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ON NONPARAMETRIC CONFIDENCE INTERVALS

BY MARK G. LOW

University of Pennsylvania

An inequality is given for the expected length of a confidence interval
given that a particular distribution generated the data and assuming that
the confidence interval has a given coverage probability over a family of
distributions. As a corollary, attempts to adapt to the regularity of the
true density within derivative smoothness classes cannot improve the rate
of convergence of the length of the confidence interval over minimax
fixed-length intervals and still maintain uniform coverage probability.
However, adaptive confidence intervals can attain improved rates of con-
vergence in some other classes of densities, such as those satisfying a
shape restriction.

1. Introduction. One of the basic problems in nonparametric function
estimation is the construction of confidence intervals and bands for an
unknown function based on noisy data. For example, in density estimation
problems a confidence interval for the value of the density at a particular
point can be constructed based on X , X , . . . , X , i.i.d. observations each1 2 n
with density f. Typically some regularity of the function f is assumed,
usually specifying that the unknown function has a given number of deriva-
tives, say k. Two basic approaches to the construction of a confidence interval
for f at a particular point x have been given in the literature.0

One approach is to specify a particular bound on the kth derivative.
Suppose that the data are real valued. Then, for some M and some a,

Žk .1 f g FF a, k , M s f : f G 0, f s 1, f x F a, f x F M .Ž . Ž . Ž . Ž .H `0½ 5
We can then seek fixed-length confidence intervals with a given minimum

Ž .level of coverage over FF a, k, M that minimize the length of the interval.
This point of view has been studied in depth. In a white-noise setting, Donoho
Ž .1994 has developed a precise optimality theory. In the density estimation

ˆ Ž .setting, this theory leads to linear estimators f and constants D a suchn
Ž .that, for all f g FF a, k, M ,

ˆ k rŽ2 kq1. 1rŽ2 kq1. yk rŽ2 kq1.P f y D a a M nŽ .Žf n

ˆ k rŽ2 kq1. 1rŽ2 kq1. yk rŽ2 kq1.F f x F f q D a a M n G 1 y a .Ž . Ž . .0 n

2Ž .

Ž .1rŽkq1. Ž .Note that if a ) Mrk! and f x s a, then a simple variational0
Ž .argument shows that f f FF a, k, M , so we shall assume that a F

Ž .1rŽkq1.Mrk! .
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These fixed-length intervals are close to optimal among all fixed-length
Ž .intervals. More precisely Donoho 1994 has shown that if C is any confi-n

Ž .dence interval for f x based on the observations X , X , . . . , X , with0 1 2 n
Ž .coverage probability over the class of densities FF a, k, M of at least 1 y a ,

˜Ž .then there is a constant D a such that the length of the confidence intervals
˜ k rŽ2 kq1. 1rŽ2 kq1. yk rŽ2 kq1.Ž .is at least D a a M n . One of the consequences of the

bounds given in Theorem 1 of this paper is that these intervals are in fact
Ž .rate optimal even among random-length intervals. More precisely suppose

Ž .that C is a confidence interval for f x based on the observationsn 0
X , X , . . . , X , with coverage probability1 2 n

3 inf P f x g C G 1 y a .Ž . Ž .Ž .f 0 n
Ž .FF a, k , M

Let m be Lebesgue measure. Then it will follow from Theorem 1 of Section 2
Ž .that there is a constant D a such that1

4 sup E m C G D a ak rŽ2 kq1.M 1rŽ2 kq1.nyk rŽ2 kq1. .Ž . Ž . Ž .f n 1
Ž .FF a, k , M

Hence, optimal random-length confidence intervals have the same mini-
max rate of convergence as optimal fixed-length confidence intervals. Of
course, two complaints can be made about the fixed-length confidence inter-

Ž . 5 Žk .Ž .5val given in 2 . If f x < M, then the confidence interval is much`

longer than if we had chosen a much smaller value of M. On the other hand,
5 Žk .Ž .5if f x 4 M, then it is quite likely that the confidence interval defined`

Ž .by 2 will have poor coverage probability. The same remarks can also be
Ž .made regarding the value of f x .0

Such thoughts have led to another point of view. Confidence intervals
should adjust so that their expected length depends on the magnitude of
Žk .Ž . Ž .f x in the neighborhood of the point x and on the value of f x . Of0 0

course, the length of such an interval must depend on the data; in particular,
it cannot be of fixed length. Such a point of view is not in conflict with the

Ž .bound given in 4 because this bound measures only the maximum expected
Ž .length over FF a, k, M .

