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VALIDATION OF LINEAR REGRESSION MODELS

By Holger Dette and Axel Munk1

Ruhr-Universität Bochum

A new test is proposed in order to verify that a regression function,
say g, has a prescribed (linear) parametric form. This procedure is based
on the large sample behavior of an empirical L2-distance between g and
the subspace U spanned by the regression functions to be verified. The
asymptotic distribution of the test statistic is shown to be normal with
parameters depending only on the variance of the observations and the
L2-distance between the regression function g and the model space U.
Based on this result, a test is proposed for the hypothesis that “g is not
in a preassigned L2-neighborhood of U,” which allows the “verification” of
the model U at a controlled type I error rate. The suggested procedure is
very easy to apply because of its asymptotic normal law and the simple
form of the test statistic. In particular, it does not require nonparametric
estimators of the regression function and hence, the test does not depend
on the subjective choice of smoothing parameters.

1. Introduction. Consider the homoscedastic regression model

Yi�n = Y�ti� n� = g�ti� n� + ε�ti� n�� 1 ≤ i ≤ n�(1.1)

where the design �t1� n� 
 
 
 � tn�n� ⊂ 	0�1
 ⊂ R is assumed to be fixed, t1� n = 0,
tn�n = 1 and ti� n < tj�n (1 ≤ i < j ≤ n). The index n is omitted whenever
this dependence is clear from the context. For t ∈ 	0�1
 the random variable
Y�t� has finite expectation EY�t� = g�t�. The errors εi�n = ε�ti� n� form a
triangular array of rowwise independent random variables with expectation
0 and variance σ2 <∞. Further, let Ud = span�f1� 
 
 
 � fd�, where f1� 
 
 
 � fd
denote d linearly independent regression functions which are to be shown to
“explain” g; that is, we are concerned with the assessment of g ∈ Ud at a
controlled type I error rate α.

Significant effort has been devoted to this problem during the last two
decades [for some early references the reader may consult Shillington (1979)
or Neil and Johnson (1985)] because, in applied regression analysis, para-
metric models are usually preferred to a purely nonparametric approach. In
particular, a parametric model g = ∑d

l=1 alfl admits a direct interpretation
of the observed effects in terms of the parameters a1� 
 
 
 � ad. In addition, the
available information of the observations is increased by applying more effi-
cient estimating or testing procedures—provided the assumed model is valid.
Therefore, many authors point out that the applied working statistician should
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always check a preassigned model Ud by means of testing the hypothesis

H0 g ∈ Ud versus K0 g �∈ Ud�(1.2)

at a controlled error rate α before analyzing the data. In the meantime, a vast
amount of literature is devoted to this problem; the works mainly differ in
the choice of the underlying model and the technique used to treat the prob-
lem (1.2). For an overview, see Davison and Tsai (1992), Härdle and Mammen
(1993) or Stute (1997). Various authors assumed a random design. In par-
ticular, we refer to Stute (1997) for an approach based on marked empirical
processes and to Dieboldt (1995) who obtained exact rates by means of strong
approximation techniques. Others focused their interest on more restricted hy-
potheses [see Cox, Koh, Wahba and Yandell (1988) for the case of polynomial
regression or Eubank and Spiegelmann (1990), Barry and Hartigan (1990) or
Yanagimoto and Yanagimoto (1987) for the linear case]. Müller (1992) sug-
gested a lack of fit test in the heteroscedastic case which is based on a kernel
estimate for f at a given set of design points. Test statistics based on kernel
estimation methods in combination with bootstrap techniques were also pro-
posed by Härdle and Mammen (1993). Staniswalis and Severini (1991) based
their test criterion on a comparison of the MLE of the regression parameter
under the null model and a nonparametric MLE under sufficiently smooth
alternatives. This requires kernel estimation of the nonparametric likelihood.
Spline smoothing methods and a Fourier analytic approach were suggested by
Eubank and Spiegelmann (1990) and Eubank and Hart (1992).

