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EFFICIENT ESTIMATION FROM RIGHT-CENSORED DATA WHEN
FAILURE INDICATORS ARE MISSING AT RANDOM

By Mark J. van der Laan and Ian W. McKeague

University of California, Berkeley, and Florida State University

The Kaplan–Meier estimator of a survival function is well known to
be asymptotically efficient when cause of failure is always observed. It has
been an open problem, however, to find an efficient estimator when failure
indicators are missing at random. Lo showed that nonparametric maxi-
mum likelihood estimators are inconsistent, and this has led to several
proposals of ad hoc estimators, none of which are efficient. We now in-
troduce a sieved nonparametric maximum likelihood estimator, and show
that it is efficient. Our approach is related to the estimation of a bivariate
survival function from bivariate right-censored data.

1. Introduction. Suppose that we wish to estimate a survival distribu-
tion based on right-censored data. When cause of failure is always observed,
the method of nonparametric maximum likelihood leads to the well-studied
Kaplan–Meier (1958) estimator, which has many desirable properties includ-
ing asymptotic efficiency [Wellner (1982)]. In this paper we address the prob-
lem of finding an asymptotically efficient estimator when cause-of-failure in-
formation is missing for some individuals.

Cause-of-failure information can be missing for a number of reasons. For
example, in epidemiological studies relevant death certificate information can
be missing, or autopsy results and hospital case notes can be inconclusive. In
such cases it is not possible to determine whether mortality is due to the cause
of interest or due to extraneous causes. In a study of the reporting of motor-
cycle injury fatalities occurring in Connecticut in 1987, Lapidus et al. (1994)
found that 40% of death certificates were missing some or all of the required
information. A study of mortality patterns among young people in the Nether-
lands [Bijlsma (1994)] found that 9% of cases had “ill-defined symptoms, signs
and conditions,” and over 90% of those were registered as “cause-unknown,”
mainly due to missing death certificates of people who had died abroad.

Let T be the survival time of interest, let C be a censoring time which is
independent of T and let ξ be a Bernoulli random variable which is allowed
to depend on �T�C� in a way to be specified in a moment. Let X = T ∧ C
and � = I�X = T�. If �X��� is always observed, that is, we have classical
right-censored data on T, then we can estimate the survival function of T
using the Kaplan–Meier estimator. In the problem studied here, however, the
failure indicator � is missing if ξ happens to be 0. That is, we have n i.i.d.
observations on Y = �X�ξ�� ξ�.
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Our goal is to efficiently estimate the survival function ST of T under the
assumption

P�ξ = 1 �X��� = P�ξ = 1 �X��(1)

that ξ and � are conditionally independent given X. This assumption places
our problem in the framework of “missing at random,” introduced by Rubin
(1976), or, more generally, “coarsening at random” (CAR); see Heitjan and Ru-
bin (1991), Jacobsen and Keiding (1995) and Gill, van der Laan and Robins
(1997). Coarsening is a sampling mechanism in which instead of observing
a random quantity of interest one is only able to observe that it takes a
value in some possibly randomly determined set of values. CAR isolates those
situations in which the coarsening mechanism can be ignored when making
inferences.

Our approach is to find the nonparametric maximum likelihood estimator
(NPMLE) of ST based on reduced data produced by a discretization of X. In
this way we “repair” the usual NPMLE, which is inconsistent for estimat-
ing ST. The proposed estimator is found by noticing that our problem can
be considered as a special case of nonparametric estimation of a bivariate
distribution from bivariate right-censored data. Indeed, the coarsening mech-
anism acting on �X��� amounts to right censorship of �: observation of Y is
equivalent to observation of �X��ξ�, where �ξ = � ∧ �2ξ − 1�. We are then
able to use van der Laan’s (1996b) efficient sieved NPMLE of a bivariate dis-
tribution function to estimate the distribution F of �X���. This estimator
reduces to a simple and explicit form Fn in our case. Finally, using the fact
that ST is a simple functional 
 of F, we construct the proposed estimator
ŜT = 
�Fn�.

Many authors have studied our problem under the stronger assumption
that ξ and � are completely independent, that is, that P�ξ = 1 � X��� does
not depend on �X���. The failure indicators are then said to be “missing com-
pletely at random” (MCAR); cf. Little and Rubin (1987). MCAR can be checked
from observation of �X��ξ� given that CAR is in effect, and it allows the use of
relatively simple estimators. For example, the survival distribution can be con-
sistently estimated under MCAR by simply ignoring the missing data (cases
with ξ = 0) and applying the Kaplan–Meier estimator to the complete data.
However, this “complete case estimator” is highly inefficient if there is a sig-
nificant degree of missingness. The first attempt to improve upon the complete
case estimator was made by Dinse (1982) who used the EM algorithm to ob-
tain an NPMLE. Lo (1991) showed that there are infinitely many NPMLEs
and some of them are inconsistent. He constructed two alternative estima-
tors, one of which is consistent and asymptotically normal. Gijbels, Lin and
Ying (1993) and McKeague and Subramanian (1996) have proposed further
improvements.

