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In this paper, we analyze the statistic which is the difference in the
values of an estimating function evaluated at its local maxima on two
different subsets of the parameter space, assuming that the true parame-
ter is in each subset, but possibly on the boundary. Our results extend
known methods by covering a large class of estimation problems which
allow sampling from nonidentically distributed random variables. Specifi-
cally, the existence and consistency of the local maximum estimators and
asymptotic properties of useful hypothesis tests are obtained under cer-
tain law of large number and central limit-type assumptions. Other
models covered include those with general log-likelihoods and/or covari-
ates. As an example, the large sample theory of two-way nested random
variance components models with covariates is derived from our main
results.

1. Introduction. The purpose of this paper is to derive large sample
properties of estimators obtained from a certain class of estimating functions.
In order to include models involving covariates in statistics, we allow the
sample to be collected from nonidentically distributed random variables. The
true parameters are allowed to be on the boundary of the parameter space.
The results are stated in terms of properties of a maximum estimator (ME)
which maximizes an estimating function .#,(6) on the intersection between
an open neighborhood of the true parameter and a given subset of the
parameter space. Sufficient conditions are derived for the existence and
consistency of a maximum estimator on a given region, and the large sample
distribution of the deviance statistic d, = 2[-%,(6}) —%,(6,)], where 6, and
62 are consistent ME’s on two different subsets () and 7 of the parameter
space, is obtained. Especially, explicit expressions for the asymptotic distribu-
tion of d, are given when the parameter spaces are the product of intervals.

An ME is called a maximum likelihood estimator (MLE) if the estimating
function is the log-likelihood. Thorough investigations of consistent MLE’s for
a general sample space have been done by Chernoff (1954), Feder (1968),
Moran (1971) and Chant (1974), when the sample is of independent random
variables having a common density function f(x, 8). Crowder (1990) consid-
ered the same setup with Weibull random variables. We refer to “interior”
and “boundary” problems according to whether the true parameter is in the
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interior or on the boundary of the parameter space. Self and Liang (1987)
gave a general approach for both problems when the sample is of indepen-
dently and identically distributed random variables.

More recently, Geyer (1994) provides conditions under which asymptotics
of global or local maximum estimators of a general estimating function £,(6)
are obtained for a sequence of observations. Geyer proves that the asymptotic
distribution of %,(6,) —%,(6,) is a projection of a normal random vector on
the tangent cone for a consistent sequence {én} of global maximum estimators
under the Chernoff regularity of a subset of the parameter space, and for a
Vn -consistent sequence {6,} of local maximum estimators under the Clarke
regularity of a subset of the parameter space. The Clarke regularity is not
needed in our formulation since there always exists a global maximizer on a
neighborhood of the true parameter with probability approaching 1 under our
conditions. Thus the results in Self and Liang (1987) still hold with the
maximum estimators considered in this paper. The local maximum estimator
én in Geyer (1994) maximizes the estimating function on the intersection
between a subset of the parameter space and a neighborhood of 6, which
does not necessarily contain the true parameter.

Geyer (1994) assumes a sampling model that is essentially a stationary
process. Our model has no such restrictions. In particular, we allow general
nonidentically distributed sampling so that models with covariances can be
included. Moreover, Geyer (1994) uses a Vn scaling, as one would expect
under stationary assumptions, whereas we scale more generally by a square
root of the observed negative Hessian of the objective function. This enables
us to obtain results when the convergence rate is not n~!/? or when different
components of the parameter vector converge at different rates. This is
needed for models involving covariates. We do require an extra condition (A3)
which is shown to be necessary in Remark 3.1. Our results hold in fact under
a generalized version of Chernoff regularity stated in Remark 2.2. For a
stationary process, our generalized Chernoff regularity reduces to the Cher-
noff regularity stated in Geyer (1994).

It is revealed in this paper that in order to ensure that the asymptotic
distribution of the deviance d, exists, the parameter subsets () and  must
settle down to a fixed cone possibly after certain transformations, as n tends
to infinity. (Recall that a subset C of R* is a cone with vertex at 0 if x € C
implies that Ax € C for all A > 0.) This requirement is described by condition
(A3) in Section 2. The effect of (A3) is shown by an example in Remark 3.1
where (A3) is violated and the asymptotic distribution of d, does not exist.
Furthermore, our results in Theorem 2.3 show that the existence and the
form of the asymptotic distribution of d, depend on the asymptotic behavior
of the expected information matrix and /or the forms of ) and 7. Such effects
of the information matrix and the forms of ) and 7 can only be revealed by
the use of the observed negative Hessian of the objective function. For
convenience, the regions () and 7 in this paper are assumed to coincide with
a closed cone near the true parameter 6, as specified in Assumption (A2) in
Section 2. However, our results are still valid if (A2) is relaxed to requiring
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only that Q (and/or 7) can be approximated by a cone with vertex at 6, in
the sense described in Remark 2.2.

Our method is to combine the approach in Self and Liang (1987) for a
general parameter space with the approach in Fahrmeir and Kaufmann
(1985) for a sequence of observations drawn from nonidentically distributed
random variables. It copes, for example, with general log-likelihoods for a
sample of observations drawn from random variables with improper and/or
censored distribution functions. (In survival analysis, failure time is said to
be “censored” if it is longer than follow-up time.)