Random-length confidence intervals are usually based on fairly compli-
Ž .cated resampling schemes. See, for example, Hall 1992 and Hardle and¨

Ž .Marron 1991 . It has been noted in these papers that the resulting confi-
dence intervals often have poor coverage probability. This leads to the
question of whether such schemes are ever likely to improve substantially on
fixed-length procedures.

We shall give bounds on the size of confidence intervals that show that
without assuming some extra regularity for the kth derivative attempts to
adjust to the value of the kth derivative are doomed to failure. More

Ž .specifically suppose that C is a confidence interval for f x with coveragen 0
Ž .probability of at least 1 y a over FF a, k, M . Then for any « ) 0 the expected

Ž . Ž .length of this confidence interval must satisfy 3 for every f g FF a, k, M y « .
Hence, adaptation is severely limited in this problem. The construction of
these bounds is based on a simple inequality which is given in a general
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setting in Section 2. In Section 3 we apply this bound to the density
estimation problem.

2. Lower bounds. In this section a general lower bound based on the
L-distance between probability measures is given for the length of confidence
intervals. This bound can then be applied easily to density estimation,
nonparametric regression and white noise models. We only give the abstract
result in this section. The connection to a density estimation example is made
in Section 3.

Suppose that a random variable X is generated by a probability measure
Ž .P , where f g FF, a convex set of parameter points. Let C X be a confidencef

interval for a linear functional Tf, with coverage probability of at least 1 y a .
Assuming that X has distribution P write P A for the probability of a setf f

Ž . Ž .A, and E S X for the expectation of the random variable S X . Also writef
5 5 5 5 < <Q for the total variation of a signed measure Q. That is, Q s sup Hn dQ ,n

< <where the supremum is taken over all measurable n with n F 1. For any
pair of parameter points f g FF and f g FF let f be the member of the0 1 l

Ž .affine family joining them given by f s f q l f y f . Since FF is convexl 0 1 0
f g FF whenever 0 F l F 1. Lower bounds for the expected length of al

confidence interval for a linear functional Tf can be described easily in terms
of a modulus of continuity v, defined by

< < 5 55 v f , « , FF s sup Tf y Tf : P y P F « , f g FF .Ž . Ž . � 40 1 0 f f 11 0

Ž .THEOREM 1. Suppose that C X is a confidence set for the linear func-
tional Tf, with coverage probability of at least 1 y a over the convex parame-
ter space FF. If P is the actual distribution generating X, it follows that, forf0

any « ) 0,
«

6 E m C X G 1 y a y v f , « , FF .Ž . Ž . Ž .Ž .f 0ž /0 4

PROOF. Let I be the indicator function defined by

1, if a g B ,I a g B sŽ . ½ 0, if a f B.

Now, for a given « , let d ) 0 be arbitrary. Then, by the definition of
Ž .v f , « , FF , there is an f g FF such that0 1

< <7 Tf y Tf G v f , « , FF y dŽ . Ž .1 0 0

and
5 58 P y P F « .Ž . f f1 0

Ž .Since C X has probability of coverage of at least 1 y a it follows that, for
0 F l F 1,

9 P I Tf g C X G 1 y a ,Ž . Ž .Ž .f ll
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Ž . Ž .and it follows from 8 and 9 that
5 510 P y P F l« ;Ž . f fl 0

hence
l«

11 P I Tf g C X G 1 y a y .Ž . Ž .Ž .f l0 2
Now

1
12 E m C X G E Tf y Tf I Tf g C X dlŽ . Ž . Ž . Ž .Ž . Ž .Hf f 1 0 l0 0

0

1
13 s Tf y Tf P I T f g C X dlŽ . Ž . Ž . Ž .Ž .H1 0 f l0

0

l«1
14 G Tf y Tf 1 y a y dlŽ . Ž .H1 0 ž /20

«
15 s v f , « , FF y d 1 y a y .Ž . Ž .Ž .0 ž /4

Ž .Hence 6 holds, since d ) 0 is arbitrary. I

3. Bounds for a density estimation example. The bounds given in
Section 2 can be easily applied in a variety of function estimation problems
such as nonparametric regression and density estimation. In particular, the
density estimation problem discussed in the Introduction is treated easily.