Knowing that the coarsening mechanism is MCAR can help in constructing
locally efficient estimators at this submodel. However, the function π�x� =
P�ξ = 1 � X = x�, which specifies the coarsening mechanism, factors out
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of the likelihood (i.e., the likelihood factors into a part which only depends
on the distribution functions of T and C, and a part which only depends
on π) and can be ignored as far as global efficiency is concerned. A globally
efficient estimator of F or ST therefore adapts to arbitrary CAR mechanisms
by (implicit) nonparametric estimation of π; see (2). This puts us in the setting
of an “ill-posed inverse problem” [cf. O’Sullivan, (1986)] so that some kind
of regularization procedure (e.g., kernel smoothing, method of sieves, etc.) is
needed; as in density estimation or nonparametric regression, direct NPMLE
is not successful.

Although the CAR assumption itself is fairly strong, it is the minimal con-
dition on the coarsening mechanism under which the survival distribution is
identifiable from observations on �X��ξ�. Indeed, the independence between
the survival and censoring mechanisms ensures that the distribution of T
is identifiable [see (3) and (4)] from the distribution of �X���, which can be
expressed as

F�dx� δ� ≡ P�X ∈ dx�� = δ� = P�ξ = 1�X ∈ dx�� = δ�
P�ξ = 1 �X ∈ dx�� = δ� �(2)

δ ∈ 
0�1�. In general, the numerator in F is identifiable but the denominator
is not because � is unobserved unless ξ = 1. The CAR assumption is precisely
what is needed to make the denominator identifiable, and implies that F will
be identifiable if π�x� is bounded away from 0.

The CAR assumption can, of course, be violated in practice; for example, in
the motorcycle injury fatalities study, the relevant death certificate informa-
tion is more likely to be missing when death is due to motorcycle injuries than
when it is due to other (less specific) causes. However, CAR cannot be checked
from data on �X��ξ� alone; cf. the assumption of independence between T
and C in the classical right-censored data model. To judge whether CAR is
in effect, it would be necessary to have data on the coarsening mechanism
itself, that is, data on �X��� when ξ = 0. In the motorcycle example, such
data are available through police accident reports [Lapidus et al. (1994)], and
the survival distribution could be identified through estimation of F. In the
present paper we shall restrict attention to the situation where only �X��ξ�
is observed and CAR is in effect.

The paper is organized as follows. The proposed estimator ŜT is constructed
in Section 2, and shown to be asymptotically efficient in Section 3. An alter-
native approach to the problem, based on some general results of Robins and
Rotnitzky (1992), is discussed in Section 4. Some numerical results assessing
the performance of ŜT are presented in Section 5.

2. The proposed estimator.

2.1. Special case of bivariate right-censored data. By the well-known prod-
uct integral representation of the survival function ST on which the Kaplan–
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Meier estimator is based we have

ST�t� = ��0� t�
(
1 − �T�dx�

)
�(3)

where

�T�dx� =
F�dx�1�
SX�x−� �(4)

Let D
0� τ� be the cadlag function space of real-valued functions on 
0� τ� en-
dowed with the supremum norm. Equations (3) and (4) define ST as a mapping

� �D
0� τ��2 → D
0� τ� from �F�x�1��F�x�0�� to ST:

ST�t� = 
�F��t��(5)

Gill and Johansen (1990) (the product integral mapping) and Gill (1989)
proved that 
 is compactly differentiable in the sense required by the func-
tional delta-method [see Gill (1989)]. Hence, if we construct an efficient esti-
mator of the bivariate distribution F�x� δ�, then plugging this estimator in (5)
provides us with an efficient estimator of ST. Here we use the result that a
compactly differentiable functional of an efficient estimator is efficient [van der
Vaart (1991)].

Another well-known fact concerning the univariate right-censored data
model is that for any bivariate distribution F�dx� δ� there exist independent
random variables T and C such that �X = T∧C�� = I�T < C�� ∼ F [see, e.g.,
Bickel, Klaassen, Ritov and Wellner (1993)]. In other words, F is completely
unspecified. Hence the problem is to estimate F nonparametrically using the
i.i.d. data on �X��ξ�.

If we define C1 = 2 if ξ = 1 and C1 = −1 if ξ = 0, then

�X��ξ� ξ� =
(
X�� ∧C1� I�� ∧C1 = ��)�

In other words, � is right-censored by the discrete random variable C1. This
shows that indeed estimating ST comes down to estimating a bivariate dis-
tribution of �X���, � ∈ 
0�1�, where X is always uncensored, but � is right-
censored.

Estimation of a bivariate survival function based on bivariate right-cen-
sored data is an extensively studied topic. The NPMLE for this problem is
inconsistent due to the fact that the lines induced by the singly censored
observations do not contain any uncensored observations for continuous data.
This lack of interaction with the uncensored observations implies that the
self-consistency equation [Efron (1967)] for the NPMLE has a wide class of
solutions. We refer to Pruitt (1991) and van der Laan (1996a, b) for a discussion
on the inconsistency of NPMLE in missing data models where the induced
regions contain no uncensored observations. The inconsistency of the NPMLE
has led to many proposals of ad hoc estimators, but these are not useful to us
since they invariably require independence of X and C1 (i.e., MCAR would be
needed). Here we do not give a description of the literature, but refer to the
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later developments in Bickel, Klaassen, Ritov and Wellner (1993) or van der
Laan (1996a, b).