In fact one motivation for this work came from a need to fit mixture models
to survival data in which not all individuals are subject to death or failure.
Such data sets occur, for example, in reliability analysis, where failure time
may be the time for a device to malfunction in a certain way, if this occurs, in
recividism studies in criminology, and in medical studies, where there may be
an immune or cured proportion in the population consisting of those who
never catch the same disease again [see Ghitany, Maller and Zhou (1994)]. In
other words, “immune” individuals are those who never fail. We allow
improper failure distributions so as to allow for a proportion of immunes in
the model, and a question of great interest in medical or criminological
studies, for example, is whether there is indeed a component of immune
individuals present. This boundary testing problem falls within the scope of
our methods. Furthermore, covariates such as age, race and so on may be
included to account for differences between observations.

This paper concentrates on the properties of hypothesis tests for both
interior and boundary problems for models involving covariates. As a sub-
stantial example, we derive the nonstandard asymptotic distribution of the
likelihood ratio (LR) tests for the two-way nested random variance compo-
nents model. Searle, Casella and McCulloch (1992) gave the exact distribu-
tion of the log-likelihood ratio to test the hypothesis that the variance
component is equal to zero for a one-way random model. However, neither
exact nor asymptotic distributions of the log-likelihood ratio to test the
hypotheses that one or both variance components are equal to zero for the
above two-way nested random model are mentioned by them. Suppose that
we have I classes where each class has J;, members. We select a random
sample of K, observations from the jth member of the ith class, i = 1,..., 1,
J=1,...,d,. Suppose that the k’'th observation of the jth member from the
ith class has the form

(1.1) yijk,=gijk,+Bij+Ai, i=1,...,1,j=1,...,J.,k =1,...,K,,
where

(12) & ~N(0,07), B,;~N(0,05) and A; ~N(p,aq?).

ij
Define 6, = u, 8, = 0%, 0, = 0 and 6, = 0,2. Then 6=(6, 0, 0, 6)7 €O =
R X (0,%) X [0,0) X [0, ) is the parameter to be estimated. Suppose that we
wish to test the hypothesis that the variance components o and o7 are

both zero. Then we let the true parameter be 6, = (6,, 0y 03, 0,0)" =
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(ny 0@ o2y a2)T =(u, o 0 0)7. Under this hypothesis and other as-
sumptions set out in Section 3, we will derive the asymptotic distribution of

(13) d =2 sup %(8) -  sup  Z(6)
0N (A) 0eN;(A), 05=6,=0

where #(0) is the log-likelihood and N;(A) is a neighborhood of 0, defined
by (2.6) with n = I and k& = 4. This distribution is given in Theorem 3.1, and
it is not a chi-squared distribution or even a mixture of chi-squared distribu-
tions. Furthermore, we may drop the normality assumptions on ¢;;,, B;; and
A; in (1.2) and Theorem 3.1 remains valid if we use (3.6) as an estimating
function, provided that &;;., B;; and A; have bounded fifth moments.

It should be noted that the assumptions required on the estimating
functions in this paper do not involve any specific forms for the sample
distributions, unlike ordinary likelihood methods where the specifications of
the distributions are crucial. In some models such as quasi-likelihood models,
or least squares procedures, the appropriate estimating functions may arise
naturally. In other cases, we may use the log-likelihood from distributions
which are not necessarily the distributions of the observations, such as in the
above example.

In the next section we state the assumptions under which we can derive
the asymptotic properties of local maxima of Z,(6) and of hypothesis tests
based on them. In Section 3, we state and discuss the result for the two-way
nested random variance components model mentioned above. All proofs are
relegated to Section 4.

2. The main results. Consider a sample of n observations on random
variables Y;,...,Y,. Suppose that the distribution function of Y, is drawn
from the family . (y; 6), where § € R* is the parameter to be estimated. The
true distribution function of Y; is (y; 6,), where 0, = (0,, --- 0,,)7 is called
the true parameter. Consider an estimating function of the form

n
Z(0) = Y g(¥,,0),
i=1
where g is a function from R**! to R. The parameter 6 will be restricted to
lie in a parameter space ® C R*, which is assumed to be a cone of the form

(2.1) 0= {0: 0y + Byuy + -+, 6,€1, j = 1k}

where u; are k linearly independent unit vectors, j = 1,...,k, and I/s are
either closed, half open or open intervals containing 0.

We will need to define derivatives in 0. This is done as follows. Let
0=0,+ Ou, + - +0,u,, 0 el, j= ,k. For each j=1,...,k, let
D, #,(6) be the usual dlrectlonal derlvatlve of Z,(6) in the dlrectlon u; if 6
is in the interior of [;. If 0 is on the boundary of I;, define

D, g(0) = lim D, g(0+ hu;).
h—0,h+6,€1;
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If 5j is in the interior of I;, denote by D, D,,%,(6) the usual directional
derivative of D, #,(6) in the direction u; If 6, is on the boundary of I,
define
DuJ_Dulg(H) = lim DujDulg(H + hu;).
h—0,h+6,€1;

Basic properties such as one-sided Taylor expansions of g(#) can be easily
derived using these definitions. We make the following assumptions on the
function ., and the parameter spaces we consider.

