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A theory of optimum orthogonal fractions is developed for Fourier re-
gression models using integer lattice designs. These provide alternatives to
simple grids (product designs) in the case when specified main effects and
interaction terms are required to be analyzed. The challenge is to obtain
sample sizes which are polynomial in the dimension rather than exponen-
tial. This is achieved for certain models with special algorithms based on
both algebraic generation and more direct sequential search.

1. Introduction and preliminaries. Bates, Buck, Riccomagno and Wynn
(1996) mention that integer lattice designs are D-optimum in the sense of
Kiefer and Wolfowitz (1959) for Fourier regression models. It has been known
for some years that equally spaced grids (product designs) have this property.
In analogy to the situation of polynomial regression, we can reduce the
size of the experiment by using a fraction if no or only a limited number
of interactions are required to be estimated. Here the lattice will play the
role of fractions in the polynomial theory. The alias structure turns out to
be radically different with the cyclic group playing an important role via
the harmonic nature of the theory. The lattice structure allows us to map a
high-dimensional model into a suitable one-dimensional model.

For the one-dimensional Fourier regression model of order m,

E�Y�x�� = θ0 +
√

2
m∑
r=1

sin�2πrx�θr +
√

2
m∑
r=1

cos�2πrx�φr;(1)

x ∈ �0;1�, the equally spaced design points on an equidistant grid with, at
least, 2m+1 support points isD-optimum in the sense of Kiefer and Wolfowitz
[see Hoel (1965)].

Note that these designs are optimum irrespectively of whether the normal-
izing factor

√
2 is included in the model equation (1) or not. A uniform design

with exactly 2m + 1 support points has minimal support; that is, there are
exactly as many design points as there are parameters in the model.

Let Al = �α ∈ �−1;1�ly α1 = 1� be the set of all l-dimensional multiindices
from �−1;1� with unit first entry. Then a complete M-factor interaction model
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can be written as follows:

E�Y�x1; : : : ; xd��

= θ0 +
√

2
M∑
l=1

∑
k1<···<kl

mk1∑
r1=1

· · ·
mkl∑
rl=1

∑
α∈Al

sin�2π�α1r1xk1
+ · · · + αlrlxkl��

× θk1;:::;kl; r1;:::;rl; α

+
√

2
M∑
l=1

∑
k1<···<kl

mk1∑
r1=1

· · ·
mkl∑
rl=1

∑
α∈Al

cos�2π�α1r1xk1
+ · · · + αlrlxkl��

×φk1;:::;kl;r1;:::;rl;α

(2)

x = �x1; : : : ; xd� ∈ �0;1�d.
We introduce the notation F�dym1; : : : ;mdyM� for the complete Fourier

model (2) in d dimensions with one-dimensional “marginal” models for
x1; : : : ; xd respectively of orders m1 to md and in which all interactions up to
M factors are included. In the present paper we place special emphasis on the
particular cases of additive models F�dym1; : : : ;mdy1� without interactions
and first order interaction models F�dym1; : : : ;mdy2�, that is, on models with
complete two-factor interactions.

Note that the general model (2) is equivalent to the complete M-factor
interaction model

E�Y�x1; : : : ; xd�� = θ0 +
M∑
l=1

∑
k1<···<kl

�fk1
�xk1
� ⊗ · · · ⊗ fkl�xkl��

>βk1;:::;kl
;(3)

with marginals E�Yk�xk�� = θ0 + fk�xk�>βk which has been investigated,
for example, by Schwabe (1996a), in general. Here we consider the marginals
fk�xk� =

√
2�sin�2πrxk�; cos�2πrxk��>r=1;:::;mk

. From the standard formulas for
trigonometric functions of sums, it is seen that both models are linked by an
orthogonal transformation matrix which does not affect the optimality criteria
under consideration.