Various authors argue that, even if the null in (1.2) is accepted with a rather
large observed p-value, there need not be any empirical evidence for the pres-
ence of Ud [see Berger and Delampady (1987), Staudte and Sheather (1990)].
For a careful discussion in the context of model diagnostics, we refer to Mac-
Kinnon (1992). These authors point out that it may sometimes be preferable
to reformulate the hypothesis in (1.2) into a test problem, which allows us to
show g to be close to Ud at a controlled error rate. As a measure of discrep-
ancy M from the model Ud, we suggest the minimal distance between g and
Ud with respect to an L2-norm M, where M2 =M2�g� = minv∈Ud

��v−g��2. In
order to overcome the uncertainty which emerges from accepting H0 in (1.2),
we reformulate these hypotheses into

H�M> � versus K�M ≤ �(1.3)

and call this a “precise” testing problem. Note that we use the concept of test-
ing precise hypotheses in a slightly different way than Berger and Delampady
(1987), because we interchange the alternative and null hypothesis. In formula
(1.3), � > 0 is a sufficiently small constant such that, whenever M�g� ≤ �,
the experimenter agrees to analyze the data by the linear model Ud. Observe
that K� is equivalent to the existence of regression parameters a∗1� 
 
 
 � a

∗
d such

that g ≈ ∑
a∗l fl up to an error �
 If � = 0, g is explained completely by the

linear model Ud. The final decision which of the hypotheses (1.2) or (1.3) is to
be tested will certainly depend on the subsequent data analysis of the statisti-
cian, such as prediction, estimation of the regression parameters or designing
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future experiments. Note that the testing problem (1.3) is conceptually related
to bioequivalence testing, which is to show the therapeutical equivalence of
different formulations of an active ingredient of a drug. For a detailed discus-
sion of the choice of the null hypotheses and other methodological aspects in
the context of bioequivalence testing, we refer to Metzler (1974), Mandallaz
and Mau (1981), Schuirmann (1987) and Chow and Liu (1992).

In Section 2 we propose an estimator M̂2
n of the distance M2 between

g and the model Ud. In Section 3 we prove an asymptotic normal law for√
n�M̂2

n −M2� with parameters depending only on M2 and σ2. In Section 4
this result is applied for the construction of asymptotic confidence intervals
and tests for the hypothesis (1.2) as well as H�. In particular, our approach
does not require the estimation of the regression function and hence is in-
dependent of a subjective choice of smoothing parameters. It may be espe-
cially appealing for the applied working statistician that the proposed test is
very simple to perform because only estimation of M2 and the variance σ2

is required. Moreover, the goodness-of-fit test proposed in this paper allows a
simple calculation of the required sample size in order to control its type II er-
ror. In Section 5 we show numerically, for various examples, that the nominal
size is maintained with high accuracy, even for small sample sizes. Finally,
in a simulation study, the power is compared to the test of Eubank and Hart
(1992) which is the most similar in spirit to the work of this paper. Roughly
speaking, this study demonstrates that, for different alternatives, each test
may improve on the other and vice versa. In summary, the proposed test is
uniformly powerful in all nonparametric directions with the same L2 norm,
whereas Eubank and Hart’s test is a powerful tool to protect against specific
alternatives but does not provide uniform guardance against misspecification.

2. Definition and estimation of M 2. Throughout this paper, let h de-
note a density function on the interval 	0�1
 which is positive and Hölder
continuous of order γ > 1/2; that is, h ∈ Hölγ	0�1
, γ > 1/2. We will call h the
design density and assume that the design �t1� n� 
 
 
 tn�n� satisfies

�A1� n
max
i=2

∣∣∣∣
∫ ti� n

ti−1�n

h�t�dt− 1
n

∣∣∣∣ = o

(
1
n

)



Note that this assumption generalizes designs which are a regular sequence
in the sense of Sacks and Ylvisaker (1970), that is,∫ ti� n

0
h�t�dt = i− 1

n− 1
� i = 1� 
 
 
 � n
(2.1)

The most important case is obtained for the constant density h ≡ 1 which
gives a nearly uniform design up to o�1/n�. According to the design density,
we define L2 as the set of all functions v on the interval 	0�1
 with finite
weighted L2-norm

�v�2
2 =

∫ 1

0
v2�x�h�x�dx
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and assume that the (unknown) regression function g in (1.1) and the linearly
independent functions f1� 
 
 
 � fd of the linear model Ud satisfy g�f1� 
 
 
 � fd ∈
L2. We also admit the case d = 0, which is interpreted as the subspace of
dimension 0, that is, U0 = �0�. As a measure of discrepancy M2 between the
regression function g and the subspace Ud = span�f1� 
 