(A1) For a neighborhood .7 of 6,, the function £(60) is continuous on
O® N7, and the first and second directional derlvatlves D, Z (6) and
D, Dul,? (0), j,l =1,...,k, exist, are finite and are continuous on . NA.

(A2) A subset Q and @ is said to satisfy (A2) if there is a closed cone C
with vertex at 6, such that

(2.2) C,cO and C,Ns=QnNSg,
where ./ is a closed neighborhood of 6,,.

For any positive definite matrix A, let A/2(A7/?) be a left (the correspond-
ing right) square root of A, that is, any matrices satisfying A/2A7/2 = A,
where AT/% = (AY/2)T In addition, let A"1/2 = (A/2)"! and A~ 7/2 = (AT/2)" 1,
Usual versions of the square root are the Cholesky square root and the
symmetric positive definite square root. The left and right Cholesky square
roots A2 and AT/? are defined as the lower and upper triangular matrices
with positive diagonal elements satisfying A/2AT/2 = A and AT/? = (AV/2)7.
Denote by || |l; the sum of the absolute values of the elements of a matrix.
Also denote by A,;,(-) and A, (-) the minimum and the maximum eigenval-
ues of a symmetric matrix.

Let

2.3) T [u ]

denote the £ X k& matrix of directions defining © [see (2.1)]. We now define
the derivative of Z,(6) with respect to 6 to be the k-vector

(24) S.(0) = T7[D, %(0) - D, %(0)]",

max

where TT denotes the transpose of T. Similarly, we define the negative of the
second derivative of .Z,(6) to be the £ X k symmetric matrix

(25) Fn(e) = _TT[Du,Duf%z(e)]T

Define D, = E{S,(0,)S7(6,)} and G, = KF,(6,)}. For any fixed A > 0, define
subsets of R* by

(2.6) N,(A) ={0:(0—6))"G,(6— 6,) <A?, 0< 0},
(2.7) M,(A) ={0:(0—0,)"G,(0—0,) =A?, 6 € O},
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To obtain the existence, consistency and the asymptotic distribution of an ME
for the model, we need the following assumptions on the asymptotic behavior
of the first and second derivative matrices and their expectations. (Conver-
gences are as n — % unless otherwise stated.)

(B1) E{S,(6,)) =0, and the matrices D, and G, are finite, where the
expectations are taken with respect to the true distributions.

(B2) A,;{G,} = ©. (When (B2) holds, G, is positive definite for n large
enough, so we assume it to be so in general.)

(B3) sup < y (4G, *F,(0)G,"/* = T, lly - 0.

(B4) For some positive definite matrix V, |G,!/?D,G,"/? - V|, - 0.
(When (B2) and (B4) hold, D, is positive definite for n large enough, so we
assume it to be so in general.)

(B5) D, /28,(6,) »p N(,I,).

Denote by |y| the modulus of a vector y € R*. We say that a sequence of
events {A,} occurs with probability approaching 1 (WPA1) if P{A,} — 1 as
n — ©. We wish to define maximum estimates (ME’s) with respect to a fixed
subset () of ©. An estimate 6, of 6, is called a maximum estimate on Q if
Z.(6,) is the maximum of Z,(6) on an intersection between () and an open
(possibly depending on n) neighborhood of 6,. Such an estimator will be said
to be locally unique WPA1 if the event that there exists a unique maximum of
Z(0) on this intersection occurs WPAL. Specifically, we will show that the
event that there exists a unique maximum of Z,(6) on [ N,(A) N Q]\ M,(A)
occurs WPA1 for A sufficiently large. For our first theorem, it suffices to
replace (A2), (B3) and (B4) by the following weaker conditions.

(A2') A subset Q of O is said to satisfy (A2') if Q contains 6,, and if the
intersection between () and a closed neighborhood .#" of 6, is a closed subset
of R

(B3') There exists a constant ¢ > 0 such that for each A > 0,

P{ inf A {GIV2F,(0)G;T/2) < c} 50, noow
€N, (A)

(B4) G,1/2S,(6,) is tight, that is, lim,_, limsup, . P{IG,'/2S,(0,) >

A} =0.

THEOREM 2.1. Let Q be a subset of © satisfying (A2'). If conditions
(A1), (B1), (B2) and (B3'), (B4') hold, then a ME 6, of 0, on Q exists, is
locally unique WPA1, and is consistent for 6,,.

REMARK 2.1. It is possible that there are many maximum estimators.
Theorem 2.1 says that among these maximum estimators there is an ME
which is consistent and locally unique WPA1. This particular ME is in fact a
global maximizer within a neighborhood of 6.
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Let Q and 7 be two fixed subsets of ® which satisfy (A2) with correspond-
ing C, and C.. Let T, be arbitrary nonstochastic orthogonal matrices and
define

(2.8) Cq, = {0:6="T,GI72(6 - 6,), 0 € Cq

and similarly for C Note that the orthogonal matrix T, in the definition of
CQ can be dlfferent from that of C We need one more assumption on the
behavior of the sets () and r.

