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TRIMMED k-MEANS: AN ATTEMPT TO
ROBUSTIFY QUANTIZERS1

BY J. A. CUESTA-ALBERTOS, A. GORDALIZA AND C. MATRAN´
Universidad de Cantabria, Universidad de Valladolid

and Universidad de Valladolid

ŽA class of procedures based on ‘‘impartial trimming’’ self-determined
.by the data is introduced with the aim of robustifying k-means, hence the

associated clustering analysis. We include a detailed study of optimal
regions, showing that only nonpathological regions can arise from impar-
tial trimming procedures. The asymptotic results provided in the paper
focus on strong consistency of the suggested methods under widely gen-
eral conditions. A section is devoted to exploring the performance of the
procedure to detect anomalous data in simulated data sets.

1. Introduction. The development and study of methods to detect clus-
w Ž .ters is a very important goal in data analysis see, e.g., Hartigan 1975 and

Ž .xKaufman and Rousseeuw 1990 . Closely connected, but from the popula-
tional point of view, in statistics or in information theory, the quantization of
a random variable is a well-known problem widely studied in the literature
w Ž . xsee, e.g., the special issue of IEEE 1982 devoted to this topic . Particular

wattention has been paid to k-mean clustering procedures see, e.g., Hartigan
Ž . Ž . Ž .1975, 1978 , Pollard 1981, 1982 , Sverdrup-Thygeson 1981 , Cambanis and

Ž . Ž . Ž .Gerr 1983 , Cuesta-Albertos and Matran 1988 , Arcones and Gine 1992´ ´
Ž .xand Serinko and Babu 1992 based on the minimization of the expected

Ž .value of a ‘‘penalty function’’ F of the distance to k-sets sets of k points ,
through the problem:

Given an R p-valued random vector X, find the k-set M s
p� 4 Ž . Ž 5m , m , . . . , m in R that minimizes V M s H F inf X y1 2 k F is1, . . . ,k

5.m dP.i

w Ž .xPrincipal points see, e.g., Tarpey, Li and Flury 1995 is another recent
meaning of this concept in the population framework.

The motivation for this work lies in the fact that, although this formula-
tion is similar to that of obtaining k joint location M-estimators, robustness
properties behave very differently and quantizers based on typically robust
methods can be highly unsatisfactory. For instance, although the median of a
random variable may be considered a very robust centralization measure, the
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selection of two ‘‘joint’’ medians through that formulation is very unstable:
the introduction of one, even very improbable, sufficiently remote value implies
the selection of such a value as one of the medians!

This difficulty shows the necessity of designing new clustering procedures
with emphasis on robustness properties. Among the available standard tech-
niques in robust estimation, those based on removing part of the data
Ž .trimming procedures present a good performance, often being an obligatory
benchmark to compare new estimators. However, the arbitrariness in the
selection of zones to remove data is a serious drawback of such procedures.

Ž .Gordaliza 1991a introduced a class of best approximants based on the
idea of ‘‘impartial trimming.’’ As in the case of the least trimmed squares

w Ž .xestimator of Rousseeuw see, e.g., Rousseeuw and Leroy 1987 , the trim-
mings depend only on the joint structure of the data and not on arbitrarily
selected directions or zones for removing data. Therefore, they are especially

w Ž .xsuitable in the multivariate case see also Gordaliza 1991b .
The main aims of this paper are to suggest a natural extension of Gorda-

liza’s procedure to obtain robustified k-means and to provide some mathe-
matical analysis of the method. Consistency properties have a high priority in
our study.

The methodology of ‘‘impartial trimming,’’ as a way to obtain a trimmed
Ž . Ž .set at a given level a with the lowest possible variation penalized by F ,

leads us to formulate the procedures of interest as follows.
Ž .Let a g 0, 1 , k a natural number and F a penalty function be given. For

Ž . � 4every set A such that P A G 1 y a and every k-set M s m , m , . . . , m1 2 k
in R p, let us consider the variation about M given A:

1
A 5 5V M [ F inf X y m dP .Ž . H ž /F iP A is1, . . . , kŽ . A

AŽ .V M measures how well the set M represents the probability mass of PF

living on A and our job is to choose the best representation to the ‘‘more
adequate’’ set containing a given amount of probability mass. This is done by

AŽ .minimizing V M on A and M in the following way:F

1. obtain the k-variation given A, V A , by minimizing in M:k , F

V A [ inf V A M ;Ž .k , F FpM;R
aMsk

2. obtain the trimmed k-variation, V , by minimizing in A:k , F , a

V [ V X [ V P [ inf V A .Ž . Ž .k , F , a k , F , a k , F , a X k , FpAgb
Ž .P A G1ya

We wish to obtain a trimmed set A , if it exists, and a k-set M s0 0
� 0 0 0 4m , m , . . . , m , if it exists, through the condition1 2 k

V A0 M s V .Ž .F 0 k , F , a
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‘‘Impartially a-trimmed k-F-mean’’ seems a suitable name for the quan-
tizer M just introduced. However, the shorter ‘‘trimmed k-mean’’ will be0
used.

Ž .We use the approach in Gordaliza 1991a and employ ‘‘trimming func-
tions.’’ These are a more tractable tool than trimmed sets. The tuning of the
technical background necessary for our purposes is made in Section 2.

We prove in Corollary 3.2 that the best trimming function essentially
coincides with the indicator function of a nonpathological set: the union of k
balls with the same radius. In fact, Section 3 is mainly devoted to analyzing
the existence and characterization of the trimmed k-means and the associ-
ated clusters as well as showing the strong consistency of the method.

An important question remains: what about the applicability of our results
in the practical setting? This is analyzed in Section 4 with hopeful results.
Our analysis is carried out by applying our methodology to a bivariate data
set randomly generated from a mixture of three normal distributions, con-
taminated both by outlayers and inlayers. In this framework we consider
some illustrative situations to discuss the scope of the method.

ŽA main difficulty arises from the nonexistence of a deterministic nonex-
.haustive optimal algorithm to handle the problem. However, a simulated

annealing based algorithm suitably performed the procedure in an efficient
way, leading to quickly recognized anomalous data and a clusterized data set.

Finally, most of the proofs are given in the Appendix.