 
 � fd� ⊂ L2� we use
the minimal distance

M2 =M2�g� = min
v∈Ud

�g − v�2 �(2.2)

where the dependence of g is omitted whenever it is clear from the context.
If the inner product in L2 with respect to the design density h is denoted by

�u� v� =
∫ 1

0
u�x�v�x�h�x�dx� u� v ∈ L2

we obtain that the minimal distance in (2.2) can be represented as

M2 = !�g�f1� 
 
 
 � fd�
!�f1� 
 
 
 � fd�

�(2.3)

where !�v1� 
 
 
 � vk� denotes the Gramian determinant ���vi� vj���i� j=1�


� k for
v1� 
 
 
 � vk ∈ L2 For a derivation of the identity (2.3), we refer to Achieser
(1956) page 16. The expression in (2.3) simplifies to

M2 = �g�2
2 −

d∑
l=1

��g�fl��2(2.4)

if the system �fi�i=1�


�d of regression functions is orthonormal with respect
to the measure with density h.

The multilinearity of M2 suggests estimating M2 by replacing in !�g�
f1� 
 
 
 � fd� all elements (containing the unknown regression function g) by an
empirical counterpart. To this end define for functions u� v ∈ L2 the vectors
un = �u�t1� n�� 
 
 
 � u�tn�n��t, vn = �v�t1� n�� 
 
 
 � v�tn�n��t and a bilinear form on
R
n by

�un� vn�n =
n∑
i=1

�i�nwi�nh�ti� n�u�ti� n�v�ti� n��(2.5)

which can be considered as a numerical approximation of the inner product
�u� v� in L2. Here the wi = wi�n are (possibly negative) weights and �i =
�i�n = ti� n− ti−1� n �i = 1� 
 
 
 � n� denote the differences of successive locations
of the measurements (note that t1� n = 0 and tn�n = 1). If Y = �Y1� 
 
 
 �Yn�t
denotes the vector of observations, then we estimate �g�fl� and �g�g� by

�Y�fl�n�n =
n∑
i=1

�i�nwi�nh�ti� n�fl�ti� n�Yi� l = 1� 
 
 
 � d(2.6)

and

�Y�Y�n − σ2 =
n∑
i=1

�i�nwi�nh�ti� n�Y2
i − σ2�(2.7)
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respectively, where fl�n = �fl�t1� n�� 
 
 
 � fl�tn�n��t and, for the moment, we
assume σ2 to be known. In (2.5), (2.6) and (2.7) it is important that we have
the choice of the weights �wi�n�i=1�


�n while the ��i�n�i=1�


�n are determined
by the experiment. This allows a flexible choice of the numerical integration
rule for M2 (see the subsequent discussion). In order to integrate the design
density h exactly, we assume further that

n∑
i=1

�i�nwi�nh�ti� n� = 1 for all n ≥ 1
(2.8)

Finally, we obtain a class of estimators for M2 as

M2
n =

!n�Y�f1� n� 
 
 
 � fd�n�
!�f1� 
 
 
 � fd�

− σ2�(2.9)

where !n�·� is defined as the determinant which is obtained by replacing
the inner products �g�g�, �g�fl� (l = 1� 
 
 
 � d) in the Gramian determinant
!�g�f1� 
 
 
 � fd� by the inner products of the vectors Y, f1� n� 
 
 
 � fd�n ∈ R

n

according to (2.6) and (2.7), respectively. In order to guarantee that

E	M2
n −M2
 = o�n−1/2� as n→∞�(2.10)

we assume throughout this paper that there exist an integer K ∈ N and for
every n ∈ N a finite set En ⊂ �1� 
 
 
 � n�, such that card�En� ≤K and

�A2� max
i∈�1�


�n�\En

�wi�n − 1� = o�n−1/2��

�A3� g�f1� 
 
 
 � fd ∈ Hölγ	0�1
 for some γ > 1/2


If (A1)–(A3) are satisfied, a straightforward but tedious calculation shows that

E	M2
n
 =

!n�gn�f1� n� 
 
 
 � fd�n�
!�f1� 
 
 
 � fd�

− d

n
σ2 + o

(
1
n

)
�(2.11)

where gn = �g�t1� n�� 
 
 
 g�tn�n��t denotes the vector of values of the function g
at the design points. The first term on the right-hand side in (2.11) is obtained
by replacing the inner products in (2.3), which contain the regression function
g, by the corresponding numerical approximations via (2.5). Observe that M2

(and hence any testing problem concerning M2) is not affected by changing the
basis of Ud. Therefore, it is reasonable to demand that M2

n shares this prop-
erty. The following proposition gives a sufficient condition for this invariance
property.