In van der Laan (1996b) an asymptotically efficient estimator of the bivari-
ate survival function is proposed which is an NPMLE based on reduced data
in the sense that the uncensored components of the singly censored observa-
tions are interval censored by a given grid partition. It was shown that for a
fixed grid (that does not depend on n) this estimator is asymptotically efficient
for the reduced data, and if the width of the grid converges to 0 slowly enough
with n, then the estimator is efficient. Moreover, this estimator is suited to our
problem since it is applicable under any CAR-bivariate-censoring mechanism.
It turns out that this (in general implicit) estimator simplifies to a very simple
form in our special case. Here we propose this estimator.

2.2. The reduced data NPMLE of F. Let 0 = a0 < a1 < · · · < ak = τ
be a partition of the interval 
0� τ�, and set ak+1 = ∞. Define the discretized
version Xd of X by

Xd ≡
{
aj� if X ∈ �aj� aj+1� and ξ = 0�

X� if ξ = 1�

In other words, if � is observed, then X is unchanged, but if � is missing
(ξ = 0), then X is interval censored in the sense that we only observe that
X ∈ �aj� aj+1�. Our estimator of F will be the NPMLE based on the reduced
data �Xd� ξ�� ξ�.

Let E�x� ≡ �aj� aj+1�, where aj is such that x ∈ �aj� aj+1�. Let Rj ≡
�aj� aj+1� × 
0�1� be the regions for �X��� implied by an observation �Xd =
aj� �ξ = −1� with a missing failure indicator. As in van der Laan (1996b)
we restrict the NPMLE of F to be discrete with point masses at all complete
observations �Xi��i� and on one (or more) artificially chosen point in each
Rj that contains no complete observations. Of course, if the partition does
not depend on n, then as n → ∞ all Rj contain complete observations with
probability tending to 1.

Let Fn be the NPMLE and denote its marginal distribution in X by FX�n.
Also, let fn�x� δ� = Fn�
x�� δ� be the density ofFn with respect to the counting
measure on the previously mentioned support points. Since we are dealing
with a censored data model, fn satisfies the self-consistency equation

fn�x� δ� = Efn
(

1
n

n∑
i=1

I�Xdi = x��i = δ�
∣∣reduced data

)
[see Gill (1989), Example 2], which can be written [cf. (7.4) in Efron (1967)] as

fn�x� δ� =
1
n

n∑
i=1

I�Xi = x��i = δ� ξi = 1�

+ 1
n

n∑
i=1

I
(
Xi ∈ E�x�� ξi = 0

) fn�x� δ�
FX�n

(
E�x�) �

(6)
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The way to read a self-consistency equation is that each observation gets mass
1/n which has to be redistributed over its induced region for �X��� according
to the estimate (based on fn itself) of the conditional distribution over this
region. So a point �x� δ� gets mass 1/n from each complete observation on
�x� δ� and it gets mass 1/n times fn�x� δ�/FX�n�E�x�� from each incomplete
observation with an implied region Rj containing �x� δ�.

At first sight it seems that (6) is not easily solvable. In this special case,
however, FX�n�E�x�� is known so we can obtain an explicit solution; incom-
plete observations with a different Xd do not interact in the sense that their
implied regions Rj are disjoint. Hence the mass given to a region Rj is just
1/n times the number of observations with X ∈ �aj� aj+1�; other observa-
tions cannot give any mass to Rj. Thus FX�n�E�x�� equals this fraction with
Rj = E�x� × 
0�1�.

Denote the marginal distribution of X by PX. Let P0 and P1 be the sub-
distributions of �X��� with ξ = 0 and 1, respectively. The marginal subdis-
tributions of the X components of P0 and P1 are written P0�X and P1�X. A
subscript n added to any of these (sub)distributions will indicate that we are
referring to its empirical counterpart.

Note that PX�n�E�x�� is the fraction of Xi ∈ E�x�, and PX�n�E�x�� is
the empirical distribution of the discretized X. Thus we have FX�n�E�x�� =
PX�n�E�x��. Also, the first term on the right-hand side of (6) is just P1� n�
x��
δ�. For each �x� δ� corresponding to a complete observation �Xi = x��i = δ�
we can explicitly solve for fn�x� δ�, which provides us with

fn�x� δ� =
PX�n

(
E�x�)

P1�X�n
(
E�x�)P1� n

(
x�� δ)�(7)

The mass fn�x� δ� for the artificially chosen points in the Rj that do not
contain complete observations is only determined by

FX�n
(�aj� aj+1�

) = P0� n
(�aj� aj+1�

)�
so incomplete observations with Xd = aj where Rj does not contain any com-
plete observations can redistribute their mass in an arbitrary manner overRj.
The latter fact is exactly the reason why the interval censoring of the observa-
tions with missing failure indicators is essential for estimation of F; regions
implied by incomplete observations should contain complete observations with
probability tending to 1.

