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ASYMPTOTIC NONEQUIVALENCE OF NONPARAMETRIC
EXPERIMENTS WHEN THE SMOOTHNESS INDEX IS 1/2

By Lawrence D. Brown1 and Cun-Hui Zhang2

University of Pennsylvania and Rutgers University

An example is provided to show that the natural asymptotic equiva-
lence does not hold between any pairs of three nonparametric experiments:
density problem, white noise with drift and nonparametric regression,
when the smoothness index of the unknown nonparametric function class
is 1/2.

1. Introduction. There have recently been several papers demonstrat-
ing the global asymptotic equivalence of certain nonparametric problems. See
especially Brown and Low (1996), who established global asymptotic equiv-
alence of the usual white-noise-with-drift problem to the nonparametric re-
gression problem, and Nussbaum (1996), who established global asymptotic
equivalence to the nonparametric density problem. In both these instances
the results were established under a smoothness assumption on the unknown
nonparametric drift, regression or density function. In both cases such func-
tions were assumed to have smoothness coefficient α > 1/2, for example, to
satisfy

�1�1� �f�x� − f�y�� ≤ M�x− y�α

for all �x	y� in their domain of definition.
This note contains an example which shows that such a condition is nec-

essary, in the sense that global asymptotic equivalence may fail between any
pairs of the above three nonparametric experiments when (1.1) fails in a man-
ner that the nonparametric family of unknown functions contains functions
satisfying (1.1) with α = 1/2 but not with any α > 1/2.

Efromovich and Samarov (1996) have already shown that asymptotic equiv-
alence of nonparametric regression and white noise may fail when α < 1/4 in
(1.1). The present counterexample to equivalence is somewhat different from
theirs and carries the boundary value α = 1/2.

Section 2 contains a brief formal description of the nonparametric problems
and of global asymptotic equivalence. Section 3 describes the example.
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2. The problem.

Density problem ξ0	 n. In the nonparametric density problem one observes
i.i.d. variables X1	 � � � 	Xn having some density g = f2/4. Assume the support
of f is �0	1�. About f it is assumed only that f ∈ � ∩�f� f ≥ 0	

∫ 1
0 f2�x�dx =

4�, where � is some (large) class of functions in L2�0	1�. In general, the goal
is to use the observations to make some sort of inference about f.

White noise ξ1	 n. In the white-noise problem one observes a Gaussian pro-
cess �Zn�t�	 0 ≤ t ≤ 1� which can be symbolically written as

dZn�t� = f�t�dt+ 1√
n
dB�t�	

where B�t� denotes the standard Brownian motion on �0	1�. Again f ∈ � .

Nonparametric regression ξ2	 n. Here one observes �Yi	Xi�	 1 ≤ i ≤ n.
Given �Xi� 1 ≤ i ≤ n�, the Yi are independent normal variables with mean
f�Xi� and unit variance, f ∈ � . For deterministic Xi [e.g., Xi = i/�n+ 1�]
and α = 1/2, the asymptotic nonequivalence of nonparametric regression and
white noise has already been established in Brown and Low [(1996), Re-
mark 4.6]. Hence, in the case of current interest the Xi are i.i.d. uniform
random variables on �0	1�.

Asymptotic equivalence. The assertion that two of these formulations—
say, nonparametric regression and white noise—are globally asymptotically
equivalent is equivalent to the following assertion: for each n, let An be an
action space and Ln be a loss function with �Ln�∞ ≤ 1, and let δn be a pro-
cedure in one of the problems. Then there exists a corresponding procedure
δ′n in the other problem such that the sequences δn and δ′n are asymptotically
equivalent, which means

�2�1� lim
n→∞ sup

f∈�

∣∣E�n�
f

(
Ln�f	 δn�

)−E
�n�′
f

(
Ln�f	 δ′n�

)∣∣ = 0�

[The expectations in (2.1) are computed under f for the nth form of the first
and second problems, respectively. The notation should be interpreted to al-
low for randomized decision rules. The convergence in (2.1) is uniform in the
loss functions and decision rules as they are allowed to change with n.] The
asymptotic equivalence established in Brown and Low (1996) is a little differ-
ent from the above statement. The equivalence expressed above is established
in Brown and Zhang (1996).