Proposition 2.1. Assume that there exist weights wl, l = 1� 
 
 
 � n, such
that

�2
12� �fi� fj� =
∑n

l=1 wl�lh�tl�fi�tl�fj�tl� = �fi�n� fj�n�n�
1 ≤ i ≤ j ≤ d


Then the following statements hold.
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(i) Let u1� 
 
 
 � ud denote an arbitrary basis of Ud and ul�n = �ul�t1�� 
 
 
 �
ul�tn��t �l = 1� 
 
 
 � d�; then

�ui� uj� = �ui�n� uj�n�n� 1 ≤ i ≤ j ≤ d
(2.13)

(ii) The empirical distance M2
n in (2.9) is invariant with respect to change

of the basis of Ud.

Proof. Choose weights such that (2.12) holds, recall the definition of fi�n=
�fi�t1�� 
 
 
 � fi�tn��t, i=1� 
 
 
 � d and define a d×nmatrix fn=�f1� n� 
 
 
 � fd�n�t.
Let u1� 
 
 
 � ud be a basis ofUd and A the nonsingular matrix, which represents
the change of the basis vectors, that is, u = �u1� 
 
 
 � ud�t = Af where f =
�f1� 
 
 
 � fd�t. Define further a �d+ 1� × �d+ 1� matrix

Ã = 1⊕A =
(

1 0

0 A

)
�

f̃n = �Y� f tn�t, un = Afn, ũn = Ãf̃n and denote the n× n diagonal matrix with
diagonal elements h�ti��iwi (i = 1� 
 
 
 � n) as W. Then it follows

(�ui� uj�)i� j=1�


�d =
∫

u�t�ut�t�h�t�dt = A
∫

f�t�f t�t�h�t�dtAt

= AfnWf tnAt=unWut
n=

(�ui�n� uj�n�n)i� j=1�


�d �

which proves assertion (i). Note, that !�f1� 
 
 
 � fd� = !n�f tn� �= 0 because of
the linear independence of f1� 
 
 
 � fd. Then we have from (2.13),

M2
n + σ2 = !n�Y�f1� n� 
 
 
 � fd�n�

!�f1� 
 
 
 � fd�
= !n�Y�f1� n� 
 
 
 � fd�n�

!n�f1� n� 
 
 
 � fd�n�

= �f̃nWf̃
t

n�
�fnWf tn�

= �Ã
−1

ũnWũt
n�Ã

−1�t�
�A−1unWut

n�A−1�t� =
�ũnWũt

n�
�unWut

n�
= !n�Y�u1� n� 
 
 
 � ud�n�

!�u1� 
 
 
 � ud�
�

where the last equality follows from (i). This implies that for given weights
w1� 
 
 
 �wn satisfying (2.12), the estimator M2

n remains invariant under
change of basis of Ud. ✷

Note that the condition for the weights in (2.12) means that the numeri-
cal quadrature formula integrates products of functions of the subspace Ud

exactly. It is strictly recommended to determine the weights with respect to
(2.12) and (2.8) because the accuracy of the normal approximation of M2

n de-
rived in the following section is increased significantly (see the simulation
results in Section 5). In order to guarantee that (2.12) and (2.8) hold, we have
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to solve

b =




1
�f1� f1�
�f1� f2�






�fd� fd�




=




1 · · · 1

f1�t1�f1�t1� · · · f1�tn�f1�tn�
f1�t1�f2�t1� · · · f1�tn�f2�tn�




 · · · 




fd�t1�fd�t1� · · · fd�tn�fd�tn�






w1�1h�t1�
w2�2h�t2�






wn�nh�tn�


 = Fw�

(2.14)

which is a system of d�d + 1�/2 + 1 equations for n unknowns. Note that
the vector w in (2.14) is defined as w= �w1�1h�t1�� 
 
