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CONSISTENCY FOR THE LEAST SQUARES ESTIMATOR
IN NONPARAMETRIC REGRESSION

By Sara van de Geer and Marten Wegkamp

University of Leiden

We shall study the general regression model Y = g0�X� + ε, where
X and ε are independent. The available information about g0 can be ex-
pressed by g0 ∈ G for some class G . As an estimator of g0 we choose the
least squares estimator. We shall give necessary and sufficient conditions
for consistency of this estimator in terms of (basically) geometric properties
of G . Our main tool will be the theory of empirical processes.

1. Introduction. In this paper, we consider the following regression
model:

Y = g0�X� + σε;
where X is a random variable with values in Rk and probability distribution
P, and ε is a real-valued random variable with distribution K. We assume
that ε and X are independent, and that Eε = 0; Eε2 = 1. Thus σ2 ≥ 0 is
the variance of the error e = σε. We also require that

∫
g2

0 dP < ∞, that is,
g0 ∈ L2�P�.

The regression function g0 is unknown and to be estimated from indepen-
dent copies �X1;Y1�; : : : ;�Xn;Yn� of �X;Y�. Let G be the class of P-square
integrable functions on Rk, which contains all possible candidates for g0. As
an estimator of g0, we choose the (nonparametric) least squares estimator,
which is denoted by ĝn or simply ĝ and satisfies

ĝ ∈ arg inf
g∈G

1
n

n∑
i=1

�Yi − g�Xi��2 :(1.1)

Moreover we assume that ĝn belongs to G for every n ∈ N.
Consistency is the weakest requirement for any reasonable estimator. In

the case of least squares estimation, a natural way to measure the distance
between ĝn and g0 is by means of the L2�Pn� pseudo norm, where Pn is the
empirical probability measure, putting equal mass n−1 at each observation
Xi. For finite G , L2�Pn� consistency is easy to establish, and more generally
we can show that if G is essentially not too large, ĝ is a L2�Pn� consistent
estimator of g0. In Theorem 2.1 we will make precise what we mean by “es-
sentially not too large.” Notice that g0 minimizes S�g� = E�Y − g�X��2 and
that ĝ minimizes Sn�g� = n−1∑n

i=1�Yi − g�Xi��2, the empirical counterpart
of S�g�. By the strong law of large numbers, Sn�g� → S�g� a.s., for any fixed
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g ∈ L2�P�. If this convergence is uniform in G then L2�Pn� consistency is not
hard to prove [see van de Geer (1987)]. The link with the theory of empirical
processes has become clear by now, since almost sure convergence of empirical
processes uniformly over general classes G is one of the main topics in this
field of probability theory.

Here, a very useful notion is the δ-entropy of G , which is a (quantitative)
measurement of its compactness. Informally, it is the logarithm of the number
of balls (with radius δ) necessary to cover the set. Equivalently we could also
take the logarithm of the largest number of disjoint balls with radius bigger
than δ in our space. We give the formal definitions together with a (uniform)
strong law of large numbers.

Definition 1.1. Let �T;d� be a pseudo metric space. Call N�δ;d;T� the
δ-covering number of T, defined as the smallest integer m for which there
exist elements t1; : : : ; tm in T such that

min
1≤j≤m

d�tj; t� ≤ δ for all t in T:

Set N�δ;d;T� = ∞ if no such integer exists.

Definition 1.2. Let �T;d� be a pseudo metric space. Call D�δ;d;T� the
δ-packing number of T, defined as the largest integer m, possibly infinite, for
which there exist elements t1; : : : ; tm in T such that

d�tj; tk� > δ ∀j; k ∈ �1; : : : ;m� with j 6= k:

The following relation between covering and packing numbers was proved
by Kolmogorov and Tihomirov (1959):

N�δ;d;T� ≤ D�δ;d;T� ≤N
(
δ

2
; d;T

)
∀ δ > 0:(1.2)

We will take T = G and d = dn;q the Lq�Pn� semidistance on G (q = 1;2),
that is, for all f;g ∈ G

dn;q�f;g� =
(

1
n

n∑
i=1

∣∣f�Xi� − g�Xi�
∣∣q
)1/q

; q = 1;2:

