . Be-1
5y2 5y2cause s can be viewed as a 2 design and from Corollary 1 all 21

designs are isomorphic, other s sets must have four or five independent
generators, say, a, b, c, d, e. Among them, the following three are nonisomor-
phic:

� 4 � 4s s a, b , c, d , ab , s s a, b , c, d , abc ,2 3

� 4 � 4s s a, b , c, d , abcd , s s a, b , c, d , e .4 5

Ž . Ž . Ž .Since A s s 2 ) A s s 1 ) A s s 0 for i s 3, 4, 5, s gives minimum3 1 3 2 3 i 1
aberration designs.

6y3Ž . � 4iv f s 6. Since the set s s a, b, c, ab, ac, bc can be viewed as a 21
design and all such designs are isomorphic, s is the only set with three1
independent generators. All the other sets must have at least four indepen-
dent generators and their A values can be shown to be at most 2, which is3

Ž .smaller than A s s 4. Therefore s gives minimum aberration designs.3 1 1
Ž .v f s 7. The most ‘‘dependent’’ s set is of the form

� 410 s s a, b , c, ab, ac, bc, abc ,Ž . 1

which can be viewed as the Hamming code H . As noted in Example 1, s3 1
gives minimum aberration designs. For future applications, we will compute
the A values for the other sets. They must have at least four independent3
generators and are given below:

� 4 � 4s s a, b , c, d , x , x , x , s s a, b , c, d , e, x , x ,2 1 2 3 3 1 2

� 4 � 4s s a, b , c, d , e, f , x , s s a, b , c, d , e, f , g ,4 5

where a, b, c, d, e, f, g denote independent generators and x , x , x , x de-1 2 3
note products of the independent generators in the corresponding set. It is
easy to show that the maximum A value for s is 4 and is uniquely attained3 2
by choosing x s ab, x s ac, x s bc. It is also easy to show that1 2 3

max A s s 2, max A s s 1, A s s 0.Ž . Ž . Ž .3 3 3 4 3 5

So the second largest A value for f s 7 is 4.3
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Ž .vi f s 8. We will prove that the set

� 4s* s a, b , c, d , ab, ac, bc, abc

is the unique set attaining the maximum A value 7, and thus gives3
minimum aberration designs. To this end, we write any set of eight elements

� 4 � 4as s s t j x , where t s x , . . . , x . It is known from the case of f s 7 that8 1 7
Ž .max A t s 7.3

Ž . Ž . � 4a If A t s 7, t must be of the form a, b, c, ab, ac, bc, abc as proved3
before. With this choice of t, x s d.8

Ž .b As proved in the case of f s 7, the next largest A value for t is 4 and3
� 4is uniquely attained by the set t* s a, b, c, d, ab, bc, ac . Additional rela-

tions involving three elements in s must involve x and take the form8

11 x x s x , i / j F 7.Ž . i j 8

Ž .If t is chosen to be t*, there is at most one pair of x and x to satisfy 11 .i j
Therefore

� 4max A t* j x s 5.Ž .3 8

Ž .For any other choice of t, A t F 3 as shown in the case of f s 7. Noting3
Ž .that 11 has at most three solutions, we have shown that the maximum A3

� 4 Ž .value for t j x with A t F 3 is 6, thus completing the proof.8 3
Ž . � 4vii f s 9. The proof is very similar to that of f s 8. Write s s t j x , x ,8 9

Ž .where t has seven elements. The maximum of A t is 7 and is uniquely3
Ž .attained by the set given in 10 . Call this set t . With this choice of t , x , x1 1 8 9

� 4 � 4might take the form d, xd , x g t . The combined set t j d, xd is isomor-1 1
phic for any choice of x in t . So we may take1

U � 412 s s a, b , c, ab, ac, bc, abc, d , adŽ . 1

UŽ .as the set with A s s 8. It remains to prove that any other nonisomorphic3 1
Ž .choice will have a smaller A value. To this end, we note, as in part b of the3

case of f s 8, that the next largest A value for t is 4 and is uniquely3
� 4attained by the set a, b, c, d, ab, bc, ac . For this set the choice of s must be

of the type

� 413 a, b , c, d , ab, bc, ac, x d , x d ,Ž . 1 2

Ž .where x and x are words formed by a, b, c. For the set in 13 , there are at1 2
most three additional relations involving three elements in the set, that is,

x d s x d , x d s x d , x d x d s x x .Ž . Ž .1 1 2 2 1 2 1 2

Ž .So the A value for the set in 13 is at most 7. For other choice of t,3
Ž .A t F 3 and it is easy to show that no matter how x and x are chosen, the3 8 9

A value of the resulting set cannot exceed 7, thus completing the proof.3
It is interesting to point out that, for all the cases to which Rule 1 applies

so far, the elements in the optimum sets s* can be arranged in the Yates
order. See Table 2. However, as we shall see in the cases of f s 10 and 11,
this arrangement does not apply to designs obtained by applying Rule 2.
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TABLE 2
The s set for minimum aberration design with f s 1 to 9

Ž .for each f , the optimum s* consists of the first f words in the second row

f 1 2 3 4 5 6 7 8 9

s* a b ab c ac bc abc d ad

Ž .viii f s 11. We want to find the unique s* set that satisfies Rule 2. By
complete enumerations it can be shown that s must be a subset of H . Since4
the size of s is larger than that of H _ s, it is easier to work with the smaller4
set H _ s. Since H _ s has only four elements, according to the case of f s 4,4 4
there are only three nonisomorphic choices denoted by

� 4 � 4 � 4s s x , y , z , u , s s x , y , z , xyz , s s x , y , z , xy ,1 2 3

Ž . Ž . Ž . Ž . Ž .which have A s s A s s 0, A s s 0, A s s 1, A s s 1,3 1 4 1 3 2 4 2 3 3
Ž .A s s 0. Clearly, s s H _ s satisfies Rule 2. We can write4 3 1 4 1

� 4s s a, b , ab, c, ac, bc, abc, d , ad, bd, cd ,1

� 4s s a, b , ab, c, ac, bc, abc, d , ad, bd, abd .2

14Ž .

Ž . Ž . Ž . Ž .It is seen that A s s A s s 13 and A s s 25 - 26 s A s . There-3 1 3 2 4 1 4 2
Ž .fore any design whose complementary set s is of the type s in 14 has1

minimum aberration.
Ž .ix f s 10. As in the case of f s 11, by working with the complementary

set s of s within H and noting that s has five elements, we can use the4
result for f s 5 that there are only four nonisomorphic choices for s, that is,

� 4 � 4s s x , y , z , u , xyzu , s s x , y , z , u , xyz ,1 2

� 4 � 4s s x , y , z , u , xy , s s x , y , z , xy , xz .3 4

Ž . Ž . Ž . Ž .Among these four sets, A s s A s s 0, A s s 1 and A s s 2. So3 1 3 2 3 3 3 4
Ž . Ž .we can rule out s and s . Since A s s 0 - A s s 1, s satisfies Rule 23 4 4 1 4 2 1

and its corresponding design has minimum aberration. We can write

� 4s s a, b , ab, c, ac, bc, d , ad, bd, cd ,1

� 4s s a, b , ab, c, ac, bc, abc, d , ad, bd ,2

Ž . Ž . Ž . Ž .with A s s A s s 10, A s s 15 - 16 s A s .3 1 3 2 4 1 4 2
For f s 10 and 11, it is interesting to note that the elements in s are2

arranged in the Yates order while the elements in the optimum s are not.1
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