 
 �wn�nh�tn��t and de-
termines the integration weights w1� 
 
 
 �wn [because �jh�tj� is known]. In
general, a solution of (2.14) exists if and only if b ∈ Range�F�� which will
be true in most cases of practical interest. For example, if n ≥ d�d+ 1�/2+ 1
and Ũd = span�1� fifj�1≤i≤j≤d is a Tchebycheff space [Zielke (1979)] we have
rg�F� = d�d + 1�/2 + 1 and hence a solution of (2.14) exists. Note that this
solution will not be unique in general. A possible choice for the weights wi

is to use n − d�d + 1�/2 − 1 equal weights and to determine the remaining
d�d + 1�/2 + 1 weights such that (2.12) and (2.8) are valid. Observe further,
that in some cases dim Ũd = k + 1 < d�d + 1�/2 + 1. For example, in a d-
dimensional polynomial regression model fi�t� = ti−1, i = 1� 
 
 
 � d we have
Ũd = span�1� x� 
 
 
 � x2d−2�. This implies rg� F� = 2d−1 because F contains a
minor of dimension 2d− 1 which is the Vandermonde determinant. Therefore
we can find weights which satisfy (2.14) provided that n ≥ 2d − 1. In those
cases where (2.14) is not solvable, it is still reasonable to choose weights such
that as many equations as possible in (2.14) are satisfied. However, the fol-
lowing result shows that if n increases the weights can always be determined
in accordance to (2.14) and (A2).

Theorem 2.1. For any linear regression space Ud with basis functions
f1� 
 
 
 � fd satisfying (A3), there exists an N ∈ N, such that for all n ≥ N
one can find weights �w1� n� 
 
 
 �wn�n� satisfying (2.14) and condition (A2).

Proof. Note that 1 ≤ dim�Ũd� = k + 1 ≤ d�d + 1�/2 + 1. Let ui = f1
i f

2
i ,

i = 1� 
 
 
 � k+ 1 be a basis of Ũd where f1
i � f

2
i ∈ �1� f1� 
 
 
 � fd�. Then (2.14) is

equivalent to

��f1
1� f

2
1�� 
 
 
 � �f1

k+1� f
2
k+1��t = F̃w�(2.15)
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where

F̃ = (
f1
j�ti�f2

j�ti�
)

i=1�


�n
j=1�


�k+1




Choose t1� 
 
 
 � tk+1, such that

�uj�ti�� i=1�


�k+1
j=1�


�k+1

�= 0
(2.16)

Now there exists an open neighborhood U = U�t1� 
 
 
 � tk+1� such that (2.16)
holds in U because the basis functions ui are continous by (A3). From (A1)
it follows that there exists N, such that for all n ≥ N rg�F̃� = k + 1, that
is, Im F̃ = R

k+1. Hence there exists a solution of (2.15) and consequently an
n − �k + 1�-dimensional subspace of solutions of (2.14). Condition (A2) can
therefore easily be satisfied by choosing a solution with n− k− 1 components
equal to one and solving (2.14) for the remaining components. ✷

It is also worthwhile to mention that the scaling property

!�αg�αf1� 
 
 
 � αfd�
!�αf1� 
 
 
 � αfd�

= α2!�g�f1� 
 
 
 � fd�
!�f1� 
 
 
 � fd�

carries over to M2
n, provided condition (2.12) is valid. In the particular case

when wi ≥ 0� i = 1� 
 
 
 � n we may interpret �M2
n + σ2�1/2 as the minimal

distance between the vector of observations Y and the regression space Ud�n =
span�f1� n� 
 
 
 � fd�n� with respect to the weighted inner product �·� ·�n, with
corresponding norm

�vn�2
n = ��vn� vn�n�2 =

n∑
i=1

�iwih�ti�v2�ti��

which is distorted by the variance σ2. In other words, if (2.12) is valid, we
have

M2
n + σ2 =

n∑
i=1

�iwih�ti�
(
Yi −

d∑
l=1

âlfl�ti�
)2

�(2.17)

where â = �â1� 
 
 
 � âd�t denotes the weighted LSE of the parameter vector
�a1� 
 
 
 � ad�t for which the minimum in (2.17) is attained. For an unweighted
LSE approach see Zwanzig (1980) and Bordeau (1993).