Ž .2. Notation and preliminary results. In this paper V, s , P is a
p Ž .probability space and X is an R -valued random vector defined in V, s , P ,

with probability law P in the s-algebra BBp of all Borel sets in R p.X
The ‘‘penalty function’’ under consideration, F: Rqª Rq, is assumed to be

Ž . Ž . Ž .continuous, nondecreasing and such that F 0 s 0 and F x - F ` for all x.
p cFor a set B ; R , B denotes its closure and B its complementary set. We

Ž . p p Ž .denote by d x, y the usual distance on R . For m g R and r G 0, B m, r
denotes the open ball with radius r centered at m. Moreover, for x g R p and
C, D ; R p, we denote

d x , C s inf d x , yŽ . Ž .
ygC

and

d C , D s sup sup d x , D , sup d y , CŽ . Ž . Ž .½ 5
xgC ygD

Žnote that the last expression coincides with the Hausdorff distance between
bounded closed sets in R p, although in this paper we only use it to obtain

.distances between sets of k elements .
Ž . w Ž .xFor a g 0, 1 , t ' t X denotes the nonempty set of trimming functionsa a

for X of level a , that is,

p w xt s t : R ª 0, 1 , measurable and t X dP s 1 y aŽ .Ha ½ 5
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and, t denotes the set of trimming functions for level b F a , that is,ay

p w xt s t : R ª 0, 1 , measurable and t X dP G 1 y a s t .Ž . DHay b½ 5
bFa

Ž .Note that the functions in t resp. t are a natural generalization of thea ay
Ž .indicator functions of sets which have probability a resp. at least a ob-

tained by introducing the possibility of partial participation of the points in
the trimmings.

Now the problem stated in Section 1 can be generalized in a natural way:
Ž .let a g 0, 1 , k a natural number and F a penalty function be given, and, for

� 4 pevery t g t and every k-set M s m , m , . . . , m in R , let us consideray 1 2 k
the variation about M given t :

1
tV M [ t X F d X , M dP .Ž . Ž . Ž .Ž .HF Ht X dPŽ .

Then:

1. obtain the k-variation given t , Bt , by minimizing in M:k , F

Vt [ inf Vt M ;Ž .k , F FpM;R
aMsk

2. obtain the trimmed k-variation, V , by minimizing in t g t :k , F , a ay

V [ V X [ V P [ inf Vt .Ž . Ž .k , F , a k , F , a k , F , a X k , F
tgtay

We wish to obtain a trimming function t , if it exists, and a k-set0
� 0 0 0 4M s m , m , . . . , m , if it exists, through the condition0 1 2 k

1 Vt 0 M s V .Ž . Ž .F 0 k , F , a

p Ž .Obviously, I g t for every set B g BB with P B G 1 y a . Therefore,B ay X
the approximation obtained through trimming functions is better than the
one obtained through trimmed sets.

Ž .Also note that V P - ` for every k, F, X and a ) 0; in fact, byk , F , a X
Ž . Ž .taking a ball B s B 0, r such that P B G 1 y a , we haveX

1
2 V X F I X F d X , 0 dPŽ . Ž . Ž . Ž .Ž .Hk , F , a BP BŽ .X

F F r - `.Ž .
The following simple results provide the bases for our subsequent work.

Ž .Their proofs are related to those given in Gordaliza 1991a and will be
omitted.

� 4 p Ž .LEMMA 2.1. Let M s m , . . . , m ; R a k-set and b g 0, 1 . Let us1 k
Ž .denote the generalized ball centered at M by

k

B M , r s B m , r for all r G 0,Ž . Ž .D i
is1
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and let

r M s inf r G 0: P B M , r F 1 y b F P B M , rŽ . Ž . Ž .Ž .� 4Ž .b X X

and

t s t g t : I F t F I , a.e. P ,� 4M , b b BŽM , r ŽM .. BŽM , r ŽM .. Xb b

then, for all t g t we have:M , b

Ž . Ž . Ž Ž .. Ž . Ž Ž ..a Ht X F d X, M dP F Ht 9 X F d X, M dP for all t 9 g t ;b

Ž . Ž .b If F is strictly increasing, then the inequality in a is strict if and only
if t 9 g t y t .b M , b

From Lemma 2.1, the b-trimmed variation about M:

1
V M [ t X F d X , M dPŽ . Ž . Ž .Ž .HF , b 1 y b

is the same for every function t in t . Therefore, unless necessary, noM , b

explicit reference to any particular choice in t will be made and the sameM , b

notation t will be used for any function in t .M , b M , b

LEMMA 2.2. With the same notation as in Lemma 2.1, if b F a , then:

Ž . Ž . Ž .a V M F V M ;F , a F , b

Ž . Ž .b if F is strictly increasing, then the equality holds in a if and only if
Ž . Ž . w Ž Ž ..xr M s r M and P B M, r M s 0.a b X a

PROPOSITION 2.3. With the same notation as in Lemmas 2.1 and 2.2,

V s inf V M .Ž .k , F , a F , apM;R
aMsk

The notation introduced in the previous lemmas will be maintained
throughout the paper.

REMARK 2.1. After Lemma 2.1 we know that the b-trimmed variation
about M is minimized by taking any trimming function in t , that is,M , b

essentially an indicator function of a ball centered at M.

REMARK 2.2. After Lemma 2.2 we know that in order to minimize the
a-trimmed variation about M, it is strictly better to trim the exact quantity

Ž Ž ..a , except in the case where all the probability mass of B M, r M isa

concentrated on the boundary.

Ž .REMARK 2.3. After Proposition 2.3 the problem stated in 1 can be
� 0 0 4 prestated as follows: select a k-set M s m , . . . , m ; R such that0 1 k

3 V M s V .Ž . Ž .F , a 0 k , F , a
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3. Existence and consistency of trimmed k-means. The existence of
k-means is shown in the Appendix. There we prove the following theorem.

Ž . pTHEOREM 3.1 Existence of trimmed k-means . Let X be an R -valued
Ž . q qrandom vector. Let a g 0, 1 , k g NN and let F: R ª R be a continuous,

Ž . Ž . Ž .nondecreasing function such that F 0 s 0 and F x - F ` for all x. Then
there exists a trimmed k-mean of X.

