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TRANSFORMED EMPIRICAL PROCESSES AND
MODIFIED KOLMOGOROV–SMIRNOV TESTS

FOR MULTIVARIATE DISTRIBUTIONS1

By A. Cabaña and E. M. Cabaña

Instituto Venezolano de Investigaciones Cientı́ficas
and Universidad de la República, Uruguay

A general way of constructing classes of goodness-of-fit tests for mul-
tivariate samples is presented. These tests are based on a random signed
measure that plays the same role as the empirical process in the construc-
tion of the classical Kolmogorov–Smirnov tests. The resulting tests are
consistent against any fixed alternative, and, for each sequence of contigu-
ous alternatives, a test in each class can be chosen so as to optimize the
discrimination of those alternatives.

1. Introduction. The design of tests specially adapted to detect some spe-
cific alternatives is a common procedure in nonparametric statistics. All three
well-known tests for the two-sample problem, Wilcoxon, Fisher and Yates or
median are all three distribution free, but each one is better than the others in
detecting changes in position for specific sample distributions: the logistic, the
normal or the double exponential, respectively [see Hájek and Sidák (1967),
for instance].

As far as we know, the design of goodness-of-fit tests, consistent against all
fixed alternatives and specially fitted to detect a specific family of them, has
not been as well developed. That problem was considered and solved by one
of the authors [Cabaña (1996)], by using a martingale transformation of the
empirical process originally used in statistical inference by Khmaladze (1981,
1993), who introduces a goodness-of-fit test but does not focus his attention
on the improvement of the behavior under specific alternatives.

In the present article, we pose again the problem of designing consistent
goodness-of-fit tests, fitted to an arbitrarily given family of alternatives (such
as changes in position for normal samples, changes in dispersion for double
exponential ones, etc.). Our results extend the ones in Cabaña (1996) in two
senses: (1) goodness-of-fit tests for multivariate samples are discussed, and
(2) the basic transformations to be applied to the empirical process for the
construction of the tests are obtained by means of L2 arguments that disre-
gard the martingale property characteristic of the particular transformation
introduced in Khmaladze (1981) and used in Cabaña (1996).
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In fact, that martingale transformation is also an isometry in the L2 space
related to the probability to be fitted, and we call it below a Laguerre isometry
or L-isometry because it is obtained by changing variables in the Laguerre
shift that carries each Laguerre polynomial into the next one, with degree
one unit larger. Our procedure is carried on starting from any arbitrarily
given isometry, not necessarily the Laguerre one, although that one is the
simplest we can choose, and all the resulting tests have the same distribution
free behavior under the null hypothesis of fit and also under the alternatives
for which the test is designed. This shows in particular that the martingale
property of Laguerre isometry is not at all essential for testing purposes.

2. Preliminaries. The empirical process associated with the sample �X�
of size 1 with respect to the probability distribution F0 on E = Rd, d ≥ 1, is
the signed measure bxx A 7→ bx�A� = 1�x∈A�−F0�A�, evaluated at the random
point x =X.

It is well known that when X has distribution F0, bX satisfies the
properties: EbX�A� = 0 for every measurable set A, and EbX�A�bX�B� =
F0�A ∩B� − F0�A�F0�B� for every measurable A;B, which means that bX
has the same first- and second-order moments as an F0-Brownian bridge.

As n goes to infinity, the empirical process

bn =
1√
n

n∑
i=1

bXi
(1)

of the sample �X1; : : : ;Xn� of i.i.d. variables with distribution F converges
in distribution to an F0-Brownian bridge bF0 when F = F0. When F 6= F0
instead, bn behaves asymptotically as the sum of an F-bridge bF and the
deterministic term

√
n�F−F0� that tends to infinity in the supremum norm

as n→∞. This gives a well-known justification for the classical Kolmogorov–
Smirnov test of H0x F = F0 [see Donsker (1952)].

Let us introduce a family of alternatives F�τ� (τ in a neighborhood of 0)
contiguous to F�0� = F0, with density f�τ� with respect to F0, and such that
there exists an L2�E ; dF0� function k satisfying

∥∥∥∥
1
τ

(√
f�τ� − 1

)
− k

2

∥∥∥∥
L2

→ 0 as τ→ 0+; τ 6= 0:(2)

When (2) holds, the function k necessarily satisfies

∫
k�x�dF0�x� = 0;(3)

and can be obtained as the L1�E ; dF0�-limit of �f�τ� − 1�/τ as τ→ 0.
We shall assume that we are especially interested in detecting the sequence

of alternatives Hnx F = F�n� = F�δ/
√
n�, where n is the sample size, and δ is a

fixed parameter introduced for further convenience of notation.
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Under Hn, bn�A� converges in distribution to the sum of bF0 plus the de-
terministic drift

lim
n→∞
√
n EbXδ/

√
n
�A� = δ

∂EbXτ
�A�

∂τ

∣∣∣∣
τ=0
= δ

∫
A
k�x�dF0�x�

[c.f. Oosterhoff and van Zwet (1979)]. That drift measures the sensitivity of
the test based on bn with respect to Hn.

The aim of this paper is the construction of goodness-of-fit tests based on
signed measures ŵx �x ∈ E � such that the following hold.

(a) When x is replaced by a random variable X, the resulting measure
ŵX�A� evaluated on any measurable set A is a random variable.

(b) The measure ŵn = n−1/2∑n
i=1 ŵXi

associated with the sample has some
normalized limit distribution under H0.

(c) The asymptotic distributions of ŵn under H0 and under Hn differ as
much as possible.

These random measures will play, in the construction of our tests, the same
role as the empirical processes in classical Kolmogorov–Smirnov tests. Each
of them will be called a transformed empirical process (in short: TEP).