(A3) A subset ) of O is said to satisfy (A3) if there exists a closed cone C,
with vertex at 0, not depending on n, such that the sets CQ asymptotically
coincide with C,, in the sense that as n — o,

sup
IBl=1
Let 6! and 6? be local maxima of #,(6) on ( and 7 as obtained in
Theorem 2.1. Define
(2.9) d, =2|Z,(62) -=,(61)].
Denote by N = (N, -+ N,)* a random vector which has a multivariate nor-
mal distribution with mean zero and covariance matrix V.

inf I,B—HI — inf [B

S C_ﬂn 0eCyg

THEOREM 2.2. Suppose that (A1) holds and (A2) and (A3) hold for Q and
7. Suppose also that (B1)-(B5) hold. Then the asymptotic distribution of d,,
exists and is the same as the distribution of
(2.10) inf [N — 61> — inf I[N — 6/°.
0eCq 0eC,
REMARK 2.2. Although O and 7 are assumed to satisfy (A2) in Theorems

2.1 and 2.2, the results still hold if (A2) is relaxed to the following assump-
tion.

(A2") A subset Q of O is said to satisfy (A2") if there exists a closed cone
C,, with vertex at 6, such that
inf |GI/%(x —y)l < u(y)IGE%(y — 6,)!
xeC Q
and
inf IGI/2(x — y)l < v(%)IGI/%(x — 6,)l,
yeQ
where the real functions u(y) on Q and v(x) on C,, satisfy u(y) — 0 as
y = 6, and v(x) = 0 as x — 0.

We omit here the proof that (A2) can be replaced by (A2”) and also the fact
that (A2") is equivalent to Chernoff regularity in the sense defined by Geyer
(1994) if

A
(2.11) liminf "% > 0
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Thus Chernoff regularity is sufficient for our results, under the assumption
that (2.11) holds [which is the case in Geyer (1994)]. Geyer provides coun-
terexamples which show that Chernoff regularity is not sufficient to guaran-
tee asymptotic results similar to those in Theorem 2.2 for some local maxima.
But these examples do not apply to our case, as Theorem 2.2 only guarantees
the asymptotic results for §! and 6? as obtained in Theorem 2.1 (see Remark
2.1); other local maxima are not covered by Theorem 2.2.

Suppose for the remainder of this section that ® = ©; X --- X 0, where
the 0,’s are either closed, half open or open intervals. We also assume for the
remainder of this section that G;/? is the left Cholesky square root of G, and
that (A1) and (B1)—(B5) hold. Let x> be the chi-squared distribution on r
degrees of freedom.

In Theorem 2.3, we illustrate how to calculate the asymptotic distribution
of d,, when two components of 6, are on the boundary of the intervals ©®; and
G, is not diagonal. It will be applied in the next section to the two-way nested
random variance components model. Suppose that the components 6,,, j =
k — 1, k, are on the boundaries of ®j, which now have the form (a 0]0] or
[aj, 0]0] say, with a; < OJO for j =k — 1, k (the case [00, J) or [0 )0 ]] with
b; > OJO for j =k — 1 or j=F is s1m11ar) while the remaining components
6]0, J=1,...,k — 2, are interior points of 0;. Suppose also that the compo-
nents 0, j = k£ — 1, k, are known while the components 0o, j=1,....,k — 2,
are to be estimated. In this setup, C, = R*72 X {6;,_10) X {6} and C, =
RE=2 X (=, 6 1] X (=, 6;,]. Let

rse _ |Un Vu
(2.12) GI/2 = [ 0 W },

n

where U, is a (k — 2) X (k — 2) upper triangular matrix, V, is a (¢ — 2) X 2
matrix and

(2.13) W, = [a" c”}

for some a, > 0, b, > 0. Suppose that

(2.14) c,/b, > x,€[—w,2], n-o o

When x, € (—o,) let

F(Ne-1, Ni) = (N1 + N2, s 0000v, 148, 0)
+ Nkzl{Nk,1<o,Nkzo)

(Nk 1 onk)2
1+x

(2.15)

{xogN,_1+N, <0,N,_;—xyN;, >0}
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When x, = < or x, = — let

N2 1y .o+ N2, ifx,=o;
(216) f(Nkfl,Nk) — k—1 (Nk,l_O} k 0

2 : _
N;; l{NkZO}’ if x) = —oo.

THEOREM 2.3. Suppose (2.14) holds. The asymptotic distribution of d,, is
the same as the distribution of (N2, + N?) — f(N,_,, N}).

3. Variance component analysis—the two-way nested random
model. Recall from the introduction that we have I classes where each
class has J;, members. We select a random sample of K, observations from
the jth member of the ith class, i = 1,...,I, j =1,..., J,. Suppose that J,
and K, are positive integers and that the &’'th observation of the jth member
from the ith class has the form defined by (1.1) and (1.2). It is assumed that
the random vectors (A,,(B;); ;< s, (ep)i<jcg 1<w<x) 1 <i <1, are in-
dependent. For each i, conditional on A, = q;, the random vectors
(B, (31 < <x,)» 1 <J < J;, are assumed to be independent, and for each
pair (i, j), conditional on A; = a; and B;; = b,;, the random variables &,
1 < k' < K,, are assumed to be independent. Recall that

60=(60, 0, 05 6,)" = (1 0? 0f o) €Rx (0,%) x [0,%) x [0,)

is the parameter to be estimated. The log-likelihood ratio test that either
a2 = 0 or of = 0 has as asymptotic distribution a 50-50 mixture between a
chi-squared distribution on 1 degree of freedom and a point mass at zero. But
suppose that we wish to test the hypothesis that the variance components o,
and of are both zero. Then let the true parameter be 6, = (6,, 05, 03,
0,0)7 = (uy o2 o2y 02)" =(u, o2 0 0)7. Under this hypothesis, we will
derive the asymptotic distribution of the log-likelihood ratio d; defined by
(1.3).

