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A CHARACTERIZATION OF MARGINAL DISTRIBUTIONS
OF (POSSIBLY DEPENDENT) LIFETIME VARIABLES

WHICH RIGHT CENSOR EACH OTHER1

By Tim Bedford and Isaac Meilijson

Delft University of Technology and Tel Aviv University

It is well known that the joint distribution of a pair of lifetime vari-
ablesX1 andX2 which right censor each other cannot be specified in terms
of the subsurvival functions

P�X2 > X1 > x�; P�X1 > X2 > x� and P�X1 =X2 > x�
without additional assumptions such as independence of X1 and X2. For
many practical applications independence is an unacceptable assumption,
for example, when X1 is the lifetime of a component subjected to mainte-
nance and X2 is the inspection time. Peterson presented lower and upper
bounds for the marginal distributions of X1 and X2, for given subsurvival
functions. These bounds are sharp under nonatomicity conditions. Surpris-
ingly, not every pair of distribution functions between these bounds pro-
vides a feasible pair of marginals. Crowder recognized that these bounds
are not functionally sharp and restricted the class of functions containing
all feasible marginals. In this paper we give a complete characterization
of the possible marginal distributions of these variables with given sub-
survival functions, without any assumptions on the underlying joint dis-
tribution of �X1;X2�. Furthermore, a statistical test for an hypothesized
marginal distribution of X1 based on the empirical subsurvival functions
is developed.

The characterization is generalized from two to any number of vari-
ables.

1. Introduction. We are given the subdistribution functions P�X1 ≤
x; X1 < X2�, P�X2 ≤ x; X2 < X1� and P�X1 ≤ x; X1 =X2� of a pair
�X1;X2� of random variables. What are the possible marginal distribution
functions P�X1 ≤ x� and P�X2 ≤ x�?

This question is motivated by competing risks. The random variable X1 is
the lifetime of a component of some system, and the random variable X2 is the
time at which the system’s life is interrupted due to other possible causes. Let
T = min�X1;X2� be the lifetime of the system, and let I indicate whether
T is equal only to X1, only to X2 or to both. The pair �T;I�, whose joint
distribution is described by the three subdistribution functions above is the
natural observable data.

It has been of major interest to study conditions under which the joint
distribution of �X1;X2� is uniquely determined by that of �T;I�. It is well
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known (see [11]) that the marginal and joint distributions of �X1;X2� are
in general “nonidentifiable”; that is, there are many different distributions of
�X1;X2� which are compatible with the data (i.e., yield identical subdistribu-
tion functions). Is it also well known (see [3], [7] and [6]) that if X1 and X2
are independent, are nonatomic and share essential suprema, their marginal
distributions are identifiable. (See also [4] for distributions with atoms.) In
many applications, however, the assumption of independence is too strong.
Some authors (see [1], [8] and [5]) have considered other kinds of assumptions
on the joint distribution of �X1;X2�.

Accepting nonidentifiability as a fact of life(time), Peterson [9] presents
bounds for this joint distribution as well as for its marginals, assuming that
P�X1 =X2� = 0. Peterson further proves that these bounds are sharp. How-
ever, this statement and its proof hold only under the additional assumption
(not stated by Peterson) of continuity of the two subsurvival functions.

We study the class of pairs of marginal distributions P�X1 ≤ x�;P�X2 ≤ x�
for which there exists a joint distribution giving rise to a given triplet of
subdistribution functions as described above, and we show how to estimate
the set of feasible P�X1 ≤ x� or test for the feasibility of a given distribution
function, from an i.i.d. sample of �T;I� data.

The Peterson bounds, expanded to cover the case P�X1 = X2� ≥ 0, can be
expressed in terms of sums of subdistribution functions as

P�X1 ≤ x; X1 ≤X2� ≤ F1�x�
≤ P�X1 ≤ x; X1 ≤X2� +P�X2 ≤ x; X2 < X1�
= P�T ≤ x�

(1)

and

P�X2 ≤ x; X2 ≤X1� ≤ F2�x�
≤ P�X2 ≤ x; X2 ≤X1� +P�X1 ≤ x; X1 < X2�
= P�T ≤ x�;

(2)

where F1�x� = P�X1 ≤ x� and F2�x� = P�X2 ≤ x�.
However, the following more stringent bounds hold too:

P�X1 ≤ x; X1 ≤X2� ≤ F1�x�
≤ P�X1 ≤ x; X1 ≤X2� +P�X2 < x; X2 < X1�
= P�T ≤ x� −P�X2 = x; X2 < X1�

(3)

and

P�X2 ≤ x; X2 ≤X1� ≤ F2�x�
≤ P�X2 ≤ x; X2 ≤X1� +P�X1 < x; X1 < X2�
= P�T ≤ x� −P�X1 = x; X1 < X2�;

(4)
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showing the Peterson bounds not to be sharp when the subdistribution func-
tions have atoms, even under the assumption P�X1 = X2� = 0. We shall see
that the improved bounds (3) and (4) are pointwise sharp, but not functionally
sharp. That is, for any x and any of the four inequalities in (3) and (4) there
exist joint distributions for �X1;X2� with the given subdistribution functions,
for which that inequality holds as an equality, but not every pair of distri-
bution functions F1 and F2 bounded as in (3) and (4) can serve as marginal
distribution functions of X1 and X2. Indeed, considering any x < y,

P�X1 ≤ y� −P�X1 ≤ x� = P�x < X1 ≤ y�
≥ P�x < X1 ≤ y; X1 ≤X2�
= P�X1 ≤ y; X1 ≤X2� −P�X1 ≤ x; X1 ≤X2�

or

P�X1 ≤ x� −P�X1 ≤ x; X1 ≤X2� ≤ P�X1 ≤ y� −P�X1 ≤ y; X1 ≤X2�;

which may be rephrased as saying that P�X1 ≤ x� −P�X1 ≤ x; X1 ≤X2� is
a nonnegative, nondecreasing function. In other words, the gap between the
left and middle terms of inequalities (3) and (4) must be nondecreasing in x.

This functional inequality was first found by Crowder [2]. In attempting to
add further conditions to obtain a characterization, Crowder gives up on ne-
cessity by requiring a technically convenient but unnecessary condition, and
unfortunately rules out sufficiency as well by failing to notice a pathologi-
cal aspect of the upper Peterson bound. We shall see that the above simple
necessary conditions are almost sufficient but that a rather subtle additional
measure-theoretic condition is required. This condition, which holds automat-
ically if either X1 or X2 is a discrete random variable, asserts that F1 and
F2 may only “lightly touch” their upper bounds, a notion which will be made
precise in Theorem 1.

As an illustration of the nature or extent of nonidentifiability, we show that
if X1 is assumed to be exponentially distributed, the set of feasible failure
rates λ for this distribution always constitute a (possibly empty, possibly open
from above) interval.