A simple example is helpful for understanding fn. Figure 1 displays five
observations in an interval, three of which have missing failure indicators.
The combined mass of these three points (3/n) is redistributed to the two
complete observations, each of which will have a mass of 1/n+ 3/2n = 5/2n.
This agrees with the answer obtained from (7).

2.3. The estimator of the survival function of T. The estimator (7) pro-
vides us with an estimator of F�dx�1� and of SX�x−� = P�X ≥ x�. Hence
substitution of (7) into (5) provides us with our proposal for estimating
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Fig. 1. Point masses for the reduced data NPMLE of F.

ST�t�:

ŜT�t� ≡ ��0� t�

(
1 − Fn�dx�1�

SX�n�x−�
)
�(8)

where SX�n is the survival function corresponding to FX�n. Notice that if
P�ξ = 1� = 1, then ŜT is just the Kaplan–Meier estimator, as it should be.

3. Analysis of the estimator and its influence curve. We will first
show that (7) indeed defines a sensible estimator. We need a slightly stronger
CAR assumption than the minimal CAR assumption (1) in order that F be
identifiable from the discretized data; we assume

P�ξ = 1 �X��� = P�ξ = 1 �XD��(9)

where XD = aj if X ∈ �aj� aj+1�. Applying this condition to the denominator
in (2), we obtain

F�dx� δ� = PX
(
E�x�)

P1�X
(
E�x�)P1�dx� δ��(10)

which shows that (7) will provide us with a consistent estimator of F.
Now regard (10) as defining a map 
1� �D
0� τ��3 → �D
0� τ��2 from the dis-

tributions �P1�x�1��P1�x�0��P0�x��, that is, the distributions that determine
the observation �Xd��ξ�, to the distributions �F�x�1��F�x�0��. Then

ST = 
(
1
(
P1�·�1��P1�·�0��P0

))
and

ŜT = 
(
1
(
P1�n�·�1��P1�n�·�0��P0�n

))
�

The functional delta method [Gill (1989)] tells us that for proving the weak
convergence of

√
n�ŜT − ST� as random elements of D
0� τ� to a Gaussian

process it suffices to prove the compact differentiability of 
 and 
1. The com-
pact differentiability of 
 has already been established [see Gill and Johansen
(1990) and Gill (1989)], and the compact differentiability of 
1 only requires
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compact differentiability of the mapping �F�G� → ∫
FdG. The latter has

been proved in Gill (1989). The assumptions needed here are that the denom-
inators are bounded away from 0; for 
 this means that SX�τ� > 0 and for 
1
it means that P1�X��aj� aj+1�� > 0 for all j = 0�1� � � � � k.

As shown in van der Laan (1996b), Theorem 5.1, the estimator Fn of F is
efficient for the reduced data. Hence the compact differentiability of 
 and
van der Vaart’s (1991) result imply that ŜT is efficient for the reduced data.
This proves the following theorem.

Theorem 3.1. Let the partition 0 = a0 < a1 < · · · < ak = τ be such that
P�X ∈ �aj� aj+1�� ξ = 1� > 0 for j = 0�1� � � � � k − 1 and P�X > τ� > 0. Also

assume that P�ξ = 1 � X��� = P�ξ = 1 � XD�. Then
√
n�ŜT − ST� converges

weakly as a sequence of random elements of D
0� τ� to a Gaussian process.

Moreover, ŜT�t� is asymptotically efficient for the reduced data �Xd� ξ�� ξ�.

Here XD and Xd can be chosen arbitrarily close to X. Of course, if ξ depends
on the full X, then the estimator will still be efficient if the mesh of the par-
tition converges to 0 at a rate which is not too slow and not too quick [cf.
van der Laan (1996b), Theorem 5.1], but ŜT would be inconsistent for a fixed
partition. On the other hand, if ξ depends on X only through XD (for some
fixed partition) and the mesh of the partition converges to 0 slowly enough as
n→ ∞, then ŜT�t� is asymptotically efficient for the original data [cf. van der
Laan (1996b), Theorem 5.1]. In particular, this holds if ξ is independent
of X.

3.1. The influence curve of the estimator. The compact differentiability of

 implies [see Gill (1989)] that ŜT�t� is asymptotically linear:

ŜT�t� −ST�t� =
1
n

n∑
i=1

ICt�Yi� + oP
(

1√
n

)
�

where the i.i.d. random variables ICt�Yi� are just the derivative d
 ◦d
1�P�
of 
 ◦ 
1 at P ≡ �P1�·�1��P1�·�0��P0� applied to the empirical distribution
of P based on one observation Yi = �Xi� ξi�i� ξi�, and evaluated at t. Here
ICt is called the influence curve of ŜT�t�. We have that

√
n�ŜT�t� − ST�t��

is asymptotically normal with mean 0 and variance equal to the variance of
ICt�Y�. Hence an estimator of ICt will lead to an estimate of the asymptotic
variance of ŜT�t� and a (pointwise) confidence interval for ST�t� in the usual
fashion.

