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On the basis of N i.i.d. random variables with a common unknown
Ž .distribution P we wish to estimate a functional t P . An obvious andN

ˆvery general approach to this problem is to find an estimator P of PN
ˆŽ .first, and then construct a so-called substitution estimator t P ofN N
ˆŽ .t P . In this paper we investigate how to choose the estimator P soN N

ˆŽ .that the substitution estimator t P will be consistent.N N
Although our setup covers a broad class of estimation problems, the

main substitution estimator we have in mind is a general version of the
ˆbootstrap where resampling is done from an estimated distribution P .N

ˆWe do not focus in advance on a particular estimator P , such as, forN
example, the empirical distribution, but try to indicate which resampling
distribution should be used in a particular situation. The conclusion that
we draw from the results and the examples in this paper is that the
bootstrap is an exceptionally flexible method which comes into its own
when full use is made of its flexibility. However, the choice of a good
bootstrap method in a particular case requires rather precise information
about the structure of the problem at hand. Unfortunately, this may not
always be available.

Ž .1. Substitution estimators. Let XX , AA be a measurable space and let
Ž .PP be a collection of probability measures on XX , AA . Let P be a topology on

Ž .PP, so that PP, P is a topological space. Finally, let X , X , . . . denote a1 2
Ž .sequence of i.i.d. random variables with values in XX and unknown common

distribution P g PP.
Ž . Ž . Ž .For N s 1, 2, . . . , we consider a map t : PP, P ª RR, r , where RR, r isN

Ž . Ž .a metric space. Both spaces PP, P and RR, r are equipped with the s-alge-
Ž . Ž .bra of Borel sets BB PP, P and BB RR, r , which are generated by the open

Ž . Ž .sets in PP, P and RR, r , respectively. Probability distributions on these
spaces are probability measures on the Borel sets and are induced by

Ž ` ` `. Ž Ž .. Ž Ž ..measurable maps from XX , AA , P to PP, BB PP, P or RR, BB RR, r . We
assume throughout that each t is measurable.N

Having observed the i.i.d. sample X , . . . , X with common distribution1 N
P g PP, our aim is to estimate the somewhat abstract RR-valued ‘‘parameter’’
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Ž . N Ž .t P . For a measurable map t : XX ª RR, let T s t X , . . . , X be anN N N N 1 N
Ž .estimator of t P based on X , . . . , X . We shall say that T is a consistentN 1 N N
Ž .estimator of t P for P g PP ifN

1.1 r T , t P ª 0 for every P g PP,Ž . Ž .Ž .N N P

where ª indicates convergence in probability under P as N ª `. TheP
more formally inclined reader should view this expression as shorthand for

� 4̀the correct but laborious statement that the sequence T is a consistentN Ns1
� Ž .4̀sequence of estimators of the sequence t P . If we wish to stress theN Ns1

Ž .role of the metric r in 1.1 , we call T r-consistent.N
Ž .In the absence of any special structural properties of t P , a popularN

ˆŽ . Ž . Žestimator of t P is the substitution estimator t P . This is commonlyN N N
called a ‘‘plug-in estimator,’’ but this expression is of the same sad grammati-

.cal level as ‘‘see-through clothes.’’ It is obtained by first estimating P by
ˆ NŽ .P s p X , . . . , X for a measurable map p : XX ª PP and then substitut-N N 1 N N

ˆing this estimator in t . We shall call the estimator P consistent withN N
Ž .respect to the topology P P-consistent if for every P g PP and every neigh-

borhood U of P,

N ˆ1.2 P P g U ª 1 as N ª `.Ž . Ž .N

In the particular applications we have in mind, the topology P on PP will
Ž .often be metrized by a metric p, so that the topological space PP, P is a

ˆŽ .metric space PP, p . Consistency of P will then be p-consistency, defined byN

ˆ1.3 p P , P ª 0 for every P g PP.Ž . Ž .N P

ˆŽ . Ž .We shall study the consistency of t P as an estimator of t P , assumingN N N
ˆthat P is a consistent estimator of P.N

Ž .The metric p in 1.3 will often be the Hellinger metric H on PP. Recall
that for P, Q g PP with densities f and g with respect to a common s-finite

Ž .measure m on XX , AA , the Hellinger distance H of P and Q is defined by

1r2
21r2 1r21.4 H P , Q s f y g dm .Ž . Ž . Ž .H½ 5

XX

Note that this definition does not depend on the choice of the dominating
Ž .measure m and that H is indeed a metric on PP. If p s H, 1.3 becomes

ˆ ˆŽ .H P , P ª 0 for every P g PP and we say that P is Hellinger-consistent.N P N
ˆ 'We call P a N -Hellinger-consistent estimator of P whenN

ˆ y1r21.5 H P , P s OO N for every P g PP,Ž . Ž .Ž .N P

which means that for every P g PP and « ) 0 there exists a C ) 0 such that

N ˆ y1r2P H P , P G CN F « for all N.Ž .ž /N
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Many results in asymptotic statistics do not hold for all underlying distri-
butions P g PP, but only for P g PP _ D, where the exceptional set D is in
some sense small compared to PP. For a finite dimensional parametric family

� 4 kPP s P : u g Q with Q ; R , we may identify PP with Q, and the exceptionalu

subset of Q will typically be small in the sense that it has Lebesgue measure
zero. On the more general spaces of distributions PP that we consider in this
paper, there is no obvious analogue of Lebesgue measure for which ‘‘small’’
sets can naturally be described as sets of measure zero. Moreover, our
formulation of the consistency problem as well as our proofs of the results are
largely topological rather than measure theoretic. It is therefore hardly
surprising that the exceptional set D in our results will be small in a

Ž .topological sense: D will be a set of the first category in PP, P . We recall
that a set of the first category is a countable union of nowhere dense sets, and

Ž .that a set is nowhere dense in PP, P if its closure does not contain an open
Ž .set in PP, P .

We begin our study of the consistency of substitution estimators with an
Ž . Ž .elementary observation. Suppose that the sequence t : PP, P ª RR, r isN

equicontinuous on PP, that is, for every P g PP and « ) 0 there exists a
Ž Ž . Ž ..neighborhood U of P such that r t P , t Q - « for all Q g U and« N N «

ˆ ˆŽ .N s 1, 2, . . . . Then consistency of P clearly implies consistency of t P ,N N N
since for every P g PP and « ) 0,

N ˆ N ˆ1.6 P r t P , t P G « F P P f U ª 0Ž . Ž .Ž . Ž .ž /ž /N N N N «

as N ª `. Trivial though this observation may be, we shall dignify it by
including it among the four theorems in this section.

THEOREM 1.1. Suppose the following statements hold:

Ž . Ž . Ž .i The sequence of maps t : PP, P ª RR, r is equicontinuous on PP.N
ˆŽ . Ž .ii There exists an estimator P s p X , . . . , X of P with values in PP,N N 1 N

which is P-consistent for P g PP.