The definition of �T;I� for m > 2 competing risks and the characterization
of the possible m-tuples �F1;F2; : : : ;Fm� is presented after the proof of this
theorem.

In the second part of this paper we construct a statistical test for a hy-
pothesized marginal distribution for X1 given the empirical subdistribution
functions.

Let

P̂�X1 ≤ x; X1 ≤X2� =
1
n

card
{
i�X�i�1 ≤ x; X

�i�
1 ≤X

�i�
2

}

be the empirical subdistribution function of X1 based on a sample of n obser-
vations, and let H be any distribution function. We show how to construct,
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among all functions H′1 such that H′1 and H−H′1 are nonnegative and non-
decreasing, one (denoted by H1) which minimizes

sup
x
�P̂�X1 ≤ x; X1 ≤X2� −H′1�x��

and prove that

sup
x
�Ĥ�x� −H�x�� ≥ sup

x
�P̂�X1 ≤ x; X1 ≤X2� −H1�x��(5)

for any discrete distribution function Ĥ whose jumps contain those of P̂�X1 ≤
x; X1 ≤ X2�. In particular this holds for any possible empirical distribu-
tion function of the partially unseen X1-sample. Hence, if the RHS of (5)
exceeds some critical point, so does its LHS. Since the LHS of (5) is the reg-
ular Kolmogorov–Smirnov statistic evaluated at the empirical distribution of
the X1-sample, this permits the application of a conservative Kolmogorov–
Smirnov test of the hypothesized distribution H based on subdistribution
functions.

This method is illustrated by restricting H to the class of exponential dis-
tributions. As expressed earlier, the feasible failure rates λ constitute a (pos-
sibly empty) interval J. The Kolmogorov–Smirnov test gives rise rather nat-
urally to a sort of confidence interval Ĵ�n�: letting C be the critical point of
the Kolmogorov–Smirnov test, for n observations, with some preassigned con-
fidence coefficient 1− α, define Ĵ�n� to be the set (in fact, interval) of λ values
forH under which the RHS of (5) does not exceed C. The interval-statistic Ĵ is
a confidence interval in the sense that, under every λ ∈ J, Pλ�λ ∈ Ĵ� ≥ 1− α.
Furthermore, the confidence interval Ĵ�n� is consistent in the sense that J
equals the closure of the interior of lim supn Ĵ

�n�, with probability 1.

2. Marginal distributions with given subdistribution functions.
Let X1 and X2 be random variables taking values in R. We define five
functions as follows:

F1�x� = P�X1 ≤ x�y(6)

F2�x� = P�X2 ≤ x�y(7)

G12�x� = P�X1 ≤ x; X1 =X2�y(8)

G1�x� = P�X1 ≤ x; X1 < X2�y(9)

G2�x� = P�X2 ≤ x; X2 < X1�:(10)

Let

F1�x� = G12�x� +G1�x� = P�X1 ≤ x; X1 ≤X2�;
F2�x� = G12�x� +G2�x� = P�X2 ≤ x; X2 ≤X1�

(11)
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denote the lower bounds [see (3) and (4)] for F1 and F2, with the nonnegative
and nondecreasing gaps

F1�x� −F1�x� = P�X1 ≤ x; X2 < X1�;
F2�x� −F2�x� = P�X2 ≤ x; X1 < X2�:

(12)

In terms of these functions, the upper bounds [see (3) and (4)] for F1 and F2
are

F1�x� = F1�x� +G2�x−�;
F2�x� = F2�x� +G1�x−�:

(13)

Definition 1. Let fx R → R be a nondecreasing function. A choice of n
nondecreasing functions f1; : : : ; fn such that f = f1 + · · · + fn is called a
comonotone representation of f, and the set of such choices (f1; : : : ; fn) is
denoted C �f�. If f and each fi are nonnegative, then f = f1+· · ·+fn is called
a nonnegative comonotone representation of f, and the set of such (f1; : : : ; fn)
is denoted C+�f�. If n = 2, then we will write f1 ∈ C+�f� for short.

Lemma 1. Let fx R → R be right continuous and nondecreasing, and let
f = f1 + · · · + fn be a comonotone representation of f. Then f1; : : : ; fn are
right continuous.

Proof. Express f = f1+�f2+· · ·+fn� to see that it is enough to consider
the case n = 2.

We show below that if f1 is not right continuous at a point x, then the
set �y�y > x and f2�y� < f2�x�� is nonempty. This will show that f1 is right
continuous. By symmetry, so is f2.

If the nondecreasing function f1 is not right continuous at x, then

ε = f1�x+� − f1�x�
2

> 0:

By right continuity of f there is a δ > 0 such that f�y� − f�x� < ε whenever
0 < y− x < δ. But then

f2�x� − f2�y� > f2�x� − f2�y� −
(
ε− �f�y� − f�x��

)

= f1�y� − f1�x� − ε
≥ f1�x+� − f1�x� − ε = ε > 0;

as claimed. 2

We require one further definition.

Definition 2. Let fx R → R be a nondecreasing function. We say that
gx R→ R is the left continuous version of f, and we write g = f̃, if g is left
continuous and g�x� = f�x� for every continuity point x of f.
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Note that f̃ is uniquely defined, by monotonicity of f.

Theorem 1. (i) Let X1 and X2 be random variables. Then, using the no-
tation established above:

1. Fi = Fi + �Fi −Fi� is a nonnegative comonotone representation of a non-
decreasing right continuous function, for i = 1;2;

2. Fi�x� ≤ Fi�x� for all x, and the Lebesgue measure of the range set ��Fi −
Fi��x��Fi�x� = Fi�x�� is zero, for i = 1;2;

3. (a) Fi�−∞� = 0 and Fi�∞� = 1, for i = 1;2; (b) �Fi − Fi��∞� = �Fi −
Fi��∞�, for i = 1;2; (c) G1�∞� +G2�∞� +G12�∞� = 1.

(ii) If nondecreasing right continuous functions F1, F2, G12, G1 and G2
satisfy conditions 1–3 of (i), then there are random variables X1 and X2 such
that (6)–(10) hold.

Proof. (i) It is clear that F1+�F1 −F1� and F2+�F2 −F2� are nonneg-
ative comonotone representations of the nondecreasing and right continuous
functions F1 and F2. It is also obvious that condition 3(a) holds, since F1 and
F2 are distribution functions. Furthermore,

�F2 −F2��∞� = P�X1 < X2� = G1�∞�;
�F1 −F1��∞� = P�X2 < X1� = G2�∞�

and

G1�∞� +G2�∞� +G12�∞� = P�X1 < X2� +P�X2 < X1� +P�X1 =X2� = 1

which demonstrates 3(b) and 3(c).
We shall now prove property 2 for the case i = 2. The other case follows by

a similar argument.
Since X2 ≤ x and X1 < X2 imply that X1 < x and X1 < X2, it is certainly

true that �F2 −F2��x� ≤ G̃1�x�, or, equivalently, F2�x� ≤ F2�x�.
We make the following definitions (see Figure 1):

A = �x��F2 −F2��x� = G̃1�x�� = �x�F2�x� = F2�x�� ⊆ Ry
Kx = ��u; v��u < x < v� ⊂ R2y
K =

⋃
x∈A

Kx ⊂ R2:

Since G̃1�x�−�F2−F2��x� = P�X1 < x < X2�, it is clear that P��X1;X2� ∈
Kx� = 0 if and only if x ∈ A, and that A is closed. It is easy to see that
if �xn�n≥0 is dense in A then

⋃
nKxn

= K. This implies immediately that
P��X1;X2� ∈K� = 0.