Determining the influence curve comes down simply to finding the deriva-
tives (linear approximations) of 
 and 
1 by neglecting all second-order terms
and substituting the linearization of 
1 in the linearization of 
. Here it
means that we need to find the linearization of Fn�dx�1� − F�dx�1� and
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the corresponding linearization of SX�n�x� − SX�x� and substitute these in
the linearization of ŜT�t� − ST�t�, the product integral mapping, in terms of
Fn�dx�1� −F�dx�1� and SX�n�x� −SX�x�.

By using telescoping [see Gill, van der Laan and Wellner (1995)] it follows
that

Fn�dx� δ� −F�dx� δ� = P1�n�dx� δ�
P1�X�n

(
E�x�)

P1� n
(
E�x�) −P1�dx� δ�

PX
(
E�x�)

P1�X
(
E�x�)

≈ PX
(
E�x�)

P1�X
(
E�x�)�P1� n −P1��dx� δ�

+�PX�n −PX�
(
E�x�) P1�dx� δ�

P1�X
(
E�x�)

−�P1�X�n −P1�X�
(
E�x�) PX(E�x�)

P1�X
(
E�x�)2P1�dx� δ��

This provides us with the linearization of Fn�dx� δ�−F�dx� δ� in terms of the
empirical distribution of the data. We have

PX
(
E�x�)

P1
(
E�x�) = 1

P�ξ = 1 �X ∈ E�x�� �

P1�dx� δ�
P1

(
E�x�) = F�dx� δ�

FX
(
E�x�) �

PX
(
E�x�)

P1
(
E�x�)2P1�dx� δ� =

1
P�ξ = 1 � E�x��

F�dx� δ�
FX

(
E�x�) �

For notational convenience we define πD�x� ≡ P�ξ = 1 �X ∈ E�x��. Substitu-
tion of these expressions in the linearization of Fn�dx� δ�−F�dx� δ� provides
us with

Fn�dx� δ� −F�dx� δ� ≈ 1
πD�xd�

�P1� n −P1��dx� δ�

+ �PX�n −PX�
(
E�x�) F�dx� δ�

FX
(
E�x�)

− �P1�X�n −P1�X�
(
E�x�) 1

πD�x�
F�dx� δ�
FX

(
E�x�) �

(11)
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The linearization of FX�n�dx�−FX�dx� is now simply obtained by adding the
linearizations of Fn�dx�1� −F�dx�1� and Fn�dx�0� −F�dx�0�. Hence

SX�n�x� −SX�x� =
∫ ∞

x

1
πD�x�

�P1�X�n −P1�X��dx�

+
∫ ∞

x
�PX�n −PX�

(
E�x�) FX�dx�

FX
(
E�x�)

−
∫ ∞

x
�P1�X�n −P1�X�

(
E�x�) 1

πD�x�
FX�dx�
FX

(
E�x�) �

(12)

Now, it remains to find the linearization of ŜT − ST in terms of the lin-
earizations (11) and (12). The linearization of the product integral �T →
��1−d�T� = ST is given in Gill and Johansen (1990) and follows directly from
the Duhamel equation. The linearization of �F�dx� δ�� SX�x�� → F�dx�1�/
SX�x� = �T�dx� is trivial. We have

ŜT�t� −ST�t� ≈ ST�t�
∫ t

0

1
1 − �T�
x��

(
Fn�dx�1� −F�dx�1�

SX�x�

+ �SX�n −SX��x�
SX�x�2

F�dx�1�
)
�

(13)

Substitute now for SX�n −SX and Fn�dx�1� −F�dx�1� in (13) the lineariza-
tions (11) and (12) to obtain

ŜT�t� −ST�t�
ST�t�

≈
∫ t

0

1
1 − �T�
x��

1
SX�x�

×
(
�PX�n −PX�

(
E�x�) F�dx�1�

FX
(
E�x�) + �P1� n −P1��dx�1�

πD�x�

− �P1�X�n −P1�X�
(
E�x�)F�dx�1�

πD�x�FX
(
E�x�)

)

+
∫ t

0

1
1 − �T�
x��

1
SX�x�2

F�dx�1�

×
(∫ ∞

x

1
πD�s�

�P1�X�n −P1�X��ds�

+
∫ ∞

x

(
�PX�n −PX��E�s�� − �P1�X�n −P1�X��E�s��

πD�s�
)

× FX�ds�
FX�E�s��

)
�

(14)
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If we have only one observation (i.e., n = 1), then P1�n�dx� δ� = I�X ∈ dx�� =
δ� ξ = 1�, PX�n�E�x�� = I�X ∈ E�x�� and P1� n�E�x�� = I�X ∈ E�x�� ξ = 1�.
Substitution of these indicators into (15) provides us with the influence curve
of ŜT�t�:

ICt�Y�
ST�t�

= I�X ≤ t� � = 1� ξ = 1�
�1 − ��
X���SX�X�πD�X�

+
∫ t

0

1
1 − �T�
x��

(
I�X ∈ E�x�� − I�X ∈ E�x�� ξ = 1�

πD�x�
)

× F�dx�1�
SX�x�FX�E�x��

+
∫ t

0

1
1 − �T�
x��

1
SX�x�2

I�X > x� ξ = 1�
πD�X� F�dx�1�

+
∫ t

0

1
1 − �T�
x��

×
(∫ ∞

x

(
I�X∈E�s��− I�X∈E�s�� ξ=1�

πD�s�
)
FX�ds�
FX�E�s��

)
× F�dx�1�
SX�x�2

�

(15)

Estimation of ICt requires estimation of ST and F, and is simply carried
out by plugging-in our proposals and an estimate of πD�x�. If it is known that
ξ is independent of X, then one simply estimates P�ξ = 1� by the fraction
of uncensored �Xi��i�. If dependence between ξ and X is expected, then one
estimates πD�x� by the fraction of completely observed �Xi��i� with Xi ∈
E�x�.