ˆŽ . Ž .Then t P is an r-consistent estimator of t P ; thus,N N N

ˆ1.7 r t P , t P ª 0 for every P g PP.Ž . Ž .Ž .ž /N N N P

We can push this argument a little bit further by assuming that PP s
D PP for an arbitrary index set I and disjoint measurable PP , and that theig I i i

�assumptions of Theorem 1.1 hold on each PP separately. If P s U l PP :i i i
4U g P denotes the relative topology on PP , we have the following corollary:i

COROLLARY 1.1. Suppose that PP s D PP and that the following state-ig I i
ments hold:

Ž . Ž . Ž .i For each i g I, the sequence of maps t : PP , P ª RR, r is equicon-N i i
tinuous on PP .i
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ˆŽ . Ž .ii There exists a P-consistent estimator P s p X , . . . , X of P g PPN N 1 N
N ˆŽ .with the additional property that for each i g I, P P g PP ª 1 for everyN i

P g PP .i
ˆŽ . Ž .Then t P is an r-consistent estimator of t P .N N N

This result also follows directly from Theorem 1.1 by replacing the topology
P by the smallest topology containing P for all i g I. This has the effect ofi
isolating the PP from one another by making each PP both open and closed.i i

ˆŽ .Note that assumption ii of Corollary 1.1 implies that P can serve as a testN
statistic for testing the hypothesis P s P versus P s P , whenever P g PP ,i j i i
P g PP and i / j. This test is asymptotically perfect in the sense that bothj j
error probabilities tend to zero as N ª `.

It is clear that the equicontinuity assumption for t cannot be weakenedN
much further unless one is willing to impose even more severe restrictions on

ˆthe estimator P . However, the equicontinuity of t does merit furtherN N
attention. It is often the case that t converges pointwise to a function t :N
Ž . Ž .PP, P ª RR, r , that is,

1.8 r t P , t P ª 0 for every P g PP.Ž . Ž . Ž .Ž .N

We shall show that in this case continuity of each t ensures equicontinuityN
of t outside of a set of the first category. As a result we have the followingN
theorem:

THEOREM 1.2. Suppose the following statements hold:

Ž . Ž . Ž .i For every N, the map t : PP, P ª RR, r is continuous.N
Ž . Ž . Ž . Ž .ii For every P g PP, t P converges to a limit t P in RR, r .N

ˆŽ . Ž .iii There exists an estimator P s p X , . . . , X of P with values in PP,N N 1 N
which is P-consistent for P g PP.

Ž .Then there exists a set D of the first category in PP, P such that the sequence
t is equicontinuous at every point P g PP _ D, and henceN

ˆ1.9 r t P , t P ª 0 for every P g PP _ D.Ž . Ž .Ž .ž /N N P

Ž . Ž . Ž .Since t ª t in Theorem 1.2, we have replaced t P by t P in 1.9 :N N
Ž . Ž .consistent estimation of t P and t P amounts to the same thing in thisN

case. We do insist, however, that the substitution estimator be of the form
ˆ ˆŽ . Ž .t P , rather than t P . This is because in applications such as theN N N

bootstrap one often has no way of knowing the functional form of t . Neverthe-
less, the reader should note that under the assumptions of Theorem 1.2,

ˆŽ . Ž .t P is indeed a consistent estimator of t P for P g PP _ D, becauseN
equicontinuity of t implies continuity of t .N

Let us briefly discuss the results stated so far. Theorem 1.1 makes it clear
that, as long as we make no assumptions about the speed of convergence of
P̂ to P, the equicontinuity of the sequence t is the key to consistency ofN N
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ˆŽ .t P . Of course one can reduce the severity of the equicontinuity assump-N N
tion somewhat by placing restrictions in probability on the possible values of
P̂ . Corollary 1.1 is an example of this. If t ª t , Theorem 1.2 provides aN N
worst case scenario: the substitution estimator can only fail to be consistent
on a set D of exceptional points, which is at most a set of the first category.
Without further investigation, however, such a statement is of only limited
practical value. After all, the true underlying distribution P may be one of
the exceptional points. Also the convergence may of course be slow near these
points. Thus Theorem 1.2 merely indicates the structure of the consistency
problem rather than providing a complete solution. In any particular case one
will have to investigate whether such exceptional points actually exist, and if
so, where they are located. It often turns out that with a judicious choice of

ˆthe topology P and the estimator P , there are no exceptional points and theN
substitution estimator will be consistent for all P g PP.

This last remark may need further clarification. In applications, the choice
of the metric r on RR will usually be determined in advance by the type of
consistency that one would like the substitution estimator to possess. On the
other hand, the choice of the topology P on PP, or of the metric p inducing it,
is completely open to us. If P is a coarse topology, it will be relatively easy to

ˆfind a consistent estimator P of P, but relatively many sequences of mapsN
t will possess only limited continuity properties and the set of exceptionalN

ˆŽ .P for which t P is not consistent will be relatively large. Conversely, if PN N
ˆis a fine topology, there will be few, if any, consistent P , but having foundN

ˆŽ .one, it will produce substitution estimators t P which are consistent forN N
relatively many sequences t , except on relatively small sets of exceptionalN
P. If the sequence t is given in a particular application, the trick will be toN
find a topology which is fine enough to provide t with sufficient continuityN

ˆproperties, yet coarse enough to admit a consistent estimate P of P. InN
Section 3 we illustrate this search for an appropriate topology and for an

ˆestimator P which is consistent in this topology by a number of examples.N
Another point worth noting concerns our interpretation of a set D of the

first category as a ‘‘small’’ set. In a certain sense, this is indeed correct if
Ž .PP, P is topologically complete. In this case the category theorem asserts

w Ž . xthat PP _ D is at least dense in PP cf. Dudley 1989 , page 44 . In more
general cases, however, D may be quite large. In fact, the entire space PP

Ž .may be of the first category in PP, P and we may have D s PP, so that
Theorem 1.2 is vacuous. We discuss an example of this phenomenon in
Section 3. Fortunately it turns out that the pathological character of this
example is due to an unfortunate choice of the topology P . A different choice

ˆof topology leads to an estimator P for which the substitution estimatorN
ˆŽ .t P is consistent for all P g PP.N N

In the preceding paragraphs we have stressed the constructive aspects of
our results so far by explaining how these results may be used to arrive at an

ˆ ˆŽ .estimator P which makes the substitution estimator t P consistent.N N N
However, one may also approach the consistency problem from a different
angle and investigate the existence of a consistent substitution estimator
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without worrying about its construction. For a result of this type, a logical
Ž .assumption is the existence of a consistent estimator T s t X , . . . , X ofN N 1 N

Ž .t P . If no such estimator exists, there is no hope of finding a consistentN
substitution estimator.

THEOREM 1.3. Suppose the following statements hold:
Ž . Ž . Ž .i For every N, the map t : PP, P ª RR, r is measurable.N
Ž . Ž .ii The metric space RR, r is separable.
Ž . Ž . Ž .iii There exist an r-consistent estimator T s t X , . . . , X of t P forN N 1 N N

P g PP.