For technical convenience, we shall require that the second-order moments
of ŵX coincide with those of a Wiener process, normalized by the requirement
that its total variance be one. Thus, under a central limit property to be es-
tablished, the limit distribution of ŵn = n−1/2∑n

i=1wXi
will be a normalized

Gaussian process with independent increments.
As a consequence, we pose ourselves the problem of finding signed measures

ŵx satisfying the following:

(A) EŵX�A� = 0, for all measurable sets A and the random variable X
distributed as F0;

(B) EŵX�A�ŵX�B� = V�A ∩B�, for all measurable sets A;B, the random
variable X distributed as F0, and some probability V on E ;

(C) ∂EŵXτ
�E �/∂τ�τ=0 ≥ ∂Eŵ′Xτ

�E �/∂τ�τ=0 for any ŵ′x satisfying the analogue
of (1) and (2), and the random variable Xτ distributed as F�τ�.

Conditions (A) and (B) do not require further explanation. As for condition
(C), notice that it requires the drift of our TEP to be as large as possible on
the set E of maximum variance. The adequacy of such heuristic requirement
will be verified a posteriori, from the properties of the resulting tests, since
they will have optimum efficiency [see Section 4 and Cabaña (1996)].

Let us point out that the problem of finding processes ŵX satisfying (A),
(B), (C) is implicitly solved in Cabaña (1993, 1996), where goodness-of-fit tests
asymptotically efficient are obtained for univariate samples. In this article, we
solve it explicitly, extend the solution to a multivariate context, and, for each
family of alternatives as in (2), provide consistent multivariate tests, efficient
for that family.
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In the sequel, E is always set equal to Rd, and the examples in Section 9
are developed for d = 1 and d = 2, but most results apply to more general
spaces, particularly the extension of isometries described in Section 8.

3. A formal L2 construction of the TEP.

3.1. Isometries and associated TEPs. Let us assume for simplicity that the
probability V appearing in condition (B) is absolutely continuous with respect
to F0, and call a2 its density; that is,

V�A� =
∫
A
a2�x�dF0�x�;

∫
a2�x�dF0�x� = 1:

We shall assume further that a is F0-a.e. different from zero; that is, F0 and
V are absolutely continuous with respect to each other.

We shall denote by �•; •� and �•; •�V the inner products in L2�E ; dF0� and
L2�E ; dV�, respectively. From an orthonormal basis 9 = �ψ0 = 1; ψ1; ψ2; : : :�
of L2�E ; dF0�, we may construct the new sequence of functions

9V = �ψVi �i=0;1;:::; ψVi �x� = ψi�x�/a�x�;
which is an orthonormal basis for L2�E ; dV�.

Conditions (A) and (B) can be replaced by the requirement that the Fourier
coefficients

ci�x� =
∫
ψVi �y�dŵx�y�

of dŵx/dV with respect to 9V satisfy

Eci�X� = �ci;1� = E
∫
ψVi �x�dŵX�x� = 0

and

Eci�X�cj�X� = �ci; cj� = E
∫
ψVi �y�dŵX�y�

∫
ψVj �z�dŵX�z�

=
∫
ψVi �y�ψVj �y�dV�y� = �ψVi ; ψVj �V = δi; j:

Consequently, C = �ci�i=0;1;::: is required to be an orthonormal system in
L2�E ; dF0� with all its elements orthogonal to the constant 1, in order that
(B) and (C) hold.

Expand now ŵXτ
�E � =∑i ci�Xτ��ψVi ;1�, and compute

∂EŵXτ
�E �

∂τ

∣∣∣∣
τ=0
= lim

τ→0

∑
i

E�ci�Xτ� − ci�X��
τ

�ψVi ;1�V

=
∑
i

∫
ci�x�k�x�dF0�x��ψi; a�

=
∑
i

�ci; k��ψi; a� =
∑
i

kCi ai;

(4)
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where kCi , ai are the ith Fourier coefficients of k and a with respect to the
orthonormal systems C and 9, respectively.

Let us introduce now the isometry T that maps 9 onto C; that is,

T x L2�E ; dF0� → L2�E ; dF0�; ψi 7→ T ψi = ci; i = 1;2; : : : :(5)

The last term in (4) equals �k;T a�, and therefore condition (C) holds when,
for a given T , one chooses a to minimize the angle between T a and k. This
is accomplished by selecting T a = k/�k�, provided the span of C contains k.
This will be ensured by imposing that the span of C, that is, the range of T ,
be the orthogonal complement 1⊥ of 1 in L2�E ; dF0�.

The conclusions obtained so far can be summarized in the following state-
ment.

Proposition 1. The measure ŵx with formal Fourier expansion

ŵx�A� =
∞∑
i=0

ci�x��â1A; ψi�(6)

satisfies (A), (B), (C), when 9 = �ψi�i=1;2;::: is an orthonormal basis of

L2�E ; dF0�, T is an isometry on L2�E ; dF0� with range 1⊥, C = �ci�i=1;2;::: is
the image of 9 by T and the function â has the property T â = k/�k�.

In that case, the objective of our optimization has the value

∂EŵXτ
�E �

∂τ

∣∣∣∣
τ=0
= �k;T â� = �k�:(7)

Remark 1. The preceding proposition gives a formal solution to our prob-
lem for each orthonormal basis of L2�E ; dF0� and each isometry T with
range 1⊥.

Remark 2. By replacing ci�x� by T ψi�x� in (6), and using the linearity of
T we obtain

ŵ•�A� = T
∞∑
i=0

�â1A; ψi�ψi = T �â1A�;(8)

and this implies in particular that ŵx depends only on the isometry T , but
not on the orthonormal basis 9.

Let us finally introduce the notation

w�a;T �• �A� = T �a1A�(9)

for the measure associated with the isometry T and the score function a ∈
L2�E ; dF0�.

After Remark 2, we may reformulate our previous statement in the fol-
lowing.
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Proposition 2. The measure (9) satisfies conditions (A), (B), (C) and equa-
tion (7), when T is an isometry on L2�E ; dF0� with range 1⊥ containing k,
and the score function is chosen as â = T −1k/�k�.