3.2. The efficient influence curve. The influence curve (15) is the influence
curve of ŜT for a fixed grid. If we let the mesh of the grid converge to 0 slowly
with n, then ŜT is efficient; so it is asymptotically linear with influence curve
equal to the efficient influence curve. Hence the efficient influence curve must
be the limit of (15) for maxi �ai − ai−1� → 0. If the mesh of the grid converges
to 0, then an integral with integrand I�X ∈ E�x�� only integrates over an
infinitesimal interval �ai� ai+1� and hence∫ t

0

I
(
X ∈ E�x�)F�dx�1�
SX�x�FX

(
E�x�) → I�X ≤ t�

SX�X� lim

∫
E�X�F�dx�1�
FX

(
E�X�)

= I�X ≤ t�
SX�X�

dF�·�1�
dFX

�X��

where

k�x� ≡ dF�·�1�
dFX

�x� = P�X ∈ dx�C > x�
P�T ∧C ∈ dx� = �T�dx�

�T�dx� + �C�dx�
�
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Furthermore, we have that πD�X� → π�X� and∫
I
(
X ∈ E�x�)FX�dx�/FX(E�x�) → 1�

Hence the efficient influence curve is given by

IC∗
t �Y�
ST�t�

= 1
1 − ��
X��

(
I�X ≤ t� − I�X ≤ t� ξ = 1�

π�X�
)
k�X�
SX�X�

+ I�X ≤ t� � = 1� ξ = 1�(
1 − ��
X��)SX�X�π�X�

+
∫ t

0

1
1 − �(
x�) 1

SX�x�2

I�X > x� ξ = 1�
π�X� F�dx�1�

+
(

1 − I�ξ = 1�
π�X�

) ∫ t∧X
0

1
1 − ��
x��

F�dx�1�
SX�x�2

�

(16)

Estimation of the efficient influence curve requires nonparametric estimation
of the density k and hence requires smoothing, which explains why a standard
NPMLE is not consistent for this problem. Moreover, if ξ depends fully on X,
then it requires nonparametric estimation of the binary regression function
π�X�. Although we do not pursue it here, the efficient influence curve can be
used to construct one-step efficient estimators. If the efficient influence curve
is estimated consistently, then the one-step estimator will be efficient [see
van der Laan (1996a), Corollary 2.2].

Gill, van der Laan and Robins (1997) have shown for general nonparamet-
ric models under minimal CAR that there exists only one influence curve; in
our case the weakest possible CAR assumption is (1), and (16) is the unique
influence curve. Consequently, any inefficient estimator cannot be asymptoti-
cally linear. This explains why inefficient estimators can only be constructed
under stronger assumptions than just minimal CAR; the missing failure indi-
cator model is an interesting example (another one is the bivariate censoring
model) where many estimators have been proposed, all being inconsistent un-
der minimal CAR.

4. An alternative approach. Results of Robins and Rotnitzky (1992)
make it possible to construct an alternative efficient estimator for ST using
the general theory of semiparametric efficiency bounds [see, e.g., Newey (1991)
and Bickel, Klaassen, Ritov and Wellner (1993)].

Suppose we observe a random vectorY having distribution P ∈ 
Pθ�, which
is identified by an unknown (possibly infinite dimensional) parameter θ. Let
L2

0�P� denote the Hilbert space of P-square integrable functions with mean 0.
Consider a smooth one-dimensional (SOD) submodel 
Pε� ⊂ 
Pθ� passing
through P and having score function k�Y� ∈ L2

0�P� at ε = 0; see the definition
of a “regular parametric” submodel in Bickel, Klaassen, Ritov and Wellner
(1993). The tangent space T�P� is the L2

0�P�-closure of the linear span of
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all such score functions k. For example, if nothing is known about P, then
Pε�dy� = �1 + εk�y��P�dy� is a SOD submodel for any bounded function k
with mean 0 (provided ε is sufficiently small), so T�P� is seen to be the whole
of L2

0�P� in this case.
Let µ = µ�θ� = µ�Pθ� be a real parameter that is pathwise differentiable at

P: there exists g ∈ L2
0�P� such that limε→0�µ�Pε� −µ�P��/ε = �g�k�, for any

SOD submodel 
Pε� with score function k, where �·� ·� is the inner product
in L2

0�P�. The function g is called a gradient (or influence curve) for µ; the
projection IC∗

µ of any gradient on the tangent space is unique and is known
as the canonical gradient (or efficient influence curve). The supremum of the
Cramér–Rao bounds for all SOD submodels (the information bound) is given
by the second moment of IC∗