We stress that the recommendations given above concerning the choice of
the weights in M̂2

n can be interpreted also as a guidance for the choice of
weights of the weighted least squares statistics in (2.17). This certainly re-
inforces any weighted least squares approach. The estimates âl now have an
immediate interpretation as the Fourier coefficients of the best approximation
by a certain subspace with respect to the norm � · �n. In the case of (2.12) this
is just the regression space Ud. This may serve as a rough explanation why
the accuracy of the subsequent asymptotics is extremely high when the model
is approximately valid (cf. Section 5).

All that remains is the estimation of the unknown variance σ2 in (2.9).
Various procedures for this purpose have been presented in the literature by
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Breiman and Meisel (1976), Whaba (1978), Silvermann (1985), Rice (1984),
Gasser, Sroka and Jennen-Steinmetz (1986) and Hall and Marron (1990).
An extensive simulation study [see Dette, Munk and Wagner (1998)] moti-
vates the use of the following estimator [see Rice (1984) or Gasser, Sroka and
Jennen-Steinmetz (1986)]. We define pseudoresiduals

ε̃i =
ti+1 − ti
ti+1 − ti−1

Y�ti−1� +
ti − ti−1

ti+1 − ti−1
Y�ti+1� −Y�ti�� i = 2� 
 
 
 � n− 1

and an estimate of σ2 as

S2
ε =

1
n− 2

n−1∑
i=2

c2
i ε̃i

2�(2.18)

where c2
i = �a2

i+b2
i+1�−1, ai = �ti+1−ti�/�ti+1−ti−1� and bi = �ti−ti−1�/�ti+1−

ti−1�. Define C as the �n − 2� × �n − 2� diagonal matrix with elements Cii =
ci+1 and A as the �n − 2� × n tridiagonal matrix with elements Aii = ai+1,
Ai� i+1 = −1, Ai� i+2 = bi+1 then S2

ε can be conveniently written as a quadratic
form

S2
ε =

1
n− 2

YtDY = YtDnY�(2.19)

where D = AtC2A. In the particular case of an equidistant design ti = �i −
1�/�n − 1�, i = 1� 
 
 
 � n [which corresponds to the constant design density in
(2.1)], the estimator in (2.19) reduces

1
6�n− 2�

n−1∑
i=2

�Yi+1 +Yi−1 − 2Yi�2 = YtBnY�

where

Bn =
1

�n− 2�B

= 1
6�n− 2�




1 −2 1 0 · · ·
−2 5 −4 1 0 · · ·

1 −4 6 −4 1 0 · · ·
0 1 −4 6 −4 1 0 · · ·


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


· · · 0 1 −4 6 −4 1 0

· · · 0 1 −4 6 −4 1

· · · 0 1 −4 5 −2

· · · 0 1 −2 1







(2.20)
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Observing (2.9) and (2.18), we now define our estimator of the L2-distance M2

by its empirical counterpart

M̂2
n =

!n�Y�f1� n� 
 
 
 � fd�n�
!�f1� 
 
 
 � fd�

−
(

1− d

n

)
S2
ε(2.21)

where the term d/nS2
ε corresponds to the second-order approximation of the

expectation of M2
n in (2.11). Recall that !n�·� is defined as the determinant

which is obtained by replacing the inner products �g�g�, �g�fl� (l = 1� 
 
 
 � d)
in the Gramian determinant !�g�f1� 
 
 
 � fd� by the inner products of the
vectors Y, f1� n� 
 
 
 � fd�n ∈ R

n according to (2.6) and (2.7), respectively.

Remark 2.1. Note that Gasser, Sroka and Jennen-Steinmetz (1986) re-
quire a Hölder constant γ > 1/4 for the regression function g in order to
establish the asymptotic normality of the variance estimator S2

ε. The stronger
condition γ > 1/2 will become necessary in the following section where (2.10)
is derived.

Remark 2.2. Various authors [see Stute (1997) or Müller (1992), among
others] based their test criterion for problem (1.2) on the asymptotic nor-
mality of the LSE θ̂ under H0 [Jennrich (1969)]. In contrast, our approach
relates directly to the L2-distance between the parametric submodel Ud and
the unknown regression function g. In Section 3 we demonstrate that this al-
lows the determination of the limit distribution of

√
n�M̂2

n−M2� for arbitrary
g ∈ Hölγ	0�1
� γ > 1/2. This will be applied to obtain tests for the precise
hypotheses H� in (1.3) and confidence intervals for the discrepancy M be-
tween the unknown regression function g and the subspace Ud spanned by
the functions f1� 
 
 
 � fd.