Once the existence of k-means is established, Lemma 2.1 provides an
important relationship between trimmed k-means and the best trimming
functions, which we state next.

COROLLARY 3.2. Under the hypotheses of Theorem 3.1, if F is strictly
Ž .increasing and t and M are a solution of 1 , then0 0

I F t F I , P -a.e.BŽM , r ŽM .. 0 BŽM , t ŽM .. X0 a 0 0 a 0

Moreover, if P is absolutely continuous with respect to the Lebesgue measureX
on R p, then

I s t , P -a.e.BŽM , r ŽM .. 0 X0 a 0

� 0 0 4REMARK 3.1. Consider a trimmed k-mean of X, M s m , . . . , m , with0 1 k
associated optimal trimming function t and optimal radius r , that is,0 0

I F t F I ,BŽM , r . 0 BŽM , r .0 0 0 0

Ž .where B M , r is the optimal set except at most by part of the boundary.0 0
Ž .Note that every trimmed k-mean, M , induces a partition of B M , r into k0 0 0

clusters in the following way: the cluster A consists of all points x g R p
i

which are closer to m0 than to the remaining k y 1 points in M . The pointsi 0
in the boundary between the clusters could be assigned in any way because,
obviously, the trimmed k-variation remains unchanged.

The set M also induces a partition of the trimmed k-variation of X into0
the variations corresponding to each cluster:

1
V X s t X F d X , M dPŽ . Ž . Ž .Ž .Hk , F , a 0 01 y a

k1
0s t X F d X , m dP .Ž . Ž .Ž .Ý H 0 i1 y a Aiis1

Moreover, for every i s 1, . . . , k, m0 has to be a F-mean of the correspond-i
ing cluster A , or, more precisely, a F-mean of X given A ; that is, m0 is ai i i
solution of

inf t X F d X , m dP .Ž . Ž .Ž .H 0pmgR A i

On the contrary, we could diminish the variation in some clusters by
replacing m0, i s 1, . . . , k, by F-means of the corresponding clusters, andi
then M would not be a trimmed k-mean of X. Thus we have proved not only0
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Ž .that the trimmed k-mean induces a partition of B M , r into k clusters but0 0
also that the partition determines the trimmed k-mean. We summarize this
result in the following proposition, which relates the trimmed k-mean to a
joint set of F-means.

PROPOSITION 3.3. With the same notation as above, m0 is a F-mean of Xi
given the cluster A , i s 1, . . . , k.i

As a consequence, uniqueness of the trimmed k-mean depends not only on
the uniqueness of the optimal trimming set, but also on the uniqueness of the

ŽF-mean given each cluster consider, e.g., the median as the particular case
.where F is the identity . This kind of difficulty can be avoided by imposing

restrictions on the penalty functions. For instance, we have proved in
Ž .Cuesta-Albertos, Gordaliza and Matran 1995 that if F is a continuously´

differentiable, strictly convex function, then there is no probability mass at
the boundary between the clusters.

We have even proved in that paper that, under the same hypotheses, the
mass on the external boundary of the clusters cannot be placed in an

Ž .arbitrary way, because the optimal B M , r necessarily satisfies one of the0 0
following:

1. The boundary does not lie at all in the optimal trimming set, that is,
w Ž .xP B M , r s 1 y a .X 0 0

w Ž .x2. All the boundary lies in the optimal trimming set, that is, P B M , rX 0 0
s 1 y a .

Ž Ž ..3. There exists x g Bd B M , r such that all the probability mass of the0 0 0
w Ž Ž ..x w� 4xboundary is concentrated at x , that is, P Bd b M , r s P x .0 X 0 0 X 0

Ž .In Cuesta-Albertos, Gordaliza and Matran 1995 , we also provide exam-´
ples of the necessity of some kind of condition on F to get such conclusions.

The main result related to the consistency of the trimmed k-means is
based on a previous, more general result of continuity of trimmed k-means
and trimmed k-variations as well as on the Skorohod representation theorem.
The latter allows us to represent the convergence of the empirical measures
in terms of an almost sure convergent sequence and then to apply the
continuity result. This scheme is similar to that used in Cuesta-Albertos and

Ž .Matran 1988 to establish the SLLN for k-means. However, some difficulties´
arise from the presence of trimmings, because the trimming functions are
discontinuous on the boundary of the corresponding balls so that some care is
needed with the convergences. The continuity of the probability distribution
of the limit random vector will be imposed in order to guarantee the results.

� 4 pIn what follows, X is a sequence of R -valued random vectors definedn n
Ž . � n n4on V, s , P and M s m , . . . , m , n s 0, 1, 2, . . . , is a trimmed k-mean ofn 1 k

X with associated optimal trimming function t and optimal radius r .n n n
w Ž .xMoreover, V s V X , n s 0, 1, 2, . . . , denotes the trimmed k-variationn k , F , a n

of X .n
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THEOREM 3.4. With the same notation as above, assume that:

Ž .a X ª X , P-a.e.;n 0
Ž .b P is continuous;X 0
Ž . � 0 0 4c M s m , . . . , m is the unique trimmed k-mean of X .0 1 k 0

Then
M ª M in the Hausdorff distance as n ª `Ž .n 0

and
V ª V as n ª `.n 0

COROLLARY 3.5. If we assume that every hypothesis in Theorem 3.4 is
Ž .satisfied and a is replaced by:

Ž .a* X ª X in distribution.n 0

Then
M ª M in the Hausdorff distance as n ª `Ž .n 0

and
V ª V as n ª `.n 0

PROOF. By applying the a.s. Skorohod representation theorem, there ex-
� 4 pists a sequence Y of R -valued random vectors such that P s P ,n n Y X0

P s P and Y ª Y a.s. Hence, the result follows by applying Theorem 3.4Y X n 0n n
� 4to the sequence Y . In n

Now we obtain the consistency of trimmed k-means as a simple conse-
quence of Corollary 3.5

Ž . � 4THEOREM 3.6 Consistency of trimmed k-means . Let X be a sequencen n
of independent, identically distributed random vectors with distribution PX