Under the normality assumptions in Section 1, the observed likelihood is

I
(3.1) L,=11L,
=1

13

where

1 - b2
3.2 X 2 db;;
(3.2) V27 og exp{ 207 } ”w
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Define

K, J;
(3.3) J_’ij = ( Z yijk’)/Ki and ¥, = ( Z 3_’ij
E=1 j=1

/Jl'
Then conditional on B;; = b,; and A; = a,, the random variables y,;, 1 <
k' < K;, are distributed as N(a; + b,;, o*). Conditional on A; = a;, the ran-
dom variables ¥,;, 1 <j <, are distributed as N(a;, o5 + o*/K,). Finally
each of the random variables ¥;,, 1 <i <1, has the distribution N(pu,

ol + of/J; + o2 /(J;K,)). Define

K.

i

_ N2
(34) W, = ) (Yij — ¥ij) s D} =0®+ K, 05
F=1
and
J; ,
3.5 W = y..—y. and V2=02+K,02 + J K 0l
i ij i i iYB YA

1

J

Then the observed log-likelihood can be written as

$(9)=_12 Ji(Ki_1)10g02+i£ Wi
25 0y ;=1
+(J; — 1)log( 0, + K;03)
(36) + _ KW + log(6, + K,0, + J,K,6,)
0, + K, 6, ' e

JK (5 — 6,)°
0, + K,0, + J,K,0,

+ const.

The derivative of Z(8) with respect to 6 is the vector

J 1

S = — = s;

(0) = 25%(0) = ¥ s(0)
(3.7) s

= = [Sn(o) $i2(0) s;3(0) 3i4(0)]T’
where
J,K,(y, — 0,

(3.8) su) = ZEATZ0)

P2 ’

13
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s (9)=i —J;(K; - 1) N Tl W _di-1
2 2 0, 62 P?
(3.9) )
KW, 1 J K (y; — 0,)
oF Wz Wy ’
1(—(J;- DK, KW, K, JEKXF - 91)2
(310) Si3(9) = E <I)l2 + (I)l4 — \If_lz + \Ifi4
and
1| —JK; JizKiZ(yi B 91)2
(3.11) sia(0) = 9 P2 + i :

Similarly, by differentiating again, one obtains

0°%(0)

FI(B) == 962

I
= L o).

where [ f7°(6)] is the negative of the second derivative of the log-likelihood of
the ith observation. Then it can be checked directly that

(3.12) E{S;(6,)} =0 and E{S;(6,)S7(6,)} = E{F,(6,)}.

Furthermore, defining ®2 = 6,, + K,0,, and V2 = 0,, + K,0,, + J,K,0,,, it
can be seen that

M~

(3.13) D, - E(F,(6,)} =

13

;= Z [dirs]’

1 i=1

where 9, = E{[ f/°(6)]} is the following matrix:

Lt 0 0 0
v

1(J(K;-1) J,—-1 1 K, (J,—1 1 J.K,

0 o 2 " 9 ey 4
2 920 CI)iO \Pio 2 q)LO \Pio 2\I,io
(3.14) , Ki(Ji 11 ) Kf(J,. 11 ) JK?
2\ @f ¥ 2\ o W 2%5
0 J;K; J.K? JPK?
2 2V 2V
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[This agrees with (104) in Searle, Casella and McCulloch (1992), page 157.]
Now suppose that 6;, = 6,, = 0. Then ®2% = V2 = 0,, and the left Cholesky
square root of D; is

V2052, O

(3.15) DV? = 0 a0 0
0 z; a; O
0 z; ¢ b

Where ZI = (Z{:]_ JL‘Ki/[ZGQZO])l/27

Z{=1 Ji(Ki - 1)Ki i
ar=¢;= 29220 ,

(3.16)

, _(Ea - DIk
L 202, '
Suppose that

25:1 Ji(Ki - 1)Kl
Zle(Ji - 1)JiKi2

(3.17) lim

n— o

1/2
) =2x, € [0,].

THEOREM 3.1. Suppose that (3.17) holds, J; > 1, K; > 1 and {J,;} and {K,}
are bounded above. Then the asymptotic distribution of d;, as I — «, is
(N2 + N2) — f(N,, N,) where f(N,, N,) is given by (2.15) with k = 4.

The above model corresponds to a design which may be unbalanced if the
integers oJ; (or K,) are not the same for all classes. Designs like this have
been used often in agriculture. For example, one can consider I litters with
J; pigs in each litter and K, observations on each pig. Then the litters and
the pigs in each litter correspond to the classes and members in each class.
Suppose for example that the classes are divided into m groups, and the
classes in each group have the same numbers J; and K, of members and of
observations on each member. Then (3.17) holds if, as I tends to infinity, the
limits of the proportions of classes belonging to a group out of the I classes
exist. The test given by Theorem 3.1 is the test of whether there is no
variation among observations of members of each class. The percentage
points of the asymptotic distribution given by Theorem 3.1 are easily approxi-
mated by simulation with either the exact value of x, obtained from the
design or its approximated value obtained from the experiment.