The equivalence assertion involving the density problem was estab-
lished by Nussbaum (1996) under (1.1) and the additional assumption that
min0≤x≤1 f�x� is uniformly bounded away from 0 over � : it is that the density
problem with unknown density g = f2/4 is asymptotically equivalent to the
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white noise with drift f. The statement of (2.1) thus becomes

lim
n→∞ sup

f∈�

∣∣E�n�
f2/4

(
Ln�f	 δn�

)−E
�n�′
f

(
Ln�f	 δ′n�

)∣∣ = 0	

where the first expectation refers to the density problem and the second to
either the white-noise or the nonparametric regression problem.

Hence, in order to prove two formulations nonequivalent in this sense, it
suffices to find some action spaces An, uniformly bounded loss functions Ln

and priors on � for which the Bayes risks converge to different values in
different problems.

3. The example. Let �α	M be the class of all functions f with support
�0	1� such that (1.1) holds for all 0 ≤ x < y ≤ 1. Here we shall give an exam-
ple to show that the white-noise and nonparametric regression experiments
are not asymptotically equivalent for � = �1/2	M, and also that under the
stronger restriction � = �1/2	M ∩ �f� f > ε0	 �f�2

2 = 4�, the density problem
is not asymptotically equivalent to either the white noise or the nonparametric
regression for every 0 ≤ ε0 < 2.

Let ψ�x� be a function in �1	M such that
∫ 1

0 ψ�x�dx = ∫ 1
0 ψ3�x�dx = 0 and

ψ�x� = 0 for x �∈ �0	1�. For m = mn, define

�3�1� φj�x� = m−1/2ψ�m�x− �j− 1�/m��	 1 ≤ j ≤ m�

For θ = �θ1	 � � � 	 θm� with �θj� ≤ 1, define

�3�2� φθ�x� =
m∑

j=1

θjφj�x�	 fθ�x� = 2 +φθ�x� − cm	

where cm = cm�θ� is chosen so that
∫ �fθ/2�2 = 1.

Motivation. Examples of asymptotic nonequivalence can be constructed
by finding Bayes problems for which the Bayes risks converge to different
limits for different sequences of experiments. Consider prior distributions on
the subspaces �m1/2−αφθ� of �α	M with φθ in (3.2) and m ∼ n. Due to the
normality of the errors, the nonparametric regression ξ2	 n is characterized by
the Fisher information σ2

α	 j = m1−2α ∑
i φ

2
j�Xi� given �Xi�, 1 ≤ j ≤ m, so that

its Bayes risk is of the form Ern�σα	1	 � � � 	 σα	n�, with rn being the conditional
Bayes risk. It is easily seen that the corresponding Bayes risk for the white
noise ξ1	 n is rn�

√
Eσ2

α	1	 � � � 	
√
Eσ2

α	n�. For tractable Bayes problems, the limit
Bayes risk is often found via Taylor expansions of certain components of rn and
applications of limiting theorems to

∑
j σ

k
α	j for ξ2	 n. Since σα	j is proportional

to m−α, higher-order terms are needed in Taylor expansions only for small α,
whereas lower-order terms are more likely to be crucial for large α. Since we
are interested in the largest possible α = 1/2 for nonequivalence examples, we
shall look for Bayes problems in which

∑
j σα	j plays an important role. This

leads to the following variation of the compound hypothesis testing problem
of Robbins (1951).
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Let G be the prior such that θj, 1 ≤ j ≤ m, are i.i.d. Bernoulli variables
with

�3�3� PG�θj = 1� = PG�θj = −1� = 1/2�

Consider the estimation of θ = �θ1	 � � � 	 θm� with the 0–1 loss for picking more
than half of the θj wrong,

�3�4� L�θ	 a� = I

{ m∑
j=1

I�θj �= aj� > m/2
}
	

where a = �a1	 � � � 	 am� is the action. We shall show that the Bayes risks for
the three sequences of experiments converge to different limits as n → ∞ and
n/m → λ,

�3�5� R�G	dG� ξj	n� → *�−τj�λ	ψ��	
where �ξj	n�	 j = 0	1	2, are, respectively, the density problem, white noise
and nonparametric regression, dG = dG�ξj	n� is the Bayes rule with experi-
ment ξj	n, *�·� is the standard normal distribution function and τj is defined
below. Let N be a Poisson variable with EN = λ and let Ui	 i ≥ 1, be i.i.d.
uniform �0	1� variables independent of N. The functions τj�λ	ψ� in (3.5) are
analytically different and are given by