Hoel (1965) showed that product designs are D-optimum for Kronecker
product–type models (M = d). Thus, if ξ1 is a D-optimum design measure for
a linear model E�Y1�x1�� =

∑m1
i=0 θifi�x1� on a design space X1 and if ξ2 is

D-optimum for a model E�Y2�x2�� =
∑m2
i=0φigi�x2� on a space X2, then the

product ξ1 × ξ2 (in the measure-theoretic sense) is D-optimum for the linear
model E�Y�x1; x2�� =

∑m1
i=0

∑m2
j=0 βijfi�x1�gj�x2� which includes all terms of

the form fi�x1�gj�x2� on the spaceX1×X2. The same is true for additive mod-
els without interactions if f0 = 1 and g0 = 1 [see Schwabe (1996a)]. In general,
the product ξ1 × · · · × ξd of marginally D-optimum designs ξk is D-optimum
if a constant term is included in each marginal model [see Schwabe (1996a),
Section 6.1]. For the case of Fourier regression, this last restriction is not nec-
essary [see Schwabe (1996b)]. In additive models the optimality of product
designs has been proved by Rafajłowicz and Myszka (1992) and by Schwabe
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(1996a) for other criteria, including A-, E- and integrated mean squared error
optimality.

If we useD-optimum designs with minimal support in the marginal Fourier
models of order mk, the number of support points for the product design
is
∏d
k=1�2mk + 1� which coincides with the number of parameters in the

Kronecker product–type complete interaction model (M = d). In gen-
eral, this number is much larger than the number of parameters in a
d-dimensional model. For example, if the orders of the marginal models coin-
cide (m1 = · · · = md = m), then there are dm+ 1 parameters in the additive
model F�dym; : : : ;my1� and O�d2� parameters in the two-factor interactions
models. It is challenging, then, to obtain D-optimum design sequences for
which the sample size does not increase much faster in the dimension d
than the number of parameters. In particular, we will look for sequences of
D-optimum designs with a polynomially increasing support rather than the
exponentially increasing product designs.

The main purpose of the present paper is to show that optimality can be
achieved by using lattice designs for complete Fourier models instead of prod-
uct designs. Like the Fourier models themselves, such designs have a structure
which is cyclic, but for which the aliasing theory is rather different from that
for classical polynomial models. We shall give examples of optimum families
of designs for specified complete Fourier models.

We consider lattices generated by a single-integer generator which there-
fore can be identified as one-dimensional objects. Let g = �g1; : : : ; gd� be a d-
dimensional vector with positive integer components and n a positive integer.
The vector generates a finite number of line segments in the d-dimensional
hypercube �0;1�d; that is, the set ��tg1 mod 1; : : : ; tgd mod 1�y t ∈ R� consists
of a finite number of line segments intersecting �0;1�d. If we identify the hy-
percube with the corresponding torus by matching opposite faces, then these
line segments form a single closed line wrapped around the torus. The gener-
ated designs will be supported on these line segments and will be referred to
as lattice designs.

The n-point lattice design generated by �g1; : : : ; gd� is the uniform design
supported on the grid

(
j

n
g1 mod 1; : : : ;

j

n
gd mod 1

)
=
(
jg1 modn

n
; : : : ;

jgd modn
n

)
;

j = 0; : : : ; n− 1:

If g1 and n are mutually prime, we may assume without loss of generality
that g1 = 1 [see Niederreiter (1992)]. This relabeling is achieved by a rear-
rangement of the design points. Note that the one-dimensional uniform design
supported on n equally spaced points is a particular case of a lattice design
generated by g = �1�.

2. Main statements. In this section we show how the generator g =
�g1; : : : ; gd� can be chosen for a given model F�dym1; : : : ;mdyM� such that
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the n-point lattice design is D-optimum. In Section 2.1 we start with an il-
lustrative example. In Section 2.2 the theoretical background is developed
and conditions are elaborated which must be satisfied by g and n. Finally, in
Section 2.3 an algorithm is presented to find families of D-optimum lattice
designs for which the size increases polynomially in the dimension. Section 3
collects various applications to additive models and to two-factor interaction
models. In the latter D-optimum designs are investigated for either the main
effects only or for the whole parameter vector. Sequences of generators and
alternative algebraic methods are determined by the algorithm of Section 2.3.

2.1. Motivation. A key observation in this paper is that a model with terms
in higher dimensions can be mapped into a model in one dimension by exploit-
ing the structure of the lattice. We start with the most simple two-dimensional
example of the model F�2y1;1y1� which has five parameters and we use the
n-point lattice with generator g = �1;3� and n = 5 support points.