3.2. Constructing the TEP as a stochastic integral with respect to the empir-
ical process. From (9) and the orthogonality of the range of T with respect
to 1, the expression

w
�a;T �
X �A� = T �a1A��X� =

∫
T �a1A�d1�•≤X�

=
∫

T �a1A�d�1•≤X −F0� =
∫

T �a1A�dbX
(10)

follows.
From (10) we derive an expression for

w
�a;T �
n = 1√

n

n∑
i=1

w
�a;T �
Xi

(11)

in terms of bn, namely

w
�a;T �
n �x� =

∫
T �a1x�dbn:(12)

3.3. Transformed empirical process in E = Rd. We adopt the expressions
(10) and (12) as the definition of the transformed empirical process.

Definition 1. The transformed empirical process of the sample �X1;
X2; : : : ;Xn� of E -valued random variables, associated with the probability
distribution F0 on E , the isometry T on L2 = L2�E ; dF0� with range equal to
the orthogonal complement 1⊥ of the constant function 1 and the L2-function
a with �a� = 1 is

w
�a;T �
n �A� =

∫
T �a1A�dbn:(13)

No attention has been paid to the convergence of the Fourier expansions
involved in the arguments that motivated Definition 1, but straightforward
computation of moments shows that properties (A), (B) hold when ŵ is re-
placed by w�a;T �X or w�a;T �n . Moreover

∂Ew�a;T �Xτ
�E �

∂τ

∣∣∣∣
τ=0
=
∫
kT adF0;

so that (C) holds with w�â;T �X substituted for ŵX, where â = T −1k/�k�.
We show in Section 4 that, under suitable assumptions on T , a, a central

limit theorem holds for the TEP so defined.

4. Asymptotic properties of the TEP. Let us consider the TEPs
�w�a;T �n �n=1;2;::: with respect to F0 constructed over triangular arrays of i.i.d.
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variables Xn;1;Xn;2; : : : ;Xn;n with distribution function F�n�. We describe
separately the limit properties of the TEPs for n → ∞ in two cases: when
F�n� = F 6= F0 is the same fixed distribution for all samples and when F�n� is
a sequence contiguous to F0.

4.1. Unboundedness under fixed alternatives. The expectation of w�a;T �X �A�
when X has distribution F is
∫

T �a1A��x��dF�x� −F0�x�� =
∫

T �a1A��x�dF�x� = �T �a1A�; dF/dF0�:

Let us call T g the projection of dF/dF0 on the range of T . Then
Ew�a;T �X �A� = �a1A; g� =

∫
A agdF0. From this expression we are led to

the following.

Theorem 1. If
∫
A agdF0 6= 0 for some A in a family of sets J , then

lim
n→∞

sup
A∈J
�wn�A�� = +∞ a.s.(14)

Corollary 1. When J = ��b; c�x b; c ∈ Rd� or J = ��−∞; c�x c ∈ Rd�, then
(14) holds.

The conclusion follows from the assumptions that T has range 1⊥ and a is
a.e. nonvanishing.

4.2. Gaussian limit under the null hypothesis and contiguous alternatives.
Replacing the empirical process bn in (13) by the F0-Brownian bridge b, one
obtains a Wiener process w�a;T ��A� =

∫
T �a1A�db, indexed on A (A in a

given family of sets J ). Following Ossiander [Ossiander (1987)], the conver-
gence in distribution of the transformed empirical process w�a;T �n to w�a;T � is
guaranteed, under the null hypothesis H0, by the assumptions

T �a1A� ≤ G for some G ∈ L2�E ; dF0� and all A ∈ J(15)

of uniform boundedness of the family

G = �T �a1A�x A ∈ J �;(16)

and
∫ 1

0

√
logN�2�� ��ε;G ;F0�dε <∞(17)

about the boundedness of the L2�F0�-metric entropy with bracketing N
�2�
� �,

which is defined by

N
�2�
� ��ε;G ;F0�� = min�κ: there exist sets U and L with cardi-

nal κ of L2�F0�-functions such that for
each f ∈ G there exist u ∈ U and l ∈ L
such that l < f < u and �u − l�2 ≤ ε2�.

(18)
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As for the asymptotic distribution of w�a;T �n �A� under Hn, it follows from
the Le Cam third lemma and assumption (2) [see Le Cam and Yang (1990),
Oosterhoff and van Zwet (1979)] that it is the same as under H0 plus the bias
δ
∫
kT �a1A�dF0.

The following statement summarizes the asymptotic behavior indicated
above. The assumptions in (i) must be verified for each particular isometry, as
will be done below for the examples in Section 9.

Theorem 2. Let �X1; : : : ;Xn� be a sample of E -valued i.i.d. random vari-

ables with distribution F and w
�a;T �
n �A� the transformed empirical process of

that sample associated to the probability distribution F0 on E , the isometry T
on L2 = L2�E ; dF0� with range orthogonal to the constant function 1 and the
L2-function a (�a� = 1), as introduced in Definition 1.

(i) When assumptions (15) and (17) hold, �w�a;T �n �A�x A ∈ J � converges in
distribution to the Wiener process �w�a;T ��A�xA ∈ J � with covariance function

Ew�a;T ��A�w�a;T ��B� =
∫
A∩B

a2 dF0;

under the null hypothesis H0x “F = F0:”
(ii) When, in addition, the family of probabilities F�τ� on E with density

f�τ� with respect to F0 satisfies (2), then �w�a;T �n �A�x A ∈ J � converges in
distribution to �w�a;T ��A� + δ

∫
kT �1Aa�dF0x A ∈ J �, under the sequence of

alternatives Hnx “F = F�δ/
√
n�:”

These results justify the test procedure described in next section.

