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MCMC CONVERGENCE DIAGNOSIS VIA MULTIVARIATE
BOUNDS ON LOG-CONCAVE DENSITIES

By STEPHEN P. BROOKS

University of Bristol

We begin by showing how piecewise linear bounds may be devised,
which bound both above and below any concave log-density in general
dimensions. We then show how these bounds may be used to gain an
upper bound to the volume in the tails outside the convex hull of the
sample path in order to assess how well the sampler has explored the
target distribution. This method can be used as a stand-alone diagnostic to
determine when the sampler output provides a reliable basis for inference
on the stationary density, or in conjunction with existing convergence
diagnostics to ensure that they are based upon good sampler output. We
provide an example and briefly discuss possible extensions to the method
and alternative applications of the bounds.

1. Introduction. The use of Markov chain Monte Carlo (MCMC) meth-
ods has increased dramatically within the statistical community since their
introduction by Gelfand and Smith (1990). Essentially, MCMC methods
involve simulating Markov chains with particular stationary densities in
order to sample indirectly from densities which are impossible to sample from
directly. See, for example, Smith and Roberts (1993). There are many impor-
tant implementational issues to consider for MCMC. These include (among
others) the choice of sampler, the number of independent replications to be
run and the choice of starting values. Arguably, the most difficult problem is
that of deciding when to stop the algorithm with some degree of confidence
that a state of equilibrium has been reached or convergence achieved. A
number of authors have proposed methods for diagnosing convergence of a
particular sampler, based upon the output they produce. See Cowles and
Carlin (1996) for a review of recent methods.

However, Asmussen, Glynn and Thorisson (1992) show that there can exist
no universally effective means of detecting stationarity, applicable to all
stochastic simulations. They suggest that, in order to construct effective
methods for detecting stationarity, we need to concentrate on particular
classes of problems, and take explicit advantage of the unique characteristics
of those classes. This result is directly applicable to Markov chain Monte
Carlo, and it can be shown that no diagnostic, based solely upon the output
from however many chains, may work for all problems.
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One useful subclass of problems is the set of all those where the target
density is log-concave. The set of log-concave densities comprises a large
number of those that occur in practice; see Dellaportas and Smith (1993) and
Gilks and Wild (1992), for example. We begin with a formal definition of
log-concavity.

DEFINITION 1. Given a positive function 7, with support £ ¢ R”, we say
that 7 is log-concave if log 7 is concave, that is,

Aog m(x) + (1 — A)log w(y) <logm(Ax + [1 — Aly)
Vx,y<€Eand e |[0,1].

An alternative definition can be made in terms of the positive definiteness
of the Hessian matrix for log 7, if this can be assumed to exist.

It is possible to show that, subject to certain regularity conditions, the
information matrix for a generalized linear model is positive definite. Thus, if
we take the canonical link function, where the Hessian and information
matrix coincide [McCullagh and Nelder (1989)], the likelihood will be log-
concave. Therefore, commonly used models such as the classical linear regres-
sion, log-linear Poisson, logistic, probit and complementary log-log models can
all be shown to be log-concave. If we choose not to use a canonical link,
Wedderburn (1976) provides a number of alternative link functions, which
also lead to log-concave likelihoods. Additionally, Polson (1996) shows how
the introduction of latent variables to a variety of (possibly multimodal)
densities can lead to an augmented density with the log-concavity property.
Thus, despite the restriction to unimodal distributions, our method may still
be applied to a wide variety of models.

We also note that the class of log-concave models are known to have good
convergence properties. For example, Mengersen and Tweedie (1995) show
that, on the real line, the Metropolis—Hastings algorithm, under very general
conditions, is geometrically ergodic if the target density is log-concave. Thus,
the assumption of log-concavity may even be desirable in terms of the
convergence rate of the associated Markov chain.

Restricting our attention to the class of problems for which the posterior
density is log-concave, we will show how upper and lower bounds to the
target density, 7, can be obtained from the sampler output. Having obtained
these bounds, it is then possible to obtain an upper bound to the probability
in the tails (under =), lying outside the convex hull of the sample path. Thus,
we might make the decision to stop the sampler when the area in the tails
becomes sufficiently small. Note that our approach is quite different from
others in that, instead of trying to estimate the length of the burn-in period,
we try to ascertain whether or not the chain has explored a sufficient
proportion of the parameter space for inference based upon the sampler
output to adequately reflect characteristics of the underlying distribution.
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We begin by showing how, given the output from our sampler, we can
obtain both upper and lower bounds to the target density in the one-dimen-
sional case, before progressing to the more general (and useful) higher-di-
mensional cases.

2. The method in one dimension. Given a sample T}, = {x;,..., x,}
from a univariate log-concave density with domain D, given by

f(x)
Ipf(x) dx

and for which the normalization constant is unknown, we can obtain bounds
for w(x) as follows.

Assume that the domain D of f(x) is an interval on R, that f(x) is
continuous and differentiable everywhere in D and that A(x) = log f(x) is
concave everywhere in D. Suppose that A(x) and ~’(x) have been evaluated
at the £ points in D, x; < -+ < x,; then we can define a piecewise linear
upper bound for A(x) formed from the tangents to A(x) at the points in T, in
a manner similar to that described by Gilks and Wild (1992) in the context of
adaptive rejection sampling.

For j=1,...,k — 1, the tangents to the points x; and x,,; intersect at
the point

m(x) =

. h(x;.1) —h(x;) —x; 18" (x;,1) +x;R'(x;) )

! h,(xj) - h’(xj+1) ’
see Figure 1. Therefore, if we let z, be the (greatest) lower bound of D (or
—o if D is unbounded below) and let z, be the (least) upper bound of D

(or +« if D is unbounded above), then an upper bound for A(x) in the region
xelz,_q, zj] can be given by

ui(x) =h(x;) +(x—x;)h'(x;), Jj=1,...,k.

We can also define a piecewise linear lower bound to 2(x) for x € [x;, x;,,],
formed from the chords between adjacent points in T}, by

I (x) = (%01 —2x)h(x;) + (x —x;)h(x;4,) ’ i1 k-1
’ ARSI

Finally, if we define
u(x) = ui(x), x<lzi1 2], j=1,...,k
0, else,
and

l(x)={lj(x)’ xe[xjaxj+1], j=1,---k_1,
— o0, else,



LOG-CONCAVE CONVERGENCE ASSESSMENT

h(z)

h(x)
u(z)

Tangents

Fic. 1. Illustrating the tangent-based bounds for five points in the one-dimensional case.

then the concavity of A(x) ensures that

I(x) <h(x) <u(x), VxeD.

401

Clearly, given these bounds on %, a lower bound for the normalization

constant for 7 is given by

[Df(x) dx = jDexp h(x) dx

\%

[Depo(x) dx

c say.