ˆ Ž .Then there exists an estimator P s p X , . . . , X with values in PP suchN N 1 N
ˆŽ . Ž .that t P is an r-consistent estimator of t P for every P g PP.N N N

ˆIn the proof of Theorem 1.3 we construct the estimator P explicitly on theN
ˆbasis of T . Hence, if T is not known to us, we cannot construct P , and if itN N N

ˆ ˆŽ .is known, it may not make much sense to construct P and t P since weN N N
Ž .already have a consistent estimator T of t P . Thus Theorem 1.3 shouldN N

indeed be viewed purely as an existence statement to the effect that anything
that can be estimated consistently at all, can be estimated consistently by a

ˆsubstitution estimator. The problem is of course to find an appropriate P .N
The final result of this section allows us to construct a substitution

estimator in some cases where T is not known, but its existence is. WeN
Ž . Ž .consider the case where PP, P is a metric space PP, H , the t are assumedN

ˆ 'to be continuous but not necessarily convergent and P is N -Hellinger-N
Ž .consistent. If t P can be estimated consistently at all, we show thatN

Ž Ž . Ž .. Ž . Ž y1r2 .r t P , t P ª 0 for every sequence P with H P , P s OO N andN N N N N
ˆfor all P outside of a set of the first category. Substituting P for P we findN N

the following theorem:

THEOREM 1.4. Let the topology P be metrized by the Hellinger metric H
and suppose the following statements hold:

Ž . Ž . Ž .i For every N, the map t : PP, P ª RR, r is continuous.N
Ž . Ž . Ž .ii There exists an r-consistent estimator T s t X , . . . , X of t PN N 1 N N

for P g PP.
ˆŽ . Ž .iii There exists an estimator P s p X , . . . , X with values in PP,N N 1 N'which is N -Hellinger-consistent for P g PP.

ˆŽ . Ž .Then there exists a set D of the first category in PP, H such that t P is anN N
Ž .r-consistent estimator of t P for P g PP _ D, that is,N

ˆ1.10 r t P , t P ª 0 for every P g PP _ D.Ž . Ž .Ž .ž /N N N P

ˆ 'Because the requirement that P is N -Hellinger-consistent may beN
Žsomewhat unexpected, we shall show by means of a counterexample Exam-

.ple 3.4 in Section 3 that this assumption is really needed. Ordinary Hellinger
Ž .consistency is not sufficient. It is clear from the work of Le Cam 1973, 1986
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'Ž .and Birge 1983, 1986 that N -Hellinger-consistent estimators will gener-´
ally exist for finite dimensional families PP where dimension is defined in
terms of metric entropy. Typical examples of such families are parametric

� 4 kfamilies PP s P : u g Q with Q ; R , provided that Hellinger distance inu

PP and Euclidean distance in Q are compatible in some sense. For these fami-
lies Theorem 1.4 enables us to find a substitution estimator that will work

'for ‘‘most’’ P if anything does. For infinite dimensional families PP, N -
Hellinger-consistent estimators of P will generally not exist, and without
further assumptions on t , one will generally not be able to construct aN

Ž .satisfactory estimator of t P either.N
� 4 kWe also note that for parametric families PP s P : u g Q with Q ; R , itu

is possible to prove results similar to Theorem 1.4, where the exceptional set
� 4 w Ž .xequals D s P : u g Q and Q has Lebesgue measure 0 cf. Putter 1994 .u 0 0

The two main results in this section are concerned with the interplay
ˆbetween conditions on t and conditions on P , needed to obtain reasonableN N

ˆŽ . Ž .substitution estimators t P of t P . Theorem 1.2 discusses what isN N N
ˆŽ .needed for t under the weakest possible condition consistency on P .N N

Theorem 1.4, on the other hand, operates under the weakest possible condi-
w Ž .xtion estimability of t P on t .N N

In the remainder of the paper we proceed as follows. In Section 2 we apply
the results of this section to the bootstrap and discuss the significance of our
results in this context. Section 3 provides a number of examples that clarify
the relationship between our results and standard bootstrap theory. Proofs of
Theorems 1.2, 1.4 and 1.3 are given in Sections 4, 5 and 6, respectively.

2. The bootstrap. In the setup of the previous section, consider a se-
Ž .quence of random variables Y s y X , . . . , X ; P , where y is a measur-N N 1 N N

N Ž .able map from XX = PP to a separable metric space SS , s . Let RR be the
Ž .space of all probability distributions on SS , s equipped with a metric r ,

which metrizes weak convergence. An obvious choice for r is Prohorov’s
metric D. For distributions R , R g RR this is defined by1 2

2.1 D R , R s inf « ) 0: R A F R A« q « , for all A g BB SS , s ,� 4Ž . Ž . Ž . Ž . Ž .1 2 1 2

« Ž .where A is an «-neighborhood of A. Since SS , s is separable, D does indeed
w Ž .metrize weak convergence of probability measures in RR cf. Dudley 1989 ,

xSection 11.3 , but of course other choices of r are also possible. Note that the
Ž . Ž . wseparability of SS , s also implies that RR, r is separable cf. Billingsley

Ž . x Ž .1968 , page 239 . Our aim is to estimate the law t P of Y under P.N N
Ž .Obviously t P g RR.N

ˆ Ž .As before, let us estimate P by P s p X , . . . , X for a measurable mapN N 1 N
N ˆp : XX ª PP. With P as the resampling distribution, the bootstrap estima-N N

ˆŽ . Ž .tor of t P is simply a substitution estimator t P . To see this, note thatN N N
ˆif the resampling distribution is P , the bootstrap estimates the distributionN

of Y by that ofN

U U U ˆY s y X , . . . , X ; P ,Ž .N N 1 N N
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U U ˆwhere X , . . . , X are i.i.d. with distribution P . However, this is just a1 N N
ˆ ˆŽ . Ž .description of t P . The bootstrap estimate t P can be computed eitherN N N N

analytically or by Monte Carlo simulation, but we shall not be concerned with
that question here.

ˆNote that the resampling distribution P is not necessarily the empiricalN
distribution of X , . . . , X , as is customary for the nonparametric bootstrap.1 N

ˆIn fact, our requirement that P takes its values in PP prohibits this in manyN
� 4cases. If, for example, PP is a parametric family P : u g Q , our estimateu

ˆ ˆP s P will typically be based on an estimate u of the parameter u andˆN u NN

our bootstrap procedure will be the so-called parametric bootstrap. As we
have indicated in Section 1, the purpose of this paper is to emphasize the

ˆimportance of a judicious choice of the resampling distribution P so as toN
satisfy the requirements of our theorems. All but one of the examples in
Section 3 will concern cases where the nonparametric bootstrap fails, but a

ˆproper choice of P will make the bootstrap work. On the one hand, thisN
illustrates the great flexibility of the bootstrap method. On the other hand, it
also shows that precise information about the behavior of the distribution

Ž .t P of Y as a function of P is needed to arrive at the correct resamplingN N
ˆdistribution P . Unfortunately, such information may often not be available.N

Ž .With the present choice of RR, r and t , Theorems 1.1]1.4 and CorollaryN
1.1 become results on the consistency of the bootstrap. For the sake of brevity,
we shall not reformulate these results in this particular context. All the

Ž .reader has to remember is that t P is now the distribution of the randomN
Ž .variable Y s y X , . . . , X ; P taking values in a separable metric space, rN N 1 N

is a metric metrizing weak convergence of probability distributions on this
ˆ ˆŽ . Ž .space and t P is the bootstrap estimate of t P with P as the resam-N N N N

Ž .pling distribution. As we pointed out above, assumption ii of Theorem 1.3 is
automatically satisfied.

We begin by noting that the equicontinuity condition of Theorem 1.1 has
been used to prove consistency of the bootstrap estimator ever since the

wbeginning of research on bootstrap asymptotics cf., e.g., Bickel and Freedman
Ž . Ž .x1981 and Beran 1984 .