For the model F�2y1;1y1� the model equation (2) reduces to

E�Y�x1�t�; x2�t��� = θ0 +
√

2 sin�2πt�θ1 +
√

2 cos�2πt�φ1

+
√

2 sin�2π3t�θ2 +
√

2 cos�2π3t�φ2

on the line segments �tg1 mod 1; tg2 mod 1� = �t;3tmod 1� by the periodicity
of the trigonometric functions. Hence, the model can be identified with a one-
dimensional incomplete Fourier model in the variable t. Moreover, the five-
point lattice design generated by g = �1;3� is an equally spaced design with
five support points on the line segments considered as a line on the torus.

The information matrices coincide in both the original two-dimensional
model F�2y1;1y1� and in the derived one-dimensional model on the line seg-
ments. Now, it can be checked that the five-point equally spaced design is
D-optimum for the derived one-dimensional model (see Lemma 1). Hence, the
information matrix is a multiple of the identity which, in turn, proves the
D-optimality of the five-point lattice design for the original model. Note that
the product design requires nine design points.

2.2. General results. We start by formulating in our terminology the Hoel
(1965) result on the optimality of equidistant designs for one-dimensional
Fourier models.

Theorem 1. For the one-dimensional model F�1ymy1� the n-point lattice
design generated by the integer g, n ≥ 2m + 1, is D-optimum if and only if,
within the cyclic group Gn = ��0;1; : : : ; n−1�;+�, the cardinality of �0�∪gN
is 2m+ 1 where N = �ry r = −m; : : : ;−1;1; : : : ;m�.

In other words, the n-point lattice design is D-optimum if and only if
all members in N are distinct and different from 0 �modn�. Note that the
condition in Theorem 1 is satisfied if and only if all the parameters of the
model are estimable; that is, D-optimality coincides with estimability for one-
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dimensional lattice designs. We will see later on that this is also true for higher
dimensions.

When all the entries in the array �0; rgy r ∈ N � are distinct in the set Z of
all integers, they are also distinct in the cyclic group Gn if n is sufficiently large
(n ≥ 2mg + 1). Hence, 2mg + 1 is an upper bound for the minimum sample
size required, whereas a lower bound is given by the number of parameters
in the model. Similar bounds are valid in higher dimensions.

The next result is a generalization of Theorem 1 and is helpful in proving
the D-optimality of lattice designs.

Lemma 1. For the incomplete one-dimensional Fourier model,

E�Y�x�� = θ0 +
√

2
q∑
j=1

sin�2πrjx�θj +
√

2
q∑
j=1

cos�2πrjx�φj;(4)

where the rj are distinct positive integers and the n-point lattice design gener-
ated by g is D-optimum for the subsystem �θ0; θ1; φ1; : : : ; θp; φp� of parame-
ters, p ≤ q, if and only if, within the cyclic group Gn = ��0;1; : : : ; n− 1�;+�,

(i) the cardinality of the set �0� ∪ gN ′ is 2p + 1, where N ′ = �±rjy j =
1; : : : ; p�, and

(ii) rj 6∈ �0� ∪ gN ′ for j = p+ 1; : : : ; q.

Proof. It is a fundamental property of trigonometric functions that

n−1∑
j=0

sin�2π�r+ s�j/n� =
n−1∑
j=0

cos�2π�r+ s�j/n� = 0

if, and only if, r 6= −smodn. With the standard formulas on trigonometric
functions of sums, this yields

n−1∑
j=0

sin�2πrj/n� sin�2πsj/n� =
n−1∑
j=0

sin�2πrj/n� cos�2πsj/n�

=
n−1∑
j=0

cos�2πrj/n� cos�2πsj/n� = 0

if both r 6= smodn and r 6= −smodn.
Hence, for a design satisfying (i) and (ii), the information matrix is block

diagonal, and the relevant block associated with the parameters of interest
equals n times the identity. This block can be identified as the information
matrix of a D-optimum design for the submodel in which only the subsystem
�θ0; θ1; φ1; : : : ; θp; φp� of parameters is involved. Thus, by a simple refinement
argument, the design is also D-optimum for the subsystem in the full model.