REMARK 3.1. We give an example where the limiting proportions in
classes do not exist. Suppose again that there are I classes with J;, members
in each class and K, observations on each member. Also suppose that there

are two groups of classes with K; = 2 if the ith class belongs to the first
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group, and K, = 3, otherwise, and that J;, = 2 for 1 <i < I. Let p; be the
proportion of the classes belonging to the first group out of the I classes. Then

L Ji(K, - 1K, i 2p; +6(1 —p;)
L (- 1)K 4p; +9(1 - py)

One can easily construct a sequence { p;} with the property that there are two
subsequences {p;} and {p;} of {p;} such that the right-hand side of (3.18)
tends to two different limits x;, and x{). Then if the observations are assumed
to satisfy (1.1) and (1.2) and the other assumptions given at the beginning of
this section, the deviances d; and d;. tend in distribution to two different
limits as I' — « and I"” — « respectively. Thus the asymptotic distribution of
d; does not exist. Note that (A3) does not hold in this case.

1/2

(3.18)

4. Proofs.

Proor oF THEOREM 2.1. Assume (Al), (A2'), (B1), (B2) and (B3'), (B4')
hold. Under (A1), #£,(0) is continuous on Q N.# for a neighborhood .7 of 6,,.
Fix A > 0. By (B2), N,(A) c.# for n large enough, and since Q) N N, (A) is
closed by (A2'), Z,(6) must have a maximum on Q N N,(A). We will prove
that

(4.1) lim liminf P{Z,(0) <Z,(0,) forall 6 M,(A)}=1.
A—> n— o
Since infy ¢ y (4) Amin(F,(0)) =p © by (B2) and (B3'), #,(60) is concave on
® N N,(A) WPA1. Thus it follows from (4.1) that there exists a unique
maximum of Z,(6) on [N,(A) N Q]\ M,(A) WPAL. To prove (4.1), let 6
M, (A). It follows from Taylor expansion that there exists some A € [0,1],
depending on 6, such that
(42) Z(0) =Z(0,) = (0= 6,)"S,(6,) = 5(6— 0,) " F,(6,)(0 — 6,),
where 6, = A6, + (1 — A)6. Define Q(0) = 3(6 — 6,)"F,(6,)(6 — 6,). Observe
that
P{Z,(0) >%,(0,) for some 6 € M,(A)}
(43)  <P{(6-6,)"S,(6,) =Q(8),Q(68) >cA?/2for some § € M,(A)}
+P{Q(6) < cA?/2 for some 6 € M, (A)},
where c is defined in (B3'). Denote v,(0) = (1/A)GL/2(6 — 6,). Then v,(0) is

a unit vector for each 6 € M, (A). For the first term of (4.3), it follows from
(B4') that

limsup P{(0 — 6,)"S,(6,) = Q(0), Q(6) > cA?/2 for some 6 € M, (A))

n—ow

(44) < limsup P{vl(6)G,'/*S,(6,) > cA/2 for some § € M,(A)}

n—ow

< limsup P{IG;*/2S,(0,)| > cA/2} - 0, A - .

n—w
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For the second term of (4.3), it follows from (B3') that
P{Q(0) < cA?/2 for some 6 € M,(A)}
= um{aa e M,(A): (6 - 6,)"G/?[G;/*F,(§,)G, /*]

= IP{U,?(O)G;”ZFH(5n)G;T/2vn(0) < ¢ for some 6 € Mn(A)>

mi n{

sIP{ inf A

G;'/?F,(0)G;7/?} < c} 50, no o
0N, (A)

Hence (4.1) follows from (4.3)-(4.5). O

Proor oF THEOREM 2.2. Suppose that (A1) and (B1)-(B5) hold and (A2)
and (A3) hold for Q and 7. Let & > 0 be given. Recall that 6! and 6?2 are local
maxima of Z(0) on Q and 7 respectively as obtained in Theorem 2.1. Note
that (B4) implies (B4'), because by the Markov inequality,

lim sup P{|G}/2S,(6,) > A}

n— o

1
< lim sup FE{S,?(OO)G; 1S,.(60)}

n— o

IA

1
lim sup ?[E{tr[G,jl/zSn(OO)SZ(GO)G;Tﬂ]}

n— o

1
Vel tr{V} - 0, A — oo,
Also it is obvious that (B3) implies (B3'). Therefore, by (B4) and (B5) and
Theorem 2.1, there exists a constant A, depending on &, such that for n large
enough,

4.6 P{6! € N (A), 62 N,(A), and |G, /%S (0,)<A/2}>1 - &.
n n n n n n 0

Suppose that 6' and 62 are in N,(A) and |G!/2S,(6,)| < A/2. By Taylor
expansion, there exists A € [0, 1] such that