µ�Y�.
In the present context, we observe Y = �X�ξ�� ξ� and the distribution

P of Y is identified by θ = �F�π�. Consider the parameter µ = µ�F� =
F�x� δ� for given x and δ ∈ 
0�1�. In the full model that only assumes a
CAR missingness process, we have T�P� = L2

0�P�; see Gill, van der Laan and
Robins (1997). Thus, any gradient for µ is necessarily its canonical gradient.
The canonical gradient of µ can be found as a gradient in the submodel with π
known minus its projection on the space of missingness scores (i.e., the tangent
space for the submodel in which only π is unknown). Robins and Rotnitzky
(1992), Theorem 4.2, provide closed-form expressions for the projection on a
space of missingness scores when the missingness process is monotone. In
our case, however, the missingness process is very simple (it acts on only one
component of the complete data vector), so it is easy to find the projection
without reference to this general theorem; see the Appendix.

The following proposition expresses the canonical gradient of µ explicitly
in terms of the functions π�x� and p�x� = P�� = δ � ξ = 1�X = x�.

Proposition 4.1. Suppose the CAR assumption (1) holds and π�X� is
bounded away from 0. Then the canonical gradient of µ is

IC∗
µ�Y� = ξ

π�X�
[
I�X ≤ x�� = δ� − µ]− [

I�X ≤ x�p�X� − µ]( ξ

π�X� − 1
)
�

This result can be used to obtain a closed-form efficient estimator µ̂ of µ
by solving the estimating equation

∑n
i=1 ÎC∗

µ�Yi� = 0, where ÎC∗
µ is a plug-in

estimate of IC∗
µ in which π and p are replaced by suitable estimates π̂ and p̂.

The solution is

µ̂ = n−1
n∑
i=1

π̂�Xi�−1I�Xi ≤ x�
{
ξiI��i = δ� −

[
ξi − π̂�Xi�

]
p̂�Xi�

}
�

which is a special case of an estimator that has been studied by Robins and
Ritov (1997), Sections 7 and 8. Under our assumption that P�ξ = 1 � X� =
P�ξ = 1 �XD�, a natural estimator of π�x� = π�xD� is the empirical proportion
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of subjects with ξ = 1 among the subjects whose discretized value of X = xD.
A kernel estimator can be used for p�x�.

The preceding representation of the efficient influence curve for µ implies
that if one estimates p inconsistently, then µ̂ is still consistent and asymptot-
ically linear. This built-in protection against misspecification of p allows the
construction of estimators of µ that are efficient at a chosen submodel for p
and are always consistent and asymptotically linear. Such estimators typically
have a better finite sample performance at the chosen submodel.

The estimator µ̂ = µ̂�x� δ� could be used in place of Fn�x� δ� in the prod-
uct integral formula (8) to provide an alternative efficient estimator of ST�t�
having the efficient influence curve given by (16). Another way of computing
(16) would be to apply the results of Robins and Rotnitzky (1992) directly to
the known influence curve of ST�t� in the case of complete data �X���. This
would lead to yet another efficient estimator of ST�t� in terms of π̂ and p̂,
along the lines used to construct µ̂.

The benefit of the Robins–Rotnitzky approach is that the computation of the
efficient influence curve is relatively simple, and leads directly to an efficient
estimator via standard estimating equation technology, without the need for
the artificial reduced data model. Our approach, on the other hand, provides
an understanding of the role of nonparametric maximum likelihood through
the link to the bivariate censoring model. Moreover, the reduced data NPMLE
has the attractive property that it “solves” the efficient estimating equation
at every π, and a consistent estimator of π is not required. Our reduced data
model plays a similar role to the data reduction inherent in the kernel esti-
mator p̂ used in the Robins–Rotnitzky approach.

5. Numerical results. We now report the results of a small simulation
study comparing the performance of the proposed estimator with that of Lo’s
(1991) estimator. The comparison is made in terms of mean integrated squared
error (MISE).

The survival time T and the censoring time C are taken to be exponentially
distributed with parameters 1�4 and 0�6 for 30% censoring, and 0�6 and 1�4 for
70% censoring, respectively. The sample size is set at n = 100. The coarsening
mechanism is MCAR (required for Lo’s estimator to be consistent), and the
probability π�x� = π that a failure indicator is nonmissing is taken as 0.1, 0.2
or 0�3. The partition consists of k points on a regular grid, with k = 10, 30
or 50.

Two artificial points are used in each region Rj having no complete obser-
vations: �xj�0� and �xj�1�, where xj is the midpoint of the interval �aj� aj+1�.
The mass redistributed to these points is divided according to the proportions
of censored and uncensored observations in the complete data, respectively.