Now, if x > x;, then

h(x)

IA

u(x)
h(xp) + (x —x,)h'(xp).
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Therefore,

f(x)

IA

exp[A(x;)]exp[(x — x,) R’ (xy)]
_ f(xk)exp( —x,f'(x) )exp( xf' (%) )
f(x) f(x)
=q, exp(—b,x) say.
Thus, for x > x,, we gain an upper bound for 7(x) of the form,
f(x) _ ayexp(-b,x)
c c

m(x) <

and therefore we can obtain an upper bound to the proportion of the parame-
ter space contained within the tail beyond x, given by

P(x>x,) = fwﬂ'(x) dx

Xk

f°° ay, exp(—b; x) dx

X (4

a, exp(—byx;)
cb, '
Similarly, we can obtain an upper bound to the proportion in the lower tail,

a,exp(—b;x
P(x <2,) < 28RZ017)

cb, ’
where
a; = f(x;)exp(byxy)
and
—f'(x1)
b= ———.
' f(xq)

Thus, if our set 7}, were the output from an MCMC sampler that we
wanted to decide when to stop, we might continue to run the chain until the
set T, has largest and smallest elements x, and x,, respectively, which
satisfy the criterion

a, exp(—b;x;) N a, exp(—b,x;)

< ¢ for some &> 0,
cb, cb,

at which point, the convex hull of the sample path covers at last 100(1 — £)%
of the parameter space. We argue that this is a necessary condition for
convergence, since the chain cannot possibly have converged until “the entire
parameter space has been explored.”

Similar results can be obtained when the derivatives are unknown (or
incalculable), by introducing an extra point x,. In this case the lower bound
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becomes tighter by forming the piecewise linear lower bound to A from the
line segments between the ordered points in the sample, including the extra
point x,. The upper bound is formed from the straight line segments between
each of the x; in the sample and the point x, which is (ideally) somewhere
near the mode; see Figure 2.

We now discuss how the method may be extended to higher dimensions in
the case where the derivatives are known and, more importantly in the more
general (and practically useful) case, where they are not. In Sections 3-5, we
limit ourselves to obtaining bounds on the proportion of the parameter space
explored, given a convex hull consisting of exactly n + 1 points in n-dimen-
sional space. We discuss the generalization of this method to the case where
the convex hull consists of £ > n + 1 points in n-space in Section 6, before
comparing the two methods in Section 7.

We begin, in Section 3, by extending bounds to % in the one-dimensional
method to general dimensions in the case where derivatives are known (or
calculable). In Section 4 we develop bounds on % in the case where the

Lines joining
Xz' to Xo

FiG. 2. [Illustrating the derivative-free bounds for six points in the one-dimensional case.



404 S. P. BROOKS

derivatives are not available and finally, in Section 5, we show how the
derivative-free bounds on A may be practically implemented to bound
the proportion in the tails.

3. The tangent-based method. We begin by looking at how upper and
lower bounds to the surface 2~ may be found in the two-dimensional case
before extending the tangent-based method to general dimensions.

For clarity we shall adopt the following notation. We denote a general
point in the two-dimensional parameter space by a lower case letter x, say,
and let the corresponding upper case letter X = (x’, 4) denote a point in
three-dimensional space, where the third component of X corresponds to the
log-density at x. Finally, we let x; denote the ith component of x.

3.1. The method in two dimensions. Take three points on a concave
surface h = log f given by X;, X, and X; where X, = (x), A(x;)) and x| =
(x;1, x;9), i = 1,2, 3. The normal to the tangent plane is given by VH, where

dh  dh
VH=|—,—,—-1].

dx, " dxg
If we define
oh oh
19_3(11(X1) (9_x2(xl) -1 ,
(1) N £ ﬂ(x) ﬁ(x) -1| 2 E’l
iz, 2 %, 2 2 |
N
oh oh
(9_361(X3) (3’_x2(X3) -1

then the single point at which all three planes coincide is given by
N X,
(2) A, =[a,, h(ag)] =N N;X, |,
N;X;
since A satisfies
(X;—A)) N, =0=NA, = NX, Vi=1,2,3.
Similarly, if

n; .
(3) N;; = n, |’ L#],
then the single point at which the tangent planes to X; and X; coincide with
the A = 0 plane is given by
| NiX; .
Aij = [aij’h(aij)] = Nij N}xj s 1 #],

where i(a;;)) =0V i, .
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Thus, we have a three-dimensional hypertriangle (a triangular-based pyra-
mid) bounding A(x) above with vertices {A,,A;;,A 5, Ay} (Figure 3). Note
that the bounds continue beyond the region {a,, a,3, a,3}, but it is convenient
to visualize the hypertriangle to have a base arbitrarily at 2 = 0, say.

Straight lines between the two-dimensional vectors {a,, a5, a3, 8,3} in the
h = 0 plane split the parameter space into three subregions, R;, correspond-
ing to the open-ended triangle with vertex a, and edges passing through a,;
and a;, j,k #i,and V i = 1,2, 3; see Figure 4. Then we can define an upper
bound u(x) to A(x) by

(4) u(x) = min {u,(x)},
where u; corresponds to the bounding plane in region R, that is,
(5) u;(x) £ h(x;) — (x; — %) 'n,,
since [X; — (x, ©,(x))] - N, = 0 and N,, = —1; see Figure 3.
Thus, exp u(x) is an upper bound for f(x). Now let R, be the region defined

by the triangle with vertices {x,x,,X3}; then the upper bound to the volume
in the tails is given by

/ exp u(x) dx.
R}

Fic. 3. Illustrating the tangent-based bounds in the two-dimensional case. The solid line denotes
the surface h while the dotted and dashed lines represent the lower and upper bounds, respec-
tively.
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Fic. 4. Plan view corresponding to Figure 3, illustrating the subregions in the two-dimensional
case.

To find the lower bound, we proceed as follows. Define the normal to the
plane containing the three points X, X, and X, by

Ny = (X; - X,) X (X} - X3),
then we can proceed as before to define a lower bound I(x), to A(x) by

ly(x), x€R,
6 I(x) =
(6) 0 =10 eem

where we arbitrarily define /,(x) in terms of x;, by
(7) lo(x) = (x = x;) "my + h(x,).

Thus, the required lower bound to the value of the density function inte-
grated over the parameter space contained within the convex hull R, is
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given by
(8) c =f exp [(x) dx.
R

3.2. The method in general dimensions. The tangent-based method can be
generalized to higher dimensions. First let us alter our notation and let an
upper case vector X denote a point in R"*! and a lower case vector x denote
the n-dimensional projection of X onto the A = 0 plane. If we take points in
R”, with A(x) forming the (n + 1)th component, then we will require n + 1
points to form a hyperplane covering the corresponding (n + 1)-dimensional
surface, h. Thus, we obtain n + 2 vertices for this hyperplane, one where all
n + 1 planes meet and a further n + 1 where n of the planes meet with the
h = 0 plane.

Let {X; = [x;, A(x,)], i = 1,...,n + 1} be the set of points on the concave
surface, and let N, be the normal to the tangent hyperplane to 4 at point X,.
Then we can generalize the method of Section 3.1 to calculate the vertices of
the tangent hyperplane. We generalize (1) to define

N =(Ny,...,N, 1),

where the n + 1-dimensional normal vector is given by

doh

(9) N, = | 7x %)

-1
and generalize (2) similarly to give us the point A, where all n + 1 tangent
hyperplanes meet. We then redefine (3) by

Néi) = (nl""7ni—1’ni+1"" ’nn+1)'

Then the point where all hyperplanes, except the one tangential to X;, meet
the 2 = 0 plane is given by

N X,

X
_ 181
A, =N;! '
() ()
' Y N X

'
Nn+ IXn+1

Thus, we obtain an n + 1-dimensional hypertriangle with vertices {A,,
A, ...,A, ) with respect to the A = 0 plane.