In Theorem 1.2, the choice of the metric r is irrelevant as long as it
metrizes weak convergence of probability distributions on the separable

Ž . Ž .metric space SS , s . Assumption ii of Theorem 1.2 now means that the
Ž . Ž .distributions t P of Y converge weakly to a limit distribution t P . TheN N

conclusion of Theorem 1.2 is that for P g PP _ D, the bootstrap estimator
ˆŽ . Ž .t P converges weakly to t P in probability.N N

The situation is more complicated in the remaining results where we do
Ž .not require convergence of t P . The conclusions of these theorems refer toN

ˆŽ . Ž .sequences t P and t P of distributions for which the distance tends toN N N
zero in r-metric. This is not a matter which depends only on the topology of
weak convergence which is induced by r. For different choices of the metric r

Ž .metrizing weak convergence, r P , Q ª 0 may mean the same or differentN N
w Ž . xthings cf. Dudley 1989 , Theorem 11.7.1 and problem 8 on page 313 . This

Ž .problem disappears if the sequence t P is uniformly tight.N
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In the context of the bootstrap, the assumption that the distributions
Ž . Ž .t P of Y converge weakly to a limit distribution t P is important forN N

ˆŽ . Ž .another reason as well. It allows us to use the MyN -bootstrap t P ,M N
Ž .where M s M tends to infinity with N, but at a slower rate M s oo N .N N

Ž . Ž . Ž .Since consistent estimation of t P , t P or t P amounts to the sameM N
Ž .thing in this case, the MyN -bootstrap may be viewed as an attempt to

Ž .estimate t P with the advantage of having at our disposal a resamplingM
ˆ ˆdistribution P which is much closer to the underlying P than P . As aN M

Ž .result the MyN -bootstrap is consistent much more generally than the
Ž . w Ž .xtraditional NyN -bootstrap cf. Politis and Romano 1994 . Viewed in this

Ž .light, we may weaken condition iii of Theorem 1.4 to Hellinger consistency
ˆ 2Ž . Ž .at an arbitrarily slower rate H P , P s OO a with a ª 0, but Na ª `,N P N N N

ˆŽ . Ž .provided that we replace the bootstrap t P by the MyN -bootstrapN N
ˆ y2Ž . Ž . Ž .t P with M s a and that t P ª t P . However, with these modifi-M N N N

cations, Theorem 1.4 is simply contained in Theorem 1.2 and it follows that
we have nothing new to say about this method of improving the bootstrap by
employing a smaller resample size. We are solely concerned with an appropri-

ˆate choice of the resampling distribution P .N
Ž .The assumption i in Theorems 1.2 and 1.4 that t is continuous for eachN

N will generally not cause any problems. For most reasonable choices of the
topology P and the metric r , the distribution t of Y for a fixed value of NN N
would be continuous if Y did not depend on P. The direct dependence of YN N
on P is not likely to make matters worse, and the assumption that t isN
continuous for every fixed N will be satisfied in all reasonable cases. It is the
equicontinuity that may be lacking for certain P.

� 4It was mentioned in Section 1 that for a parametric model PP s P : u g Qu
k ˆ'with Q ; R , a N -Hellinger-consistent parametric estimator P s P willˆN u N

typically exist, provided that Hellinger distance in PP and Euclidean distance
in Q are compatible in an appropriate sense. In this case, Theorem 1.4
asserts that for continuous t , the parametric bootstrap with resamplingN

Ž .distribution P will work for ‘‘most’’ P if anything does, even if t P doesû NN
Ž .not converge to a limit distribution t P .

As we pointed out at the end of Section 1, Theorems 1.2 and 1.4 deal with
ˆtwo extreme cases with minimal conditions on P and t , respectively. In theN N

context of the bootstrap this distinction attains an added significance. Before
applying the bootstrap one should answer two questions:

1. What should one bootstrap?
2. How should one bootstrap?

The first of these questions refers in particular to choosing the proper
Ž .dependence of Y }and hence of t P }on P. As a general rule one shouldN N

do this in such a way that t depends on P as little as possible. Theorem 1.2N
suggests that whenever possible one should normalize Y so that its distribu-N

Ž . Ž .tion t P tends to a limit distribution t P . Any consistent choice of aN
ˆ ˆŽ .resampling distribution P will then produce a bootstrap t P that worksN N N

outside a set D of the first category. To get rid of this set D, one may search
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for a topology P on PP which is fine enough to make t equicontinuous on PP,N
ˆand then for a P-consistent estimator P . Unfortunately, this step will oftenN

be impossible for lack of the necessary knowledge of t .N
ˆThe second question refers to the choice of the resampling distribution P .N

Theorem 1.4 asserts that even if we do not know how to normalize YN
properly, the parametric bootstrap will generally still work on PP _ D. In
nonparametric models, however, we had better make sure that t converges.N

In the extensive literature on the bootstrap it is usually shown that the
ˆŽ Ž . Ž ..bootstrap is strongly consistent, in the sense that r t P , t P ª 0N N N

P-almost surely. For perfectly good reasons, strong consistency has not played
an important role in the development of statistics so far, and hence we have

Ž .been content to formulate our results in terms of ordinary weak consistency
ˆŽ Ž . Ž ..r t P , t P ª 0.N N N P

3. Examples. In this section we shall give some examples that illustrate
ˆthe importance of choosing an appropriate resampling distribution P inN

Ž .applying the bootstrap. The first example exhibits a function t P that isN
continuous in P with respect to Hellinger distance for every fixed N, but

Ž . Ž .where the pointwise limit t P s lim t P has a single discontinuity atN ª` N
a point P . It is shown that a parametric bootstrap fails in the point of0
discontinuity of t . With a suitable metric that isolates that point, the
equicontinuity is recaptured.

� 4EXAMPLE 3.1. Let PP s P : 0 F a - 1r2 , where P is the probabilitya a

distribution on R with distribution function F , defined for 0 - a - 1r2 bya

0, if x F 0,
3.1 F x sŽ . Ž . y1raa ½ 1 y 1 q a x , if x ) 0,Ž .

and for a s 0 by

0, if x F 0,3.2 F x s lim F x sŽ . Ž . Ž . yx0 a ½ 1 y e , if x ) 0.aª0

Let PP be equipped with Hellinger distance H and let the metric r on RR be
Levy’s metric. The Hellinger distance on PP is related to Euclidean distance´

w .on the parameter space 0, 1r2 by the relation
< <a y b

< <3.3 H P , P s q oo a y b for a , b g 0, 1r2Ž . Ž .Ž .Ž .a b '2 1 q a 1 q 2aŽ . Ž .
and

a
3.4 H P , P s q oo a .Ž . Ž . Ž .0 a '2

We are interested in the distribution of the random variables

3.5 Y s Nya M y log N for 0 F a - 1r2,Ž . Ž .N N

where M stands for max X . Note that Y depends on the underly-N is1, . . . , N i N
ing distribution through Nya .
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Ž .Let t P be the law of Y when X , . . . , X are i.i.d. with distribution PN a N 1 N a

Ž .and let G denote the distribution function of t P . Then for 0 - a - 1r2,N , a N a

Nya aG x s P N M y log N F x s F N x q log NŽ . Ž . Ž .Ž .N , a N a

Ny1raa yas 1 y 1 q aN x q a log N , x ) yN log N ,Ž .

and for a s 0,

NG x sP M y log NFx s 1yexp yxy log N , x )y log N.Ž . Ž . Ž .Ž .N , 0 N

For fixed N, it is easily seen that t is continuous at P for a ) 0. Further-N a

Ž . Ž .more, G x ª G x as a ª 0 for every x ) ylog N and henceN , a N , 0
Ž Ž . Ž .. Ž .r t P , t P ª 0 as a ª 0, so that t P is continuous at P . Hence, forN a N 0 N 0

each N, t is clearly continuous on PP.N
Ž . Ž .Now let N tend to infinity and let t P be the pointwise limit of t P .a N a