As A is closed we can write Ac as a countable union of disjoint open inter-
vals �an; bn�. The mass P�X1 < X2� is supported by the complement of K,
which is the disjoint union of the (possibly unbounded) triangles

Un = ��x1; x2�x an ≤ x1 < x2 ≤ bn�:
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Fig. 1. Some sets defined in the �X1;X2� plane.

Consider the artificial purely atomic subdistribution function L [see (14)],
supported by the (countable) set �bn�n = 1;2; : : :�, that assigns to bn the point
mass P��X1;X2� ∈ Un�:

L�x� = sup��F2 −F2��y��y ≤ x; y ∈ A�:(14)

Since x ∈ A implies that L�x� = �F2 −F2��x�, we have

�F2�x� −F2�x��x ∈ A� = �L�x��x ∈ A� ⊆ �L�x��x ∈R�:
In other words, the range set �F2�x� −F2�x��x ∈ A�, which we are trying to
prove to be a Lebesgue null subset of �0;1�, is a subset of the range set of some
purely atomic subdistribution function. The proof will be finished if we show
that range sets of purely atomic distribution functions are always Lebesgue
null sets. However, this is clear, since the jumps of such a distribution function
add up to unity and map on the y-axis to disjoint open intervals contained in
the complement of the range set of the distribution function.

This completes the proof of (i).

Remark. The range set (or set of values) of a purely atomic distribution
function may seem countable at first (one value per atom)—thus, obviously a
Lebesgue null set—but it need not be, for if the atoms are dense (e.g., a dis-
tribution supported by the rationals), then the distribution function is strictly
increasing. As such, it is a one-to-one mapping from the real line onto its
range, so this range set is necessarily uncountable. The intuitive picture of
countability is misleading; Cantor-like sets are a more accurate description.

(ii) Given functions F1, F2, G12, G1 and G2 satisfying conditions 1–3 of
(i), we explicitly construct a pair of random variables X1 and X2 such that
the interpretation (6)–(10) of these five functions holds. This construction is
illustrated in Figure 2.
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Fig. 2. The construction of X1 and X2.

First note that, by Lemma 1, Condition 1 implies that G1, F1 − F1, G2,
F2−F2 and G12 are nondecreasing right continuous functions. Furthermore,
by 3(a), we have J�−∞� = 0 whenever J is any of these functions.

LetU be uniformly distributed on �0;1�. We shall distinguish between three
cases.

Using the standard convention for inverting a right continuous function

F−1�u� = inf�x�F�x� ≥ u�;

we have the following:
Case 1. If U < G1�∞�, then define X1 = G−1

1 �U� and X2 = �F2−F2�−1�U�
[X2 is well defined since �F2 −F2��∞� = G1�∞�].

Case 2. If G1�∞� < U < G1�∞�+G12�∞�, then define U′ = U−G1�∞� and
set X1 =X2 = G−1

12 �U′�.
Case 3. If G1�∞� + G12�∞� < U < G1�∞� + G12�∞� + G2�∞� = 1, then

write U′ = U − �G1�∞� + G12�∞�� and define X1 = �F1 − F1�−1�U′� and
X2 = G−1

2 �U′� [X1 is well defined since �F1 −F1��∞� = G2�∞�].
The three cases we have distinguished correspond to X1 < X2, X1 = X2

and X1 > X2, respectively. For, conditional on U < G1�∞� (i.e., in Case 1)
either U is a continuity value of G1 or the distribution of X1 has an atom at
G−1

1 �U�. In the first situation, except for a Lebesgue null set of U values, by
property 2, and because G̃1 − �F2 −F2� = F2 −F2,

U = G1�X1� = G̃1�X1� > �F2 −F2��X1�

so that, by right continuity and monotonicity of F2 −F2, �F2 −F2�−1�U� =
X2 > X1. In the second situation (idem) we have

G1�X1� > U > G̃1�X1� ≥ �F2 −F2��X1�
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and again we get X2 > X1. The argument for X1 > X2 is similar, and for
X1 =X2 is obvious. This shows that (8)–(10) hold.

We now just have to check that X1 and X2 have the right marginals. By
symmetry consider only X1. The construction shows that

P�X1 ≤ x� = P�X1 ≤ x; X1 =X2� +P�X1 ≤ x; X1 < X2�
+P�X1 ≤ x; X2 < X1�

= G12�x� +G1�x� + �F1 −F1��x�
= F1�x�

by condition 1. This completes the proof. 2

Remark (Product form of the characterization). The theorem says that
there are no joint conditions to be satisfied by the marginal distribution
functions.

As a corollary of Theorem 1 we recover the improved Peterson bounds (3)
and (4), a similar bound on the joint survival function of X1 and X2, and
the result that these bounds are pointwise sharp. This corollary is essentially
the same as Theorem 1 in [9], but with two improvements. First, we take
account of the possibility of atoms in the subdistribution functions (Peterson
implicitly assumes continuity, as we noted in the Introduction) and of positive
probability mass on the diagonal. Second, we show that the bounds can be
achieved pointwise (a slight improvement on [9], where distributions are given
getting arbitrarily close to the bounds).

Corollary 1. The following inequalities hold for the joint survival func-
tion of X1 and X2:

P�X1 > x1; X2 > x2� ≤ P�X1 > x1; X1 < X2�
+P�X2 > x2; X2 < X1�
+P�X1 > max�x1; x2�;X1 =X2�

(15)

and

P�X1 > x1; X2 > x2�

≥





P�X1≥x2; X1<X2�+P�X2>x2; X2≤X1�; if x1<x2;

P�X1>x1; X1≤X2�+P�X2≥x1; X2<X1�; if x2<x1;

P�X1>x1; X1<X2�+P�X2>x1; X2≤X1�; if x1=x2:

(16)

The following inequalities [a rephrasing of inequalities (3) and (4)] hold for the
marginals:

P�X1 > x1; X1 ≤X2� +P�X2 ≥ x1; X2 < X1�
≤ P�X1 > x1�
≤ P�X1 > x1; X1 ≤X2� +P�X2 < X1�;

(17)
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P�X2 > x2; X2 ≤X1� +P�X1 ≥ x2; X1 < X2�
≤ P�X2 > x2�
≤ P�X2 > x2; X2 ≤X1� +P�X1 < X2�:

(18)

Furthermore, given subdistribution functions G1, G2 and G12, and given any
x′1 and x′2, considering any of the six inequalities in (15)–(18), there exist joint
distributions for which that inequality holds as an equality at x1 = x′1 and
x2 = x′2, and which satisfy all six inequalities for all x1 and x2.