Now, if we define u,(x) as in (5), then the upper bound to A(x) is given by
u(x) as defined in (4). Finally, if we let R, be the hypertriangular region with
vertices {x,;: i = 1,...,n + 1} then the required (nonnormalized) upper bound
to the hypervolume in the tails is given by

f exp u(x) dx
RL’

0
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We now proceed to define a lower bound, but first we require the following
definition and lemmas.

DEFINITION 2. Following Spivak (1965), we define the n + 1-dimensional
vector product between n vectors Z,,...,Z, € R"*! to be

W=2Z x-XxXZ,

where W is such that the determinant of the square matrix with rows given
by the Z; and another vector Y, denoted by |Z,,...,Z,,Y]|is given by

z,,....,.2,,YI=W-Y, VY e R,

LEMMA 1. Given Z,,...,Z, € R"*!, the n + 1-dimensional vector product
exists and is unique.

PrROOF. Let Z' denote the n X n matrix with the jth row given by the

vector Z; with the ith component removed, that is, Z,,,...,Z; ;_y),

J
Z;is1y-->Zj (n+1); then

Z,,....,Z,,Y|=Y,Z — Y,|Z*| + - +(—1)nYn+1|Z”+1|
=Y-(1Z', -1Z%|,...,(-1)"1Z"*)
=Y -W say.
The result follows. O

LEMMA 2. The n + 1-dimensional vector product W = Z, X --- X Z, repre-

sents the normal to the hyperplane containing points Z,...,Z,.

Proor.
WoZ;=ZyZ' + - +(=1)"Z 2"
=Z,...,Z,,Z,
=0, Vi=1,...,n.
The result follows. O

Thus, to define the lower bound, we let the normal to the hyperplane
containing the points {X;: i = 1,..., n + 1} be denoted by N,,, where

Ny = (X; = X,) X X (X; — X, 41),

by Lemma 2. Then we can define a lower bound I(x) to A(x) using (6) and (7)
so that the required lower bound to the volume within the convex hull R is
the same as that for the lower-dimensional case, and is given by (8).

4. The derivative-free method. In practice, the derivatives will not
generally be known and they will need to be estimated numerically. This can
be computationally expensive, since the derivatives may need to be calculated
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for a large number of points. This is particularly true for slowly mixing
samplers, where diagnostic methods are most needed. In this section we
propose an alternative method, which does not require the calculation of
derivatives.

As with the tangent-based method, we begin by looking at the derivative-
free method in the two-dimensional case before extending the method to
general dimensions.

4.1. The method in two dimensions. The tangent-based method for the
two-dimensional case, can be adapted to remove the need for calculating
derivatives as follows. If, instead of taking three points, we take four points
on the log-surface A, {X; =(x,,0): i =0,...,3}, such that x, lies strictly
within the convex hull formed from the other three points and A(x,) > A(x;)
V i=1,2,3. Then we can define three nontangent planes, each of which
contains both X, and two other points and has normal given by

(10) N, =X, - X)) x (X, - X)), i #]J.

The lower bound to 2 could be formed in a similar manner to that of the
tangent-based method, but a tighter lower bound may be formed by introduc-
ing the fourth point X; see Figure 5. We then define the lower bound /(x) in
a similar way to that of Section 3, using the normals given in (10). Thus, a

FiG. 5. [Illustrating the derivative-free lower bound in the two-dimensional case.
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lower bound to the volume under the surface is given by

c =j exp /(x) dx,
RO

where

min/;;(x), x€E€R,,
(11) I(x) = | %

— o, X € Rj
and

(%9 — X) ‘ny;
—— +h
N, (X0),

12

lij(x) 2

where N,;, denotes the kth component of the normal vector N;. Note
N; ;3 # 0, since x, lies strictly within the convex hull.

In order to obtain an upper bound to A, beyond the convex hull, we note
that each of the planes described above intersects the surface at three points
X,, X; and X, say, but lies below the surface for a sectioned paraboloid
region beyond the line joining X, to X ;. Thus, we cannot use this plane as an
upper bound to the surface in the tails; see Figure 6. Instead, we “tilt” this
plane upwards about X, until all points beyond the line joining x; and x; lie
below the plane. In effect, we drag the line between (x,,0) and (x;,0)
vertically upwards until it touches the surface at only a single point, X7;. This
point can be found as follows.

Fic. 6. Illustrating how the derivative-free bounding (hyper) plane lies below the surface for
some points in the tails and how the point X%, may be found.
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Let
x,;:(A) =x; + MX; — X;);
then A[x; ()] denotes the value of % for a general point on the line between

x, and x; on the & = 0 plane. Now, let A}; denote the value of 0 <A <1
which maximizes A[x,(A)], then

X7 = (Xij(A*)’ h[xij(/\*)])

is the single point described above. Once we have our point X7;, then our
required (tilted) plane has normal

(12) Nj = (X, - X55) X [(x,,0) = (x;,0)].

Before continuing, we provide a result that shows that such a method for
“tilting” the original plane provides us with a plane bounding % above for all
points beyond the line x; — x .

THEOREM 1. For any point in R? of the general form
X;;(p, A) = X35+ AMx; — X)) + u(X]; — X)),

hlx; (u, V] is bounded above by the tilted plane u,[x,;;(u, V], for all X € R
and u > 0.

For the proof, see the Appendix.

Thus, we can define three such planes bounding the surface above (beyond
the points X,,, X;; and X,;), by splitting the state space into three subre-
gions as before and, in order to obtain an upper bound on the area in the
tails, we can proceed as for the tangent-based method with the matrix of
tilted normals,

Ni
(13) N* = [ Nj
N

substituted in (1). Note that we have alternative formulas for the A . ., since

A, =X, and we define

ij°

_ l‘l’? ‘X, ..
Aij=Nij 1(njf-xk)’ k+1i,].

Thus, in essence, we replace the computational expense of the estimation
of derivatives from the first method by the optimization of the function A over
all possible A-values in the second. However, there are several advantages to
the derivative-free method over the original. First, the optimization is ex-
tremely easy and can be performed by a simple downhill search mechanism
and hence, the computational expense is decreased, particularly in higher
dimensions. Second, we no longer require that f be differentiable everywhere
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on D and finally, the practical implementation of the diagnostic necessarily
becomes less problem dependent.

4.2. The method in general dimensions. The derivative-free method can
be extended to general dimensions as follows. Let
xH(N) =x,+ )X A(x;—-x,) foranyk +i.
J*k,i
Then, as before, we find A* which maximizes h[x(i)()\)] and set
X5 = [0 (M), h(xp(A))]-
Then, our tilted plane bounding A above beyond the hyperplane with points
{xj: J # i} has normal
n+1
NG = (X —X§) x T1 [(xk,O) - (xj,O)] for any k # i.

Jj=1
J*i k

If we define
(x() — X) - n;,
Uiy (x) = — th(x(),
@()Xn+1)

then we gain the following theorem.

THEOREM 2. For any point in R" of the general form
n+1
x(pm, ) =x§) + u(xl —x0) + X (X, —x))A; foranyk # i,
=1
ik
h[x(u, N)] is bounded above by u[x(w, N)] for all >0 and N\ € R™ 1

The proof is a direct extension of the proof of Theorem 1.