Ž .The distribution function of t P will be denoted by G . Then for 0 - a -a a

1r2,

y1raG x s lim G x s exp y a x , x ) 0,Ž . Ž . Ž .Ž .a N , a
Nª`

and for a s 0,

G x s lim G x s exp yeyx , x g R.Ž . Ž . Ž .0 N , 0
Nª`

Ž . Ž .We find that t P is not continuous at P , since lim G x s 0 for all x.0 a ª 0 a

Application of Theorem 1.2 yields the existence of a set D of the first
Ž .category in PP, H such that the sequence t is equicontinuous at P for allN

ˆP g PP _ D. Consequently if P is a Hellinger-consistent sequence of estima-N
ˆtors of P, the bootstrap with resampling distribution P is consistent for allN

P g PP _ D. Note that P belongs to the exceptional set D since the limit t is0
not continuous at P . A closer analysis reveals that t is equicontinuous at0 N
P for a ) 0.a

It appears therefore that P is the only trouble spot in the model PP, so the0
problem can be resolved by choosing a metric on PP that isolates P . Take, for0
instance,

H P , Q , if P , Q / P ,Ž . 0
3.6 p P , Q sŽ . Ž . ½ '2 , if P s P / Q or P / P s Q.0 0

Clearly p defines a metric on PP and the sequence t is trivially equicontinu-N
ous with respect to p at P , and hence on PP. A p-consistent estimator of P0

N ˆ N ˆŽ . � 4 Žwill have to satisfy P P s P ª 1 and for all P g PP _ P both P P s0 N 0 0 N
ˆ ˆ. Ž .P ª 0 and H P , P ª 0. If we set P s P , then this implies that â0 N P N a NˆN

has to be a consistent estimate of a satisfying

P N a s 0 ª 1 and P N a s 0 ª 0 for 0 - a - 1r2.Ž . Ž .ˆ ˆ0 N a N
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It is indeed possible to detect the isolated point P in PP with probability0
tending to 1 by choosing, for instance,

0, if M F 2 log N ,¡ N~ q3.7 a sŽ . ˆ y1N ¢ 1 y X , otherwise.Ž .N

Ž .Since t is equicontinuous with respect to p and p P , P ª 0, for everyN a PˆN

P g PP, the bootstrap with resampling distribution P is consistent for everyâN

P in PP. Note that this result may also be obtained directly by applying
Ž .Corollary 1.1 combined with 3.7 , but it seemed instructive to exhibit a

� 4 � 4metric p that separates P and PP _ P explicitly.0 0

EXAMPLE 3.2. If the class of all possible distributions PP is complete, the
exceptional set of the first category, appearing in the result of Theorems 1.2
and 1.4, is small in the sense that its complement is dense in PP. If PP is not
complete, however, these sets can be quite large. In this example we discuss a
particular statistical model PP equipped with Hellinger metric H, such that

Ž .PP is of the first category in PP, H . This model is not an artificial construct,
but it is the natural model for a statistical situation of interest.

Ž .Let PP be the class of probability distributions P on 0, ` with distribution
functions F satisfying

F xŽ .
3.8 lim s a P g 0, ` .Ž . Ž . Ž .

xxo0

Ž .Let X , X , . . . be i.i.d. random variables taking values in 0, ` with un-1 2
known common distribution P in PP and distribution function F. Consider
the random variable

� 43.9 Y s N min X , . . . , XŽ . N 1 N

Ž .and let t P be the distribution of Y under P. Note that PP is precisely theN N
Ž .class of underlying distributions P for which t P converges to a nondegen-N

Ž . Ž .erate limit t P , which is an exponential distribution with parameter a P .
Ž . Ž .Let PP be equipped with Hellinger distance H. Then assumptions i and ii
Ž .of Theorem 1.2 are satisfied. It is shown in Putter and van Zwet 1994 that

application of Theorem 1.2 does not yield any positive information in the
sense that the exceptional set D appearing in the conclusion of the theorem
equals the entire space PP. The aforementioned paper also contains a direct

Ž .proof that PP is indeed a set of the first category in PP, H . Luckily, all this
trouble is caused only by a wrong choice of the metric p. If we define

F x y G xŽ . Ž .
3.10 p P , Q s sup ,Ž . Ž .

xx)0

where F and G denote the distribution functions corresponding to P and Q,
Ž .then it is shown in Putter and van Zwet 1994 that the sequence t isN

ˆequicontinuous with respect to p for all P g PP. A p-consistent estimator PN
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ˆof P is also provided. Its distribution function F is given byN

¡F jŽ .N N
x , if 0 - x - j ,N~ˆ j3.11 F x sŽ . Ž . NN ¢F x , if x G j ,Ž .N N

where F denotes the empirical distribution function and j is a sequence ofN N
positive numbers converging to zero with Nj ª `. It follows that theN

ˆbootstrap with P as resampling distribution works for all P in PP.N
In practice, this example occurs in a slightly modified form. Instead of

X , . . . , X , one observes Z s u q X , . . . , Z s u q X for the purpose of1 N 1 1 N N
estimating the parameter u g R which is the lower endpoint of the support

Ž .of the distribution of the Z . When using min Z , . . . , Z as an estimator ofi 1 N
Ž Ž .u , one is indeed interested in the distribution of Y s N min Z , . . . , Z yN 1 N

ˆ. Ž . Ž .u s N min X , . . . , X . Obviously, P as defined by 3.11 cannot be used1 N N
for the resampling distribution of XU, . . . , XU , since the empirical distribu-1 N
tion function F of X , . . . , X is now unknown. However, a slight modifica-N 1 N
tion will work. If G denotes the empirical distribution function of Z , . . . , Z ,N 1 N
one can estimate the distribution P of X by a distribution P with1 N
distribution function.

¡G min Z , . . . , Z q jŽ .Ž .N 1 N N
x , if 0 - x - j ,N~ jF x sŽ . NN ¢G min Z , . . . , Z q x , if x G j ,Ž .Ž .N 1 N N

ˆŽ .where j ª 0 and Nj ª `. It is easy to see that p P , P ª 0, so thatN N N N P
Ž .p P , P ª 0 and the resampling distribution P will produce a consistentN P N

bootstrap for all P g PP.

Ž .EXAMPLE 3.3 Superefficiency . Another example, related to Example 3.1,
Ž .is provided by Beran 1982 . Consider an i.i.d. sequence X , . . . , X with a1 N

common normal distribution P with unknown mean u and unit variance.u

The Hodges estimator of u is given by

y1r4< <X , if X ) N ,N N
3.12 T sŽ . N y1r4½ < <bX , if X F N ,N N

NŽ . Ž .where X s 1rN Ý X and b g 0, 1 . We wish to find a bootstrap esti-N is1 i
Ž .mate for the distribution t P ofN u

Y s N 1r2 T y uŽ .N N

� 4under P . We equip the class PP s P : u g R with the Euclidean metric d inu u

Ž . < <the parameter space, that is, d P , P s u y u 9 . Thus, in effect we areu u 9

Ž .identifying PP and its parameter space R. Let RR, l denote the class of all
distributions on R equipped with the Levy metric l. Consider t as a map´ N

Ž . Ž .from PP, d to RR, l .
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Ž .If we denote the distribution function corresponding to t P by G , weN u N , u

find

¡ y1r4 1r2< <F x , if N x q uN G 1,Ž .
1r2x q 1 y b u NŽ . y1r4 1r2< <F , if N x q uN F b ,~ ž /bG x sŽ .N , u

1r4 1r2 y1r4 1r2F yN y u N , if y1 - N x q uN - yb,Ž . Ž .¢ 1r4 1r2 y1r4 1r2F N y u N , if b - N x q u N - 1,Ž . Ž .

where F denotes the standard normal distribution function. It follows that
the pointwise limit G of G is given byu N , u

F xrb , if u s 0,Ž .
3.13 G x sŽ . Ž .u ½ F x , otherwise.Ž .