Proof. First of all write

P�X1 > x1; X2 > x2� = P�X1 > x1; X2 > x2; X1 =X2�
+P�X1 > x1; X2 > x2; X1 < X2�
+P�X1 > x1; X2 > x2; X2 < X1�

to get inequality (15) and the first two cases of (16). The third inequality in
the lower bound, (16), holds always as an equality.

We now show that each bound is sharp at arbitrarily chosen points x′1 and
x′2. Theorem 1 may be used to construct joint distributions for given functions
G1, G2 and G12. It is only necessary for us to specify functions F1 and F2
satisfying the conditions of the theorem. We do this by defining F1 −F1 and
F2 −F2 (recall F1 = G1 +G12).

Take F1 −F1 to be any nondecreasing and right continuous function such
that �F1 − F1��∞� = G2�∞�, �F1 − F1��y� = 0 if either y ≤ max�x′1; x′2� or
G̃2�y� = 0, and �F1 − F1��y� < G̃2�y� otherwise. Similarly, let F2 − F2 be
any nondecreasing and right continuous function such that �F2 −F2��∞� =
G1�∞�, �F2 −F2��y� = 0 if either y ≤ max�x′1; x′2� or G̃1�y� = 0, and �F2 −
F2��y� < G̃1�y� otherwise. Such choices of F1 and F2 clearly satisfy the
conditions of Theorem 1.

By construction, P�X2≤ max�x′1; x′2�; X1<X2�=0=P�X1≤ max�x′1; x′2�;
X2 < X1�, and so there is equality in (15). Equalities in the right-hand bounds
of (17) and (18) hold also for this joint distribution.

A similar construction will show that the remaining inequalities can actu-
ally be equalities: take F1−F1 and F2−F2 nondecreasing and right contin-
uous such that

�F1 −F1��y�





= G2�∞�; if y = ∞;
= 0; if y < max�x′1; x′2�;
= G̃2�max�x′1; x′2��; if G̃2�y� = G̃2�max�x′1; x′2��;
< G̃2�y�; otherwise

and

�F2 −F2��y�





= G1�∞�; if y = ∞;
= 0; if y < max�x′1; x′2�;
= G̃1�max�x′1; x′2��; if G̃1�y� = G̃1�max�x′1; x′2��;
< G̃1�y�; otherwise.
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Now, if x′1<x
′
2, then there is equality in (16) if and only if P�x′1<X1<x

′
2;

X2 > x
′
2; X1 < X2� = 0. This holds if P�X1 < x

′
2 < X2� = 0, which in turn

is equivalent to G̃1�x′2� = �F2 −F2��x′2�. Hence equality does indeed hold.
Similar arguments show that equality holds in (16) if x′2 < x

′
1. Equality always

holds if x′1 = x′2.
This choice of joint distribution shows that the lower bound on the joint

survival function is pointwise sharp. It also attains equalities in the left-hand
bounds of (17) and (18). 2

It is well known that the pairs �F1;F2� of distribution functions for
which there exist random variables X1 and X2, with X1 ∼ F1; X2 ∼ F2 and
X1 ≤X2 a.s., are precisely those with F1 ≥ F2. Theorem 1 provides as an
immediate corollary a characterization of the pairs �F1;F2� admitting a joint
distribution with X1 < X2 a.s.

Corollary 2. The pair �F1;F2� of distribution functions admits a joint
distribution of two random variables X1 and X2 with X1 ∼ F1; X2 ∼ F2 and
X1 < X2 a.s. if and only if (i) F1�x−� ≥ F2�x� for all x ∈ R and (ii) the
Lebesgue measure of the range set �F2�x��F1�x−� = F2�x�� is zero.

2.1. Examples. Our first example is an application of the above results to
families of distributions ordered by monotone likelihood ratio.

2.1.1. Identifiability for MLR families of distributions.

Definition 3. A point t is a calibrator of a distribution F�·y θ0�, in the
context of a parametric family �F�·y θ�y θ ∈ 2�, if the value θ0 is a maximum
likelihood estimate of the parameter θ when the (single) observation is t.

For example, if the family is exponential type with density f�xy θ� =
h�x�9�θ� exp�xθ� and support �0;∞�, then the unique calibrator of a member
of the family is its mean.

For families of distributions ordered by monotone likelihood ratio there
is the following interpretation of the calibrator. Suppose that the family is
smooth enough and that f�xy θ′′�/f�xy θ′� is strictly increasing in x for every
pair θ′ < θ′′ in 2. Then the calibrator of F�·y θ0� is the limit as θ→ θ0 of the
point where the two densities f�·y θ� and f�·y θ0� cross each other.

With this interpretation, the following characterization of identifiability be-
comes clear:

Assume thatX1 is distributed according to some memberF�·y θ0� of a family
of distributions ordered by monotone likelihood ratio as above, and let X2
have conditional distribution satisfying P�X2 = 0�X1� = 1 on �X1 ≤ η� and
P�X2 > X1�X1� = 1 on �X1 > η�. Then

G1�x� =
{

0; if x ≤ η;
F1�x� −F1�η�; if x > η:
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Now, hypothesizing that the distribution of X1 is in the family F�·y θ�, the
parameter θ0 is identifiable if and only if the calibrator of F�·y θ0� is in
�η;∞�.

This is so because the upper Peterson bound is sharp and claims that θ ≥ θ0,
while comonotonicity admits some θ < θ0 only if the two densities f�·y θ� and
f�·y θ0� cross each other strictly to the left of the cutoff point η.

If the hypothesized family of distributions is smooth enough, the lower
Peterson bound can be sharp only in the trivial case where η = 0.

As a particular example, consider the family of exponential distributions
and let θ0 = η = 1. Comonotonicity identifies the failure rate as being equal
to 1, while the lower Peterson bound

1− e−λx ≥ e−1 − e−x

only implies that λ ≥ 0:1355. In other words, the Peterson bound claimsE�X1�
to be between 1 and 7:38 while comonotonicity identifies this mean as 1.

This is an illustration of the potentially significant difference between the
pointwise Peterson and the comonotone bounds.

As an illustration of a case where comonotonicity contributes next to noth-
ing beyond the pointwise Peterson bounds, consider the following example.