Once we have calculated the N for all values of i = 1,...,n + 1 we can
define N* as a direct generalization of the two-dimensional case in (13) and
proceed in the same manner as the tangent-based method in general dimen-
sions, by substituting N, for the N; to obtain the relevant upper bound.
Similarly, a lower bound can be found by the obvious extension to that of the
two-dimensional derivative-free method of (11), given by

miinl(i)(x), X €ER,,

I(x) =

— 0 x € R§,

b
where
(X —x)'n

i
+ h(x)
Niyn+1

l(i)(x) £

and the N; are the normals to the original (nontilted) planes given in (9).
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Thus, we have lower bounds on A within a convex hull of n + 1 points in
n-dimensions and an upper bound on 4 beyond the convex hull. We now show
how the derivative-free bounds can be used in practice to gain an upper
bound on the proportion in the tails beyond the convex hull under the
distribution 7.

5. A derivative-free bound on the tail volume. We begin by generat-
ing a starting set of n + 2 points {x,,...,X,,;} in R” from the output, such
that the points {x;,...,x,;} are vertices of an n-dimensional hypertriangle
and x is both contained within this hypertriangle, and is such that A(x,) >
h(x;,) V i=1,...,n + 1. Having gained this starting set, we continue to
monitor the sampler output, updating our set of points so as to maximize the
volume of their convex hull, until our set covers a sufficient proportion of the
parameter space.

Thus, the implementation of our method can be split into two algorithms.
We shall begin by defining these two algorithms and then return to individ-
ual steps to explain how they might be performed.

Algorithm 1. Generating a starting set.

STEP 1. Generate n + 1 points x,,...,X, ;.
STEP 2. Define the region R, contained within the hypertriangle with ver-
tices x;,...,X, 1

STEP 3. Generate a new point X.

STEP 4. If x € R, then if A(x) > h(x;) V i, set x, = x and stop. Otherwise
return to Step 3.

STEP 5. If x ¢ R, then check to see if the hypervolume of R can be increased
by replacing x; by x. If so, then replace x; by x and return to Step 2.
Otherwise return to Step 3.

This algorithm produces our starting set, which is simply the first set of
n + 2 points {x,,...,%, .} from the sampler output such that h(x,) > h(x;)
Vi=1,...,n+1 and x, lies within the convex hull of the other n + 1
points, R. The second algorithm monitors the output, updating our set of
points whenever the volume in the region R can be increased and stopping
once the probability mass outside R falls below some critical value ¢, say.

Algorithm 2. Diagnosing convergence. Convergence can be diagnosed by
using the following algorithm, which may be run several times in succession
to ensure that the “best” points are used:

SteP 1. Given a starting set {x,,...,X, ), define R and calculate the upper
bound to the probability mass beyond the convex hull of the sample
path, P. If P < g, then stop.

STEP 2. Generate a new point, x.
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Step 3. If x € R, then if A(x) > h(x,), set x, = x and return to Step 1.
Otherwise return to Step 2.

SteP 4. If x & R and A(x) < h(x,), then check to see if the hyper-volume of
R can be increased by replacing x; by x. If so, then replace it (so long
as X, remains within R) and return to Step 1. Otherwise return to
Step 2.

It is not immediately obvious how these steps can be accomplished. In
particular, it is not clear how we might perform any of the following:

1. Calculate the upper bound for P.

2. Define the region R and decide whether or not some point x is an element
of R.

3. Calculate the hypervolume of R, given the n + 1 vertices.

We shall now discuss in detail how each of these tasks can be performed in
practice.

5.1. Calculating an upper bound for P. If we let T denote the volume in
the tails (under f) beyond the convex hull R, and M denotes the volume
within the convex hull, then the proportion in the tails is given by

o T
T+ M

However, we can bound 7' and M by

(14) T < fR exp|u(x)] dx
and
(15) M > fR exp[l(x)] dx

For general u and [, the bounds to T and M given in (14) and (15) are not
easily found, but the piecewise linear nature of both u and [, as we define
them, allow us to bound 7' above and M below via the following theorem.

THEOREM 3. Given an (n + 1)-dimensional hypertriangle with vertices
{Xy,...,X, .1} the volume T can be bounded above by U and the volume M
can be bounded below by L, so that P is bounded above by

p U
b U+L’
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where
n+1
L = Z L(i),
i=1
exp(a,;) (1"
_ b ij
Ly =Wale®| X ., (a; — a;)a;; STk
16) J#i k+#i,j ij ik ij JFiIYig
( n+1
U= Z l](i)>
i=1
exp(a%;)
Uiy = Wiple®| — X ’
@ ) J#i nk#i,j(a?j_a;kk)a?j
J(’i) = [(Xo —Xy),-- (Xg =X, 1), (Xg = X4 1)+, (Xg — Xn+1)]
a;; = _(Xj_xo)'n(i)’ J*i,

(17) b =nh(x,),

(X — x;) - nf, .

af = - ————~ J#i

]\](?)("‘*'1)

and where N;, = (n(i), —1) is the normal to the hyperplane formed from the
set of vectors {(X, —X,): j=1,...,n + 1, j #1i}, and N}, denotes the corre-
sponding tilted normals as defined in (12).

For the proof, see the Appendix.
Thus, given a set of n + 2 points in R”, we can bound the volume beyond
the convex hull of these points by P, = U/(U + L).

5.2. Definition of R and its elements. Here we show how we can decide
whether or not a vector x is within the convex hull R € R”, formed from the
points X,,...,X, 1.

If we take n = 2, for example, and points x,, X, and x, then R is simply a
triangle on the plane containing these points and we can define three vectors
l,;,i=1,2,3,j > i corresponding to the three edges of R between vertices x;
and x;. A point x lies within the triangle R, if and only if that point lies on
the correct side of each of the three edges. We define the edge joining vertices
x,; and x; by

lij=xi+/\(xi—xj), AER

and let n;; denote the perpendicular to 1.

We may decide upon which side of 1,; some general point x € R? must lie
for it to be an element of R by taking the vector (x — x;) and determining
whether it has a positive or negative component in the n;; direction. We know
that for all points x € R, the sign of this component will be the same, and
that no points for which this component has the opposite sign can be

elements of R. Thus, to determine which side of the edge 1;; a point must lie
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for it to be an element of R, we need only decide what sign the dot product
(x — x;) - n;; should take. Now, we know that the third point x,, k& # i, j is
an element of R so the correct sign is simply the sign of (x, — x;) - n,;. Thus,
if we define

(x—x;) n;, (x —%;)'n;; >0
£4(x) = —-(x—-x;)'n;, (x,—-%;)'n;<0
for all £, and for any i,j # k£ such that i #j. Then, x € R if and only if
g,® >0V k=123

Clearly, we can generalize this to general dimensions as follows. If we take
points X4, ...,X,,; and define the plane containing all points other than x; to
have normal

n; = ]_[ (x; — x;), l#1,
Jj#i,l

where I denotes the vector cross-product as given in Definition 2. Then we
can define

n(k)'(x_xi)’ n(k)'(xk -x;) >0, .

for any i # k

—ng, (X - X;), ng, (X, -x;) <0,

andx € R ifand only if g,(x) >0V .k =1,...,n + 1.
Thus in practice, for a given region R, with vertices {x;,...,x, .}, we can

define the functions g,(x), £k =1,...,n + 1 and then x € R if and only if

g2,x) >0V k.