The converse can be checked by noticing that for r = smodn or r =
−smodn the corresponding rows of the information matrix are linearly de-
pendent and, hence, the parameters cannot be identified. 2
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The following theorem follows directly from Lemma 1 by embedding the
model in the lattice and taking advantage of the one-dimensional structure so
obtained.

Theorem 2. In theM-factor interaction modelF�dym1; : : : ;mdyM�, the n-
point lattice design generated by �g1; : : : ; gd� is D-optimum for the parameters
up to the S-factor interactions �S ≤M� if and only if the members in the first
S+ 1 rows of the array

0;

rkgk; rk ∈ Nk; k = 1; : : : ; d;

rkgk + rlgl; rk ∈ Nk and rl ∈ Nl; 1 ≤ k < l ≤ d;
:::

rk1
gk1
+ · · · + rkmgkm; rk1

∈ Nk1
; : : : ; rkm ∈ Nkm

; 1 ≤ k1 < · · · < km ≤ d;
:::

rk1
gk1
+ · · · + rkMgkM; rk1

∈ Nk1
; : : : ; rkM ∈ NkM

; 1 ≤ k1 < · · · < kM ≤ d;

where Nk = �−mk; : : : ;−1;1; : : : ;mk�, are distinct (in the cyclic group Gn)
and if they are, additionally ( for S <M), different from those members in the
last M−S rows in Gn.

The methodology of this paper consists of checking the entries in the var-
ious rows of the array in Theorem 2. For example, for the additive model
F�dym1; : : : ;mdy1�, we check the first two rows. In some examples we shall
seek to be able to estimate the main effects in the presence of possible in-
teractions. For M = 2 it is necessary that the first two rows of the array are
distinct and, in addition, the entries of the third row are distinct from the pre-
vious two. Strictly speaking, this yields Ds-optimality in the sense of Kiefer
and Wolfowitz (1959) for the subset of main effect parameters. There is no
difficulty in extending the orthogonality results in this way.

We have obtained the results in Section 3 as follows. First, we start from a
generator and check whether all the members in the array of Theorem 2 are
distinct in the set of all positive integers. If this is true, then they are also
distinct in the cyclic group Gn with n = 2nmax + 1, where nmax is the largest
member in the array. We call this the upper law.

After that we look for smaller sizes n, maybe even minimal, such that the
members remain distinct within the corresponding cyclic group Gn. For exam-
ple, a closer investigation of the array being considered for additive models
shows that there are large gaps already at the beginning. To reduce the size,
we can match the larger members of the array into suitable gaps left by the
negative (in Z) members which are concentrated in the upper half. Because
of the symmetry of the array with respect to zero, the corresponding negative
members will automatically fit into gaps left by the positive (in Z) members in
the lower half. Usually the largest gap will be between the maximum member
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nmax and the next to maximum, say n2, and in general nmax > n2 + 1. So a
size nmax + n2 + 1 is suitable and gives a reduction of, at most, gd. A similar
rule holds for the other models. We call this the generalized upper law.

If we are interested only in the main effects, we may proceed as follows. If
n3 is the largest member in the first two rows of the array associated with
the main effects and nmax is the largest member in the whole array described
in Theorem 2, the generalized upper law for main effects states that a size
nmax +n3 + 1 is suitable. Obviously, any size larger than the one given by the
upper law or the generalized upper law for main effects is suitable.

Remark. We note that due to invariance considerations [see Kiefer and
Wolfowitz (1959) and Pukelsheim (1993), Chapter 13] the D-optimum designs
obtained are also optimum with respect to any (convex) criterion based on
the eigenvalues of the information matrix, including A- and E-optimality.
This is true for the whole parameter vector as well as for the subsystems
of the parameters up to the S-factor interactions (Ds-optimality). Moreover,
those designs which are D-optimum for the whole parameter vector result in
a minimum value for the integrated mean squared error

∫ 1

0
· · ·
∫ 1

0
�Ŷ�x1; : : : ; xd� −E�Y�x1; : : : ; xd���2 dxd · · ·dx1;

where Ŷ is the best linear unbiased predictor.