5. The goodness-of-fit tests. We propose to test H0x “F = F0” by means
of the critical region

sup
A∈J

∣∣w�â;T �n �A�
∣∣ > c�α�

with T â = k/�k� and c�α� such that

P
{

sup
A∈J

∣∣w�âT ��A�
∣∣ > c�α�

}
≤ α;

where α is an upper bound of the asymptotic level desired for the test.
The family J of measurable subsets of E is chosen rich enough to generate

the σ-field of measurable sets in E , but not so large that supA∈J � w�âT ��A� �
be unbounded. It is assumed that J contains E . Moreover, the compromise in
choosing J is that a CLT

lim
n→∞

sup
A∈J
�ŵn�A� −wV�A�� = 0(19)

holds for copies ŵn of w�â;T �n and a V-Wiener process wV, and also

for F 6= F0; there is A ∈ J such that F�A� 6= F0�A�:(20)
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We shall choose for J either the family of all generalized intervals

J1 =
{ d

×
i=1
�pi; qi�x −∞ ≤ pi < qi ≤ ∞; i = 1;2; : : : ; d

}

or the family of translations of the negative orthant

J0 =
{ d

×
i=1
�−∞; qi�x qi ≤ ∞; i = 1;2; : : : ; d

}
:

Since E ∈ J , the asymptotic power of the test for Hn is greater than

P
{
w�â;T ��E � + δ�k� > c�α�

}
= 8�−c�α� + δ�k��:

An argument like the one used in Cabaña (1996) or Cabaña and Cabaña (1996)
shows that when the level α and the probability β of type II error are suffi-
ciently small, the asymptotic relative efficiency of our test with respect to the
maximum likelihood ratio test can be chosen as close to one as desired. In this
sense, the test has optimum efficiency.

For other values of α and β there is a reduction in the efficiency, due to
the use as the test variable of the supremum of w�â;T �n over a family of sets
instead of the value of the same process on E . This is the price to be paid for
the consistency against all alternatives.

Notice that the TEP could be defined on families of functions different from
indicators of sets in J , but we have chosen this particular index set because
the reflection principle for Brownian motion provides the exact distribution of
the supremum of the process over the family.

6. On the construction of isometries and their associated trans-
formed empirical processes. Let us notice that any isometry T on
L2�E ; dF0� with range contained in 1⊥ = �f ∈ L2�E ; dF0�x �f;1� = 0�
induces an orthonormal system 9�T � = �1;T 1;T 21; : : : ;T i1; : : :�.

Conversely, given any orthonormal system 9 = �1, ψ1, ψ2, : : :�, the linear
transformation T �9� onL2�E ; dF0� that maps each ψi onto ψi+1, i = 0;1; : : : ;
is an isometry with range in 1⊥. In addition, when 9 is a basis, the range is
1⊥ and therefore it contains any function k with the property (3).

These observations imply that the isometries needed for the construc-
tion of TEPs may possibly be obtained from known orthonormal systems in
L2�E ; dF0�.

In Section 6.1 we indicate the analytical form of the shift TL induced by
the Laguerre polynomials on L2�R+; e−x dx�. A simple analytical property of
TL reflected in (23) gives an alternative way to obtain this isometry.

For a given orthonormal system 9, it is not easy in general to find the
explicit analytical expression for the shift operator that maps each ψn onto
ψn+1. We describe it for a particular example in Section 6.2: the orthonormal
system of Tchebyshev polynomials on L2

T = L2��−1;1�; dx/�π
√

1− x2��.
The normalized Hermite polynomials hn�x� = Hn�x�/

√
n!, n = 0;1; : : : ;

where etx−t
2/2 = ∑∞n=0Hn�x��tn/n!� [Sansone (1959)], constitute an orthonor-

mal basis of L2
H = L2�R; e−x2/2 dx/

√
2π�. An explicit writing of the shift that
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maps hn onto hn+1 in terms of integrals of the Poisson kernel [see Morán and
Urbina (1996) for the form of the inverse shift], leads to cumbersome compu-
tations so that the alternative approach, namely, the generalization of (23), is
adopted in Section 6.3 to construct an isometry TH on that space.

By means of changes of variables, the isometries in Sections 6.1, 6.2 and
6.3 induce others on different L2 spaces on R, as described in Section 7, and
the latter ones can be used in the construction of new isometries on L2 spaces
on Rd as shown in Section 8.

The Laguerre shift (29) has been used many times in probability theory and
statistical inference: for instance, let us mention that Brownian bridge is con-
structed from Wiener process by means of its inverse in Karatzas and Shreve
(1991), that Efron and Johnstone (1990) and Ritov and Wellner (1988) use (29)
and its inverse in connection with hazard rates [some properties of both isome-
tries are described in Groeneboom and Wellner (1992)], and that Khmaladze
(1981) introduced (29) in statistical inference, specially emphasizing some as-
sociated martingale properties. We use it as our main example because of its
very simple analytical expression, but do not apply any martingale approach.

6.1. The Laguerre shift. The well-known Laguerre polynomials �Lnx n =
0;1; : : :� are an orthonormal basis of L2�R; dF0�, with F0�x� = F0��0; x�� =
1− e−x, and they are obtained by means of the iterated application of the
mapping

h�x� = TLg�x� = g�x� −
∫ x

0
g�t�dt(21)

to the first element of the basis, the polynomial of degree zero L0 = 1:

Ln�x� = �−1�nT n
L L0�x�(22)

[see, for instance, Sansone (1959), as a general reference].
This implies that TL is an isometry and, for each g ∈ L2�R; dF0�, TLg is

orthogonal to the constant 1.
Both properties of TL follow immediately after plain calculations, and, con-

versely, imply (22). The clue to show that TL is an isometry is the equation

TLg�x�TLh�x�f0�x�=g�x�h�x�f0�x�−
d

dx

(
f0�x�

∫ x
0
g�t�dt

∫ x
0
h�t�dt

)
(23)

and the fact that limx→∞ f0�x�
∫ x

0 g�t�dt
∫ x

0 h�t�dt = 0.