We will also write Nq�δ;Pn;G � = N�δ;dn;q;G � and Dq�δ;Pn;G � =
D�δ;dn;q;G � for every δ > 0 and n ∈ N, as in Pollard (1984). Define the
δ-entropy in Lq�Pn� by

Hq�δ;Pn;G � = log�1+Nq�δ;Pn;G ��; q = 1;2:

We will employ L2�Pn� entropy numbers in Theorem 2.1, whereas L1�Pn�
entropy will be used in Theorem 3.1. However, we shall show that the condition
on L1�Pn� covering numbers given in Theorem 3.1 implies the corresponding
one on L2�Pn� covering numbers, see Corollary 3.1. A similar remark holds
for Theorem 2.1 (cf. Remark 2.1). For sake of brevity, dn will in the sequel
always denote the L2�Pn� pseudo distance.



CONSISTENCY FOR LEAST SQUARES ESTIMATOR 2515

Definition 1.3. We call G a Glivenko–Cantelli class, notation G ∈ GC�P�,
iff

sup
g∈G

∣∣∣∣
∫
gdPn −

∫
gdP

∣∣∣∣→ 0 a.s.(1.3)

If supg∈G
∫
�g�dP < ∞, this is equivalent with, consulting Giné and Zinn

[(1984), Corollary 8.4, page 982],
∫
G dP <∞ and E∗

H2�δ;Pn;G �
n

→ 0 for all δ > 0;(1.4)

where G is the so-called natural envelope function, defined by

G�x� = sup
g∈G
�g�x��; x ∈ Rk

and E∗ is the outer expectation w.r.t.P. Notice that in general G is uncountable
so that we have to guard against measurability problems. However, we do
not pursue this matter and assume that all classes G treated hereafter are
permissible in the sense of Pollard (1984).

Most articles about least squares estimation only contain sufficient condi-
tions for consistency. This is of course the most interesting part from a practi-
cal point of view. Only a few authors have dealt with necessary conditions for
consistency of the least squares estimator [e.g., Wu (1981)].

In Section 2, we will recall the sufficiency result obtained by van de Geer
(1987) and prove that the entropy conditions for consistency are indeed nec-
essary whenever the envelope G is square integrable w.r.t. the probability
measure P. However, the latter assumption is far too stringent in most cases.

In Section 3, we drop this envelope condition. We show that necessary and
sufficient conditions can be formulated solely in terms of entropy conditions
on subsets of G (see Theorem 3.1).

2. The case of a square integrable envelope. If G ∈ L2�P�, necessary
and sufficient entropy conditions can be established relatively easily. More
specifically, we shall exploit the i.i.d. structure and the characterization of a
Glivenko–Cantelli class [cf. (1.4)] in our proof.

Theorem 2.1. Let G be a permissible class of functions with G ∈ L2�P�.
The following two statements are equivalent:

dn�ĝ; g0� → 0 a.s. for all σ ∈ R;(2.1)

n−1H2�δ;Pn;G � →P* 0 for all δ > 0:(2.2)

Before we prove this result, let us introduce some notation. Define for all
functions g ∈ G ,

mn�g� =
1√
n

n∑
i=1

εi�g�Xi� − g0�Xi��;

Ln�gyσ� = 2σn−1/2mn�g� − d2
n�g;g0�:
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The least squares estimator ĝ has the following property:

Ln�ĝyσ� = sup
g∈G

Ln�gyσ�(2.3)

because minimizing Sn�g� is the same as maximizing Ln�gyσ� over g.