2[Z,(8)) —=.(6,)]
= 2(81 — 0,)" S,(00) — (81 — 0,) F,(6,)(82 — 6,),
where 6, = A6, + (1 — M)§). The expression (4.7) can be rewritten as
(4.8) 2[%(6)) = Z(00)] = ha(61) +7.(8)),

where

(4.7)

hn(e) = —|G;1/25n(90) - GZ/2(0 - 90)|2 + SZ(GO)GEISn(eo)
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and
r(8) = (86— 6,)"[G, — F,(8,)] (6 — 6,).
Denote by 01 the value that maximizes the quadratic function 4,(0) on
N, (A) N Q. Since 6! maximizes Z,(6) on N,(A) N Q, and A, () < h (61) it
follows from (4.8) that
(4.9) 0 <2[Z(6)) —Z(6Y)] <r.(8)) - r.(6Y).
By (B3), there exists a k X k real symmetric matrix V,(,) = 0,(1) such that
Fn( ) G, + G2V ( )GT/2
Since ! € N,(A),

()] < N max{V,(8,)} () — 05) G, (6] — 6,)
< [Mmax{V,.(6,) } A2,

where |Alpma<(+) is the n}aximum absolute eigenvalue of a symmef_;ric matrix.
This implies that r,(6,)) = 0,(1). Similarly, r,(6,) = 0,(1) as 6, € N,(A).
Therefore, it follows from (4.9) that

(4.10) 2[Z,(8Y) —Z(80)] = 0,(1) + 2[Z,(6)) —Z.(6,)].

n

By the Taylor expansion, there exists 8 € [0, 1] such that

2[Z,(8)) ~Z(00)] = h(8)) + (8 - 0,) [G, — E,(6,)](8) - 6,),
where 6, = B, + (1 — B)6}. Since 6 is in N,(A), it can be easily verified
using the same argument as above that

2[Z,(8)) = Z(80)] = ha(8Y) + 0,(1)

n

(4.11) = — inf  [G;Y/28,(6,) — GI/%(6} - 6,)]
0EN(A)NQ

+ 8, (00)G, 'S, (0p) + 0,(1).
Transforming from 6 to ' = T,GI/2(0 — 6,) [so that § € N (A) if and only if
|6'] < Al], it follows from (A2) and (B2) that for all n large enough,

inf 1G,'/2S,(6,) — G1/*(6 — 6,)I’
0EN,(A)NQ

= inf  IT,G;'/2S,(6,) — 0'I°.
10'|<A, 0'eCy,

Recall that we assume |G, '/%S,(0,)| < A/2, so IT,G,'/2S,(6,) < A/2. Since

C,, contains the origin, we have
n

(4.13) inf [T,G;1/2S,(6,) — 0I° <IT,G;1/2S,(6,)*> < A%/4.

0eCyg,

(4.12)
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There also exists 6 € énn such that

(4.14) IT,G,'/%S,(6,) — 61> = inf IT,G,/2S,(8,) — 6I°.
aecnn
Since (4.13) and (4.14) imply that 0] < A, we have
(4.15) inf  IT,G,'/2S,(6,) — 61> = inf IT,G,/2S,(6,) — 6I°.
\OISA,eeénn 9eCyq,

Thus it is derived from (4.10)-(4.12), (4.15) and (A3) that
2[3(63”1) -Z( 90)] = — inf IT, G, /28, (6,) — 9|2
0eCyg

(4.16)
+8,(00)G, 'S, (0y) + 0,(1).
Similarly, we have

2[Z,(82) -Z.(6,)] = - inf IT,G, /%S, (60) ~ oI

(4.17)
+5,(00)G, 'S, (0y) +0,(1).

It follows from (4.16) and (4.17) that on a set whose probability exceeds
1-—-2¢,

2[7,(07) ~#(8)] = inf I1,G,1/%5,(6,) — oI
(4.18) Peca
— inf [T,G1/2S,(6,) — 01> + 0,(1).
0eC,

Since T, G, '/28S,(6,) is asymptotically normally distributed with mean 0 and
covariance matrix V by (B4) and (B5), Theorem 2.2 follows from (4.18) and
the continuous mapping theorem. O

ReEMARK 4.1. If C(, and C, are the approximating cones for () and 7 in the
sense defined in Remark 2.2, our results are proved to be valid by verifying
that (4.12) still holds in this case.

Proor oF THEOREM 2.3. Take the matrices T, to be identity A-dimen-
sional matrices. We have C, =C, =T GT/Z(CQ —6,) = R*~2 x {0} x {0}
and C. =T, GI/2(C, — 6,) = {6 = (6, - Ok)TeR b 0k ,—¢,0,<0,0, <
0}. Hence (A3) holds for Q) and
(4.19) inf [N — 0> = N2, + N2

0eCq
Suppose that ¢, /b, = x, € (—%,©) as n — . Then we will prove that the
sets C, asymptotically coincide with

C.={06=(6, 6,) €RF: 0, | —x,6, <0, 0, <0].

Let «,, a, €(0,7) be such that cot(a,) =c,/b, and cot(a,) = x,. Since
¢,/b, = xy as n = =, we have o, = a, as n — «. Since C, and C, contain
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the origin, it can be easily verified that as n — o,

sup 1nf|B—0|2—1nf|B—9|
gl=1 | eeC, 6sC
< max{lsin( ay — a,)l, (1 cos( @y — a,))} = 0.