2.3. An algorithm for the one-step strategy. For every Fourier model the
entries g1; : : : ; gd of a generator �g1; : : : ; gd� have to be different. Without
loss of generality, we can look for generators with 1 = g1 < · · · < gd.

We present an algorithm for an iterative sequence of generator components
obtained from Theorem 2 by a one-step strategy. A global search for the min-
imum gd is possible, but we shall see that computer results for this simple
strategy are in some agreement with theoretical procedures. Also, this algo-
rithm gives a reasonable bound on the increase of the generator components
and, hence, of the required size by the upper law as the dimension d increases.

For the generator �g1; : : : ; gd� denote by A
�M�
d the set of all members in

the array associated with a d-factor model with M-factor interactions. Fur-
ther assume that we are interested in all the parameters up to the S-factor
interactions, 1 ≤ S ≤M, and that the generator �g1; : : : ; gd� is suitable. That
is to say, the members in the first S+ 1 rows of the array (including the first
row containing only 0) are all distinct, and the members in the remaining last
M− S rows are distinct from those in the first S+ 1 rows, but not necessar-
ily different from each other (within the set Z of all integers). Then A

�S�
d is

the set that collects the members of the first S + 1 rows of the array and, in
particular, A

�0�
d = �0�.

The following algorithm produces a sequence of generator components

Step 1. Start with d = 1 and g1 = 1. Then �g1� is suitable and A
�S�

1 =
�−m1; : : : ;−1;0;1; : : : ;m1�, 1 ≤ S ≤M.
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Step 2. If the generator �g1; : : : ; gd� is suitable, then determine the set
A +
d = A

�M�
d +A

�S−1�
d containing all sums of members of A

�M�
d and of its first

S rows, respectively. Then add all integers for which any multiple up to order
2md+1 is included in A +

d , that is, A ++
d = ⋃2md+1

r=1 �1/r�A +
d ∩ Z.

Step 3. Let gd+1 be a positive integer not included in A ++
d . Then the gener-

ator �g1; : : : ; gd; gd+1� is suitable and A
�S�
d+1 = A

�S�
d ∪⋃r∈Nd+1

�rgd+1+A
�S−1�
d �

for S = 1; : : : ;M.
Step 4. Set d x= d+ 1 and go to Step 2.

For S = 1 we are only interested in the main effects. For S = 2 we are
interested in the main effects and, additionally, all two-factor interactions.
Finally, for S =M − 1 we are interested in all but the M-factor interactions
and for S =M we are interested in all parameters.

In the particular situation of equal order of Fourier regression in all fac-
tors, the constructions in the algorithm guarantee that gd = O�dM+S−1�, as
d → ∞, because the cardinality of A

�S�
d increases like O�dS� and hence the

cardinality of A ++
d increases, at most, as O�dM+S−1�. Consequently, if gd+1

is chosen as the smallest positive integer not belonging to A ++
d , the iterative

sequence of generator components and the corresponding sizes increase poly-
nomially. This is to be compared to exponential growth for generators of the
form �1; a; a2; : : : ; ad−1� (power generators) and generators defined by linear
recursions (Fibonacci-type generators). Note that the total number of parame-
ters increases polynomially like dM and the number of parameters of interest
increases like dS.

3. Examples and constructions. The design generated by the power
generator

�g1; : : : ; gd� =
(

1;2m1 + 1; �2m1 + 1��2m2 + 1�; : : : ;
d−1∏
k=1

�2mk + 1�
)
;

with
∏d
k=1�2mk + 1� supporting points is optimum for all M-factor interaction

models F�dym1; : : : ;mdyM�, 1≤M≤d. However, the number of design points
is, in general, much larger than the number of parameters, only being the same
in the case M = d.

3.1. Additive model. For additive models we have only to check the first
two rows of the array given in Theorem 2.

3.1.1. Power-type generators. In the additive Fourier model F�dym; : : : ;
my1� with equal orders of the Fourier regressions in each component, the up-
per law gives a sample size of n = 2m�2m+ 1�d−1+1 for the preceding power
generator which increases exponentially in the dimension while the number
of parameters is linear in d. While noticing that there is an unnecessary gap
in the array between m and 2m+ 1, we obtain the power generator

�g1; : : : ; gd� = �1;m+ 1; �m+ 1�2; : : : ; �m+ 1�d−1�;
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with minimum base m + 1 for which the upper law gives an exponentially
increasing size n = 2m�m+ 1�d−1 + 1.