�3�6�

τ0�λ	ψ� = E

∣∣∣∣
N∑
i=1

ψ�Ui�
∣∣∣∣	

τ1�λ	ψ� =
√

2λ
π

�ψ�2	

τ2�λ	ψ� = E

√√√√ 2
π

N∑
i=1

ψ2�Ui��

By the Schwarz inequality, τ2�λ	ψ� < τ1�λ	ψ�. For small λ,

τ1�λ	ψ� > τ0�λ	ψ� = ��ψ�1 + o�1��λ > τ2�λ	ψ� =
√

2/π ��ψ�1 + o�1��λ�
[By the moment convergence in the strong law of large numbers and the cen-
tral limit theorem, τi�λ	ψ�/τj�λ	ψ� → 1 as λ → ∞ for all 0 ≤ i < j ≤ 2.]

For � = �1/2	M, the asymptotic nonequivalence between the white noise
and the nonparametric regression follows from (3.5) and (3.6) as ψ ∈ �1	M
implies fθ ∈ �1/2	M in view of (3.1) and (3.2). Since φj�x�φk�x� = 0 for j �= k,

�3�7� �φθ�2
2 = m�φj�2

2 = m−1�ψ�2
2	 �φθ�∞ = �ψ�∞/

√
m�

Since gθ = �fθ/2�2 is a density, by (3.7) cm do not depend on θ under (3.3) and

�3�8� cm = 2
{
1 −

√
1 − �φθ�2

2/4
}
= m−1�ψ�2

2/4 +O�m−2��
The asymptotic nonequivalence between the density problem and either the
white noise or the nonparametric regression also follows from (3.5) and (3.6)
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as the further restrictions �fθ�2
2 = 4 and fθ > ε0 hold for large m and fixed

0 ≤ ε0 < 2 by (3.2), (3.7), (3.8) and the fact that �ψ�∞ ≤ M.

Motivation (continued). The decision problem (3.4) is closely related to
compound hypothesis testing and estimation with L1 loss. In the compound hy-
pothesis testing problem, the loss function is m−1 ∑m

j=1 I�θj �= aj�, the Bayes
rules for the prior (3.3) are the same as with the loss (3.4), and the Bayes risks
are 1/2−�λ/�4n��1/2τj�λ	ψ�+o�n−1/2� for ξj	n. In the estimation problem with

the L1 loss
∫ 1

0 �a�t� − f�t��dt, the Bayes rules are fG�·� = ∑m
j=1 d

G
j φj�·� with

φj in (3.1) and dG = �dG
1 	 � � � 	 d

G
m� in (3.5), and the Bayes risks are

√
λ/n�ψ�1

[
1/2 − �λ/�4n��1/2τj�λ	ψ�

]+ o�n−1��
Thus, the difference among the nonparametric experiments is recovered in
the second-order asymptotics in the above two decision problems. The proofs
of the above statements are omitted as they are similar to and simpler than
the calculation of the Bayes risks (3.5) and (3.6).

Remark 1. In nonparametric regression with deterministic Xi = i/�n+1�,
Yi contain no information about f in the subspace (3.2) with f = fθ and
m = n+1 as in Brown and Low (1996), so that the Bayes risk for the decision
problem (3.4) is 1/2 under the prior (3.3). Since τj�1	 ψ� > 0 for �ψ�2 > 0
in (3.5) for each j = 0	1	2, the nonparametric regression with deterministic
�Xi� is asymptotically nonequivalent to �ξj	n� for α = 1/2.

Remark 2. Many applications of the nonparametric experiments discussed
here involve their d-dimensional versions with f being an unknown function
of d real variables (e.g., E�Yi�Xi� = f�Xi� with Xi being uniform �0	1�d in the
case of nonparametric regression). The above example can be easily modified
to show the asymptotic nonequivalence of these nonparametric experiments
when the smoothness index is d/2.