5.3. Calculating the hypervolume of R. Finally, we show how we can
calculate the hypervolume of R, given only the vertices {x,,...,x,,,}. We
begin with the case n = 2. If we denote the vector (x; — x,) by a;,, i = 2,3,
then R is a triangular region, with area given by

shase X height = jla, X a,

(18)
= 3|det(azay)],

where 6 is the angle between the vectors a, and a;. We can generalize this
result to higher dimensions via the following theorem.

THEOREM 4. Given n + 1 points in n-space, Xq,...,X, .1, if a, = X; — X,
i # 1, then the hypervolume of the n-dimensional hypertriangle contained
within those points is given by

1
(19) v =m|det(a2,a3,...,an+1)|.

n

The proof is in the Appendix.
Thus in practice, (19) may be used to calculate the hypervolume of the
region R in the final steps of Algorithms 1 and 2.
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Note that this entire section deals with the use of the derivative-free
bounds on A to gain an upper bound on P. Unfortunately, there is no similar
procedure for using the tangent-based bounds on 4 to bound P, since the
region beyond a particular “face” of the convex hull is bounded above by a
collection of hyperplanes, rather than just one. Thus, the tangent-based
equivalent of Theorem 3 requires two lemmas providing simple, computable
values of

o =]

J, =j(; --fo exp[miin(aixi + b)] dx; - dx

n

and
I, = T S”ex [min a; A, ]d)\ o dA,
fo /; P ; ( ) 1

to replace Lemmas A.5 and A.6 (see the Appendix).

In general, some form of numerical approach would be necessary to
approximate these integrals. However, the whole point of forming these
piecewise linear bounds to A is to avoid such integration, and thus the
tangent-based method is implementationally no less complex than calculating
P directly, by the same numerical methods. Thus, only the derivative-free
bounds are of any practical value in terms of forming bounds on the propor-
tion, P.

6. Extending the implementation. Elekes (1986) shows that the vol-
ume of the convex hull formed from any m points on an n-dimensional
hypersphere with volume V, is at most mV /2" This suggests that the
number of points necessary to gain a reasonable estimate of V' will increase
exponentially with n and so the number of points used to form our upper
bound on the area in the tails should increase at least exponentially with
dimension and not simply be limited to n + 1 points. Thus, we may choose an
alternative implementation of our diagnostic where, instead of looking at
hypertriangles formed from n + 2 points, we take the convex hull comprising
of a set of £ > n + 2 points and allow %k to increase exponentially with n. In
this case we require the following implementational algorithm.

Algorithm 3. Implementation for general hulls.

STEP 1. Given output from any sampler, calculate the convex hull of the
sample path, recording the points {x;,...,x,} which form the hull

and the faces v,,...,7y,;, where each face i, is composed of points
Y = {X,.1):X,.2) - -» X, (). Record also a point x,, such that x, lies
within the hull formed by points {xi,...,x,} and A(x,) > A(x;)
Vi=1,...,k.

STEP 2. Calculate an upper bound U to the volume under A2 beyond the
convex hull, and a lower bound L, to the volume within the hull.
StEP 3. Calculate P, = U/(U + L).
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If P, < ¢, then we may consider the sample path to have adequately
covered the parameter space. If not, then we may wish to continue the
simulation or consider some form of reparameterization in order to improve
the sampler’s performance properties.

In terms of practical implementation, Step 1 can be performed using any
standard package for computing convex hulls. In particular, the Quickhull
program [Barber, Dobkin and Huhdanpaa (1993)] can be used to provide
the required vertex and face information, given only the sampler output. In
Step 2, the bounds U and L are computed in a similar manner to the
previous method and are stated explicitly in the following corollary to Theo-
rem 3.

COROLLARY 1. Given a convex hull with vertices {x4,...,X,}, arranged into
d faces vyy,...,7v;, where face i, is composed of points vy, = {x%(l),x”@),
-y X, ), we can form an upper bound U, to the volume beyond the convex
hull, and a lower bound L, to the volume within the convex hull, so that the
proportion in the tails beyond the convex hull P is bounded above by

P, v
T Uu+L’
where
d
L = ZLL,
i=1
exp(a;; 1"
L—wie| ¥ (a;;) N (-1 ’
JEi nkeyi,k¢j(aij_aik)aij njg»yiaij
(20)
n+1
U= 21U
i=1
exp(aj;)
l]i:|Ji|eb - Z 1_[ *] ES *]’
JEv; kevi,k#j(aij_aik)aij
Ji = [(XO — Xy m)s e (X~ Xvi(n))]’
a; = (Xg — X;) 'm;, J € %>
(21) b :h’(XO)’
(%o — Xj) ‘n’
af = - R ey,
! ]V;(kn-%—l)

where N, = (n;, —1) is the normal to the hyperplane formed from the set of
vectors {(X, — X,): j € v,}, and N} denotes the corresponding tilted normals
as defined in (12).
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The proof is identical to that of Theorem 3, allowing for the new notation.

The advantage of this method, in terms of the tightness of the bound on P,
is obvious. We would expect that, by adding more points to the hull, we get
much tighter bounds on A and therefore on both U and L. The disadvantage
of this method is that we might expect that, for high-dimensional problems,
the number of faces forming the convex hull may become quite large, leading
to increased computational expense. Both of these points are addressed in the
next section, which discusses the two derivative-free approaches in terms of
their practical utility.

7. A practical examination of the methods. In order to examine how
the two proposed methods might be expected to perform in practice, we
present an example based upon the multivariate normal density. Here we
take the target distribution 7= to be a d-dimensional normal, and we sample
n points, uniformly distributed over the surface of the d-dimensional hyper-
sphere of radius r, and centered about the origin. We examine the perfor-
mance of the two methods for various values of d, n and r.

In order to calculate the convex hulls of a particular sample, we use the
Quickhull algorithm of Barber, Dobkin and Huhdanpaa (1993). However, we
find ourselves restricted to problems of five dimensions or less, due to the
huge computational storage demands of problems in higher dimensions,
primarily because of the large number of faces associated with even a small
number of points in high dimensions.

Table 1 presents the number of faces associated with differing numbers of
vertices on the convex hull and for different dimensions. We can see that the
number of faces increases with the number of vertices in the hull and that
the ratio of faces to vertices increases with dimension, so that a five-dimen-
sional hull with 1500 points possesses over 40,000 faces. Thus, we restrict
ourselves to d < 5.

Figure 7 plots the true proportion P, beyond the hypersphere of radius
r € (0, 10], under the d-variate normal and for dimensions d = 1,...,5. For
each r, we obtain a sample of n = 500 observations, uniformly distributed
over the surface of a hypersphere of radius r, and add a single point x,, at
the origin. Given this sample, we plot the two bounds, P, and P;, on P. Note

TABLE 1
Number of faces of the convex hull with v vertices of dimension, d

Number of vertices, v

d 50 100 200 500 750 1000 1500
2 50 100 200 500 750 1000 1500
3 96 196 396 996 1496 1996 2996
4 254 564 1238 3253 4853 6548 9895
5 772 1936 4536 12842 20204 27392 42060
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Fig. 7. True proportion P, and bounds P, and P}, calculated for n = 500 points on a hyper-
sphere of radius r in d dimensions, ford = 1,2,3,4,5.

that since the points are all on the surface of a hypersphere, all n points will
lie on the convex hull.