� v4 Ž vŽ .and let P be the sequence of empirical probability measures i.e., P A sn n
y1 w Ž .x.n Ý I X v . Let us assume that P is continuous and that there1F iF n A i X

� v4exists a unique trimmed k-mean for P , M . if M is a sequence ofX 0 n n
empirical trimmed k-means, then:

Ž . Ž v .a d M , M ª 0, P-a.s.;n 0
Ž . Ž v. Ž .b V P ª V P , P-a.s.k , F , a n k , F , a X

� v 4PROOF. Let A [ v g V such that P ¬ P . It is well known thatn d X
Ž .P A s 1, so the result follows from Corollary 3.5. I

4. Application. The objective of this section is to show the ability of the
procedure, on the one hand, to detect anomalous data and rightly assign data
to clusters and, on the other hand, to estimate the mean of clusters in the
presence of anomalous observations. For simplicity, we consider the quadratic

Žloss, and we will be concerned with the a-trimmed k-mean in fact, we always
.consider k s 3 for different sizes of a . The general scheme will be the

following.
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First, we will randomly generate a set of points which are divided into
three clusters and we will add a proportion b of anomalous points. This set

Ž .will be denoted by A. Then we will choose a g 0, 1 . According to our
procedure, we will delete a proportion a of points in A and we will divide the
remaining points into three groups in order to minimize the within-group
variance.

As stated, our analysis of the method is focused in two directions. First, in
the spirit of cluster analysis, we make a sensitivity study by exploring
different departures of what could be called the ideal model. Here our interest
relies on the capacity of the method to detect the anomalous data and to
divide the remaining ones in the original clusters.

Note that, from Corollary 3.2, it follows that relatively nearby clusters
could be badly detected if they are nonspherical or even if their shapes are too
different because, according to that corollary, every cluster obtained with our
method is spherical and all of them have the same radius. Therefore, the
ideal model would be one consisting of spherical, not too close, clusters.
Moreover, in that ideal model, the anomalous observations should appear
clearly separated from the nonanomalous ones.

Here we have chosen a sample of situations in which each requirement to
have an ideal model is violated. Moreover, all of them have in common that
many of the anomalous data are not so anomalous because the only restric-
tion we have imposed on them is that they are not allowed to be in the 75%
level confidence ellipsoids of the distributions generating the points in the
clusters.

More precisely, in every situation we have simulated three bivariate
Ž . Ž . Ž .normal distributions, N , N and N , with means at 0, 0 , 0, 10 and 6, 0 .1 2 3

These means were chosen to avoid harmonizing effects which could appear if
we place the means on the vertices of an equilateral triangle. The anomalous
data were randomly generated from N , a bivariate normal centered at4
Ž . Ž .2, 10r3 the mean of the means above with a dispersion large enough to
produce both inner and outer contaminations. The points from N lying in4
the 75% level confidence ellipsoids of N , N , or N were replaced by other1 2 3
ones not belonging to that area. With this selection of contaminating data, we

Ž .wanted to produce an inner additional small cluster, zones of uncertainty
and masking to render difficult a right classification, and even a clear bias
due to the greater proportion of anomalous data in the middle area. We fixed
the size of every cluster and the number of anomalous observations sepa-
rately.

ŽTherefore, in every situation, the model is specified by n , n , n , n , S ,1 2 3 4 1
.S , S , S , where n is the sample size from the distribution N , and S is2 3 4 i i i

the covariance matrix of the distribution N , I s 1, 2, 3, 4. In order to improvei
the final display, we have chosen moderate sample sizes. However, every time
we have chosen n s 40 and S s 20Id, where Id denotes the identify matrix.4 4
Thus, only the value of n , n , n , S , S and S need to be specified.1 2 3 1 2 3

The capability of the method, under reasonable deviations from homogene-
ity and sphericity of the right clusters, is shown in Figures 1]4. The figures
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FIG. 1.

Ž .labeled a correspond to the initial set of points, while the figures labeled
Ž . Ž . Ž .b.35 , b.40 and b.45 show the results of our method for the different
trimming sizes which were chosen around the number of anomalous observa-
tions as 35, 40 and 45. In this figures the symbol ` denotes an anomalous

Ž .observation in the figures labeled a or a trimmed observation in the figures
Ž .labeled b . The symbols q, = and ) denote the initial clusters in the figures
Ž . Ž .labeled a or the clusters suggested by our method in the figures labeled b .

The closest situation to the ideal model is shown in Figure 1. Here the
model is given by

n s 15, n s n s 30, S s S s S s 1.5Id.1 2 3 1 2 3
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FIG. 2.

Therefore, every cluster is spheric and some separation appears between
clusters, but the situation is also conflicting because the size of one of the
clusters is a half of those of the other ones and it amounts to less than a half
of the contamination.

In the remaining cases we have fixed the values for n s n s n s 30 and1 2 3
we have varied the covariance matrices. So in Figure 2 we have increased the
dispersion of N by taking S s 4Id while S s S s 1.5Id.2 2 1 3

In the data in Figure 3 we have increased the dispersion of the distribu-
tions N and N to get the associated clusters in touch. We have also1 3

Ž .increased the dispersion of N with respect to the values in Figure 1 . In this2
case we have chosen

S s S s S s 2Id.1 2 3
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FIG. 3.

Perhaps the most difficult situation considered is that shown in Figure 4.
Here we have introduced a nonspheric cluster by taking S s S s 2Id and2 3

3 2
S s .1 ž /2 3

The results are summarized in Table 1, where we show, for every case and
every trimming size, the number of rightly trimmed data and the number of

Žmistakes where we include the incorrectly trimmed data, the data which
were incorrectly assigned to a cluster and those anomalous observations

.which were not trimmed . Note that the number of incorrectly trimmed data
is necessarily grater than or equal to 5 when trimming 45 points because
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FIG. 4.

TABLE 1

Trimming size s 35 Trimming size s 40 Trimming size s 45

Rightly Rightly Rightly
Cases trimmed Mistakes trimmed Mistakes trimmed Mistakes

Case 1 33 9 35 10 35 15
Case 2 30 19 34 16 37 15
Case 3 26 23 30 21 33 20
Case 4 27 24 32 19 35 18
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there are only 40 anomalous observations. Analogously, the number of
nontrimmed anomalous observations is at least 5 when trimming 35 points.