4. Calculation of Bayes risks. In this section we calculate the limit of
the Bayes risks given in (3.5) and (3.6).

Nonparametric regression ξ2	 n. Let P∗
n be the conditional probability given

X1	 � � � 	Xn and under PG. Set

Sj =
n∑

i=1

φj�Xi��Yi − 2 + cm�	 σ2
j =

n∑
i=1

φ2
j�Xi��

Since φj�·� have disjoint support sets, by (3.2) Sj are sufficient for θj. In
addition, �Sj	 θj�	 1 ≤ j ≤ m, are independent random vectors under P∗

n

with

P∗
n�Sj ≤ t�θj� = *

(�t− θjσ
2
j�/σj

)
	 P∗

n�θj = ±1� = 1/2�
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Since the loss function in (3.4) is increasing in I�θj �= aj�, the Bayes rule
dG = �dG

1 	 � � � 	 d
G
m� is given by

dG
j = I�Sj > 0� − I�Sj ≤ 0�	

and I�θj �= dG
j � are independent Bernoulli random variables under P∗

n with

�4�1� pj = P∗
n

{
θj �= dG

j

} = P∗
n

{
θjSj < 0�θj

} = *�−σj��
Since σ2

j ≤ n�φj�2
∞ = �n/m��ψ�2

∞ = O�1�, pj�1 − pj� are uniformly bounded
away from zero, so that

�4�2�
( m∑

j=1

pj�1 − pj�
)−1/2{ m∑

j=1

I�θj �= dG
j � −

m∑
j=1

pj

}
→� N�0	1�

uniformly under P∗
n. Let Nj = #�i� �j − 1�/m < Xi ≤ j/m�. Since Xi are

i.i.d. uniform, �N1	 � � � 	Nm� is a multinomial vector with ENj = n/m → λ. It
follows that

√
mEσ1 = E

{ N1∑
i=1

ψ2�Ui�
}1/2

→ τ2�λ	ψ�
√

π

2
	

mEσ2
1 = mn�φ1�2

2 = n

m
�ψ�2

2

and

mEσ1σ2 = E

{ N1∑
i=1

ψ2�Ui�
N2∑

i=N1+1

ψ2�Ui�
}1/2

→ τ2
2�λ	ψ�

π

2

as n → ∞ and n/m → λ, where �Ui� are i.i.d. uniform �0	1� variables inde-
pendent of �Xi�. These lead to mEσ2

1 = O�1� and

Var
( m∑

j=1

σj

)
≤ mEσ2

1 +m�m− 1�{Eσ1σ2 − �Eσ1�2} = o�m��

By (4.1) and the boundedness and Taylor expansion of *�·�, pj − 1/2 =
*�−σj� − 1/2 = −σj/

√
2π + O�σ2

j� and pj�1 − pj� = 1/4 − �pj − 1/2�2 =
1/4+O�σ2

j� with O�1� uniformly bounded by a universal constant, so that by
the Chebyshev inequality,∑m

j=1�pj − 1/2�√
m/4

→ −τ2�λ	ψ� and

∑m
j=1 pj�1 − pj�

m
→ 1

4

in probability. This and (4.2) imply (3.5) and (3.6) for ξ2	 n, as

P

{ m∑
j=1

I
{
θj �= dG

j

}
> m/2

}
= E*

(( m∑
j=1

pj�1 − pj�
)−1/2 m∑

j=1

(
pj − 1

2

))+ o�1�

= *�−τ2�λ	ψ�� + o�1��
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White noise ξ1	 n. The calculation is similar but much simpler compared
with nonparametric regression. The sufficient statistics are

Zj = n
∫
φj�t�dZn�t� ∼ N�θjn�φj�2

2	 n�φj�2
2�	

so that the Bayes rule dG = �dG
1 	 � � � 	 d

G
m� is given by dG

j = I�Zj > 0�−I�Zj ≤
0�. Consequently, I�θj �= dG

j �, 1 ≤ j ≤ m, are i.i.d. Bernoulli variables
with P�θj �= dG

j � = P�θj �= dG
j �θj� = *�−√

n�φj�2�. Since
√
n�φj�2 =√

n�ψ�2/m = �√λ+ o�1���ψ�2/
√
m and *�t� ∼ 1/2 + t/

√
2π for small t,

P

{ m∑
j=1

I�θj �= dG
j � > m/2

}
→ *�−�ψ�2

√
2λ/π��

Density problem ξ0	 n. For 1 ≤ j ≤ m, define

3j�±1� = exp
[
2

n∑
i=1

log
(

1 ±φj�Xi�
2

− cm
2

)
I

{
j− 1
m

< Xi ≤
j

m

}]
�

Since the observations X1	 � � � 	Xn are i.i.d. from gθ = �fθ/2�2, by (3.2) the
likelihood is

n∏
i=1

gθ�Xi� =
m∏

j=1

3j�θj�	

so that θj	 1 ≤ j ≤ m, are independent given X1	 � � � 	Xn and 3j �±1� are
sufficient for θj. Consequently, the Bayes rule dG = �dG