3. The asymptotic distribution of M̂2
n. For the asymptotic theory we

may assume without loss of generality that �fi� fj� = δij, i� j = 1� 
 
 
 � d; that
is, �fi�i=1�


�d is an orthonormal system, because the particular choice of the
basis of Ud remains M2 invariant. Hence, by (2.4) and (2.21), we have

M̂2
n =

n∑
i=1

�iwih�ti�Y2
i −

(
1− d

n

)
S2
ε −

d∑
l=1

∣∣∣∣
n∑
i=1

�iwih�ti�fl�ti�Yi

∣∣∣∣
2

= YtTY−
(

1− d

n

)
S2
ε�

(3.1)

where T denotes the n× n matrix

T = W−
d∑
l=1

�Wfl�n��Wfl�n�t �(3.2)

fi�n = �fi�t1�� 
 
 
 � fi�tn��t and W is defined as quadratic diagonal matrix
with diagonal elements �iwih�ti� �i = 1� 
 
 
 � n�. In order to guarantee weak
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convergence of n1/2�M̂2
n−M2� to a non-degenerate limit, we finally require the

following condition regarding the moments of the error distribution in (1.1)

�A4� sup
t∈	0�1


E	�ε�t��4
 <∞


Theorem 3.1. Consider the homoscedastic regression model (1.1), the lin-
ear model Ud = span�f1� 
 
 
 � fd� and assume that (A1)–(A4) are satisfied,
then

� �n1/2�M̂2
n −M2�� → � �0�4σ2M2 + 17/9σ4� as n→∞�(3.3)

where � �µ� τ2� denotes a normal distribution with mean µ and variance τ2.

Proof. Let gn = �g�t1�� 
 
 
 � g�tn��t, ε = Y−gn denote the vector of resid-
uals, In the n× n identity matrix and define

R = 1
n
In −

1
n2

d∑
l=1

fl�nf
t
l� n 
(3.4)

With this notation we obtain from (2.19) and (3.1),

M̂2
n −M2 = YtTY−YtDnY−M2 + op�n−1/2�

= YtTY−YtBnY−M2 + op�n−1/2�
= εtTε+ 2εtTgn + gtnTgn −M2 − εtBnε− 2εtBngn

− gtnBngn + op�n−1/2�
= εtRε+ 2εtRgn − εtBnε− 2εtBngn + op�n−1/2�
= 1
n
εt�In −B�ε+ 2εt

(
R− 1

n
B

)
gn + op�n−1/2�

= Un + op�n−1/2��

(3.5)

where we used Lemma A.1(iv) in the Appendix for the second equality,
parts (iii), (i), (ii) for the equality between the second and the third line and
Lemma A.1(v) for the last equality. Note that the proof of Lemma A.1 requires
Hölder continuity of the functions g�f1� 
 
 
 � fd of order γ > 1/2. Observing
(2.20) and (3.4), this gives

Un =
1
n

n∑
i=1

ε2
i −

1
6n

n−1∑
i=2

�εi+1 + εi−1 − 2εi�2 −
2
n

n∑
i=1

εiτi� n +
2
n

n∑
i=1

εig�ti�

− 1
3n

n−1∑
i=2

�εi+1 + εi−1 − 2εi��g�ti+1� + g�ti−1� − 2g�ti��

= 1
n

n−2∑
i=1

Li + op�n−1/2��

(3.6)

where the random variables Li are defined by

Li = 4/3εiεi+1 − 1/3εiεi+2 − 2�τi�n − g�ti��εi� i = 1� 
 
 
 � n− 2�(3.7)
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and the constants τi�n are given by

τi�n = 1
n

d∑
l=1

n∑
j=1

fl�ti�fl�tj�g�tj�� i = 1� 
 
 
 � n
(3.8)

Observe that the Li defined in (3.7) are uncorrelated random variables each
with expectation 0 and variance

V	Li
 = 17
9 σ

4 + 4�τi�n − g�ti��2σ2
(3.9)