We want to remark that the procedure was quite successful in spite of the
fact that, in every case, we have a really high proportion of contamination,
which introduces enough noise as to make the original clusters badly identi-
fiable just by eye.

In a different way we have also analyzed the behavior of the method for
the estimation of the means of the distributions N , i s 1, 2, 3.i

For this task we have generated 25 data sets obtained from the same
model as above, but taking n s 50, i s 1, 2, 3, 4, S s S s S s 1.5Id andi 1 2 3
S s 20Id. However, for obvious reasons, now only those points from N not4 4
included on the 90% level confidence ellipsoids of N , i s 1, 2, 3, were consid-i
ered as anomalous and included in the whole sample. We successively ob-
tained, for each set, the sample impartial trimmed 3-mean by using trimming
sizes in the range 40 to 100 points.

We have also computed, to be used as elements of comparison, the esti-
mates consisting of the 3-mean when computed, respectively, from a set
without anomalous observations and with 10 and 50 anomalous observations.
That is, here no trimming is allowed, so that we have just divided the data, in
each case, into three groups, by minimizing the within-group variance and
then we have estimated the mean of every cluster as the sample mean of the
points included in that cluster. This job has been carried out for the same 25
data sets which we have employed with our method.

This general comparison process can be summarized as follows:

1. We have randomly generated a set of 150 points by taking n s n s1 2
n s 50 and n s 0 and we have computed its 3-mean without trimming.3 4

2. We have added n s 10 anomalous points from N and we have computed4 4
the 3-mean without trimming of this data set.

Ž3. We have included 40 additional data points from N thus n s 50, i s4 i
.1, 2, 3, 4 and we have computed the 3-mean of those points in the follow-

ing cases:
a. without trimming;
b. with trimming sizes equal to 40, 50, 60, 70, 80, 90 and 100.

4. We have repeated the previous steps for the 25 data sets.

The results are summarized in Table 2, in which we show as ‘‘mean vector’’
the mean of the values that we have obtained for each data set in previous
steps. ‘‘Distance’’ is the Euclidean distance between the six-dimensional

ŽŽ . Ž . Ž ..mean vector and the theoretical mean vector 0, 0 , 0, 10 , 6, 0 . We have
finally sorted the different estimates according to the values of those dis-
tances.

These data show some bias in the estimator, which is more apparent for
low levels of trimming. To explain the nature of this bias, let us suppose that
there exists a high density of probability mass ‘‘on a side’’ of trimmed cluster
Ž . Ž .at a given level , given by the ball B x , r . To fix the ideas, let us assume0

Ž .that x s 0, 0 , that the zone of high density is approximately placed on the0
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TABLE 2

Vector of k-means

Case Cluster 1 Cluster 2 Cluster 3 Distance Order

Ž . Ž . Ž .No anomalous y0.003, 0.051 0.011, 9.974 5.965, y0.030 0.074 1
Ž . Ž . Ž .10 anomalous y0.03, 0.11 0.05, 9.82 6.03, 0.14 0.262 8
Ž . Ž . Ž .50 anomalous y0.22, 0.10 0.37, 9.44 6.24, 0.64 0.988 10
Ž . Ž . Ž .Trimming s 40 0.07, 0.16 0.06, 9.83 5.88, 0.11 0.299 9
Ž . Ž . Ž .Trimming s 50 0.08, 0.11 0.02, 9.91 5.86, 0.01 0.216 7
Ž . Ž . Ž .Trimming s 60 0.04, 0.08 y0.02, 9.94 5.89, 0.01 0.156 5

Ž . Ž . Ž .Trimming s 70 y0.010, 0.069 y0.044, 9.950 5.898, 0.009 0.141 2
Ž . Ž . Ž .Trimming s 80 y0.024, 0.067 y0.005, 9.952 5.873, 0.005 0.154 4
Ž . Ž . Ž .Trimming s 90 y0.027, 0.087 y0.038, 9.933 5.868, 0.004 0.178 6
Ž . Ž . Ž .Trimming s 100 y0.014, 0.080 y0.047, 9.947 5.902, 0.012 0.146 3

Ž .point r y « , 0 and that a greater trimming level is required. Then the
procedure tries to maintain the zone of high density of probability also in
the new trimmed cluster and searches for a less ‘‘inhabited’’ zone for trim-
ming. The center of the new ball corresponding to this trimmed cluster will be

Ž .moved from the old 0, 0 , producing the bias.
In the examples of our simulations this notably happens, due to the kind of

contamination under consideration and to the relative proximity between two
clusters, when the trimming size does not suffice for trimming to a greater
extent than that corresponding to the 90% level confidence spheres. This
happens, in mean, around the trimming corresponding to 65 points. The bias
is less dramatic as the trimming level increases.

The main difficulty in accomplishing our goal was the nonexistence of a
Ž .deterministic optimal nonexhaustive algorithm to choose the optimal trim-

ming set. Moreover, as is widely recognized, optimal algorithms do not exist
for the k-means problem even without trimming. However, the employment
of a random algorithm along the lines of the so-called ‘‘simulated annealing’’
procedures, in the Matlab setting, has shown a quick and suitable behavior
with different data sets to handle both problems.

5. Conclusions. From a general point of view, the behavior of the
procedure seems hopeful because the objectives were successfully reached.
The procedure is orthogonally equivariant and, as shown in the simulations
in Section 4, its robustness against contamination seems to be high when the
probability is supported by a set of relatively well-shaped spherical clusters.

However, let us emphasize that there we used the right number of clusters
in the analyses, but let us consider the following example. Let us assume that
Ž . 2F t s t and that we try to compute the 1r3-trimmed 2-mean of the set

in R:

� 4A s y3, y2, y1, 1, 2, 3, 20, 23, 26 .
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That is, we are allowed to delete up to three points in A, and then to split
the remaining points into two groups and to compute the within-group
variance. The goal is to minimize this quantity.