Ž .Let X , X , . . . , X be i.i.d. f , where f g FF a, k, M . Without loss of general-1 2 n
Ž .ity focus attention on finding a confidence interval for f 0 . The bound given

in Section 2 is based on the L -distance between probability measures. In1
product situations the L -distance is often difficult to calculate, and it is often1
more convenient to bound the L -distance by the Hellinger distance. Such1

Ž .bounds are by now standard and are given, for example, by Le Cam 1986 .
Ž .For two measures P and Q write H P, Q for the Hellinger distance between

P and Q, where
22 ' '16 H P , Q s dP y dQ .Ž . Ž . Ž .H

Ž .Then results in Chapter 4 of Le Cam 1986 immediately show that the
L -distance between the product measures P n and Qn can be bounded by1

1r2n2H P , QŽ .
n n17 L P , Q F 2 2 y 2 1 y .Ž . Ž .1 ž /ž /2

This bound can be combined with Theorem 1 to yield lower bounds for the
size of confidence intervals in density estimation problems. For example,

Ž .suppose that C is a variable-length confidence interval for f 0 based on i.i.d.n
data X , X , . . . , X , each with density f. If C has coverage probability of at1 2 n n

Ž .least 1 y a over FF a, k, M ,

18 inf P f 0 g C G 1 y a .Ž . Ž .Ž .f n
Ž .FF a, k , M
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As mentioned in the Introduction, Theorem 1 can be used to show that there
Ž .is a constant D a such that1

19 sup E m C G D a ak rŽ2 kq1.M 1rŽ2 kq1.nyk rŽ2 kq1. .Ž . Ž . Ž .f n 1
Ž .FF a, k , M

In fact Theorem 1 gives bounds for the expected length of a confidence
interval for each density f and not just for the maximum length over
Ž .FF a, k, M .

5 Žk .Ž .5Let g be a bounded function with compact support such that g x F 1,`

Ž . 2g 0 - 0, Hg s 0 and Hg s d . Then the renormalized function

Ž .1r 2 kq12bŽ .1r 2 kq1k20 g x s a b g xŽ . Ž . Ž .ab ž /ž /a

satisfies
Ž .1r 2 kq1k21 g 0 s a b g 0 ,Ž . Ž . Ž . Ž .ab

22 g 2 s adŽ . H ab

and
Žk .23 g F b.Ž . ab `

5 Žk .Ž .5 Ž .Now suppose that f is a density such that f x - M and f 0 ) « ) 0.`0 0 0
5 Žk .Ž .5 Ž .Let b s M y f x and a s f 0 . Define f by`0 0 n, 1

24 f x s f x q nk rŽ2 kq1.g n1rŽ2 kq1.x ,Ž . Ž . Ž . Ž .n , 1 0 ab

Ž .and note that, for sufficiently large n, f g FF a, k, M . The squaredn, 1
Hellinger distance between f and f satisfies0 n, 1

2
225 H f , f s f x y f x dx' 'Ž . Ž . Ž . Ž .H ž /0 n , 1 0 n , 1

2
f x y f xŽ . Ž .n , 1 0

26 s f x y f x 1 q dx'Ž . Ž . Ž .H 0 0( ž /f xž /Ž .0

d
27 s 1 q o 1Ž . Ž .Ž .