The results are given in Table 1. The proposed estimator improves con-
siderably upon Lo’s estimator, the greatest gains being obtained when the
proportion of missing failure indicators is high (π = 0�1). This was to be ex-
pected, of course, since the strength of our approach comes from the way it
handles the missing data. Note also that although the performance of ŜT is
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Table 1

Mean integrated squared error of the proposed estimator ŜT and of Lo’s estimator under the MCAR
model P�ξ = 1 �X��� ≡ π

30% Censoring 70% Censoring

� � 0�1 � � 0�2 � � 0�3 � � 0�1 � � 0�2 � � 0�3

ŜT (k = 50) 1.105 0.620 0.469 1.659 0.918 0.695
ŜT (k = 30) 1.194 0.623 0.478 1.647 0.972 0.747
ŜT (k = 10) 1.215 0.705 0.515 2.007 1.200 0.866
Lo 1.932 0.916 0.621 2.482 1 .253 0.849
Ratio 1.75 1.48 1.32 1.50 1.36 1.22

Note: The MISE is expressed in units of 0�01 and is calculated over the interval 
0�1�. “Lo” refers
to the second estimator of Lo (1991). “Ratio” refers to the ratio of the MISE of Lo’s estimator to
the MISE of ŜT (k = 50). Each MISE is based on 10,000 samples.

relatively insensitive to the choice of the partition when k ≥ 30, it is signif-
icantly degraded under the coarsest grid (k = 10). The best performance is
obtained using the finest grid, irrespective of the degree of censorship.

The effect of the partition is also readily seen by comparing Figures 2–4,
which give plots of ŜT based on simulated data, for different values of k. The
closest fit to the underlying survival function (exponential with parameter
1.4) clearly corresponds to the finest partition. Figure 2 illustrates how the
proposed estimator can adapt more efficiently to the missing data than Lo’s
estimator; see especially the region between t = 0�1 and t = 0�5. Figures 3
and 4 show how ŜT deteriorates as the partition becomes coarser.

APPENDIX

Proof of Proposition 4.1. The main step of the proof is to find the can-
onical gradient of µ in the submodel � �F� in which only F is unknown (π
known). This submodel has tangent space

T�F� = sp
{
E
(
h�X��)�Y�� Eh�X��� = 0

}
formed as the closed linear span of the conditional expectations of all com-
plete data scores h�X��� given the observed data Y. Also, the orthogonal
complement of T�F� is given by

T�π� = sp
{
φ�Y�� E(

φ�Y��X��) = 0
}
�

which is the tangent space in the submodel in which only π is unknown (F
known); see Robins and Rotnitzky (1992) and Gill, van der Laan and Robins
(1997).

Note that a gradient for µ in the submodel � �F� is

ICµ�Y� = ξ

π�X�
(
I�X ≤ x�� = δ)− µ��
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Fig. 2. The estimator ŜT compared with Lo’s estimator for simulated data. The data were gen-
erated using the MCAR model in Table 1 with 30% censoring and π = 0�2. The partition uses
k = 100 equispaced points over the interval 
0�2�. Sample size n = 100. The data points with
missing failure indicators are represented by × and the remaining data points by +.

To see this, consider a SOD submodel 
PFε� ⊂ � �F� with score function
k�Y� = E�h�X����Y�, where h is a bounded complete data score function and
Fε�du� δ� = �1 + εh�u� δ��F�du� δ�. Then

lim
ε→0

(
µ�Fε� − µ�F�)/ε = E(

h�X���I�X ≤ x�� = δ�)
= E(

h�X���ICµ�Y�)
= �ICµ� k��

where the second equality in the preceding equation uses E�ICµ�Y��X��� =
I�X ≤ x�� = δ� − µ, which is a consequence of the CAR assumption.

The canonical gradient of µ in the submodel � �F� is the projection of ICµ
on T�F�, which can be expressed as ICµ−.nu�ICµ�, where .nu is the projection
on the “nuisance” tangent space T�π�, the orthogonal complement of T�F�. For
any function ψ�Y� ∈ L2

0�P� we have

.nu�ψ� = E
(
ψ�Y� � ξ�X)−E(

ψ�Y� �X)
�(17)
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Fig. 3. The estimator ŜT based on k = 60 grid points over the interval 
0�2�. See the caption for
Figure 2.

Indeed, the right-hand side is a function of Y with conditional mean 0, given
the complete data, so it belongs to T�π�. Also, ψ−.nu�ψ� is orthogonal to T�π�,
which can be seen by first taking the conditional expectation given �X�ξ� and
then the conditional expectation given X, establishing (17). The application
of (17) to ICµ is straightforward, resulting in the expression given by IC∗

µ.
The final step is to show that the canonical gradient of µ in the submodel

� �F� is also a gradient for µ in the full model. Let k ∈ L2
0�P� be bounded

and consider the SOD submodel Pε�dy� = PFε�πε�dy� = �1+εk�y��P�dy�. The
score k can be expressed uniquely in the form k = k1 + k2, where k1 ∈ T�F�
and k2 ∈ T�π�. Then 
Fε� defines a SOD submodel for � �F� having score k1,
because k1 does not depend on 
πε� and k2 does not depend on 
Fε�. Thus,
using the fact that µ does not depend on π, we have

lim
ε→0

(
µ�Pε� − µ�P�)/ε = lim

ε→0

(
µ�Fε� − µ�F�)/ε = �IC∗

µ� k1� = �IC∗
µ� k��

as required. ✷
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Fig. 4. The estimator ŜT based on k = 20 grid points over the interval 
0�2�. Same data as in
Figure 2.
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