More generally, for F�dym1; : : : ;mdy1� we can use the generalized power
generator

�g1; : : : ; gd� =
(

1;m1 + 1; �m1 + 1��m2 + 1�; : : : ;
d−1∏
k=1

�mk + 1�
)

with size n = 2md

∏d−1
k=1�mk + 1� + 1.

3.1.2. Recursively defined generators. From Theorem 2 we see that a �d−
1�-dimensional generator �g1; : : : ; gd−1� is suitable if and only if 0 and all
rkgk, rk ∈ Nk, k = 1; : : : ; d− 1, are distinct in Z.

If we choose the next component gd greater than the largest member of the
preceding set, then the resulting generator �g1; : : : ; gd� produces an array in
which again all members are distinct. At each step the largest member will be
mdgd. As it is reasonable to choose gd as small as possible in order to reduce
the gaps, we obtain the following linear recursion formula:

gd =md−1gd−1 + 1;

with an initial value g1 = 1 as usual. According to the upper law, the cor-
responding size is n = 2mdgd + 1. In particular, for the additive models
F�dym; : : : ;my1� with equal orders in the components, we get gd = �md −
1�/�m − 1� and a size n = �2md+1 −m − 1�/�m − 1� in case m ≥ 2. This size
is smaller than the size of the power generator designs, but it is still expo-
nentially increasing. For m = 1 the generator sequence simplifies to gd = d
which increases linearly and the corresponding design has minimal support
(n = 2d+ 1).

3.1.3. One-step generators and linear generators. For the modelF�dy1; : : : ;
1y1� the one-step strategy obviously produces the same sequence gd = d of
generator components as the recursive scheme given previously which is op-
timum in the sense that a minimal size n can be achieved which is equal to
the number of parameters.

For the model F�dy2; : : : ;2y1� the algorithm of Section 2.3 produces the
generator sequence

�1;3;4;5;7;9;11;12;13;15;16;17;19;20;21;23;25;27;28;29; : : :�;

with corresponding minimal sizes

10;13;17;23;29;34;37;41;47;49;53;59;61;65;71;77;83;87;89; : : :

for d ≥ 2 which was found by exhaustive search. We notice that all odd num-
bers are included in the sequence of generator components. Hence, gd ≤ 2d−1
and the corresponding size increases linearly in the dimension d. The last ob-
servation suggests a simple alternative sequence of generator components

gd = 2d− 1:
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It can be proved that these linearly generated designs are suitable and that
the minimum obtainable size is n = 4d + 2. Note that this size is, in fact,
smaller than the size obtained for the one-step strategy if d = 5;6;7; : : : :

The construction of such linear generators can be extended directly to the
additive model F�dym; : : : ;my1� of general order m by

gd = �d− 1�m+ 1

and the size n = 2�d − 1�m2 + 2m + 1 obtained by the upper law increases
linearly in d. For the additive model F�dy3; : : : ;3y1� with third-order Fourier
regression, the sequence gd = 3d − 2 produces minimum obtainable sizes of
n = 17 for d = 2 and n = 9d for d ≥ 3.

In the general case of unequal orders mk, we use the generating proce-
dure gk = �k − 1�m + 1 where m = maxkmk. The model is a submodel
of F�dym; : : : ;my1�. Hence, the entries in the corresponding array are dis-
tinct and the generated design is D-optimum if n is sufficiently large (n ≥
2 maxk�mkgk� + 1).

3.2. Models with two-factor interactions. For the complete two-factor in-
teraction model F�dym1; : : : ;mdy2�, we have to check the first three lines of
the array given in Theorem 2.

The power generator introduced in the beginning of Section 3 produces a
sample size which is slightly smaller than the size for a product-type design.
In the following we consider models F�dym; : : : ;my2� with equal orders in
the components and we will be interested in either the main effects (S = 1)
or the whole parameter vector (S = 2). We compare the performances of the
minimum power generator, the recursively defined generators and the one-
step generator.