2.1.2. Independent censoring. Let X1 and X2 be independent, exponen-
tially distributed with parameters λ1 and λ2, respectively. Then

G1�x� =
λ1

λ1 + λ2
�1− exp�−�λ1 + λ2�x��;

G2�x� =
λ2

λ1 + λ2
�1− exp�−�λ1 + λ2�x��:

Hypothesizing exponentiality of X1, the Peterson bounds claim that its fail-
ure rate λ satisfies λ ∈ �λ1;λ1 + λ2�. [This is easy to see after realizing that
limx↓0G1�x�/x = λ1.] Comonotonicity improves the result by merely ruling
out λ = λ1 + λ2. The next subsection generalizes the previous example by
showing, as announced in the Introduction, that if X1 is hypothesized to be
exponentially distributed (without assuming that the censored data admits
independent censoring with exponential marginals), then the feasible values
of the failure rate λ of X1 constitute an interval.

2.2. An exponential marginal. In this subsection the exponential distri-
bution with parameter λ will be denoted by Hλ�x� = 1 − e−λx. If one is
given subdistribution functions G1 and G2 and a comonotone representation
Hλ�x� = G1�x� + �H−G1��x� with �H−G1� ≤ G̃2 (with strict inequality ex-
cept for a set of values of Lebesgue measure zero), then according to Theorem
1, there is a joint distribution for �X1;X2� with subdistribution functions G1
and G2, and such that X1 has marginal distribution Hλ. In this case we say
that Hλ is a possible marginal distribution given G1 and G2.
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Proposition 1. Given subdistribution functions G1 and G2 as above, with
G1�∞� > 0, the set of compatible failure rates

3 = �λ�Hλ is a possible marginal of X1 given G1;G2�
is a bounded interval (possibly empty or one point).

Proof. As the pointwise Peterson bounds clearly imply that λ belongs
to half-lines, it is enough to show that the comonotonicity condition implies
that λ belongs to an interval. The set of compatible failure rates is now the
intersection of all of these intervals and is therefore also an interval.

Define the function f1�x� to be the upper Dini derivative of G1 at x,

f1�x� = lim sup
y→x

G1�y� −G1�x�
y− x :

It is easy to see that if G1 ∈ C �Hλ�, then 0 ≤ f1�x� ≤ λe−λx for all x > 0. For
any such fixed x we have

log f1�x� ≤ log λ− λx;
which is satisfied by a (possibly unbounded) interval of λ values. Since f1�x� >
0 for some x, the intersection of these intervals over all x gives us the bounded
interval of λ values for which Hλ satisfies the comonotonicity condition. 2

As evidence that the lower bounds may not be too wasteful in practice, it is
interesting to notice that, whenever the independent feasible solution involves
only exponential marginals, none of the competing risks could possibly be
exponential with a lower failure rate.

2.3. The case of multiple competing risks. A number of authors have con-
sidered competing risk problems with more than two risks. Given m random
variables �X1; : : : ;Xm�, let T = min�X1; : : : ;Xm� and set I = �ix Xi = T�.
For any nonempty subset K ⊆ �1; : : : ;m� define the subdistribution function

GK�x� = P�T ≤ x; I =K�:
The Peterson-type lower bound for the distribution function of the random
variable Xi is

Fi�x� =
∑

Kx i∈K
GK�x�;

while the improved Peterson-type upper bound [cf. (3)] is

Fi�x� = Fi�x� +
∑

Kx i6∈K
G̃K�x�:

Theorem 1 may be generalized to the following theorem.

Theorem 2. (i) Let X1;X2; : : : ;Xm be random variables. Then, using the
notation established above, we have the following:
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1. Fi = Fi + �Fi −Fi� is a nonnegative comonotone representation of a right
continuous function, for i = 1; : : : ;m;

2. Fi�x� ≤ Fi�x� for all x, and the Lebesgue measure of the range set

�G̃K�x��Fi�x� = Fi�x�� is zero for every K with i 6∈K, for i = 1; : : : ;m;
3. (a) Fi�−∞� = 0 and Fi�∞� = 1, for i = 1; : : : ;m;

(b) �Fi −Fi��∞� = �Fi −Fi��∞�, for i = 1; : : : ;m;
(c)

∑
KGK�∞� = 1.

(ii) If nondecreasing right continuous functions �Fi; i = 1; : : : ;m� and
�GK; K ⊆ �1; : : : ;m�� satisfy the conditions 1–3 of (i), then there are ran-
dom variables X1; : : : ;Xm for which these are, respectively, their marginal
distributions and their subdistribution functions.

Sketch of proof. Necessity follows as in the proof of Theorem 1.
Sufficiency of these conditions may be proven by a construction analogous

to the strip construction shown in Figure 2, with one strip for every nonempty
K ⊆ �1; : : : ;m�, except that not all needed functions are specified by the
subdistribution functions: while Xi is properly defined for i ∈ K on the strip
corresponding to the subset K by inverting GK, this is not the case for i 6∈K
because the events �Xi ≤ x; I = K� are not �T;I�-measurable. The gap
Fi�x� −Fi�x� is equal to

∑
Kx i6∈KP�Xi ≤ x; I = K�, but this sum involves a

single summand only if m = 2. In the general case, these summands must be
created in a consistent way from their sums. We skip most details but present
the main lemma which allows the construction. 2

Lemma 2. Let fix R → R+, for i = 1; : : : ; n, and gx R → R+, with g ≤∑n
i=1 fi, be nondecreasing, with fi�−∞� = g�−∞� = 0. Then there exists a

nonnegative comonotone representation �g1; g2; : : : ; gn� of g such that gi ≤ fi
for i = 1; : : : ; n, with the further property that if g�x� < ∑n

i=1 fi�x� and all
the given functions are continuous at x, then, for every i = 1; : : : ; n, either
gi�x� < fi�x� or fi is constant on some nonempty interval �x− ε; x�.

Sketch of a proof of Lemma 2. First replace the upper functions fi by
upper functions φi with 0 ≤ φi ≤ fi; g ≤

∑
φi = φ, such that if φ�x� <∑n

i=1 fi�x� and all the given functions are continuous at x, then, for every
i = 1; : : : ; n, either φi�x� < fi�x� or fi is constant on some nonempty interval
�x− ε; x�.

A choice of such functions is given by

φi�x� = sup
y≤x

{
fi�y�

g�y�∑n
j=1 fj�y�

}
; 1 ≤ i ≤ n

(with the convention that 0/0 = 0).
As a second step, prove the existence of functions gi, without worrying

about the further property: let

g�2��x� = sup
y≤x
�g�y� −φ1�y��+;

g1�x� = g�x� − g�2��x�:
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Then �g1; g�2�� solves the problem for n = 2 (with
∑n

2 gi playing the role of g2)
and what remains is the original problem with a smaller number of variables
(with g�2� playing the role of g). 2

3. Kolmogorov–Smirnov tests and confidence sets. For the rest of
the paper we shall consider the problem of testing a hypothesized distribution
function H for the marginal distribution of X1. A confidence set of feasible
choices of H is defined as the class of H not rejected by the test.

We assume from now on that P�X1 = X2� = 0 and make no assumptions
about the marginal distribution of X2. The distribution function H should
be assumed to be continuous for the application of asymptotic results about
the Kolmogorov–Smirnov statistic. We will otherwise not assume continuity
explicitly, except in the subsections of this section.