6.2. The Tchebycheff shift. The Tchebycheff polynomials T0�x� = 1,
Tn�x� =

√
2 cos�narccosx�, n = 1;2; : : : are an orthonormal basis of

L2
T = L2��−1;1�; dx/�π

√
1− x2��. The isometry TT that maps each Tn

onto Tn+1 can be described as follows.
Given u�x� ∈ L2

T, let us assume first that �u;1� =
∫ 1
−1 u�x�dx/�π

√
1− x2� =

0. Perform the change of variable ũ��t�� = u�cos t�, −π < t ≤ π, obtain
an analytic function h�u� on D = �ζ = reitx �ζ� < 1� such that ũr�t� =
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< h�u��reit� converges in L2��−π;π�; dt�-norm to ũ�� t �� as r → 1 and take
the L2��−π;π�; dt�-limit

v�cos t� = lim
r=�ζ�→1

< ζh�u��ζ�:

This limit is the image v = TTu of u.
The function h�u� is determined up to an imaginary additive constant, and

the one satisfying =h�u��0� = 0 is obtained by integrating the Poisson kernel:

h�u��ζ� = 1
2πi

∫
C
u�< z�z+ ζ

z− ζ
dz

z

= 1
2π

∫ π
−π
u�cos s�

(
1− r2 + 2ir sin�s− t�
1− 2r cos�s− t� + r2

)
ds

= u�cos t� + 1
2π

∫ π
−π
�u�cos s� − u�cos t��

(
1− r2 + 2ir sin�s− t�
1− 2r cos�s− t� + r2

)
ds:

Taking the limit in

<ζh�u��ζ�= r cos t u�cos t� + 1
2π

∫ π
−π
�u�cos s� − u�cos t��

×
(
r�1− r2� cos t−2r2 sin�s− t� sin t

1−2r cos�s− t�+ r2

)
ds;

one obtains

TTu�cos t� = lim
r→1
< ζh�u��ζ�

+ 1
2π

∫ π
−π
�u�cos s� − u�cos t��

(− sin�s− t� sin t
1− cos�s− t�

)
ds

= cos t u�cos t� − sin�t�
2π

∫ π
−π

u�cos s� − u�cos t�
tan��s− t�/2� ds:

Any u�x� ∈ L2
T can be written as the sum of the constant �u;1� and the

function u�x�−�u;1�, orthogonal to 1. The image of �u;1� by TT is
√

2�u;1�x,
and the image of u�x� − �u;1� is obtained as indicated above.

It may be noticed, in particular, that the images by TT of functions such
as the product a�·�1x�·� of a continuous nonvanishing function a times the
indicator function of a half line are not bounded. This makes this isometry
useless for our present purposes.

6.3. An isometry associated with the normal distribution. Let ϕ�x� =
e−x

2/2/
√

2π denote the normal density. The analogue to (23),

S g�x�S h�x�ϕ�x�

=g�x�h�x�ϕ�x�− d

dx

(√
�x�
∫ x

0

√
�t� g�t�dt

√
�x�
∫ x

0

√
�t� h�t�dtϕ�x�

)
;

(24)
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where

S x f�x� 7→ f�x� − sgnx
√
�x�
∫ x

0

√
�t� f�t�dt(25)

and

lim
x→∞

√
�x�
∫ x

0

√
�t� g�t�dt

√
�x�
∫ x

0

√
�t� h�t�dtϕ�x� = 0

imply that (25) defines an isometry S on L2�R; ϕ�x�dx�.
Isometry S maps even functions onto even functions orthogonal to

√
�x� and

odd functions onto odd functions orthogonal to sgn�x�
√
�x�. As a consequence,

the range of S is orthogonal to sgn�x�
√
�x� and

√
�x�, but not to the constant

1 as required. The new isometry TH given by

THf =





f; f odd;

S f+ 1
1− cosγ

�S f;1� �u− 1�; f even,
(26)

where u�x� =
√
�x�/�

√
� · �� = 4

√
π/2

√
�x�, cosγ = �1; u� = 4

√
1/π 0�3/4�, has

range orthogonal to 1.
Since any function f is the sum of an odd part fo�x� = �f�x� − f�−x��/2

and an even part fe�x� = �f�x�+f�−x��/2, (26) completely defines TH, which
can also be written as

THf�x� = f�x� −
√
�x�
∫ �x�

0

√
sfe�s�ds+ 1

1− cosγ
�S fe;1��u�x� − 1�:(27)

The inverse of S is given by

�S −1h��x� = h�x� −
√
�x�

ϕ�x�
∫ ∞
x

sgn t
√
�t�h�t�ϕ�t�dt

and hence

�T −1
H h��x� = ho�x� +S −1

(
he − 1

1− cosγ
�he; u��u− 1�

)

= h�x� − 1
1− cosγ

�he; u��u− 1�

−
√
�x�

ϕ�x�
∫ ∞
�x�

√
t

[
he�t� − 1

1− cosγ
�h;u��u�t� − 1�

]
ϕ�t�dt:

(28)

In particular, (28) reduces to h when h is odd.

7. Construction of isometries on L2�R;dF0� for an arbitrary proba-
bility F0, by means of a change of variables. Let us assume that we are
given an isometry TF on L2�E ; dF� and wish to construct a new isometry TF0

on L2�E ; dF0�. The following lemma gives a simple and general procedure for
such construction:
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Lemma 1. If TF is an isometry on L2�E ; dF�, then the mapping g0 7→
TF0

g0 defined by

�TF0
g0��x� = �TFg0 ◦F−1

0 ◦F��F−1�F0�x���

is an isometry on L2�E ; dF0�.

Proof. Let us assume X0 ∼ F0, and Eg2
0�X0�;Eh2

0�X0� <∞.
The change of variablesX = F−1�F0�X0��mapsX0 ontoX ∼ F, and hence

Eg2
0�X0� < ∞, Eh2

0�X0� < ∞ are equivalent to Eg2�X� < ∞, Eh2�X� < ∞,
respectively, for g = g0 ◦F−1

0 ◦F, and h = h0 ◦F−1
0 ◦F.

We may then compute
∫

TF0
g0TF0

h0dF0 = ETF0
g0�X0�TF0

h0�X0�

= E�TFg0 ◦F−1
0 ◦F��F−1�F0�X0���

× �TFh0 ◦F−1
0 ◦F��F−1�F0�X0���

= E�TFg��X��TFh��X�:

Since TF is an isometry on L2�E ; dF�, the right-hand term equals

Eg�X�h�X� = Eg0�X0�h0�X0� =
∫
g0h0 dF0;

and this proves Lemma 1. 2

7.1. Example 1. L-isometries. From Lemma 1 applied to the isometry in
Section 6.1, we get, for each F0, a new isometry

�TL;F0
g��x� = g�x� −

∫ x
−∞

g�t�
1−F0�t�

dF0�t�;(29)

on L2�R; dF0�. Its inverse

�T −1
L;F0

h��x� = h�x� + 1
1−F0�x�

∫ x
−∞

h�t�dF0�t�(30)

is obtained by solving (29) for g. In what follows, any isometry in the class
defined by (29) will be called anL-isometry. Under suitable assumptions, TL;F0

satisfies (15) and (17), and hence Theorem 2 applies.