3.2.1. The model F�dy1; : : : ;1y2�. First, we study inference on the pa-
rameters associated with the main effects. The minimum power generator
is �1;3; : : : ;3d−1� and the size increases exponentially with base 3. An iter-
ative sequence of generator components is given by the recursion formula
gd = 2gd−1 + 1. Hence, gd = 2d − 1 and the size is increasing exponentially
with base 2. The one-step algorithm produces a linear generator with compo-
nents gd = 2d− 1 and a linearly increasing size n = 6d− 4.

For inference on the whole parameter vector, we observe again that the min-
imum power generator produces an exponentially increasing size with base 3.
An iterative sequence of generator components is defined by the Fibonacci-
type recursion

gd = 2gd−1 + gd−2 + 1;

with initial values g1 = 1, g2 = 3. Hence, gd = ��1+
√

2�d+1+�1−
√

2�d+1−2�/4
by standard methods for nonhomogeneous linear recursions. This gives an
approximate size n ≈ �1+

√
2�d+1/

√
2 by the upper law.

Finally, the algorithm of Section 2.3 produces a one-step sequence of gen-
erator components which starts as follows:

�1;3;8;18;30;43;67;90;122;161; : : :�
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and the corresponding sample sizes are 9;23;53;97;147;221;315;425;567; : : :
(for d ≥ 2) obtained by the upper law.

3.2.2. The model F�dy2; : : : ;2y2�. Next, we consider the complete two-
factor interaction model F�dy2; : : : ;2y2� with marginal Fourier regressions
of order 2, for which nmax = 2gd + 2gd−1 and n3 = 2gd.

We start by making inference on the parameters associated with the main
effects (including the constant term θ0). This is the Ds-optimality mentioned
in Section 2.2. The minimum power generator is given by

�g1; : : : ; gd� = �1;5;52; : : : ;5d−1�;

with a size increasing exponentially with base 5.
A recursively defined, Fibonacci-type sequence of generator components is

given by

gd = 2gd−1 + 2gd−2 + 1;

with initial values g1 = 1, g2 = 5. This has solution gd = 2��1+
√

3�d + �1−√
3�d − 1

2�/3 and the sample size given by the generalized upper law for main
effects equals approximately n ≈ 2�1+

√
3�d+1/

√
3 and increases exponentially

in the dimension.
The one-step iterative sequence of generator components starts as follows:

�1;5;13;17;37;41;49;53;109;113;121;125; : : :�:(5)

For this sequence the iterative generating law was found

gd = gd−1 + 4αd−1;

with g1 = 1 and

α2j = 3α2j−1 − 1;

with α1 = 1 and

αk = α2j for k = 2jq; q odd:

The next terms in the sequence are 145;149;157;161;325;329 given by both
the one-step algorithm and the iterative sequence. The difference sequence
αk, k = 1;2; : : : ; gives

1;2;1;5;1;2;1;14;1;2;1;5;1;2;1;41;

1;2;1;5;1;2;1;14;1;2;1;5;1;2;1;122;

1;2;1;5;1;2;1;14;1;2;1;5;1;2;1;41;

1;2;1;5;1;2;1;14;1;2;1;5;1;2;1;365; : : : ;

which shows a nice self-similar structure. It can be proved that the iterative
sequence produces suitable generators. Standard methods yield the solution
α2j = 1

2�3j + 1� and g2j+1 = 4 · 3j + 1. This, finally, implies that gd increases
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like dγ where γ = �log 3�/�log 2� ≈ 1:5850. The number γ−1 = �log 2�/�log 3� is
the Hausdorff dimension of the Cantor set and the reason for this unexpected
connection can be seen by studying the structure of the sequence.