Let �X�1�1 ;X
�1�
2 �; �X

�2�
1 ;X

�2�
2 �; : : : ; �X

�n�
1 ;X

�n�
2 � be i.i.d. random vectors with

X
�i�
1 distributed according to some distribution F1. Suppose further that only

T�i� = min�X�i�1 ;X
�i�
2 � and I�X�i�1 < X

�i�
2 � are observed, and consider the em-

pirical subdistribution function of X1,

Ĝ1�x� =
1
n

n∑
i=1

I
(
X
�i�
1 ≤ x; X

�i�
1 < X

�i�
2

)
;(19)

contrasted with the unseen empirical distribution function of X1,

F̂�x� = 1
n

n∑
i=1

I�X�i�1 ≤ x�:(20)

Clearly, Ĝ1 ∈ C+�F̂�. If we could observe F̂, then we could perform a
Kolmogorov–Smirnov test for H, by calculating

sup
x
�F̂�x� −H�x��:(21)

As we do not observe F̂ this is impossible. We can, however, use the Peterson
bounds for F̂, which now are

Ĝ1�x� ≤ F̂�x� ≤ Ĝ1�x� + ˆ̃G2�x�;(22)

in order to estimate (21) or its one-sided versions. First observe that

inf
x
�F̂�x� −H�x�� ≤ inf

x
�Ĝ1�x� + ˆ̃G2�x� −H�x��;(23)

so if the right-hand side of (23) is negative and below a critical point for
the one-sided Kolmogorov–Smirnov test, the hypothesized H can be rejected.
Similarly,

sup
x
�Ĝ1�x� −H�x�� ≤ sup

x
�F̂�x� −H�x��;(24)

so if the left-hand side of (24) is positive and above a critical value of the
one-sided Kolmogorov–Smirnov test, then H can be rejected.
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There is, however, an important improvement that can be made to the sec-
ond estimate (24), for we have not yet used the fact that F̂ = Ĝ1 + �F̂ − Ĝ1�
must be a comonotone representation. Example 2.1.1 shows that this approach
may reject more hypothesized distributions H than by using only the Peterson
bounds.

Rather than using the estimate (24), we try to find a nonnegative comono-
tone representation H =H1+�H−H1� for which H1 is close to Ĝ1. Lemma 3
below asserts the existence of an H1 which fits Ĝ1 pointwise better than H
fits F̂. Therefore, the best fit

inf
H1∈C+�H�

sup
x
�Ĝ1�x� −H1�x��

over all possible comonotone representations provides, whatever F̂ is, a lower
bound on supx �F̂�x� −H�x��.

Part (i) of the next theorem summarizes this discussion and is clearly a
corollary of the following Lemma 3. The proof of part (ii) follows Lemma 3.

Theorem 3. Given an empirical subdistribution function

Ĝ1�x� =
1
n

n∑
i=1

I�X�i�1 ≤ x; X
�i�
1 < X

�i�
2 �

and a distribution function H, let

D = inf
H1∈C+�H�

sup
x
�Ĝ1�x� −H1�x��:(25)

Then we have the following:

(i) For any distribution function F̂ such that Ĝ1 ∈ C+�F̂�,

sup
x
�F̂�x� −H�x�� ≥ D:

(ii) There exist H1 ∈ C+�H� such that

sup
x
�Ĝ1�x� −H1�x�� = D:

The lemma referred to above is the following.

Lemma 3. Let f, hx R → R be nondecreasing and right continuous, and
let f = g1 + �f− g1� be a comonotone representation of f. Then there exists a
comonotone representation h = h1 + �h− h1� of h such that

0 ≤ g1�x� − h1�x� ≤ f�x� − h�x� if h�x� ≤ f�x�(26)

and

f�x� − h�x� ≤ g1�x� − h1�x� ≤ 0 if f�x� ≤ h�x�:(27)
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Proof. We first modify f slightly. Define the set B ⊂ R to be those dis-
continuity points x of f for which h�x−� ≥ f�x−� and h�x� ≤ f�x�. Define
f′�x� = h�x� for x ∈ B and f′�x� = f�x� otherwise. It is clear that f′ is
nondecreasing. Modify g1 so as to have a comonotone representation of f′: set

g′1�x� =




g1�x−� +

h�x� − f�x−�
f�x� − f�x−��g1�x+� − g1�x−��; if x ∈ B;

g1�x�; otherwise.

It is then clear that f′, g′1 and f′ −g′1 are nondecreasing, and that f′ is right
continuous except on B.

Let

r+�x� = inf
y≥x
�g′1�y� + �h�y� − f′�y��+�(28)

and

r−�x� = sup
y≤x
�g′1�y� − �h�y� − f′�y��−�;(29)

where

z+ = max�z;0�; z− = �−z�+ = −min�z;0�:(30)

We claim that the function

h1�x� =
{
r+�x�; if h�x� ≥ f̃�x�;
r−�x�; if h�x� ≤ f′�x�;(31)

satisfies all requirements, and we proceed now to prove this statement.
The inequalities

r+�x� = inf
y≥x
�g′1�y� + �h�y� − f′�y��+� ≥ inf

y≥x
�g′1�y�� = g′1�x�

and

r+�x� = inf
y≥x
�g′1�y� + �h�y� − f′�y��+� ≤ g′1�x� + �h�x� − f′�x��+

can be summarized as

g′1�x� ≤ r+�x� ≤ g′1�x� + �h�x� − f′�x��+:(32)

Similarly,

g′1�x� − �h�x� − f′�x��− ≤ r−�x� ≤ g′1�x�:(33)

Inequalities (32) and (33) clearly prove (26) and (27) for x ∈ Bc, a dense subset
of R. Since f, g1, h and h1 are all right continuous, (26) and (27) hold on the
whole of R.

It remains to prove that h1 and �h − h1� are nondecreasing functions. Let
x < z. We will compare h1�x� with h1�z� and �h − h1��x� with �h − h1��z� in
each of four (somewhat overlapping) cases covering all possibilities.



MARGINAL DISTRIBUTIONS UNDER CENSORING 1639

Case 1 [h�x� ≤ f′�x� and h�z� ≤ f′�z�]. In this case, h1�x� ≤ h1�z� because
h1 = r− in these two points, and r− is nondecreasing by construction, as a
supremum over an increasing class of sets. As for �h − h1�, if r−�x� = r−�z�,
there is nothing to prove. Otherwise, r−�z� can be approximated arbitrarily
closely by values of the function g′1�y� − �h�y� −f′�y��− in the interval �x; z�.
Consider such y:

h1�z� − h1�x� ≈ �g′1�y� − �h�y� − f′�y��−� − h1�x�
≤ �g′1�y� − �h�y� − f′�y��−� − �g′1�x� − �h�x� − f′�x��−�
= �g′1�y� − �h�y� − f′�y��−� − �f′�x� + �h�x� − f′�x���
≤ �g′1�y� + �h�y� − f′�y��� − �g′1�x� + �h�x� − f′�x���
≤ h�y� − h�x� ≤ h�z� − h�x�:

Thus,

�h− h1��z� − �h− h1��x� ≥ 0:

Case 2 [h�x� ≥ f′�x� and h�z� ≥ f′�z�]. This case can be handled analo-
gously to the previous case, working with r+ (rather than with r−), which is
nondecreasing by construction as well, as the infimum over a decreasing class
of sets.