Ž . Ž .This implies that the limit t P of t P is a normal distribution withu N u

variance b2 if u s 0 and unity otherwise. Since 0 - b - 1, the Hodges
estimator is superefficient at u s 0.

Obviously, t is continuous at every P and since t ª t , Theorem 1.2N u N
applies, and hence the sequence t is equicontinuous on PP _ D, where D isN
of the first category. As t has a discontinuity at P , this distribution clearly0

Ž . Ž . Ž . < 1r2 <belongs to D. Observing that G x s G x s F x if both x q uNN , u N , u 9
1r4 < 1r2 < 1r4 Ž Ž . Ž ..G N and x q u 9N G N , we see that l t P , t P can be madeN u N u 9

arbitrarily small for u 9 in a small neighborhood of a fixed u / 0 and large N,
� 4so that t is equicontinuous at every P with u / 0. Hence, D s P , theN u 0

single point of discontinuity of the limit distribution t .
Of course this does not imply that

3.14 lim inf l t P , t P ) 0Ž . Ž . Ž .Ž .N 0 N u NN

Ž . Ž .for sequences u ª 0. However, as Beran 1982 points out, 3.14 does holdN
for sequences u converging at rate Ny1r2. To see this, notice that for suchN
sequences

x q 1 y b u N 1r2Ž . N
G x s F q oo 1 .Ž . Ž .N , u N ž /b

Ž . < < y1r2In fact, for every « ) 0, 3.14 holds uniformly for u G « N . This showsN
ˆthat for u s X , for instance, the parametric bootstrap with resamplingN N

distribution P will work for u / 0, but fails for u s 0.ûN

In Example 3.1 we have shown how to deal with a situation like this. By
applying Corollary 1.1, we find that all we have to do to make the parametric

ˆbootstrap work is to modify the estimator u s X to ensure thatN N

N ˆ N ˆP u s 0 ª 1, P u s 0 ª 0 for u / 0.Ž . Ž .0 N u N
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Choosing
y1r4< <X , if X ) N ,N N

û sN y1r4½ < <0, if X F N ,N

which is the Hodges estimator for b s 0, will accomplish this and the
Ž .corresponding parametric bootstrap t P will work for all u .ˆN u N

The reason we discuss the Hodges estimator T is that it is perhaps theN
best known example of an estimator which is superefficient for a single

Ž .parameter value u s 0. Le Cam 1953 has pointed out that one can modify
T in an obvious way to construct an estimator which is superefficient for allN
u belonging to a countable closed set in R. Moreover, Le Cam showed that an
estimator of u can only be superefficient on a set of the first category in R

equipped with the Euclidean metric. Since superefficiency can only occur at
points where t is not equicontinuous, this may be viewed as a consequenceN
of Theorem 1.2.

EXAMPLE 3.4. Our last example concerns the question of existence of a
'consistent bootstrap estimator. It may also clarify why a N -Hellinger-

ˆconsistent estimator P is needed in Theorem 1.4.N
Let X , X , . . . be i.i.d. random variables with a common normal distribu-1 2

tion with expectation u g R and variance 1, which we shall indicate as P oru
NŽ . Ž .NN u , 1 . Define X s 1rN Ý X andN is1 i

1r2Y s N X y a u .Ž .N N N

We distinguish three different cases.
Ž . Ž . Ž .Case i : a ' 1. The distribution t P of Y is NN 0, 1 independent of u ,N N u N

which can obviously be estimated consistently for any metric r on RR. Also the
� 4sequence t is equicontinuous for any topology P on PP s P : u g R andN u

any metric r on RR. As we can choose any P and r , Theorem 1.1 ensures that
Ž . Ž .the bootstrap t P equals the true distribution t P for any ‘‘estimator’’ˆN u N uN

û of u , consistent or not.N
Ž . Ž . Ž 1r2 .Case ii : a ' 0. Now t P is NN N u , 1 , which cannot be estimatedN N u

consistently in Prohorov or Levy metric. The reason for this is that any´
estimator of u has an error which is at least of order Ny1r2 in probability
and as a result N 1r2u cannot be estimated consistently. It follows that there

Ž .is no consistent bootstrap estimator of t P either.N u

Ž . Ž . Ž 1r2 .Case iii : a s 1 y « , « o 0. Now t P is NN « N u , 1 which can beN N N N u N
1r2 ˆŽ .estimated consistently by NN « N X , 1 in Prohorov or Levy metric. If u´N N N

Ž .is an estimator of u , the bootstrap t P will work if and only ifˆN u N

1r2 ˆ« N u y u ª 0Ž .N N Pu

for every u g R. This is true for every sequence « o 0 if and only ifN
ˆ y1r2 y1r2Ž . Ž . Ž .u y u s OO N or H P , P s OO N . It follows that the assump-ˆN P u u Pu N uˆ 'tion in Theorem 1.4 that P is N -Hellinger-consistent cannot be relaxed.N

1r2Ž . Ž .The bootstrap t P , which incidentally is the same as NN « N X , 1 , isN X N NN

obviously consistent.
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Ž .4. Proof of Theorem 1.2. In this section PP, P will be a topological
Ž .space, RR, r a metric space and t a sequence of continuous maps fromN

Ž . Ž . Ž . Ž .PP, P to RR, r , converging to a limit t : PP, P ª RR, r .

DEFINITION. t is locally uniformly convergent at P if for every « ) 0N 0
there exists a neighborhood U of P and a number N such that« 0 «

Ž Ž . Ž ..r t P , t P F « for all N G N and for all P g U .N « «

DEFINITION. t is equicontinuous at P if for every « ) 0 there exists aN 0
neighborhood U of P such that P g U implies« 0 «

sup r t P , t P F « .Ž . Ž .Ž .N N 0
N

For the sequence of continuous maps t , defineN

� 44.1 E s P g PP : t is locally uniformly convergent at P ,Ž . 1 N

� 44.2 E s P g PP : t is equicontinuous at P .Ž . 2 N

The following lemma asserts that E and E are equal.1 2

LEMMA 4.1. Suppose that t is continuous for N s 1, 2, . . . and that tN N
converges pointwise to a limit t . Then t is equicontinuous at P g PP if andN 0
only if t is locally uniformly convergent at P .N 0