Proof of Theorem 2.1. The relation �2:2� ⇒ �2:1� has been proved in van
de Geer (1987). Therefore we only have to prove the necessity part, �2:1� ⇒
�2:2�. We first show that

sup
g∈G
�n−1/2mn�g�� → 0 a.s.(2.4)

As dn�ĝ; g0� → 0 a.s., the Cauchy–Schwarz inequality implies that

�n−1/2mn�ĝ�� ≤ dn�ĝ; g0�
(

1
n

n∑
i=1

ε2
i

)1/2

→ 0 a.s.(2.5)

Hence, by the definition of the least squares estimator we have

sup
g∈G

Ln�gyσ� → 0 a.s.(2.6)

Clearly,

sup
g∈G

2σn−1/2mn�g� − sup
g∈G

d2
n�g;g0� ≤ sup

g∈G
Ln�gyσ� → 0 a.s.(2.7)

and

sup
g∈G

d2
n�g;g0� ≤ 4

1
n

n∑
i=1

G2�Xi� → 4EG2�X1� a.s.

Therefore we have

0 ≤ 2σ sup
g∈G

n−1/2mn�g�

≤ 4
1
n

n∑
i=1

G2�Xi� + sup
g∈G

Ln�gyσ� → 4EG2�X1� a.s.
(2.8)

Since σ > 0 has been chosen arbitrarily, supg∈G n−1/2mn�g� → 0 a.s.
As σ can have negative values, we also have that supg∈G �−n−1/2mn�g�� → 0

a.s. Write τ = −σ , then 2σn−1∑n
i=1 εi�g�Xi� − g0�Xi�� = 2σn−1/2mn�g� =

2τ�−n−1/2mn�g��. Therefore we may draw the conclusion that (2.4) holds,
that is, H = �ε�g − g0� � g ∈ G� is a Glivenko–Cantelli class. This collection
has an integrable envelope H = �ε�G. Moreover, EH2 = EG2 <∞.

Let Q be the product measure P×K and let Qn be the empirical measure
based on �Xi; εi�, i = 1; : : : ; n. We will now show that H ∈ GC�Q� implies
that G ∈ GC�P�. Because Eε2 = 1 there exists a constant 0 < η < ∞ for
which π0 x= P��ε� > η� > 0.

Define the measure P̃n as a discrete measure, which assigns mass 1/n to
Xi if and only if �εi� > η. The random variable Nn =

∑n
i=1 I��εi� > η� counts
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the values for which this holds true. Observe that given ε1; : : : εn, P̃n and
�Nn/n�PNn

have the same distribution for all n. Moreover, by the strong law
of large numbers, we haveNn/n→ π0 a.s. Consequently, we have for all δ > 0,
n−1H2�δ/η; P̃n;G � →P* 0 and n−1H2�

√
n/Nnδ/η;PNn

;G � →P* 0 so we have
as well n−1H2�δ;Pn;G � →P* 0 for every δ > 0. This proves the theorem. 2

Remark 2.1. Since G ∈ L2�P�, the entropy assumption (2.2) is equivalent
with H1�δ;Pn;G � = OP�n� for all δ > 0. As a result, we see that Theorem 2.1
can also be stated in L1�Pn� entropy numbers.

Remark 2.2. Next we explain the addition “for all σ ∈ R” in the consistency
statement [cf. (2.1)]. This is quite essential because Theorem 2.1 does not hold
true if (2.1) is replaced by a statement like “ĝn is L2�Pn� consistent for only
a single fixed σ .” This is easily checked by Example 2.1.

Second, it should be noted that negative values for σ are allowed (and not
only just positive values) to conclude from the a.s. convergence

sup
g∈G

n−1/2mn�g� → 0 a.s.

that supg∈G �n−1/2mn�g�� → 0 a.s. holds true as well in the proof of The-
orem 2.1. Alternatively, we could also assume symmetric errors εi, that is,
P�ε1 ∈ B� = P�−ε1 ∈ B� for every Borel set B, and consider only positive σ .