Case 3 [h�x� ≤ f′�x� and h�z� ≥ f′�z�]. In this case,

h1�x� = r−�x� ≤ g′1�x� ≤ g′1�z� ≤ r+�z� = h1�z�:
As for �h− h1�, we proceed as follows:

h1�z� − h1�x� = r+�z� − r−�x�
≤ �g′1�z� + �h�z� − f′�z��+� − �g′1�x� − �h�x� − f′�x��−�
= g′1�z� + h�z� − f′�z� − g′1�x� − h�x� + f̃�x�;

and the proof proceeds as in the first case.
Case 4 [h�x� > f′�x� and h�z� < f′�z�]. Consider

x0 = sup�y ∈ �x; z��h�u� > f′�u� for all u ∈ �x;y��:(34)

Clearly x 6∈ B and so f′ is right continuous at x, which implies (together with
right continuity of h) that x0 > x. By the definition of f′, h�z� < f′�z� implies
that h�z−� < f′�z−�. Hence x0 < z. We now have h�x0−� ≥ f′�x0−� and
h�x0� ≤ f′�x0+�. By the definition of f′, this implies that h�x0� = f′�x0�. The
problem now splits into two subproblems (in one of which x0 takes the role of
z and in the other the role of x) handled in full by the first two cases. 2

Proof of Theorem 3(ii). The expression supx �Ĝ1�x� −H1�x�� is a func-
tion of H1 only via its left- and right-hand limits at the discontinuities
of Ĝ1 and at ±∞, and it is a continuous function of these variables. Let
u+�x0�; u−�x1�; u+�x1�; u−�x2�; : : : ; u+�xk�; u−�xk+1� be these limit values,
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with the obvious notation, including x0 = −∞ and xk+1 = +∞. The comono-
tonicity conditions may be phrased in terms of these variables as follows:

u+�−∞� = 0

and

0 ≤ u−�xi+1� − u+�xi� ≤H�xi+1−� −H�xi�; 0 ≤ i ≤ k;
0 ≤ u+�xi� − u−�xi� ≤H�xi� −H�xi−�; 1 ≤ i ≤ k:

Since these inequalities describe a closed subset of a �2k+1�-dimensional unit
cube, it is clear that the infimum over H1 is actually a minimum. 2

3.1. A dynamic programming approach to constructing an optimal H1.
With Kolmogorov–Smirnov applications as motivation and the proof of
Theorem 3(ii) as a guideline, we shall now assume for simplicity that the
hypothesized distribution H is continuous with H�0� = 0 and give a simple
dynamic programming algorithm which enables a fast (linear complexity)
computation of the distance D [see (25)].

Using the notation �xi� from the previous section with a reinterpretation
of x0 as 0, we may define functions Vix R+→ R by

Vi�t� = inf
{
sup
x≥xi
�Ĝ1�x� −H1�x��

∣∣ H1�xi� = t
}

for i = 0; : : : ; k. Since H1�0� = 0, the required optimal distance is just V0�0�.
Now, although the definition of Vi does not look very promising from a com-
putational point of view, we can give a simple inductive formula:

Proposition 2. The functions Vi�t� are given by

Vi�t� =





max��Ĝ1�xi� − t�; �Ĝ1�xi−� − t�; min
t≤y≤t+1i

Vi+1�y��; if 0 ≤ i < k;

max��Ĝ1�xn� − t�; �Ĝ1�xn−� − t��; if i = k;

where 1i =H�xi+1� −H�xi�.

Proof. For i = k the formula is clear since an optimal H1 may be taken
to be constant on the interval �xk;∞�. For i < k we may use the fact that the
supremum distance between Ĝ1 and H1 on the interval �xi; xi+1� is achieved
as a left or right limit at one of xi and xi+1. Hence Vi�t� equals the maximum
of �Ĝ1�xi�−H1�xi��, �Ĝ1�xi−�−H1�xi�� and the optimal distance on �xi+1;∞�.
This optimal distance equals the last term in the claimed expression for Vi�t�
since a function H1 ∈ C �H� with H1�xi� = t may pass through any point of
�t; t+ 1i� at x = xi+1. 2
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Fig. 3. A trough function.

Definition 4. A function Vx R→ R is a trough function if there are reals
a, b and c with c ≥ 0 such that

V�y� =




−y+ �b+ a�; if y ≤ a− c;
b+ c; if a− c ≤ y ≤ a+ c;
y+ �b− a�; if y ≥ a+ c

(see Figure 3). The trough has vertex �a; b� and a base at height c above the
vertex.

A little thought shows that the maximum of two trough functions is again
a trough function, and since Vn is certainly a trough function we have the
following corollary.

Corollary 3. Each function Vi is a trough function.

The importance of this result is that the recurrence formula for theVi given
by Proposition 2 can easily be rewritten in terms of a recurrence relation for
the corresponding parameters �ai; bi; ci�, which enables a linear-complexity
computation of D = V0�0�.

4. Consistency of the confidence set. As expressed in the Introduc-
tion, the conservative Kolmogorov–Smirnov test based on (25) may be used to
build conservative confidence sets. The collection of distributions H for which√
nD does not exceed some critical point constitute a set that we rightfully

term confidence set, because under any theoretically feasible distribution the
probability that D exceeds the critical point (chosen to be a critical point for
the Kolmogorov–Smirnov statistic) does not exceed the probability that the
Kolmogorov–Smirnov statistic [lhs of (25)] exceeds that point, that is, the pre-
assigned confidence coefficient.

In this section we show that these confidence sets have a consistency prop-
erty.

Write z = �z1; : : : ; zn; : : :� for an infinite sequence of realizations zi=
�x�i�1 ; x

�i�
2 � from the unknown joint distribution of �X1;X2�. This joint dis-

tribution determines subdistribution functions (that can be estimated from
observable data), which in turn via Theorem 1 specify a feasible set J of
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marginal distributions for X1. The unknown true marginal distribution, F,
of X1 is a member of J.

For every n and α we obtain a confidence set that we denote Ĵ�n�α �z�. We
consider the closure of the lim sup of this sequence, as n → ∞, and denote
this set Ĵα�z�. Such a set is called a limit confidence set. Note that the limit
confidence sets satisfy a nesting property, for Ĵα�z� ⊂ Ĵα′�z� when α > α′.

The confidence set satisfies P�F ∈ Ĵ�n�α �z�� ≥ 1 − α, for every n (with “≥”
instead of the usual “=” because of the conservativeness of our criterion).