Thus the sets C, asymptotically coincide with C, and (A3) holds for r.
Now the prOJectlon of the set C onto the plane whose coordinates are
(6,_,6,)" is given as Region 4 in Flgure 1. In the figure we have

NZ | + N2, if (N,_;, N,) is in Region 1,
) 9 NZ, if (N, _;, N,) is in Region 2,
inf [N — 6]° = 5
0eC, (N,_1 —xoN,)" /(1 +x3), if (N,_,, N,) is in Region 3,
0, if (N,_4, N,) is in Region 4,
where
Region 1 = {(0,_,6,) :Hk_le, X00,_1 + HkZO};

Region 2 = {(Bk 10k) 10,_,<0,0, > O};
Region 3 = {(Hk 1Ok) 1%00,_1 1+ 6, <0,0,_1 —x,0, > 0};

Region 4 = {(60,_,6,) :Hk,l—xOGkSO, HksO}.

6,
4 6,.1%08,=0
Region 1
Region 2 T NY
Ny, No)
6,y
A U N VA VD UL U N >
NN N N N NN
NN N N NN
AU N U NN
N N NN ) \
Region 4 NN N N
N~ NN MNea, N) x0 0u.140,=0
\
A N Region 3

F1G. 1. The distance of (N,,_1, N},) to Region 4.
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It can be calculated that

(4.20) inf [N — 6 = f(N,_1, N,)
0eC,

where f(N,_;, N,) is given by (2.15). Thus it follows from (4.19) and (4.20)
and Theorem 2.2 that the asymptotic distribution of d, is N? , + N2 —
f (N k—1> N, k)' -

Suppose that c,/b, = x, as n —> © with |x,| = . Then the sets C,_
asymptotically coincide with

i (e R 6, ,<0,0, =0}, ifx,=c;

T {ee Rk 9, <0}, if xg = —co.

Thus (A3) holds and inf,_s IN — 6|> = f(N,_,, N,) where f(N,_,,N,) is
given by (2.16). Hence it follows from Theorem 2.2 that the asymptotic
distribution of d, is again N2 ; + N? — f(N,_,, N,). O

REMARK 4.2. In the above proof, it is assumed that 6,,_,,, and 6,, are the
right end points of their admissible intervals. If ©; = [6,;, b;) or ©; = [6,,, b;]

with 01’9 < b; for some j =k — 1, k, then replace (==, 6,,] by [6,5,) in the
expression for C, and let (T,);; = — 1.

ProOF OF THEOREM 3.1. Suppose that (3.17) holds, J; > 1, K; > 1 and {J,}
and {K;} are bounded above. Then x, must be finite. Thus Theorem 2.3
applies to give the asymptotic distribution for the log-likelihood ratio d;,
defined by (1.3), with «a;, b, and ¢; given by (3.16), n =1, k=4 and
f(N,_1, N,) given by (2.15), provided that (A1)-(A3) and (B1)-(B5) are veri-
fied. Here Q =R X (0,%) X {0} X {0} and 7= R X (0,%) X [0, %) X [0,%). So
(A1)—(A3) hold. Since D, = G,, (B4) is trivially satisfied. Since det(Z,) =
JEK(J, — 1)(K; — 1)/(86],) # 0, there exists ¢, > 0 such that

(4.21) Ain(Z;) = ¢y, 1<i<I

Thus A, {D;} > ¢,I, and so (B1) and (B2) hold. It remains to verify (B3) and
(B5). This is done as follows. Let & = 4. Let 0 € N;(A) and write

D; V/2F,(6)D; 7/
=1, + D;'*{F;(6,) — D;}D;"/? + D;2{F,(6) — F;(6,)}D; "/

If A; is a k X k matrix such that [[I7'A,ll; = 0,(1) as I — =, then it follows
from (4.21) that for any unit vector u,

[u"D; V24, D7 T %ul < | Nmax{ A} u? D; u
(4.22) < Mmax{ A} (D7 '} = A max{ A} ALL(D))
< (COI)71|)\|maX{AI} = Op(l)‘
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Thus (B3) holds if

F;(6,) — D,
tr{f} = Op(l),

{FI(G) —IFI(Go)}

(4.23)

sup ftr
0 N;(A)

=0,(1).

Since {J;} and {K;} are bounded above, {f/*(8)} is equicontinuous at 6, and
{E{(f7°(8,) — d’*)*}} is uniformly bounded for r,s = 1,2. Thus (4.23) holds
and so does (B3).

Let §1 be any unit vector in R*. For 1 <i < I, define Y;, = ¢ D; V/25,(6,)
and o2 = Var{Y;;} = ¢'D; V29,D; 7/%,. Then Ym 1 <1i <1, are mutually
1ndependent for each I, EKY,;} =0, and o =02 + -+ +02=1. Since
[E{Isl(OO)I } <L with 6 =5/2,1 <i < I, for some constant L, it follows from
(4.21) that as I — o,

5 E{Y,°)

i=1 i

I
H MN
M

D7 2s,(0,) ! (00)D; /2 €)%

IA
\I MN
/M

i[g

I/\

{s:(60)s7(6)})” " 152{D7 1))

ls;(09)1°} 3 LI 0
< b d
o1 D} T (e

{(¢
(Ml (00)sT (o)) (£7D7 1 ¢) )
{(or
E{

Thus, by Lyapounov’s theorem in Billingsley [(1968), page 44],
&'D;Y28,(6,) = Y,; + -+ +Y;; converges in distribution to the standard
normal random variable. This verifies (B5). O
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