Example 2.1. Let ε be a Rademacher variable, that is, P�ε = −1� = P�ε =
1� = 1/2. Indeed this variable fulfills the required properties Eε = 0 and Eε2 =
1. Suppose g0 ≡ 0 and that G = �1Ax A ∈ B�, where B is the collection of all
Borel sets. From Giné and Zinn [(1984), Theorem 2.1.9], we see that the state-
ment H2�δ;Pn;G � = OP�n� ∀ δ > 0 is equivalent with H∞�δ;Pn;G � = OP�n�
∀ δ > 0 where the last entropy numbers are calculated w.r.t. the L∞�Pn�
pseudo distance. It is easily checked that N∞�δ;Pn;G � = 2n for all δ > 0.
By Theorem 2.1, there should be at least one σ ∈ R for which dn�ĝ; g0� 6→ 0
almost surely. For instance, for σ = 1 the consistency fails because straightfor-
ward computation yields d2

n�ĝ; g0� = n−1∑n
i=1 1�εi = 1� → 1/2 a.s. However,

for 0 < σ < 1
2 , we have that ĝn ≡ g0, so ĝn is certainly consistent.

Remark 2.3. We have that for deterministicXi the same result holds true.
(The envelope condition should be converted into lim supn→∞

∫
GdPn < ∞

in that case.) This claim does not follow from the proof of Theorem 2.1, but
rather from that of Theorem 3.1. The main difference, however, between the
two results (Theorem 2.1 versus Theorem 3.1) is the envelope assumption in
Theorem 2.1 and the use of local entropies in Theorem 3.1.

It has become apparent that minimizing the sum of squares Sn�·� over a
Glivenko–Cantelli class induces an L2�Pn� consistent estimator, whereas es-
sentially larger classes will give inconsistency. There is one unpleasant detail;
namely, the assumption of G ∈ L2�P� is very restrictive. For instance, it even
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rules out the familiar case of (parametric) linear regression. The proof of The-
orem 2.1 reveals, however, that at least every subclass of G with a P-square
integrable envelope should be a Glivenko–Cantelli class.

Lemma 2.1. Let G be a permissible class in L2�P�. Suppose dn�ĝ; g0� → 0
a.s. for all σ ∈ R. Then we have for every subclass G ∗ ⊂ G with envelope
G∗ ∈ L2�P� and g0 ∈ G ∗ that G ∗ ∈ GC�P�.

Proof. From the almost sure convergence (2.6), we have

sup
g∈G ∗

Ln�g� → 0 a.s.

since G ∗ ⊂ G . Repeat the same arguments as in the proof of Theorem 2.1 with
G and G replaced by G ∗, respectively, G∗. 2

3. Main result. We would like to extend Theorem 2.1 and Lemma 2.1 by
dropping the envelope assumption. Since the restriction that G is in L2�P� is
a necessary condition for characterizing the Glivenko–Cantelli property of a
(permissible) class G , we lose a powerful tool when using the empirical process
approach. Nevertheless, it appears that such conditions are indeed unneces-
sary (technical) restrictions, although the standard results of the theory of
empirical processes are no longer applicable. Moreover, the entropy conditions
can be weakened, too. Another difference is that we consider the case of fixed
design; in other words we assume that Pn is a deterministic measure. We
emphasize this by using lower case characters x1; : : : ; xn for the design. The
stochastic counterpart where X1;X2; : : : are i.i.d. follows directly because no
restrictions are imposed on the design.

Theorem 3.1. Let x1; x2; : : : be a sequence of real numbers, let G be a per-
missible class and define Gn�R� = �g ∈ G x dn�g;g0� ≤ R�, R > 0. In addition,
assume that the distribution of ε contains no atoms. The following two state-
ments are equivalent:

dn�ĝ; g0� → 0 a.s. ∀σ ∈ R(3.1)

n−1H1 �δ;Pn;Gn�R�� → 0 ∀ δ > 0; R > 0:(3.2)

Proof. Let us briefly sketch the main ideas of the proof. In the first place,
we have as a consequence of the minimizing property of the least squares
estimator ĝ the inequality dn�ĝ; g0� ≤ 2σn−1/2mn�ĝ� [cf. (3.3)]. Hence we are
interested in maximal inequalities for the process n−1/2mn�·� [cf. (3.5)].