It is obvious that the optimal points to trim are 20, 23 and 26 and that the
� 4associated 2-mean is y2, 2 . Now let us contaminate A by replacing the

point y3 by y100. Then it happens that the points to trim are again 20, 23
� 4and 26, but now the associated 2-mean is y100, 0.6 . Thus the trimming

procedure, when applied to A, has a breakdown point which is less than or
equal to 1r9. Moreover, it is clear that, by modifying the set A, we would
have that for every a , k and F there exists a probability P such that the
breakdown point of the a-trimmed k-mean of P is as close to 0 as desired.

A careful look at this example shows that the cause of this behavior of the
2-mean procedure when applied to the uniform probability on A is that, if we
are looking for just two clusters, then the set A already contains 1r3 of

Žanomalous points independently of when those points constitute or do not
.constitute a new cluster . Therefore, it seems that for probabilities Q, sup-

ported by a set which is divided into exactly k clusters with respective
probabilities q , q , . . . , q , the breakdown point of the a-trimmed k-mean of1 2 k

� 4Q is, at most, inf a , q , . . . , q independently of F. Of course, this fact is1 k
more apparent when we use other methods like the ‘‘two joint medians’’
example in the Introduction, which is clearly unstable in every circumstance.

In other words, the breakdown point generally depends, of course, on the
procedure, but it also depends heavily on the data, in the sense that the same
procedure can be highly stable with reasonable clusterized data when consid-
ering the right number of clusters, but it can also be very unstable in other
cases. This is in some way natural and clearly related to the traditional key
problem in cluster analysis: how to choose the number of clusters to look for?

As an added conclusion, from our point of view, the analysis of robustness
of the cluster analysis procedures needs some fit of the available theory to
analyze problems like the previous one.

An extreme case which naturally arises from our study is that of the
trimmed k-means associated with the L -criterion, the so-called trimmed`

k-nets. This case is quite different from the one treated here and we have
w Ž .xstudied it in a separate paper Cuesta-Albertos, Gordaliza and Matran 1996 .´

To give a hint to the difference between k-nets and k-means may be
enough to say that the strong consistency of trimmed k-nets does not
generally hold if the level of trimming in the sampling remains constant. In
fact, in order to get consistency, we need suitable sizes of trimming that vary
with the size of the sample.

APPENDIX

We begin with two results of a different scope. The first one shows the
Ž .continuity of the trimmed variation V M with respect to M, and theF , a

second one shows the natural fact that the trimmed variation is strictly
improved by increasing the number of clusters. Both results are needed in the
proof of the existence of trimmed k-means.
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� n n4PROPOSITION A.1. Let M s m , . . . , m , n s 0, 1, 2, . . . , be a sequence ofn 1 k
k-sets in R p satisfying

M ª M in the Hausdorff distance as n ª `.n 0

Then we have

V M ª V M as n ª `.Ž . Ž .F , a n F , a 0

Ž .PROOF. Let us set r s r M and t s t , n s 0, 1, . . . . It is easy ton a n n M , an
< Ž . Ž . <see that lim r s r . Let us denote D s V M y V M . Thennª` n 0 n F , a n F , a 0

1 y a D s t X F d X , M dP y t X F d X , M dPŽ . Ž . Ž . Ž . Ž .Ž . Ž .H Hn n n 0 0

F t X F d X , M y F d X , M dPŽ . Ž . Ž .Ž . Ž .Ž .H n n 0

q t X y t X F d X , M dPŽ . Ž . Ž .Ž . Ž .H n 0 0

\ DŽ1. q DŽ2. .n n

Ž . Ž .Notice now that d X, M y d X, M ª 0 as n ª ` and that F is uni-n 0
formly continuous on every compact set, so that we have

Ž1. < <D F t X F d X , M y F d X , M dPŽ . Ž . Ž .Ž . Ž .Hn n n 0

< <F 1 y a sup F d x , M y F d x , MŽ . Ž . Ž .Ž . Ž .n 0ž /
Ž .xgB M , rn n

ª 0 as n ª `.
In order to prove that also DŽ2. ª 0 as n ª `, let us denoten

E [ x g R p : t x ) t x� 4Ž . Ž .n n 0

and
F [ x g R p : t x - t x .� 4Ž . Ž .n n 0

We have

0 s t x y t x dPŽ . Ž .Ž .H n 0 X

s t x y t x dP q t x y t x dPŽ . Ž . Ž . Ž .Ž . Ž .H Hn 0 X n 0 X
E Fn n

4Ž .

and therefore

t x y t x dP s t x y t x dP .Ž . Ž . Ž . Ž .Ž . Ž .H Hn 0 x 0 n x
E Fn n

Moreover, for every x g E ,n

F d x , M F F d x , M q d M , MŽ . Ž . Ž .Ž . Ž .0 n n 0
5Ž .

F F r q d M , MŽ .Ž .n n 0



´J. A. CUESTA-ALBERTOS, A. GORDALIZA AND C. MATRAN570

and, for every x g F ,n

F d x , M G F d x , M y d M , MŽ . Ž . Ž .Ž . Ž .0 n n 0
6Ž .

G F r y d M , M ,Ž .Ž .n n 0

c cŽ . Ž . Ž . Ž .because E ; B M , r l B M , r and F ; B M , r l B M , r . Onn 0 0 n n n 0 0 n n
the other hand, by the definition of t ,0

t X y t X F d X , M dP G 0,Ž . Ž . Ž .Ž . Ž .H n 0

so that we have

DŽ2. s t X y t X F d X , M dPŽ . Ž . Ž .Ž . Ž .Hn n 0 0

s t X y t X F d X , M dPŽ . Ž . Ž .Ž . Ž .H n 0 0
En

y t X y t X F d X , M dPŽ . Ž . Ž .Ž . Ž .H 0 n 0
Fn

F F r q d M , M t X y t X dPŽ . Ž . Ž .Ž . Ž .Hn n 0 n 0
En

y F r y d M , M t X y t X dPŽ . Ž . Ž .Ž . Ž .Hn n 0 0 n
Fn

F F r q d M , M y F r y d M , M ª 0 as n ª `. IŽ . Ž .Ž . Ž .n n 0 n n 0

� 4 p Ž .PROPOSITION A.2. Let M s m , . . . , m ; R and a g 0, 1 . Then the1 k
following statements are equivalent:

Ž . Ž .a V M ) 0;F , a

Ž . p Ž � 4. Ž .b there exists m g R such that V M j m - V M .0 F , a 0 F , a

Ž . Ž .PROOF. We only prove that a implies b , because the other implication
Ž . Ž .is obvious. To do this, suppose that V M ) 0. Then we have that r MF , a a

Ž . Ž .) 0 and P M - 1 y a . Moreover, for every r - r M , we have thatX a
pŽ Ž ..P B M, r - 1 y a and therefore there exist m g R and r ) 0 suchX 0 0

Ž .that B s B m , r satisfies:0 0 0

Ž . Ž .i H t X dP ) 0;B a , M0 2Ž . 5 5 Ž .ii min m y m ) r M ;is1, . . . ,k i 0 a3
1Ž . Ž .iii r - r M .0 a3
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Hence

1
V M s t X F d X , M dPŽ . Ž . Ž .Ž .HF , a M , a1 y a

1
s t X F d X , M dPŽ . Ž .Ž .H M , a1 y a B0

1
q t X F d X , M dPŽ . Ž .Ž .H M , a

c1 y a B0

1
) t X F d X , m dPŽ . Ž .Ž .H M , a 01 y a B0

1
q t X F d X , M dPŽ . Ž .Ž .H M , a

c1 y a B0

1
G t X min F d X , M , F d X , m dP� 4Ž . Ž . Ž .Ž . Ž .H M , a 01 y a

1
� 4G t X F d X , M j m dPŽ . Ž .Ž .H M j �m 4 , a 001 y a

� 4s V M j m . IŽ .F , a 0

Our next result is the existence of trimmed k-means. Note that, if X is a
random vector, by Proposition 2.3, there exists a sequence of k-sets M sn
� n n4 pm , . . . , m ; R , n s 0, 1, 2, . . . , such that1 k

7 V M xV X as n ª `.Ž . Ž . Ž .F , a n k , F , a

The existence of trimmed k-means will be established in a two-step
� 4process: first, we prove the existence of convergent subsequences of Mn n

and, second, we show that the limit sets are trimmed k-means of X. We begin
with a lemma.

Ž n . Ž .LEMMA A.3. Let us denote a s min d m , 0 and r s r M . Thenn is1, . . . ,k i n a n
� 4 � 4a and r are bounded sequences.n n n n

Ž Ž ..PROOF. Let g - ` such that P B 0, g ) 1 y a . Then, for every n sX
1, 2, . . . , we have

a y g F r F a q g .n n n

Thus it suffices to prove that one of the mentioned sequences is bounded.
Ž . Ž .First, note that from 2 and 7 we have

8 V M xV X F F g - F ` .Ž . Ž . Ž . Ž . Ž .F , a n k , F , a

� 4 � 4Let « and g be two sequences of positive numbers such that « x0,n n n n n
w Ž .x � 4g ­` and P X g B 0, g G 1 y « . If a were not bounded, we could findn n n n n

Ž .a subsequence which we denote as the initial one such that a ) 2g forn n
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every n s 1, 2, . . . and then we would have

1
V M G t X F d X , M dPŽ . Ž . Ž .Ž .HF , a n n n1 y a Bn

1
G t X F g dPŽ . Ž .H n n1 y a Bn

1 y a y «nG F g ­F ` ,Ž . Ž .n 1 y a

Ž .which contradicts 8 . I

PROOF OF THEOREM 3.1. After Lemma A.3 we have that there exists a
� 4 Žnonempty set I : 1, . . . , k and a subsequence which we denote as the

.initial one such that:

if i f I , then d mn , 0 ª ` as n ª `,Ž .i
9Ž .

if i g I , there exists m0 g R p such that mn ª m0 as n ª `.i i i

� 4We can assume, without loss of generality, that I s 1, . . . , h with 1 F h F
h � n n4 X Ž h.k. Let us use the notation M s m , . . . , m and r s r M , n s 1, 2, . . . ,n 1 h n a n

X � X 4and note that r G r , n s 1, 2, . . . , and r is a bounded sequence. First,n n n n
we will prove that

10 V M h ª V as n ª ` and V s v .Ž . Ž .F , a n h , F , a h , F , a k , F , a

� 4 � 4 Ž .Let us take « and g as in Lemma A.3. After 9 we can assume,n n n n
without loss of generality, that, for every n g NN,

d mn , 0 ) 2g for i s h q 1, . . . , k ,Ž .i n

h k
n nB m , r l B m , r s BŽ . Ž .D Di n i nž / ž /

is1 ishq1

and
k

nP B m , r F « .Ž .DX i n nž /
ishq1

Hence we have

1
Xh hV M F t X F d X , M dP q F r «Ž . Ž .Ž . Ž .Ž .HF , a n n n n n

h1 y a Ž .B M , rn n

and then

1 y a V M G t X F d X , M h dPŽ . Ž . Ž . Ž .Ž .HF , a n n n
hŽ .B M , rn n

G 1 y a V M h y F rX «Ž . Ž .Ž .F , a n n n

G 1 y a V X y F rX « .Ž . Ž . Ž .h , F , a n n
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Ž X . Ž X 4Now, lim F r « s 0 because r is bounded, so thatnª` n n n n

11 lim V M G lim V M h G V X ,Ž . Ž . Ž .Ž .F , a n F , a n h , F , a
nª` nª`

Ž .and from this and 7 we obtain

V s lim V M G V .Ž .k , F , a F , a n h , F , a
nª`

Ž .Then, necessarily, V s V and 10 holds. Moreover, from Proposi-k , F , a h, F , a

tion A.1, we have

12 V M h ª V M h as n ª `Ž . Ž . Ž .F , a n F , a 0

Ž . Ž .and from 11 and 12 it follows that

V M h s V X ,Ž .Ž .F , a 0 h , F , a

h � 0 0 4and then M s m , . . . , m is a trimmed h-mean of X.0 1 h
Ž .Now, if h s k, the proof is complete. If h - k, Proposition A.2 and 10

Ž h.imply that V M s 0 and then the existence is obviously guaranteed forF , a 0
every k G h. I

Finally, we are going to prove Theorem 3.4. We employ the same notation
� 4 pas in Section 3. That is, x is a sequence of R -valued random vectorsn n

Ž . � n n4defined on V, s , P and M s m , . . . , m , n s 0, 1, 2, . . . , is a trimmedn 1 k
k-mean of X with associated optimal trimming function t and optimaln n

Ž Ž ..radius r . Moreover, V s V X , n s 0, 1, 2, . . . , denotes the trimmedn n k , F , a n
k-variation of X .n

We begin with the following lemma. Its proof is somewhat related to that
of Lemma A.3.