4n

Ž . � Ž . 4 Ž .uniformly over f g FF a, k, M l f : f 0 G « . Hence, by 17 ,0

1r2n
d

n n28 L f , f F 2 2 y 2 1 y 1 q o 1Ž . Ž .Ž .Ž .1 0 n , 1 ž /ž /8n
1r2d

29 F 2 2 y 2 exp y 1 q o 1Ž . Ž .Ž .ž /8
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Ž . � Ž . 4uniformly over f g FF a, k, M l f : f 0 G « . Now set g equal to0

1r2d
30 g s 2 2 y 2 exp yŽ . ž /8

Ž .and let Tf s f 0 . Note that

Ž .1r 2 kq1k rŽ2 kq1. Žk . yk rŽ2 kq1.31 Tf y Tf s g 0 f 0 M y f x n ,Ž . Ž . Ž . Ž .Ž .n , 1 0 0 0 `

and hence

v f , g , FF a, k , MŽ .Ž .0
32Ž . Ž .1r 2 kq1k rŽ2 kq1. Žk . yk rŽ2 kq1.G g 0 f 0 M y f x n 1 q o 1 .Ž . Ž . Ž . Ž .Ž .Ž .0 0 `

It then follows from Theorem 1 that there are constants D and N such that if
n G N, then

33 E m C x G 1 y a y g Df k rŽ2 kq1. 0Ž . Ž . Ž . Ž .Ž .f n 00

Ž .1r 2 kq1Žk . yk rŽ2 kq1.= M y f x n .Ž .Ž .0 `

We can summarize this result in the following theorem.

Ž .THEOREM 2. Let « ) 0 and suppose that C satisfies 18 . Then ' N thatn
Ž .depends on « and M, and a constant D g ) 0 independent of n, « , a and M,

such that, for all n ) N,

E m C x G 1 y a y g D g f k rŽ2 kq1. 0Ž . Ž . Ž . Ž .Ž . Ž .f n

Ž .1r 2 ky1Žk . yk rŽ2 kq1.5 5= M y f nŽ .`

34Ž .

Ž . Ž .for all f g FF a, k, M with f 0 ) « .

REMARK. 1. Theory for confidence intervals in nonparametric function
estimation problems can be divided into:

Ž .a fixed-length confidence intervals;
Ž .b minimax expected length confidence intervals;
Ž .c pointwise expected length confidence intervals.

It is clear that for a given coverage probability that optimal fixed-length
confidence intervals cannot be shorter than the expected length of minimax
expected length confidence intervals. Similarly the maximum expected length
of minimax expected length confidence intervals cannot be shorter than the
expected length of this confidence interval assuming that a particular distri-
bution generated the data.

Ž .Donoho 1994 has given a detailed treatment of fixed-length confidence
intervals. Theorem 1 of this paper gives lower bounds for the expected length
of minimax and pointwise random-length confidence intervals.
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REMARK 2. Some of the recent work in adaptive estimation has focused on
finding estimators that adapt for the mean squared error over many different
function spaces. It is often possible to find estimators that are almost simulta-
neously minimax over a whole range of parameter spaces. In one sense, this
paper shows that although an estimate may be adaptive for squared error
loss it may be impossible to make a data dependent claim on how well you
have done. In particular, once we admit that f might perhaps have only k
derivatives, the expected length of the confidence interval must be of the
order nyk rŽ2 ky1. even if f is in fact infinitely differentiable.

REMARK 3. An entirely similar analysis yields corresponding results for
both nonparametric regression and white noise models. In fact the analysis is
sometimes even easier for those models as the L -distance can often be1
evaluated explicitly.

Ž . Ž .REMARK 4. Donoho and Liu 1991 and Donoho 1994 reduced the mini-
max theory for estimating linear functionals Tf over convex parameter
spaces FF to finding the one-dimensional subfamily of FF which makes the
problem of estimating Tf most difficult. In adaptive estimation several pa-
rameter spaces are studied simultaneously. For simplicity consider two con-
vex spaces FF and FF and let FF ; FF .1 2 2 1

Suppose that for estimating the linear functional over FF that the associ-1
� 4ated hardest one-dimensional subfamily is g : y1 F u F 1 . Sometimes thisu

hardest one-dimensional subfamily will contain a function, say g , which alsof

belongs to FF . Then applying Theorem 1 with f s g shows that in this case2 0 f

it is impossible to find adaptive length confidence intervals over FF and FF . In1 2
particular, this is the case for estimating a function at a point over Lipschitz
classes of different orders.

It is, however, no longer the case for Lipschitz classes of order less than or
equal to 1 when these functions are also assumed to be monotone. Under

Ž .these constraints Hengartner and Stark 1995 have constructed confidence
intervals which do adapt to the unknown Lipschitz order.
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