PROOF. Suppose that t is locally uniformly convergent at P and fixN 0
« ) 0. Then there exists a neighborhood U of P and an integer N such that« 0 «

r t P , t P F « for P g U and N G N .Ž . Ž .Ž .N « «

Hence, for P g U and N G N ,« «

r t P , t P F r t P , t P q r t P , t PŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .N N 0 N N N 0 N 0« «

q r t P , t PŽ . Ž .Ž .N« N 0«

F 4« q r t P , t P .Ž . Ž .Ž .N N 0« «

Since t is continuous for every N, there exists a neighborhood U X of P suchN « 0
X Ž Ž . Ž ..that for P g U , r t P , t P F « for N F N , so« N N 0 «

r t P , t P F 5«Ž . Ž .Ž .N N 0

for P g U l U X and all N. Hence t is equicontinuous at P .« « N 0
Conversely, suppose that t is equicontinuous at P . Fix « ) 0. ThenN 0

Ž Ž . Ž ..there exists a neighborhood U of P such that r t P , t P F « for« 0 N N 0
Ž Ž . Ž ..P g U and all N. Since t ª t , this implies that r t P , t P F « for« N 0

P g U . Hence, for P g U and all N,« «

r t P , t P F r t P , t P q r t P , t P q r t P , t PŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .N N N 0 0 N 0 0

F 2« q r t P , t P .Ž . Ž .Ž .N 0 0

As t ª t , there exists N such that for all P g U and N G N ,N « « «

r t P , t P F 3« ,Ž . Ž .Ž .N

so t is locally uniformly convergent at P . IN 0
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LEMMA 4.2. Suppose that t is continuous for each N and that tN N
Ž . Ž .converges pointwise to a limit t . Let E and E be defined as in 4.1 and 4.2 .1 2

c Ž c . Ž .Then E and hence also E is a set of the first category in PP, P .1 2

PROOF. The sequence of maps t is locally uniformly convergent at P iffN 0
Ž .for every m there exists M s M m such that P is an interior point of0

1
G s P : r t P , t P F for all N G M ,Ž . Ž .Ž .m M N½ 52m

and hence an interior point of the larger set

F s P : r t P , t P F 1rm for all N , N9 G M .� 4Ž . Ž .Ž .m M N N 9

As t is continuous, F is the intersection of closed sets and is thereforeN m M
closed. Since t ª t , clearly D` F s PP for every m.N Ms1 m M

˚Let F denote the interior of F . The sequence t is not locallym M m M N
˚uniformly convergent at P iff there exists m such that P f D F , that is,M m M

iff for some m,
` `

˚P g F _ F .D Dm M m M 9
Ms1 M 9s1

Hence
` ` ` ` `

c ˚ ˚E s F _ F ; F _ F .Ž .D D D D D1 m M m M 9 m M m Mž /
ms1 Ms1 M 9s1 ms1 Ms1

˚Since F is closed, F _F is a closed set with empty interior andm M m M m M
˚Ž .therefore nowhere dense. It follows that the set D D F _F is am M m M m M

countable union of nowhere dense sets, and hence of the first category and a
fortiori so is Ec. The lemma is proved. I1

ˆPROOF OF THEOREM 1.2. When t is equicontinuous at P and P is aN N
consistent estimator of P, it is clear from the argument leading to Theorem

ˆŽ Ž . Ž ..1.1 that r t P , t P ª 0. It follows from Lemmas 4.1 and 4.2 thatN N N P
there exists a set D of the first category in PP such that t is equicontinuousN
at all P g PP _ D. The theorem is proved. I

5. Proof of Theorem 1.4. In this section we shall assume that PP is a
Ž .metric space, equipped with Hellinger distance H and that t : PP, H ªN

Ž .RR, r is continuous for each N. We shall omit the assumption that tN
converges pointwise. For the proof of Theorem 1.4 we follow an entirely
different path. Let us first collect some results about Hellinger distance.

Ž .Suppose that for each N s 1, 2, . . . , XX , AA is a measurable space and QN N 1 N
Ž .and Q are probability measures on XX , AA with densities q and q2 N N N 1 N 2 N

with respect to a s-finite dominating measure m . Let us define an asymptot-N
� 4 � 4ically perfect test for distinguishing between Q and Q as a sequence of1 N 2 N

tests for Q against Q for which the probabilities of errors of both type I1 N 2 N
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and type II tend to zero as N tends to infinity. Existence of such an
� 4 � 4asymptotically perfect test between Q and Q is related to the Hellinger1 N 2 N

distance between Q and Q . In particular, an asymptotically perfect test1 N 2 N
2Ž .cannot exist if lim sup H Q , Q - 2.N ª` 1 N 2 N

2Ž .LEMMA 5.1. Suppose that lim sup H Q , Q - 2. Then for anyN ª` 1 N 2 N
sequence A g AA ,N N

lim inf Q A q Q Ac ) 0.Ž . Ž .Ž .1 N N 2 N N
Nª`

PROOF. We can write
2 1r22 1r2 1r25.1 H Q , Q s q y q dm s 2 y 2 q q dm ,Ž . Ž . Ž .Ž .H H1 N 2 N 1 N 2 N N 1 N 2 N N

Ž .1r2and hence lim inf H q q dm ) 0. The Cauchy]Schwarz inequality1 N 2 N N
ensures that for every N and for any set A g AA ,N N

1r2 1r2 1r2q q dm s q q dm q q q dmŽ . Ž . Ž .H H H1 N 2 N N 1 N 2 N N 1 N 2 N N
cA AN N

1r2

F q dm q dmH H1 N N 2 N Nž /A AN N

1r2

q q dm q dmH H1 N N 2 N Nž /c cA AN N

1r21r2 cF Q A q Q A .Ž . Ž .Ž . Ž .1 N N 2 N N

The lemma follows. I

Ž .Let P and P be probability measures on a measurable space XX , AA withN
Ž .densities p and p with respect to a s-finite measure m on XX , AA . On theN

Ž N N .product measurable space XX , AA we define the product measures Q s1 N
N N N Ž . N Ž .P and Q s P with densities Ł p x and Ł p x with respect2 N N is1 i is1 N i

N Ž .to m s m . By 5.1 we haveN
N

1r21 21 y H Q , Q s ??? p x p x dm� 4Ž . Ž . Ž .ŁH H1 N 2 N i N i N2
is1

N
1r2s p x p x dm� 4Ž . Ž .H N

5.2Ž .

N1 2s 1 y H P , P .Ž .N2

Ž . Ž y1r2 . 2Ž .It follows that H P, P s OO N implies that lim sup H Q , Q -N N 1 N 2 N
2, and Lemma 5.1 yields the following corollary:

Ž . Ž y1r2 .COROLLARY 5.1. Suppose H P, P s OO N . Then for any sequenceN
A g AA N,N

lim inf P N A q P N Ac ) 0.Ž . Ž .Ž .N N N
Nª`
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Ž . Ž .LEMMA 5.2. Suppose that t : PP, H ª RR, r is continuous for every NN
Ž . Ž .and that T s t X , . . . , X is a consistent estimator of t P , that is,N N 1 N N

r T , t P ª 0 for every P g PP.Ž .Ž .N N P

Ž .Then there exists a set D of the first category in PP, H such that for every
P g PP _ D, every « ) 0 and every sequence d o 0,0 N

5.3 lim sup P N r T , t P G « s 0.Ž . Ž .Ž .Ž .N N
Nª` � Ž . 4P : H P , P Fd0 N

Žk . Ž .PROOF. Fix an integer k ) 0 and define c : PP, H ª R with EuclideanN
distance by

c Žk . P s P N r T , t P G 1rk , N s 1, 2, . . . .Ž . Ž .Ž .Ž .N N N

Žk .Ž .Clearly, c P ª 0 as N ª ` for every P g PP. Since we would like to applyN
Lemma 4.2 to c Žk ., we would also need continuity and hence we modify c Žk .