We can see that for d = 1, the two methods provide identical bounds, since
there exists only two distinct points on the one-dimensional hypersphere of
radius r and thus both methods use the same three points (two on the
hypersphere, one at the origin). The bound in one dimension is actually quite
good and would generally be acceptable in most applications. However, in one
dimension there are considerably better methods for estimating (or even
calculating) P, so the one-dimensional case is not a realistic one.

In higher dimensions, we observe that P, is a very poor bound on P and,
for d > 3, lies permanently close to 1, with no substantial improvement
observed by taking n > 500. Table 2 provides the value of P; for r-values
corresponding to P = 0.05, 0.1, 0.2 and 0.5, for d = 1,...,5. From Table 2 and
Figure 7, we can see that the alternative bound P; performs reasonably well
but, as we might expect for fixed n = 500, the bound weakens considerably as
d increases.
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TABLE 2
Value of P}, corresponding o each value of P,
for various dimensions

Dimension
P 1 2 3 4 5
0.05 0.14 0.39 0.63 0.84 0.95
0.1 0.25 0.53 0.75 0.90 0.97
0.2 0.43 0.69 0.85 0.95 0.99
0.5 0.8 0.92 0.96 0.99 1.00

Table 3 provides the execution times for the code to produce the plots of
Figure 7. It should be noted that each plot is based upon 100 different
r-values, so execution times are for the calculation of 100 bounds in each case.
Clearly, the calculation of P, is considerably faster than that of P, in
dimensions d > 1, with each P, bound taking approximately two minutes for
n = 500 and d = 5. In practice, we would only calculate the bounds once, so
two minutes is perhaps not unreasonable, but in order to get a tighter bound
in higher dimensions, we need to increase n, which leads to a substantial
increase in the computational expense, as we shall see.

Figure 8 provides the plots of P; for r € (0, 10] and for different values of
n and d. From these plots, it is clear that increasing n improves the bound,
but that n must increase at least exponentially in order for the improvement
to continue. This suggests that even if computational storage were not a
problem, the number of points required to produce an acceptably “tight”
bound may be prohibitive in higher dimensions.

Table 4 provides the execution times for the code to produce the output
plotted in Figure 8 for different values of d and n. We can see that for fixed
d, the execution time increases exponentially with n and similarly for fixed
n, the execution time increases exponentially with d. This is due to the
exponentially increasing number of faces to the convex hull, as d and n
increase. You can see that for 1500 points in five dimensions, the calculation
of the bound for a single value of r takes approximately 16 minutes and yet
the bound on P remains very weak. In order to gain a tighter bound on P,

TABLE 3

Average execution times for the computation of the two bounds,
for 100 different r-values®

Dimension
1 2 3 4 5
p, 0.05 0.42 1.05 2.07 3.48
p; 0.05 205 637 2661 13316

#Times are in seconds.
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FiG. 8. True proportion P (solid line) and bound P}, calculated for n € {10, 20, 50, 100, 200, 500,
750, 1000, 1500} points on a hypersphere of radius r in d dimensions, for d = 2,3,4,5.

the necessary increase in the number of points would make the calculation of
P, prohibitively time-consuming.

In summary, the results of this section indicate that the bound P, is
generally too weak and is of little practical value. The bound P; performs
considerably better, providing a reasonable bound that improves with the
number of points used. The computation time appears to grow exponentially
with dimension, as does the number of points required to obtain an accurate

TABLE 4
Average execution time for the calculation of Py for 100 different r-values?®

Number of vertices, n

d 50 100 200 500 750 1000 1500
2 5.50 14.3 42.2 210 446 765 1681
3 23.6 61.0 147 629 1288 2115 4589
4 89.9 246 639 2693 5218 8558 18058
5 405 1096 3107 13366 26806 44714 94808

#Times are in seconds.
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bound. Thus, there is a trade-off between the strength of the bound and the
computational expense incurred in higher dimensions.

8. Discussion. We have shown how the piecewise linear upper and
lower bounds can be used to determine how well the output from an MCMC
sampler explores the target density, in the case of log-concavity.

We provide a bound to the proportion of the sample space outside the
convex hull of a sample of points and show how close this bound can be to
the true value, given an “optimal” sample of points. Since, in general, the
sampler output will not include points on the boundary maximizing the
region R, nor the optimal point x, located at the mode, we investigated how
well the bound performs given a set of points sampled directly from the target
density. We showed that, given such a sample, the bound provides a strong
indication that the target is well explored, given a sample of sufficient size.

The method is a useful diagnostic in its own right, in that it determines
when the sampler output may be a reliable basis for inference upon the
stationary density. If P,,,,, is small, then the parameter space has been
largely explored and there is little chance that significant portions of the
space have not been visited by the sampler. Thus the method may also be
useful if applied in conjunction with convergence diagnostics, such as that of
Gelman and Rubin (1992). Many diagnostic methods based upon the sampler
output rely on the assumption that the sampled points cover the entire
sample space. There are many examples where diagnostics can spuriously
indicate convergence, while large portions of the sample space remain unex-
plored. Thus, this method may be applied in conjunction with existing
convergence diagnostics in order to ensure that such diagnostics are not
being misled by “poor” samples. There may also be an additional application
of these piecewise linear bounds.

Gilks and Wild (1992) use piecewise exponential bounds on a univariate
density 7, to provide upper and lower bounds, which can be used as envelope
and squeezing functions to produce an adaptive rejection sampling method
for sampling from 7. The multivariate bounds described in the early sections
of this chapter may be similarly used to provide a multivariate adaptive
rejection sampling algorithm. Clearly, in high dimensions, computational
expense will remain a problem, but for moderate dimensions, approximate
hulls may be used to bound the true density 7, with little loss in efficiency,
due to the associated increase in the rejection rate. The application of these
bounds to produce such an algorithm is the focus of current work and beyond
the scope of this paper.

APPENDIX

Proofs of theorems. We begin with the following lemma, essentially
proving that the upper bound described for the one-dimensional derivative-
free method is indeed an upper bound for all points in the tail.
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LEMMA A.1. Take two points x, < x; € R and a concave function h. Then,
if x(A) =xq+ Mx; —xy) and ul(x) is such that X = [(x,u(x)] lies on the
chord passing through points X, and X, that is,

u[x(/\)] =h(x,) + )\[h(xo) — h(xl)] VAeER,

then ul x(AM)] = Alx(MD] V X & (0,1), that is, the chord between the points X,
and X, lies above the curve h for all x beyond the region (x,, x;).

PRrROOF. From the mean value theorem, 3 % such that x, < % < x,, and
h(xo) — (%)

h'(%) =
(5) ==
where A’ denotes either the left or right derivative, both of which must exist
and be nonincreasing by concavity of h. Consider the case A > 1. We have
that A'(x) < h'(X¥) V x > %, by concavity, and A'(%¥) =u'(x) V x € R, by
definition. Therefore, 2'(x) < u'(x) V x > %, and hence

hlx(AN)] — h(x;) <u[x(A)] —u(x;) VAiAx1,
by definition of A’ and u’'. Finally, since h(x,) = u(x,),
Rlx(MN)] <u[x(A)] Vix1.