In the proof of the necessity part, we deduce in a similar fashion as in the
proof of Theorem 2.1 that E supg∈Gn�R� �n−1/2mn�g�� → 0. The fact that this
quantity depends on the metric structure of Gn�R� [cf. (3.10) and (3.14)] will
entail the desired entropy conditions (3.2).
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First part (sufficiency): (3.2) implies (3.1). We have to prove the consistency
for all σ ∈ R. So take σ arbitrary, but otherwise fixed. From the inequality
Ln�ĝyσ� ≥ Ln�g0yσ� and the Cauchy–Schwarz inequality, we have

d2
n�ĝ; g0� ≤ 2�σ � · �n−1/2mn�ĝ�� ≤ 2�σ �

(
1
n

n∑
i=1

ε2
i

)1/2

dn�ĝ; g0�:(3.3)

This inequality and the almost sure convergence n−1∑n
i=1 ε

2
i → 1 a.s.

imply we have almost surely for large n that dn�ĝ; g0� ≤ 4�σ � and
d2
n�ĝ; g0� ≤ supg∈Gn�4�σ �� 2�σ � · �n−1/2mn�g��. Hence it is enough to show

that supg∈Gn�R� �n−1/2mn�g�� → 0 a.s. for all R > 0.
We set out with a probabilistic result, concerning an exponential upper

bound for supg∈Gn�R� n
−1/2mn�g�, R > 0.

Exponential bound for bounded random variables. Suppose �ε� is bounded
by C > 0. Then, by a result of Hoeffding (1963), we have for each g,

P
{
�n−1/2mn�g�� ≥ a

}
≤ 2 exp

(
− na2

4C2d2
n�g;g0�

)
:(3.4)

Let �gi�Mi=1 be the minimal a/�2C�-covering net of Gn�R� w.r.t. the L1�Pn�-
distance, so M = N1� �a/2C�, Pn;Gn�R�� and for every g ∈ Gn�R� there
exists a g∗ ∈ �gi� such that �1/n�∑n

i=1 �g�xi� − g∗�xi�� ≤ a/�2C�. But then
n−1/2�mn�g� −mn�g∗�� ≤ �a/2� holds, since εi are bounded by C. By virtue of
the triangle inequality, we have

P
{

sup
g∈Gn�R�

�n−1/2mn�g�� > a
}

≤ P
{

sup
g∈Gn�R�

�n−1/2mn�g� − n−1/2mn�g∗� + n−1/2mn�g∗�� > a
}

≤ P
{

max
1≤i≤M

�n−1/2mn�gi�� >
a

2

}

≤ 2 exp
(
H1

(
a

2C
;Pn;Gn�R�

)
− 1

16
na2

C2R2

)

≤ 2 exp
(
− 1

32
na2

C2R2

)

(3.5)

for n ≥ n�C;R;a�.

Truncation device. The error-terms ε1; : : : ; εn are generally not bounded.
Therefore we need a truncation device in order to use result (3.5). In general,
let C > 0, C′ > 0 and define

�εi�C = εi1�−C′ ≤ εi ≤ C�; i = 1; : : : ; n:(3.6)

W.l.o.g. we may assume E�ε1�C = 0 since it can be made arbitrarily small by
taking C and C′ sufficiently large.
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On the set Bn = �n−1∑n
i=1�εi − �εi�C�2 < �a/2R�2� we have

sup
g∈Gn�R�

∣∣∣∣
1
n

n∑
i=1

�εi − �εi�C��g�xi� − g0�xi��
∣∣∣∣ ≤

a

2

by the Cauchy–Schwarz inequality. For C sufficiently large, we have

E�ε1 − �ε1�C�2 < 1/2
(
a

2R

)2

:

Notice that by Kolmogorov’s strong law of large numbers we have

1
n

n∑
i=1

�εi − �εi�C�2 ≤
1
n

n∑
i=1

ε2
i1��εi� > �C ∧C′�� → Eε2

11��ε1� > C� → 0 a.s.

as C→∞ since Eε2
1 = 1. Thus for fixed positive numbers a and R,

P
{

lim sup
n→∞

Bcn

}
= 0:

Next, we derive after an application of the triangle inequality that

P
{

lim sup
n→∞

sup
g∈Gn�R�

�n−1/2mn�g�� > a
}

≤ P
{

lim sup
n→∞

sup
g∈Gn�R�

∣∣∣∣
1
n

n∑
i=1

�εi�C�g�xi� − g0�xi��
∣∣∣∣ >

a

2

}
+ P

{
lim sup
n→∞

Bcn

}
:

(3.7)

As a result of the exponential bound (3.5), we have
∞∑
n=1

P
{

sup
g∈Gn�R�

∣∣∣∣
1
n

n∑
i=1

�εi�C�g�xi� − g0�xi��
∣∣∣∣ >

a

2

}
<∞:

After an application of the Borel–Cantelli lemma, we have that the r.h.s. in
(3.7) is zero.

Second part (necessity): (3.1) implies (3.2). Take R > 0 arbitrary, but oth-
erwise fixed. By the Cauchy–Schwarz inequality we have

�Ln�gyσ�� ≤ 2�σ �dn�g;g0�
(

1
n

n∑
i=1

ε2
i

)1/2

+ d2
n�g;g0�:

Therefore we have for all σ ∈ R that supg∈G Ln�gyσ� → 0 a.s. and since
Gn�R� ⊂ G also supg∈Gn�R� Ln�gyσ� → 0 a.s. Next, notice that

sup
g∈Gn�R�

2σn−1/2mn�g� −R2 ≤ sup
g∈Gn�R�

Ln�gyσ� ≤ Ln�ĝyσ� → 0 a.s.

But then we have for all σ > 0 that

0 ≤ 2σ sup
g∈Gn�R�

n−1/2mn�g� ≤ R2 +Ln�ĝyσ� → R2 a.s.
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holds true. For σ < 0, set τ = −σ , and obtain

0 ≤ 2τ sup
g∈Gn�R�

−n−1/2mn�g� ≤ R2 + o�1�

almost surely. Hence supGn�R� �n−1/2mn�g�� → 0 a.s. By the Cauchy–Schwarz
inequality, we have

sup
n
E
(

sup
g∈Gn�R�

�n−1/2mn�g��
)2

≤ sup
n
E
((

1
n

n∑
i=1

ε2
i

)1/2

R

)2

= R2:

This implies that supg∈Gn�R� �n−1/2mn�g�� is uniformly integrable, hence

E sup
g∈Gn�R�

�n−1/2mn�g�� → 0:(3.8)

Symmetrization device. Let ε∗i be independent copies of εi and let τi
be a Rademacher sequence, independent of εi and ε∗i (i = 1; : : : ; n). Then
supg∈Gn�R� �n−1∑n

i=1�εi − ε∗i ��g�xi� − g0�xi��� has the same probability dis-
tribution as supg∈Gn�R� �n−1∑n

i=1 τi�εi − ε∗i ��g�xi� − g0�xi���. Hence by the
triangle inequality we obtain

E sup
g∈Gn�R�

∣∣∣∣
1
n

n∑
i=1

τi�εi − ε∗i ��g�xi� − g0�xi��
∣∣∣∣→ 0(3.9)

and therefore, by Markov’s inequality,

E
(

sup
g∈Gn�R�

∣∣∣∣
1
n

n∑
i=1

τi�εi − ε∗i ��g�xi� − g0�xi��
∣∣∣∣
∣∣∣∣εi − ε

∗
i ; i = 1; : : : ; n

)
→Pε−ε∗ 0:

Let Q̃n be the empirical probability measure based on �xi; εi − ε∗i �; that is,
it puts mass 1/n at each �xi; εi − ε∗i �. Set fi = �εi − ε∗i � �g�xi� − g0�xi�� with
g ∈ Gn�R�. By a result due to Ledoux and Talagrand (given below), we have
n−1H2�δ; Q̃n;Fn�R�� →P 0 for all δ > 0.