For distribution functions H not in J we have the following proposition.

Proposition 3. For a distribution functionH 6∈ J, with probability 1, there

is an N so that, for n > N, H 6∈ Ĵ�n�α �z�.

Proof. If H 6∈ J, then H = G1 + �H−G1� is not a comonotone represen-
tation, so H−G1 is not monotone increasing. Hence there are points x1 < x2
such that H�x1� −G1�x1� = β1 and H�x2� −G1�x2� = β2 with β1 > β2.

Now, given β1 > β
′
1 > β

′
2 > β2, with probability 1 we have

H�x1� − Ĝ
�n�
1 �x1� > β′1; H�x2� − Ĝ

�n�
1 �x2� < β′2;

for large enough n.
Set γ = �β′1 − β′2�/2. We claim that if H1 ∈ C+�H�, then

�H1�x1� − Ĝ
�n�
1 �x1�� < γ

implies

�H1�x2� − Ĝ
�n�
1 �x2�� > γ:

This holds because if H1�x1� − Ĝ
�n�
1 �x1� < γ, then H�x1� −H1�x1� > β′1 − γ

so comonotonicity of H =H1+�H−H1� implies that H�x2�−H1�x2� > β′1−γ.
But then

Ĝ
�n�
1 �x2� −H1�x2� > −β′2 + β′1 − γ = γ:

This proves the claim.
The claim shows that

inf
H1∈C+�H�

sup
x
�H1�x� − Ĝ

�n�
1 �x�� ≥ γ;

for large enough n, with probability 1. Hence the Kolmogorov–Smirnov test
will reject H, with probability 1, for any α. 2

Having shown that any H 6∈ J is eventually rejected with probability 1 for
large enough n, we have to show that any F∈J is not rejected infinitely often.

Let ζi be a sequence of i.i.d. random variables having the uniform distribu-
tion on �0;1�. The corresponding empirical process is

Un�t� = n−1/2
n∑
i=1

�1�ζi ≤ t� − t�



MARGINAL DISTRIBUTIONS UNDER CENSORING 1643

for 0 ≤ t ≤ 1. The empirical central limit theorem [10] states that the sequence
Un converges in distribution, as a sequence of random cadlag functions on
�0;1� to the Brownian bridge.

Proposition 4. Let F be in the feasible set J. Given any D > 0 there exists
with probability one a sequence of integers n1, n2; : : : such that

√
ni sup

x
�F̂�ni��x� −F�x�� < D

for every i. That is, with probability 1,

F ∈ Ĵα�z�

for any α for which D ≤ Dα.

Proof. The sequence of i.i.d. realizations �x�1�1 ; x
�2�
1 ; : : :� gives rise to a

sequence of independent uniform variables ζi = F�xi�. Letting Un be the
corresponding empirical process one has

√
n sup

x
�F̂�n��x� −F�x�� = sup

t∈�0;1�
�Un�t��:

Now, by the empirical central limit theorem, with probability 1 we can find
n1 such that

sup
t∈�0;1�

�Un1
�t�� < D:

Denote by U
�1�
m the empirical process constructed from the sequence ζn1+1,

ζn1+2; : : : : This is clearly independent of Un1
. With probability 1, we can find

m such that

sup
t∈�0;1�

�U�1�m �t�� < D/2;

and, additionally,
√
n1/
√
n1 +m < 1

4 and
√
m/
√
n1 +m − 1 < 1

4 . Writing
n2 = n1 +m, we then have

sup �Un2
�t�� ≤ sup �U�1�m �t�� + sup �Un2

�t� −U�1�m �t��

≤ D
2
+ sup

∣∣∣∣
1√
n2

[√
n1Un1

�t� + √mU�1�m �t�
]
−U�1�m �t�

∣∣∣∣

≤ D
2
+ sup

√
n1√
n2
�Un1
�t�� + sup

(√
m√
n2
− 1

)
�U�1�m �t��

≤ D
2
+ D

4
+ D

4
= D:

Continuing in this way we construct a sequence n1, n2, n3; : : : as claimed. 2
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Theorem 4. For any α > 0, with probability 1:

(i) The feasible set J is contained in Ĵα�z�.
(ii) The difference Ĵα�z� −J contains no open set of distribution functions.

Proof. (i) Take a countable dense subset of the feasible set J. For each
distribution function in this dense subset we know that it lies in Ĵα�z� with
probability 1. Hence with probability 1 they all lie in that set. However, since
Ĵα�z� is by definition closed, it must also contain J.

(ii) Work as in (i) but now with a countable set that is dense in the com-
plement of J. 2.

Remark. The random set Ĵα�z� −J may be some nonempty nowhere
dense set.

5. Applications to the exponential family of marginals. The expo-
nential family is parameterized by the single real parameter λ, so if we hy-
pothesize that the underlying distribution of X1 is exponential, we can con-
struct a confidence interval of λ values.

Since the set J of feasible values is necessarily an interval, it is by Theorem
4 equal to the closure of the interior of the limit confidence interval Ĵα�z�, with
probability 1.

5.1. Simulation results. The particular example given in Section 2.1.1 was
simulated 100 times using sample size 1000. The Kolmogorov–Smirnov statis-
tic for the lower Peterson bound [see (24)] gives, at the 90% confidence level,
a mean lower bound of λ = 0:122, with standard deviation 0:0077. This may
be compared with the theoretical lower bound λ = 0:1355 achieved via the
Peterson lower bound, as reported in Section 2.

The Kolmogorov–Smirnov statistic yielding lower bounds at the 90% confi-
dence level via comonotonicity gives a mean lower bound estimate of 0:2929,
with standard deviation 0:0429. While sharper than the above, given that the
theoretical value is λ = 1, this bounding technique still seems coarse. How-
ever, when the cutoff point for the monitoring of failures is reduced from x = 1
to x = 0:5, the mean lower bound estimate is 0:5983, with standard deviation
0:0606. If the cutoff point is further reduced to x = 0 (i.e., all failures are
observed), the mean lower bound estimate becomes 0:9492, with standard
deviation 0:0342. The latter corresponds to the conventional construction of
bounds on λ via the Kolmogorov–Smirnov distance between empirical and
hypothesized distribution functions.

Typically, the upper bound on λ obtained via comonotonicity does not im-
prove the estimates obtained via the Peterson upper bounds.

The example given in Section 2.1.2 was simulated 100 times using a sample
size of 1000, letting λ1 = 1 and λ2 = 0:5. As shown above, comonotonicity and
pointwise bounds agree except at the endpoints, and claim that λ1 ∈ �1;1:5�.
The Kolmogorov–Smirnov statistics built upon comonotonicity and upon the
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lower Peterson bound coincided in the range relevant for the construction of
90% confidence intervals, and yielded a mean lower bound of 0:8050 with
standard deviation 0:051. The mean upper bound was 1:5649 with standard
deviation 0:057.
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