Lemma 2. When �a�/�1 − F0�α belongs to L2�R; dF0� for some positive α,
then TL;F0

satisfies (15) and (17) with J = ��−∞; x�x x ∈ R�.

Proof. The function �TL;F0
�a1�−∞;y��� is bounded by

G = �a� +
∫ ·
−∞

�a�s��
1−F0�s�

dF0�s�
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uniformly in y. Let us assume with no loss of generality that α < 1/2. The
inequalities

∫ ∞
−∞

(∫ x
−∞

�a�s��
1−F0�s�

dF0�s�
)2

dF0�x�

≤
∫ ∞
−∞

(∫ x
−∞

a�s�2
�1−F0�s��2α

dF0�s�
∫ x
−∞

dF0�s�
�1−F0�s��2−2α

)
dF0�x�

≤
∥∥∥∥

�a�
�1−F0�α

∥∥∥∥
2 1

1− 2α

∫ ∞
−∞

(
1

�1−F0�x��1−2α
− 1

)
dF0�x�

≤
∥∥∥∥

�a�
�1−F0�α

∥∥∥∥
2 1

2α�1− 2α�
and the assumptions on a imply that G is in L2�R; dF0�, so that (15) holds.

Given a positive ε, let us construct a (finite) partition (x0 = −∞,
x1; x2; : : : ; xν = ∞) of R such that for each i = 1;2; : : : ; ν,

∫ xi
xi−1

a2�s�dF0�s� ≤ ε2/8(31)

and also
∫ xi
xi−1

a2�s�
�1−F0�s��2α

dF0�s� ≤
α�1− 2α�ε2

4
;

so that
∫ xi
xi−1

(∫ x
xi−1

�a�
1−F0

dF0

)2

dF0�x� ≤
α�1− 2α�ε2

4
1

2α�1− 2α� = ε
2/8:(32)

Notice that a partition satisfying (31) can be constructed with ν ≤ 1 + 8/ε2

intervals, and another one satisfying (32) requires at most 1 + ��4�a/�1 −
F0�α�2�/α�1 − 2α�ε2�. The partition obtained by joining the points in both of
the above partitions satisfies our requirements and can therefore be achieved
with ν ≤ C/ε2, where C may depend on a (and α) but not on ε.

For all y ∈ �xi−1; xi�, T �a1�−∞; y�� is bounded from above by

ui = a1�−∞; xi−1� + �a�1�xi−1; xi� −
∫ xi−1∧·

−∞

a

1−F0
dF0 +

∫ xi∧·
xi−1∧·

�a�
1−F0

dF0

and from below by

li = a1�−∞; xi−1� − �a�1�xi−1; xi� −
∫ xi−1∧·

−∞

a

1−F0
dF0 −

∫ xi∧·
xi−1∧·

�a�
1−F0

dF0:

These bounds satisfy

�ui − li�2 ≤
∥∥∥∥2
(
�a�1�xi−1; xi� +

∫ xi∧·
xi−1∧·

�a�
1−F0

dF0

)∥∥∥∥
2

≤ ε2

as a consequence of (31) and (32), hence N�2�� � ≤ C/ε2, and condition (17) holds.
This ends the proof of Lemma 2. 2
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7.2. Example 2. N-isometries. When F0 is a symmetric probability distri-
bution function (F0�x� +F0�−x� = 1), then �g ◦F−1

0 ◦8�e = ge ◦F−1
0 ◦8 and

�g ◦F−1
0 ◦8�o = go ◦F−1

0 ◦8, and hence, from the isometry in Section 6.3, we
get the new isometry

�TH;F0
g��x� = g�x�−

√
�8−1�F0�x���

∫ �x�
0

√
�8−1�F0�s���ge�s�
ϕ�8−1�F0�s���

dF0�s�

+ 1
1− cosγ

∫
S �ge ◦F−1

0 ◦8��z�ϕ�z�dz

×
(
u�8−1�F0�x���−1

)

(33)

on L2�R; dF0�. A general version of (33) for nonsymmetric F0 is equally easy
to obtain, but its expression is even more complicated. The mappings given
by (33) are called N-isometries in the following.

Lemma 3. When �a�e/�ϕ�8−1�F0�·���α belongs to L2�R; dF0� for some pos-
itive α, then TH;F0

satisfies (15) and (17) with J = ��−∞; x�x x ∈ R�.

Proof. Proceed as in the proof of Lemma 2: now �TH;F0
�a1�−∞; y��� is uni-

formly bounded by

G = �a� +
√
�8−1�F0�x���

∫ �x�
0

√
�8−1�F0�s����a�e�s�
ϕ�8−1�F0�s���

dF0�s�

+ 1
1− cosγ

�a�
(
1 ∨ u�8−1�F0�s���

)
:

The first and last term in G are square integrable, because �a�·�� and
u�8−1�F0�·��� are in L2�R; dF0�. In order to verify that the middle term has
the same property, we assume again α < 1/2 and derive the inequalities
∫ ∞
−∞
�8−1�F0�x���

(∫ x
0

√
�8−1�F0�s����a�e�s�
ϕ�8−1�F0�s���

dF0�s�
)2

dF0�x�

≤
∫ ∞
−∞
�8−1�F0�x���

∣∣∣∣
∫ x

0

�8−1�F0�s���dF0�s�
ϕ2−2α�8−1�F0�s���

∫ x
0

��a�e�s��2 dF0�s�
ϕ2α�8−1�F0�s���

∣∣∣∣dF0�x�

≤Ma

∫ ∞
−∞
�z�
∣∣∣∣
∫ z

0

tϕ�t�dt
ϕ2−2α�t�

∣∣∣∣ϕ�z�dz

= Ma

1− 2α

∫ ∞
−∞
�z�ϕ�z�

(
1

ϕ1−2α�z� −
1

ϕ1−2α�0�

)
dz <∞;

thus providing (15).
The estimation of the L2�F0�-metric entropy with bracketing is made as in

the proof of Lemma 2, and it leads to the conclusion that condition (17) also
holds. 2

8. Constructing isometries on L2�E ;dF0�, E space of dimension
greater than one. When E is the Cartesian product E = R × E1, the
measure F0 is written in terms of the marginal measure F̃0�J� = F0�J× E1�
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and the conditional measures dFc
0�y; •� defined on E1 by F0�J×B� =∫

y∈J dF̃0�y�
∫
z∈B dF

c
0�y; z�:

In other words, if X = �Y;Z� ∼ F0, then Y ∼ F̃0 and the conditional
distribution of Z given Y = y is P�Z ∈ B � Y = y� =

∫
B dF

c
0�y; •�.

For each g in L2�E ; dF0�, we denote

g̃�y� = E�g�Y;Z� � Y = y�:(34)

This new function is in L2�R; dF̃0� and the mapping g 7→ g̃ preserves the
norm.

Lemma 4. If g ∈ L2�E ; dF0� and ˜T is an isometry on �R; dF̃0�, then

g 7→ T g�y; z� = g�y; z� − g̃�y� + ˜T g̃�y�(35)

is an isometry on L2�E ; dF0�.

Proof. Given g;h ∈ L2�E ; dF0�, let us compute �T g;T h� = E�g�Y;Z�
−g̃�Y�+ ˜T g̃�Y���h�Y;Z�− h̃�Y�+ ˜T h̃�Y��. The equalities Eg�Y;Z�h̃�Y� =
Eh̃�Y�E�g�Y;Z� � Y� = Eg̃�Y�h̃�Y�, E�g�Y;Z� − g̃�Y�� ˜T h̃�Y� = 0,
and similar ones obtained by interchanging g and h lead us to write
�T g;T h� = Eg�Y;Z�h�Y;Z� − Eg̃�Y�h̃�Y� + E ˜T g̃�Y� ˜T h̃�Y� = �g;h� −
�g̃; h̃� + � ˜T g̃; ˜T h̃� = �g;h�, and this ends the proof of the lemma. 2

9. One application: consistent goodness-of-fit to the standard nor-
mal distribution. As an illustration of the general procedure for the de-
sign of consistent and efficient tests contained in the preceding sections, we
describe the tests associated to the isometries in Sections 6.1 and 6.3 for
goodness-of-fit to the standard normal distribution in R and R2. Two cases
are considered: in Case 1, the tests are designed to have optimum sensitivity
against shifts of the mean, while in Case 2, the alternative to be detected is a
change of dispersion.

9.1. Case 1. Tests designed for detection of shifts in the mean.
9.1.1. The one-dimensional test. Let E = R, F0�x� = 8�x� =

∫ x
−∞ ϕ�t�dt,

ϕ�t� = �1/
√

2π�e−t2/2 and F�τ��x� = 8�x − τ�. The ratio of the densities is
��f�τ��x��/f0�x�� = 1+ xτ + o�τ�, so that k�x� = x, �k�2 =

∫∞
−∞ x

2ϕ�x�dx = 1.

Example 3 (TEP associated to the L-isometry). The score function is
â�x� = T −1

L;8�x� = x+ �1/�1−8�x���
∫ x
−∞ tϕ�t�dt = x− �ϕ�x�/�1−8�x��� [see

(30)], and hence the TEP for the sample �X� of size 1 is

wX�x� = wX��−∞; x�� = â�X�1�X≤x� −
∫ X
−∞

â�t�1�t≤x�ϕ�t�dt
1−8�t�

=
(
X− ϕ�X�

1−8�X�

)
1�X≤x� +

∫ X∧x
−∞

d

(
ϕ�t�

1−8�t�

)

=X1�X≤x� +
ϕ�x�

1−8�x�1�x<X�:
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In order to describe the general shape of the TEPs and their response to
changes in the position or in the dispersion of the samples, we introduce the
fictitious sample of size 9: �8−1�i/10��i=1;2;:::;9, which will be referred as the
special sample in the following. Then we compute the TEPs associated with
the optimum score function â for the special sample, and for the shifted and
dispersed special samples �8−1�i/10�+1�i=1;2;:::;9 and �28−1�i/10��i=1;2;:::;9. The
corresponding three diagrams are presented in the left-hand side of Figure 1.

Since k is odd, then â�x� = T −1
N;8k�x� = k�x� = x, and

wX�x� = wX��−∞; x�� = TN;8�·1�−∞; x��·���X�

=X1�X≤x� −
√
�X�

∫ �X�
0

√
s

(−s
2

)
1��x�≤s� ds

+ u�X� − 1
1− cosγ

∫ (−s
2

1��x�≤�s�� −
√
�s�
∫ �s�

0

√
t

(−t
2

)
1��x�<t� dt

)
ϕ�s�ds

=X1�X≤x� +
√
�X�
5

(
�X�5/2 − �x�5/2

)+

+ u�X� − 1
1− cosγ

[
−ϕ��x�� + 2

5

∫ ∞
�x�
ϕ�s�√s�s5/2 − �x�5/2�ds

]
:

The right-hand side of Figure 1 shows the shapes of the new TEPs.

Fig. 1. Responses to normal (n), shifted (s) and dispersed (d) samples, of the TEPs associated
with L-isometry (L-TEPs) and with N-isometry (N-TEPs), optimized to detect changes in position.
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9.1.2. The test for d = 2. LetF�τ� be the normal distribution with mean
(
τ
0

)

and variance matrix equal to the identity, and letF0 = F�0�. The density under
H0 is f0�y; z� = ϕ�y�ϕ�z�, and under the alternative, f�τ��y; z� = ϕ�y−τ�ϕ�z�.
The densities ratio is f�τ��y; z�/f0�y; z� = ϕ�y− τ�/ϕ�y� = 1+ xτ + o�τ�, and
hence the drift is k�y; z� = y.