Lower bound for Rademacher sequences. In Ledoux and Talagrand [(1991),
page 116, Corollary 4.14], we find the following inequality, after being trans-
lated into our notation, for general classes F : for all δ > 0, we have

n−1/2δ
√
H2�δ;Pn;F � ≤ n−1/2r�F �

(
log

(
2+

√
n

r�F �

))1/2

;(3.10)

where

r�F � = E sup
f∈F

n−1/2

∣∣∣∣
n∑
i=1

τifi

∣∣∣∣:

Let GA = �g1; : : : ; gD� be the maximal set (a priori possibly with infinite
cardinality) such that the L1�Pn�-distance between every pair in GA is larger
than 2δ, that is,

∫
�g − g̃�dPn > 2δ for each g, g̃ ∈ GA. By the regularity
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condition on the error distribution, there exists an η > 0 such that P��ε−ε∗� ≤
η� ≤ δ2/�2R2�: Then we have almost surely, for large n

∫
�ε− ε∗� �g�x��dQ̃n�x; ε− ε∗�

≥ η
[∫
�g�dPn −

∫
�g�x��1��ε− ε∗� ≤ η�dQ̃n�x; ε− ε∗�

]

≥ η
[∫
�g�dPn −R

(
1
n

n∑
i=1

1��εi − ε∗i � ≤ η�
)1/2]

≥ η
[∫
�g�dPn −R

√
2P��ε− ε∗� ≤ η�

]

≥ ηδ:

(3.11)

Consequently, we have for large values of n almost surely
∫
�f− f̃�dQ̃n > ηδ

for every f, f̃ ∈ F A = ��ε − ε∗�g1; : : : ; �ε − ε∗�gD�. By the relation between
packing and covering numbers (1.2) and the maximality property of packing
numbers, we obtain almost surely for n large

N1�2δ;Pn;Gn�R�� ≤ D1�2δ;Pn;Gn�R�� = �GA� = �F A�

≤ D1�ηδ; Q̃n;Fn�R�� ≤N2�ηδ/2; Q̃n;Fn�R��:

Hence (3.2) holds true. The theorem has been proved. 2

Remark 3.1. The technical condition on the error distribution K (it
should contain no atoms) can be replaced by assuming that ε is symmetric
around 0 in combination with P�ε = 0� = 0. This follows from the proof of
Theorem 3.1 by noting that in the latter case L �ε� = L �τε� [and hence
L �supg∈Gn�R��−n−1/2mn�g��� = L �supg∈Gn�R� n

−1/2mn�g��], where τ is a
Rademacher variable as defined in Example 2.1. As a result we can skip the
symmetrization device and directly invoke the lower bound for Rademacher
sequences conditionally on ε1; : : : ; εn. Moreover, the addition “for all σ ∈ R”
in the strong consistency statement (3.1) can be replaced with impunity by
“for all σ > 0” in this case (cf. Remark 2.2).

It should be noted that Theorem 3.1 can be stated in L2�Pn� entropy con-
ditions as well. This observation parallels Remark 2.1.

Corollary 3.1. The following statements are equivalent:

H1�δ;Pn;Gn�R�� = O�n� for all δ > 0; R > 0y(3.12)

H2�δ;Pn;Gn�R�� = O�n� for all δ > 0; R > 0:(3.13)
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Proof. The relation (3.13) ⇒ (3.12) follows from dn;1�f;g� ≤ dn;2�f;g�.
As a result of Theorem 3.1, the L1�Pn� entropy condition (3.12) implies

the strong consistency (3.1) of the least squares estimator in the regression
problem. In case the error distribution in our regression problem is standard
normal, we shall prove that the strong consistency (3.1) implies (3.13). For
K = N �0;1�, mn�·� is a centered Gaussian process. This property makes
it feasible to apply Sudakov’s lower bound (see e.g., Ledoux and Talagrand
(1991)], yielding

n−1/2E sup
g∈Gn�R�

mn�g� ≥ CS n−1/2 sup
δ>0

δ
√
H2 �δ;Pn;Gn�R��;(3.14)

for some numerical constant CS > 0. The local entropy condition in L2�Pn�,
(3.13) follows now from Chebyshev’s inequality and the convergence (3.8).
Thus we have proved that in the regression model with Gaussian errors, the
entropy statements (3.12) and (3.13) are the same. Since these statements
do not depend on εi, but solely on the metric structure of Gn�R�, the result
follows. 2
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