N N
slightly: choose d o 0 and defineN

1 1rkqdNŽk . Nc̃ P s P r T , t P G u du.Ž . Ž .Ž .Ž .HN N Nd 1rkN

We have

˜Žk . Žk . ˜Žkq1.5.4 0 F c P F c P F c P ,Ž . Ž . Ž . Ž .N N N

Ž . Ž Ž ..the last inequality for N G N s N k , such that d F 1r k k q 1 . There-0 0 N0˜Žk . ˜Žk .fore, c ª 0 on PP, but c is also continuous on PP. To see this, note thatN N
N < NŽ . NŽ . < Ž N N .for any P , P g PP and A g AA , P A y P A F H P , P , and for1 2 1 2 1 2

Ž . wfixed N, we can make this arbitrarily small by taking H P , P small cf.1 2
Ž .x5.2 . Hence, for every fixed N,

1 1rkqdNŽk . Nc̃ P y P r T , t P G u duŽ . Ž .Ž .Ž .HN 1 2 N N 1d 1rkN

Ž .can be made as small as we wish to taking H P , P small. Since t is1 2 N
˜Žk .continuous and the integral defining c depends continuously on the upperN

and lower bound of the range of integration, the same is true for

1 1rkqdN N Žk .˜P r T , t P G u du y c P ,Ž . Ž .Ž .Ž .H 2 N N 1 N 2d 1rkN

˜Žk .which proves the continuity of each of the functions c .N
Application of Lemma 4.2 yields the existence of a set DŽk . of the first

˜Žk .Ž . � 4category in PP, H such that c is locally uniformly convergent at P forN 0
every P g PP _ DŽk ., so a fortiori0

˜Žk .5.5 sup c P ª 0Ž . Ž .N
� Ž . 4P : H P , P Fd0 N

for every P g PP _ DŽk . and every sequence d o 0. Taking D s D` DŽk .
0 N ks1

Ž .and noting that D is also of the first category, we find that 5.5 holds for all
Ž .k s 1, 2, . . . , provided that P g PP _ D. Because of 5.4 , this implies the0

Žk . Ž .same for c itself, and hence we obtain 5.3 and the lemma. IN
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Ž . Ž .LEMMA 5.3. Suppose that t : PP, H ª RR, r is continuous for every NN
Ž . Ž .and that T s t X , . . . , X is a consistent estimator of t P . Then thereN N 1 N N

Ž .exists a set D of the first category in PP, H such that for every P g PP _ D0
and every C ) 0,

5.6 sup r t P , t P ª 0.Ž . Ž . Ž .Ž .N N 0
y1r2� Ž . 4P : H P , P FCN0

PROOF. According to Lemma 5.2 we can choose a set D of the first
Ž .category in PP, H such that for every P g PP _ D, every C ) 0 and every0

« ) 0,

5.7 sup P N r T , t P G « ª 0.Ž . Ž .Ž .Ž .N N
y1r2� Ž . 4P : H P , P FCN0

Ž . y1r2Fix P g PP _ D and take any sequence P g PP with H P , P F CN .0 N N 0
For N s 1, 2, . . . , define

A s r T , t P G r T , t P g AA N .� 4Ž . Ž .Ž . Ž .N N N 0 N N N

On A we haveN

r T , t P G 1r2 r T , t P q r T , t P� 4Ž . Ž . Ž .Ž . Ž . Ž .N N 0 N N N N N 0

G 1r2 r t P , t P ,Ž . Ž .Ž .N N N 0

and similarly on Ac ,N

r T , t P ) 1r2 r t P , t P .Ž . Ž . Ž .Ž . Ž .N N N N N N 0

It follows that
N N cP A q P A F 2I r t P , t PŽ . Ž . Ž .Ž . Ž .Ž .0 N N N Ž0 , 2 « . N N N 0

q 2 sup P N r T , t P G « .Ž .Ž .Ž .N N
y1r2� Ž . 4P : H P , P FCN0

Ž . y1r2 Ž .Because H P , P F CN , we can combine Corollary 5.1 and 5.7 toN 0
conclude that

lim sup r t P , t P F 2« .Ž . Ž .Ž .N N N 0
N

Since « is an arbitrary positive number and P is an arbitrary sequence withN
Ž . y1r2H P , P F CN the proof is complete. IN 0

PROOF OF THEOREM 1.4. Take D as in Lemma 5.3, fix P g PP _ D and take
Ž .« ) 0. By assumption iii , we can find C ) 0 such that for every N,
N ˆ y1r2P H P , P F CN G 1 y « .Ž .ž /N

Application of Lemma 5.3 yields that for every positive d and for every
P g PP _ D,

N ˆlim sup P r t P , t P ) d F « ,Ž .Ž .ž /ž /N N N
N

and as « is positive but otherwise arbitrary, this proves the theorem. I



RESAMPLING 2317

6. Proof of Theorem 1.3. In this section we only assume measurability
Ž .of the maps t , separability of RR, r and the existence of an r-consistentN

Ž .estimator T of t P . To construct an r-consistent substitution estimatorN N
ˆ ˆŽ . Ž .t P , we begin by choosing P s p X , . . . , X to be an approximateN N N N 1 N

minimum distance estimator, that is, an estimator satisfying

ˆ6.1 r T , t P F inf r T , t P q «Ž . Ž .Ž .Ž .ž /N N N N N N
PgPP

for some sequence « o 0. If this can be done in such a way that p : XX N ª PPN N
ˆis measurable so that P is a proper estimator, then the consistency ofN

ˆŽ .t P will follow, since for every P g PP,N N 0

ˆ ˆr t P , t P F r T , t P q r T , t PŽ . Ž .Ž .Ž . Ž .ž / ž /N N N 0 N N N N N 0

F inf r T , t P q « q r T , t PŽ . Ž .Ž . Ž .N N N N N 0
PgPP

F 2 r T , t P q « ª 0Ž .Ž .N N 0 N P0

because of the consistency of T .N
Ž .It remains to be shown that 6.1 can be satisfied for a measurable p .N

0 0 0� Ž . 4 Ž .Define RR s t P : P g PP , let RR denote the closure of RR in RR, r andN
0 0 Ž .let T denote the projection of T g RR on RR . Inequality 6.1 asserts thatN N

ˆ ˆŽ .P must be chosen in such a way that t P lies in a ball with center TN N N N
Ž 0 .and radius r T , T q « . One easily convinces oneself that this impliesN N N

ˆthat for any ball B ; RR with radius « r3, we can choose a fixed PN N
Ž . Ž .satisfying 6.1 for all T g B. As RR, r is separable, we can cover RR with aN

countable number of balls B with radius « r3. For every m, we cank N
ˆtherefore define P as a fixed point of PP for all T in the measurable setN N

my 1 c ˆB F B , so that P is an elementary measurable function of T . As Tm ks1 k N N N
is a measurable function of X , . . . , X , the proof is complete. I1 N

ˆAcknowledgments. The idea that contiguity of P with respect to P or,N
ˆ'as it turned out, N -Hellinger consistency of P , would be relevant in thisN

context grew out of conversations with Dimitri Chibisov. Jaap Fabius pa-
tiently explained measure-theoretic difficulties to us. An Associate Editor and
three referees provided constructive comments. Our sincere thanks go to all
of them.
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