We choose now to project the plane measure on the direction of the shift,
namely, the y axis, on, and obtain the corresponding marginal distribution
F̃0 = 8. Lemma 4 is now applied to construct two isometries on L2�R2; dF0�,
by substituting TL; F̃0

and TH; F̃0
for ˜T in (35):

TL;F0
g�y; z� = g�y; z� −Eg�y;Z� + TL;8Eg�·;Z��y�;

TH;F0
g�y; z� = g�y; z� −Eg�y;Z� + TH;8Eg�·;Z��y�;

Z standard normal.
When g�y; z� = g̃�y� does not depend on z, T g = ˜T g̃. In particular,

since the drift k depends only on y, this implies that the score functions
corresponding to TL;F0

and TH;F0
also depend only on y and each one is

given by the formula obtained for d = 1, respectively

âL�y; z� = y−
ϕ�y�

1−8�y� and âH�y; z� = y:

Consequently, the TEP for a single observation is, in the former case:

wLY;Z�A� = w
�TL;â�
Y;Z �A�

= âL�Y;Z�1��Y;Z�∈A� −
∫∫
A
âL�y; z�ϕ�y�ϕ�z�dydz

+
∫∫
A

âL�y; z�
1−8�y�

(
1�Y≤y� −8�y�

)
ϕ�y�ϕ�z�dydz;

and, for A = �−∞; y� × �−∞; z�, it reduces to

wLY;Z�y; z� =
(
Y− ϕ�Y�

1−8�Y�

)
1�Y≤y;Z≤z� +8�z�

ϕ�Y ∧ y�
1−8�Y ∧ y� :

As for the latter case,

wHY;Z�y; z� = w
�TH; â�
Y;Z ��−∞; y� × �−∞; z��

= Y1�Y≤y;Z≤z� +
√
�Y�8�z�

5

(
�Y�5/2 − �y�5/2

)+

− u�Y� − 1
1− cosγ

8�z�
[
ϕ�y� − 2

∫ ∞
�y�
ϕ�s�√ss

5/2 − �y�5/2
5

ds

]
:

The goodness-of-fit is tested using the critical region

max
y; z∈R

�wn�y; z�� > c�α�
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with wn�y; z�= �1/
√
n�∑n

i=1w
L
Yi;Zi
�y; z� or wn�y; z�= �1/

√
n�∑n

i=1w
H
Yi;Zi
�y; z�;

respectively.
A conservative region of size α is obtained with c�α� = −8−1�α/8�, because

of the well-known estimate

P
{

max
y; z∈R

wV��−∞; y�; �−∞; z�� ≥ c
}
≤ 48�−c�

that holds for a V-Wiener process w associated to any probability measure V.
The general shape of the TEPs and how they are affected by changes in the

samples is sketched in Figure 2, for the TEPs associated with the L-isometry.
The upper part of Figure 2 shows the graph �y; z;w�y; z��, −3 < y, z < 3 of

the TEP for the special sample ��8−1�i/6�;8−1�j/6��i;j=1;:::;5, corresponding
to the L-isometry. As in the one-dimensional pictures, we have introduced
an arbitrary special (two-dimensional) sample with an empirical distribution
abnormally close to its theoretical distribution, assumed to be the standard
Gaussian.

The other two graphs in Figure 2 show the TEPs for the shifted sample
��8−1�i/6� + 1;8−1�j/6� + 1��i;j=1;:::;5 and the dispersed sample ��28−1�i/6�;
28−1�j/6���i;j=1;:::;5, in the same domain.

The small diagrams in the left-hand side show the same graphs with the di-
rection of vision changed to horizontal, in order to show the position of maxima
and minima. The critical planes at c�5%� and −c�5%� are also shown.

A graph with points over c�5%� or under −c�5%� leads to rejecting the null
hypothesis of goodness-of-fit, at a level smaller than 5%.

9.2. Design of a test specially sensitive to changes in dispersion. We choose
now F�τ��x� = 8��1− τ�x�, and so

f�τ��x�
f0�x�

= �1− τ�ϕ�x− τx�
ϕ�x� = �1− τ��1+ τx2 + o�τ��;

and k�x� = x2 − 1; �k�2 = 2.

Example 4 (TEP associated to the L-isometry). The score function is

â�x� = 1√
2

[
x2 − 1+ 1

1−8�x�
∫ x
−∞
�t2 − 1�ϕ�t�dt

]

= 1√
2

[
x2 − 1− xϕ�x�

1−8�x�

]

[see again (30)], and the TEP for the sample �X� of size 1 is, consequently,

1√
2

[(
X2 − 1− Xϕ�X�

1−8�X�

)
1�X≤x� −

∫ X∧x
−∞

t2 − 1− �tϕ�t�/�1−8�t��
1−8�t� ϕ�t�dt

]

= 1√
2

[
�X2 − 1�1�X≤x� +

xϕ�x�
1−8�x�1�x<X�

]
:

The shape of the TEPs for the same special samples used in previous one-
dimensional diagrams is shown in Figure 3.
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Fig. 2. Graph of the TEPs for the two-dimensional special sample, corresponding to the L-
isometry, and for the same sample after changes in position or dispersion.
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Fig. 3. Responses to normal (n), shifted (s) and dispersed (d) samples, of the TEPs associated with
L-isometry (L-TEPs) and with N-isometry (N-TEPs), optimized to detect changes in dispersion.

Example 5 (TEP associated to the N-isometry). From (28) and k�x� =
�x2 − 1�/

√
2, we evaluate the score function â numerically, and that evalua-

tion is then used to compute the TEP wX�x� = TH�â1�·≤x���X� by numerical
integration in (27).

The shape of the TEPs for the special samples is shown in the right-hand
part of Figure 3.

The extension to d = 2 is similar to the one in Section 9.1.2.
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