The proof follows similarly for the case A < 0. O

We extend this result to the two-dimensional case, showing that the above
method does indeed produce a plane, bounding - above for all points “beyond”
the line x; — x;.

If we let
u(x) = LT X B
Y Zv(ij)(n +1) N

denote the upper bound to % given by the tilted plane with normal N7, then
we can extend Lemma A.1 to the two-dimensional case, via Theorem 1, which

requires the following (trivial) lemmas.

LemmA A2, If v(u, M) = uv; + Av, denotes a general direction vector,
where v, = X; — X; and v, = X}; — X, for some i and j, then
k)

. N Vy 1y
(22) Lij v, n(Xij) = _AN*A ’
(Ej)Xn+1)
where 1,; ,(x) denotes the derivative of u;; in the direction v at the point X.

ProOF. Given a function g, and the general direction vector v, we define
the derivative of g at some point x in the direction v( u, A) by

) g(x+7v) —g(x)
g, = lim .

70 T
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Then, the derivative of u,; in direction v( u, A) is defined by
uij,v(p,A)(x)

‘m uij[x + 7v( s, )‘)] - uij(x)

70 T

[xj‘j -x—7v(pu, /\)] -n’;‘j (xj‘j - X) -n’fj

*k k)
N + h(x7;) — N — h(x7))
. (ij)(n+1) @)(n+1)
= lim
70 T
.k
_ —v(u,A) nj;
*
Jv(ij)(n+1)
.t .
vy-ny; A Vy -y
= T M - * :
]V(ij)(n+1) ]V(ij)(n+ D
However, v, - n}; = 0, since v, is in the plane to which n?; is perpendicular.
Hence
*
v, - nk
. % _ J
Wijven, n(X5y) = —Am——. O

@@j)n+1)

LEMMA A.3. With v, and v, as defined above, we obtain the following
results for the derivatives of h and u:

(23) ]:Lvl(X:Fj) =u;j, V1(X;Fj) =0
and
(24) 0> dy; ,(x5) = hy(xF).

ProoF. Assume that £ is differentiable everywhere on D, then l'zvl(x’fj) =
0, by definition of x}; as the point maximizing A(-) over points on the line
between x; and x;. Clearly, h(x};) can be obtained by setting A = 0 in (22).
Thus, we have

hvl X;‘kj = uij,vl(ij) = 0.

The line X}, + AV, (where V, = X%, — X)), crosses the curve & at A = —1
(corresponding to X)) and A = 0 (corresponding to X7¥)), by definition of X,
and X7;. However, a single line of the form X + AV can cross the surface 4, at
most twice, by concavity of A, and will lie below A in between the points of
intersection and above A for all other points, by Lemma A.1. Thus, Lemma
A.1 ensures that

wi(Xj; + Avp) = A(X[; + Avy) YAz 0and A < —1
and, since u,(x};) = h(x})),

0> u, (x5 + Avy) — u(XF5) = h(X); + Avy) — A(xF;) VA=0.
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This implies that
0> L.Lij,vz(X?j) = kvz(X?j%
by definition of #;; , and h,.
Similar proofs may be constructed for the case where A is not differen-

tiable everywhere on D, due to the fact that left and right derivatives will be
so defined, by the concavity of h. O

LEMMA A.4. Let m,(x) denote the “height” of the tangent plane to h at
X;kj, evaluated at the point X, that is,

m;;(x) = (x — xj;) 'n,, + h(x};),

where
dh

n, = ——(x3).
Then
(25) mij’v(“’)‘)(x) =pvy n, +Avy-n, Vx €R,
with the special cases that

mij,vl X?j) =0,
and
(26) uij,vz(x?j) = mij,vz(X?j)?
where m;; ,(x) denotes the derivative of m;; in the direction v, at the point x.

ProoF. By definition,
M5 v, (%)
~ lim [x — x’fj + 7v(u, /\)] ‘n,, + h(xj‘j) - (x - x’fj) ‘n, — h(x’fj)
70 T
=v(p, ) n,
=uv;'n, +Avy,'n

Vx € R.

m?

Clearly, m,; (x},) = h,(x¥,) V v € R?, by definition of m as the tangent to
h at x};. Therefore, (23) of Lemma A.3 implies that

m;; X?j) =0
and (24) of Lemma A.3 implies that
0> uij,vz(xfj) = hvz(xfj) = mij,vz(xfj)
and the result follows. O
ProoOF or THEOREM 1. Since

mij[xij( ,U«,)\)] Zh[Xij( ,u,/\)] Vu,AeR,
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by definition of m,; as the tangent to & at x; and the concavity of 4. Thus, it
is sufficient to prove that

mij[xij( M, )‘)] = uij[xij( I8 /\)] Vu>0and A € R.
Now,
wii[%,( s M) = my[x;( e, V)]

£ _ o - n*,
_ x5 = xu(w V] 0 +h(x}) — [x( 8 A) —x5] o, — A(XE

*
]v(ij)(n+1)
n*.
_ * tJ
= [Xij_xij(ﬂ,/\)] ( " +n,
(ij)n+1)

*
=(X?j_xfj_/\v1_MVz)'( ——+n
Neixn+1

m

12 12
— u
p[* AI*
(ij)n+1) @j)n+1)

v, n Vy I

= -

—Avi'm, —uvy-m,,

where v, and v, are the vectors defined in Lemma A.2.

However, v, - n}; = 0, by definition of n;, and v, - n,, =0, since mh;; , (x};) =

Av,-n, = 0, by Lemma A.4. Thus,

vy n’fj
uij[xij( My ’\)] - mij[xij( My )\)] = Qoo — MVyn,,
Ij)n+1)
but
vy n>’i‘j
——— >=Vy,-'n,
Neijxn+1)
by substituting the definitions of #;; . (-) and m;; ,(x};) from (22) and (25)
into (26) of Lemma A.4. Hence,
v, - nk,
uij[xij( 2 )‘)] - mij[xij( My )\)] = —,U«*—J — UVg M,
@j)n+1)
>0 iff u>0.

Hence uij[xij( o, AVl > mij[xij( u, V]V u > 0, and the result follows. O
Before we prove Theorem 3, we require the following lemmas.
LEMMA A.5.

dxq -+ dx

n

. n
n=/ exp(Zaixi—kb
0 .

=1

n

0 1
=(-1) ebl_[;, a;<0,Vi
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The proof is trivial.