For inference on the whole parameter vector, the minimum power generator
produces a size which increases exponentially with base 5. Alternatively, we
present the following Fibonacci-type sequence of generator components

gd = 4gd−1 + 2gd−2 + 1;

with initial values g1 = 1, g2 = 5. Hence, the generator sequence is gd =
��3+2

√
6��2+

√
6�d+�3−2

√
6��2−

√
6�d−6�/30 and the size is approximately

equal to �4+
√

6��2+
√

6�d/5 by the upper law.
We finish this section with the one-step sequence of generator components

�1;5;23;60;77;173;222;409;535;634;935;1182;1361;1497; : : :�(6)

and the corresponding sizes 25;113;333;549;1001;1581;2525;3777;4677;
6277;8469;10173;11533; : : : for d ≥ 2 obtained by the upper law.

3.2.3. The general model F�dym; : : : ;my2�. Finally, we investigate the
two-factor interaction model F�dym; : : : ;my2� with marginal Fourier models
of order m, for which nmax =m�gd + gd−1� and n3 =mgd.

Again, we start by making inferences on the main effects. The minimum
power generator given by �1; �2m+1�; : : : ; �2m+1�d−1� produces a size which is
exponentially increasing with base 2m+1. The following iterative, Fibonacci-
type sequence:

gd =m�gd−1 + gd−2� + 1;

with initial values g1 = 1, g2 = 2m+ 1 gives

gd ≈
m

2m− 1

(
1− m− 2√

m2 + 4m

)(
m+
√
m2 + 4m
2

)d

and by the generalized upper law for main effects the sizes

n ≈ m2

2m− 1

(
3+ 5m+ 2√

m2 + 4m

)(
m+
√
m2 + 4m
2

)d−1

increase exponentially in the dimension.
In generalization of the case m = 2, we obtain another iterative sequence

of generator components which is increasing at most polynomially:

gd = gd−1 + 2mαd−1;

with initial value g1 = 1 where

α2j = �m+ 1�α2j−1 − 1;
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with initial value α1 = 1 and

αk = α2j for k = 2jq; q odd:

The difference sequence again shows a self-similar structure. As before, we
obtain

α2j =
�m− 1��m+ 1�j + 1

m
and g2j = 2m�m+ 1�j + 1:

This implies that gd increases like dγ where γ = log �m+ 1�/�log 2�. However,
for m > 2 the iterative sequence differs from the sequence generated by the
one-step algorithm.

Turning to inference on the whole parameter vector, for the minimum power
generator we obtain the size

2m�gd + gd−1� + 1 = 4m�m+ 1��2m+ 1�d−2 + 1

by the upper law. An iterative sequence of generator components is

gd =m�2gd−1 + gd−2� + 1;

with initial values g1 = 1, g2 = 2m+ 1. Hence,

gd ≈
1

3m− 1

(√
m

m+ 1
+ 1

2

)(
m+

√
m�m+ 1�

)d
;

with the approximate size

n ≈ m

3m− 1

(
2+

√
m+ 1
m

)(
m+

√
m�m+ 1�

)d
:

We conclude our presentation with some figures representing the behavior
of the one-step generator sequence for the two-factor interaction models, both
for inference on the main effects and on the whole parameter vector.

For the main effects in F�dy2; : : : ;2y2�, Figure 1 shows the logarithm of
αd, the first differences of the generators divided by 4, over the dimension
d for the sequence (5) up to d = 180. The self-similar structure mentioned
previously is again evident. Figure 2 shows the logarithm of the generator of
the same sequence over log�d� and gives an estimated slope of 1:7.

For inference on the whole parameter vector in F�dy2; : : : ;2y2�, Figure 3
shows the logarithm log�gd� of the generators for the one-step sequence �6�
over the logarithm log�d� of the dimension giving an estimated slope of γ ≈
2:72. We have been unable to find an iterative sequence which yields this
sequence or to link it to a Cantor-like set. The two log–log plots indicate
polynomial growth dγ of the size n in d with γ approximately equal to the
estimated slopes. Note that the estimate 1.7 for the analysis of the main effects
slightly overestimates γ = �log 3�/�log 2� ≈ 1:5850.
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Fig. 1. Main effect of the model F�dy2; : : : ;2y2�x log�αd� over d.

Fig. 2. Main effect of the model F�dy2; : : : ;2y2�x log�gd� over log�d�.
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Fig. 3. All effects of the model F�dy2; : : : ;2y2�x log�gd� over log�d�.
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