1 	 � � � 	 d
G
m� is given by

dG
j = I�3j�1� > 3j�−1�� − I�3j�1� ≤ 3j�−1��	

and I�θj �= dG
j �	 1 ≤ j ≤ m, are independent variables given X1	 � � � 	Xn with

�4�3� pj = P∗
n�θj �= dG

j � = P∗
n�θj �= dG

j �θj� = min�3j�1�	 3j�−1��
3j�1� + 3j�−1� 	

where P∗
n is the conditional probability given X1	 � � � 	Xn (the posterior prob-

ability measure with respect to θ). Taking Taylor expansions, we find by (3.7)
and (3.8),

2 log�1 ±φj�Xi�/2 − cm/2� = ±φj�Xi� − cm −φ2
j�Xi�/4 +O�m−3/2�

with uniform O�1�, so that

�4�4� log�3j�1�/3j�−1�� = 2S̃j +O�Njm
−3/2�	

where S̃j = ∑n
i=1 φj�Xi�. Since

∫ 1
0 ψ�x�dx = ∫ 1

0 ψ3�x�dx = 0,

Eθφj�Xi� =
∫
φj�x��1 + θjφj�x�/2 − cm/2�2 dx

= �1 − cm/2�θj�φj�2
2

= �1 − cm/2�θj�ψ�2
2/m

2	



286 L. D. BROWN AND C.-H. ZHANG

and by (3.7) and (3.8),

Eθφ
2
j�Xi� = �1 − cm/2�2�φj�2

2 + �φj�4
4/4

≤ �1 − �ψ�2
2/�4m���ψ�2

2/m
2 + �ψ�4

4/�4m3�
≤ �ψ�2

∞/m2�

Since �φj�x��∞ = �ψ�∞/
√
m, by the Bernstein inequality there exists a con-

stant C such that

Pθ

{
�S̃j� >

�C log m+ 1�√
m

}
≤ 1

m2

uniformly in θ, so that

P

{
max

1≤j≤m
�S̃j� >

�C log m+ 1�√
m

}
≤ 1

m
→ 0�

This and (4.4) allow us to take the Taylor expansion of pj in (4.3),

�4�5�

1 − 2pj = �3j�1�/3j�−1� − 1�
�3j�1�/3j�−1� + 1�

= �2S̃j + 2S̃2
j�

2 + 2S̃j

+O�m−3/2��Nj + �log m�3�

= �S̃j� +O�m−3/2��Nj + �log m�3��
Since

∑m
j=1 Nj = n = O�m�, max1≤j≤m � 1

2 − pj� → 0 in probability, so that
(4.2) holds under the current P∗

n over some events Cn ∈ σ�X1	 � � � 	Xn� with
P�Cn� → 1. Thus

�4�6� R�G	dG� ξ0	 n� = E*

(( m∑
j=1

pj�1 − pj�
)−1/2 m∑

j=1

�pj − 1/2�
)
+ o�1��

In addition,

√
mEθ�S̃1� = Eθ

∣∣∣∣
N1∑
i=1

ψ�Ũi1�
∣∣∣∣	

mEθ�S̃1S̃2� = Eθ

∣∣∣∣
N1∑
i=1

ψ�Ũi1�
N2∑
i=1

ψ�Ũi2�
∣∣∣∣	

where Ũij	 i ≥ 1, are i.i.d. with density �1 + θjm
−1/2ψ�x�/2 − cm/2�2 under

Pθ. Since these density functions converge uniformly in �x	 θj� to the uniform
�0	1� density and �N1	 � � � 	Nm� is a multinomial vector with ENj = EθNj =
n/m,

√
mE�S̃1� → E

∣∣∣∣
N∑
i=1

ψ�Ui�
∣∣∣∣ = τ0�λ	ψ�	 mE�S̃1S̃2� → τ2

0�λ	ψ�	
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and ES̃2
1 ≤ nEφ2

j�X1� ≤ n�ψ�2
∞/m2, so that

E

∣∣∣∣ 1√
m

m∑
j=1

�S̃j� − τ0�λ	ψ�
∣∣∣∣
2

→ 0	 E
m∑

j=1

�S̃j�2 = O�1��

Hence, by (4.5) and (4.6), R�G	dG� ξ0	 n� = E*�−τ0�λ	ψ�� + o�1�.
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