LEMMA A.6. If the integral I, is defined as

S1 Sp 1
In =/;) /;) exp( ZlaJA]) d)\l e d/\n, n > 2,

j=

wheres, =lands;=1—YX._.A,i=2,...,n, then

J<i%j>

.. T T

i=1 nj#i(ai _aj)ai n}lﬂai

ProOOF. By induction, clearly,

1 ,1-4
I, = f f Yexp(a;A; + azdy) dAy, d)y
o ‘o

11 1
f —exp((a; — ay)A, +ay) — —exp(aAy) dAy
0 Qo ay

exp(a,) exp(as) 1

a,(a; — ay) ay(ay — ay) a,ay '

Hence, the result is true for n = 2. Now, assume it is true for n = k&, say,
then

S1 Sk+1 kil
[ [T exp| X oagn | dAy iy,
0 0 j=1
S Sy, k Sk+1
=/ f exp Z aj)tj / exp( @y, 1Api1) dAy - dAy
0 0 j=1 0
k exp(a,, s
_ 81”‘ Skexp Za')h p( k+1 k+1) _ dN, - dA
A 1 k
0 0 j=1 Ar+1 Ap 11
1 1 s k 1
- “ee ex a —+ a:- —a )\ d)\ "‘dA - I
akﬂj;) /o P( k+1 j;l( j k1) j 1 k apos k
_ exp(ay, ) i exp(a; — @, 1)
Api1 i=1 H?#i(ai_aj)(ai_ak-%—l)
k
(-1 exp(ay. 1)
I—[f=1(ai — Q1) Arv1
1k exp(a;) 1 (-1

— Z —

% %
Api1 -1 nj#i(ai - aj)ai Ari1 njzlai
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since it is true for n = k, and replacing a; by a;, — @, ; in the definition of I,

1k exp(a;) [ 1 1}
Qpi1 -1 n?#i(ai - aj) a; = Qpyq a;
k k+1
(—1)" exp(ay, 1) (-
[ pi1(a; —api1)ag. I} a,
2k k+1
_f o e(a) (-D%exp(ar.) (DT
i=1 Hf:il(ai - aj)ai nj¢k+1(ak+1 - aj)ak+1 Hf:fai
U ewle) (-n**
i=1 H?;il(ai_aj)ai H?:llai
=Ik+1-

Hence, if the result holds for n = &, it also holds for n = £ + 1, and hence for
all n > 2, by induction. O

Given these lemmas, we can now proceed to prove Theorem 3 by detailing
the analytic bound on P.

PrOOF OF THEOREM 3. To gain the lower bound L to M, split the hull into
n + 1 regions by taking for each i = 1,...,n + 1, the n-dimensional hyper-
triangle formed from the vertices {x,,...,X; 1,X;,1,---,X,,1). Now let
{x; — x¢): j #1i} be a set of coordinate axes for points within this hyper-
triangle, then a general point on the hypertriangular plane is given by

X (N) =x¢ + ) Ai(x; — xg)
(27) J#i
=Xy + Npdp),
where N = (A;, oo, Ao, Ay eos Ay )
Now the height /[x;,(N)], of this general point will be such that
[Xo = (2 (M), [x(M)])] - Ngiy = 0.
Therefore,
X, Ny — X(i)()‘) REONS Z[X(i)()\)]N(i)(nH) =0.
This implies that
l[x(i)()\)] = —X, N, + x(i)()\) ‘ng, since Ny, = —1
= =X, -Ny, +x,-n;, — 2 (X, —Xg) -n;A; by (27)
VE
= h(x,) — Z (Xj - X,) "nG)A;
J#Ii

=b+ ) a;)\; say
j#i
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Now, within the convex hull given by points {x,,...,X;_1,X;,1,--->X, 41}
I lies below the surface h. Therefore, the hypervolume of f = e" within this
convex hull is given by

7— fosl.../()si'lfsi+1---fOS”HeXP[Z(X(i)()‘))NJ(”'d)\l

0
rdd g dAyy e dA

(28) S S; S S
=|Ji| T i-1 i1 n+1eX (b+ ai-)\-)d)\
A el B
crdA g dA g d Ay,
where
j-1
s =1, sj=1—2/\l, j=2,...,n+1,
l+i
=1

and |J ;)| is the Jacobian term. Thus, Lemma A.6 gives us that

exp(a;; -1)"
—— () (-1)
J*i nk#i,j(aij _aik)aij njséiaij
=L, say.

Now a lower bound to f within the convex hull formed by all of the points
{xy,...,x,, 4} is given by the sum of the lower bounds in each of the n + 1
regions into which this hull was split. Thus, a lower bound to M, the
hypervolume of f within the convex hull, is given by

n+1

L= Y L.

i=1

To gain the upper bound U to T', we begin by splitting the convex hull as
before and then use the tilted planes as described in Section 4 to define an
upper bound to 2 beyond this convex hull, denoted by

X, NG — x(N) - nf,
ulx(M)] = N

*
(iXn+1)

X, — X;)nf
~h(xy) = ¥ Zo " E)
e (i)n+1)
=b+ )} af); say.
j*i
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Then, the required upper bound for f beyond the convex hull formed from the

set of points {x,,..., %, 1, X;,1,---, X, 1) 1S given by
I= exp[u(x(i)()\))]IJ(i)| dAy - dA,_;dA, o dA,
N XA >1)
[ ex (b+ af)\.)dxi
)'/{)\:ZAizl} P ]§i 7 @
= lJ / f exp(b + Za’fj)\j) d\;,
0 0 J#i
S1 Si—1 [Si+1 Sp+1
- - exp| b + af)\.) d\
[ el Zea)
exp(a¥;
=le’| = X i ) | byLemmasA.5andA.6
j#i nk#i,j(aij - aik)aij
= U, say.

Now an upper bound to f within the convex hull formed by all of the points
{xg,...,X,, ) is given by the sum of the upper bounds in each of the n + 1
regions into which this hull was split. Thus an upper bound to the hypervol-
ume of f in the tails is given by

a]ld, Since U > T and L < M, then
P - - I b
T M = U L )

Finally, in order to prove Theorem 4, we require the following lemma.

LEMMA A.7. Let V, be the hypervolume of the hypertriangle with vertices
{x4,...,%,,} then

(29) v, - =1L,

where V,_ | is the (n — 1)-dimensional hypervolume of the base formed from
vertices {X,,...,X,} and h is the perpendicular height of x, ., from the base.

Proor. Let A, be the (n — 1)-dimensional hypervolume of the section of
the n-dimensional hypertriangle truncated parallel to the base at height /.
Then

h —1 n—1
Al=V ( ) 5

n—1 hnfl
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since at height [, each side has been reduced by a factor (A — [)/h and thus
the volume is reduced by a factor (A — 1)/h)" " '. Thus,

h

v.=(" Adl
=0
A (h_l)n—l
A
vV, (h-0)"]"
Rt (e,
V. _.h
_ n—1 ) O
n

Given this lemma, we can prove the result of Theorem 4 for the hypervol-
ume of an n-dimensional hypertriangle.

PrOOF OF THEOREM 4. By induction, if n = 2, then (19) becomes
Vy, = %|det(aga3)|,

which is simply the area of a triangle, as given in (18). Thus the theorem
holds for n = 2.
Assume that the theorem holds for n = &, say, then

1
Vi = E|det(a2 cayL )]

Now introduce a point A, , € R**! and, without loss of generality, set
A, =@;,00Vi=2,...,k+1, since the set of points {A;: i =2,...,k + 1}
will lie on a k-plane in R*"! which can be arbitrarily transformed to the
X,,; = 0 plane by an orthogonal transformation T, such that det(T) = 1.
Then

V,h
Vk+1 = m’

by Lemma A.7, where A is simply the (2 + 1)th component of A, | ,; that is,
h = A¥*1 Therefore,

Vk+1 =

MWE+1 |det(a2 "'ak+1)|A}iié

= mwet(az eay ) |ARYS.

However,

det(A, - Ay.,) = (—1)" det(a, - a,, )AL,



LOG-CONCAVE CONVERGENCE ASSESSMENT 433
since AK*' =0V j=2,...,k + 1 Thus,

Vier = mmet(Az Ayl

so that the result is also true for n = k2 + 1, and hence is true for all n > 2,
by induction. O
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