Ž n .LEMMA A.4. If X ª X , P-a.e., and we denote a s min d m , 0n 0 n is1, . . . ,k i
� 4 � 4for n s 1, 2, . . . , then a and r are bounded sequences.n n n n

� 4 Ž .PROOF. The sequence X is tight. Thus there exists a ball B 0, g ,n n
w Ž .xg - `, such that P B 0, g ) 1 y a for every n s 1, 2, . . . . Then, for everyX n

n s 1, 2, . . . , we have
a y g F r F a q g ,n n n

so that is suffices to show that one of the sequences is bounded. First, note
that

1
V F I X F d X , 0 dPŽ . Ž .Ž .Hn BŽ0 , g . n nP B 0, gŽ .Ž .13 XŽ . n

F F g - F ` .Ž . Ž .
� 4 � 4 wNow, let « and g be sequences such that « x0, g ­` and P X gn n n n n n n

Ž .xB 0, g G 1 y « .n n
� 4 ŽIf a were not bounded, we could obtain a subsequence which we denoten n

.as the initial one such that a ) 2g for every n s 1, 2, . . . and then wen n
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would have
1

V G t X F d X , M dPŽ . Ž .Ž .Hn n n n n1 y a Ž .X gBn n

1
) t X F g dPŽ . Ž .H n n n1 y a Ž .X gBn n

1 y a y «nG F g ­F ` ,Ž . Ž .n 1 y a

Ž .which contradicts 13 . I

PROOF OF THEOREM 3.4. It suffices to prove that every subsequence of
� 4 Ž � 4 . ŽM resp. V admits a new subsequence which converges to M resp.n n n n 0

.to V .0
X Ž .For every n s 1, 2, . . . , let us denote by t any trimming function in t Xn a n

based on the ball centered at M . Moreover, let us denote by rX , n s 1, 2, . . . ,0 n
the radius associated with t X , that is,n

X
X XI F t F I .BŽM , r . n BŽM , r .0 n 0 n

� X 4Obviously, r is a bounded sequence, and we can assume, without loss ofn n
generality, that lim rX s rX for some rX g R. Then, because of the conti-nª` n 0 o
nuity of P , we haveX 0

t X X ª I X X , P-a.e.,Ž . Ž .n n BŽM , r . 00 0

< X <and then, taking into account that t F 1 for every n g N, we may writen

1 y a s t X X dP ª I X X dP as n ª `.Ž . Ž .H Hn n BŽM , r . 00 0

Hence

I X X dP s 1 y aŽ .H BŽM , r . 00 0

and
I X s t , P -a.e.BŽM , r . 0 X0 0 0

Moreover, we have

t X X F d X , M ª t X F d X , M , P-a.e.,Ž . Ž . Ž . Ž .Ž . Ž .n n n 0 0 0 0 0

� XŽ . Ž Ž ..4and t X F d X , M is uniformly bounded. Thusn n n 0 n

1
XV F t X F d X , M dPŽ . Ž .ŽHn n n n 01 y a

1
ª t X F d X , M dP as n ª `Ž . Ž .Ž .H 0 0 0 01 y a

and, consequently,

14 lim sup V F V .Ž . n 0
n
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� 4By Lemma A.4 there exist a nonempty set I : 1, . . . , k and a subsequence
� 4 Ž .of M which we denote as the initial one such that:n n

if i f I , then d mn , 0 ª ` as n ª `,Ž .i
15Ž .

if i g I , there exists m g R P such that mn ª m as n ª `.i i i

� 4We can assume, without loss of generality, that I s 1, . . . , h with 1 F h F
Žh. � 4 Žh. � n n4k. Let us use the notation M s m , . . . , m and M s m , . . . , m ,1 h n 1 h

� 4n s 1, 2, . . . . We can also assume that r is a convergent sequence withn n
limit, say, r. Then, for n large enough,

I Žh. X q I Žh. XŽ . Ž .BŽM , r . n BŽM yM , r . nn n n n n

Žh. Žh.F t X F I X q I X .Ž . Ž . Ž .n n BŽM , r . n BŽM yM , r . nn n n n n

16Ž .

Moreover,
Žh.I X ª 0, P-a.e.Ž .BŽM yM , r . nn n n

Ž .Thus, we obtain from 16 that

lim t X s I Žh. X , P-a.e.Ž . Ž .n n BŽM , r . 0
n

< <Then, by taking into account that t F 1 for every n g N, we haven

1 y a s t X dP ª I Žh. X dP as n ª `,Ž . Ž .H Hn n BŽM , r . 0

so that I Žh. is a trimming function of level a for X . Furthermore,BŽM , t . 0

1
lim inf V s lim inf t X F d X , M dPŽ . Ž .ŽHn n n n n1 y an n

1
Žh.G lim inf t X I X F d X , M dPŽ . Ž . Ž .Ž Ž .H n n BŽM , r . n n nn n1 y a n

1
Žh.q lim inf t X I X F d X , M dP .Ž . Ž . Ž .Ž Ž .H n n BŽM M , r . n n nny n n1 y a n

Therefore, in view of

1
Žh.lim inf t X I X F d X , M dP s 0,Ž . Ž . Ž .Ž .ŽH n n BŽM M , r . n n nny n n1 y a n

we obtain

1
Žh.

Žh.lim inf V G I X F d X , M dPŽ . Ž .Ž .Hn BŽM , r . 0 01 y an

G V X .Ž .h , F , a 0

Ž .This and 14 imply

V X s V X s lim V ,Ž . Ž .h , F , a 0 k , F , a 0 n
n

and the continuity of P together with the uniqueness of M shows thatX 00
� 4 � 4I s 1, . . . , k and m , . . . , m s M . I1 h 0
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