From (A1), (A3) and (3.8) it follows [see also (A.2) in the Appendix]

lim
n→∞

1
n

n∑
i=1

τi�ng�ti� = lim
n→∞

d∑
l=1

(
1
n

n∑
i=1

fl�ti�g�ti�
)2

=
d∑
l=1

��fl� g��2

and similarly

lim
n→∞

1
n

n∑
i=1

τ2
i� n =

d∑
l=1

d∑
m=1

�fl� fm��fl� g��fm�g� =
d∑
l=1

��fl� g��2�

where we used the orthogonality of the functions f1� 
 
 
 � fd in the last line.
Hence,

lim
n→∞

1
n

n∑
i=1

�τi�n − g�ti��2 = �g�g� −
d∑
l=1

��g�fl��2 =M2

and we obtain

lim
n→∞V

(
n−1/2

n∑
i=2

Li

)
= 4σ2M2 + 17/9σ4


Convergence of the distribution of n−1/2 ∑n
i=1 Li to the normal law � �0�

4σ2M2 + 17/9σ4� now follows from Orey (1958), Theorem 1, because the Li

form a centered rowwise, 2-dependent array. The assertion of Theorem 3.1 is
finally obtained from (3.5) and (3.6). ✷

4. Applications.

4.1. Validation of linear models. The most appealing property of the sug-
gested test statistic M̂2

n certainly consists in the following aspects. The test
statistic can easily be computed and the calculation of critical regions requires
only tables of the standard normal distribution. This provides a very simple
test for the classical hypotheses (1.2). That is, H0 g ∈ Ud is rejected if(

9n
17

)1/2 M̂2
n

S2
ε

> u1−α�(4.1)

where uβ denotes the β-quantile of the standard normal distribution. More-
over, Theorem 3.1 gives the asymptotic limit distribution of

√
n�M̂2

n −M2�
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for arbitrary regression functions g ∈ L2. On the one hand, this result can
be used for constructing asymptotic confidence intervals for the L2-distance
M between the regression function g and the subspace Ud. For example, an
(asymptotic) �1− α� upper confidence bound for M is given by M+

n , where

�M+
n �2 = M̂2

n +
2u2

1−α
n

S2
ε +

u1−αSε√
n

√
4M̂2

n +S2
ε

(
4u2

1−α
n

+ 17
9

)

(4.2)

On the other hand, Theorem 3.1 provides a method for the statistical assess-
ment of the model Ud instead of a simple model check. The precise hypothesis
H� in (1.3) is rejected whenever

n1/2 M̂2
n − �2

�4S2
ε�

2 + 17/9S4
ε�1/2

≤ uα
(4.3)

Note that it is not even necessary to determine the weights wi according to
(2.12). The asymptotic result in Theorem 3.1 remains still valid as long as
(A1)–(A4) hold. However, the use of the “exact” integrating weights is highly
recommended. Simulation results show a substantial improvement of the accu-
racy in the approximation of the normal distribution if the weights satisfying
(2.12) are chosen to be as equal as possible, especially for small sample sizes
(see Section 5).

4.2. Similarity of regression functions. The assessment of the equality of
two regression curves, say f and g is similar to the validation of goodness of
fit of a parametric model Ud. Tests for the hypothesis H0 f = g have been
suggested by Hall and Hart (1990), Härdle and Marron (1990) and King, Hart
and Wehrly (1991). The power properties of the proposed tests depend heavily
on the particular choice of smoothing parameters. If automatic smoothing pro-
cedures are applied, the computational effort increases significantly. For these
reasons Delgado (1993) proposed a Kolmogorov–Smirnov type statistic which
does not depend on kernel estimators. Assume the unknown regression curves
to be f�g ∈ L2 where the corresponding measure δ of discrepancy between f
and g is the weighted L2-distance

δ2 = δ2�f�g� =
∫ 1

0
�f�t� − g�t��2h�t�dt
(4.4)

Because δ2 may be regarded as the minimal distance of f−g to the subspace
U0 = �0�, the assessment of the similarity of two regression curves is tanta-
mount to the validation of the linear regression model U0. Following the work
of Hall and Hart (1990), we consider two arrays of random variables

Xi�n =X�ti� n� = f�ti� n� + εi�n
Yi�n = Y�ti� n� = g�ti� n� + ηi�n� 1 ≤ i ≤ n�

where the design �ti� n�ni=1 is as in (1.1) satisfying assumption (A1) with a
positive design density h ∈ Hölγ	0�1
, γ > 1/2. For t ∈ 	0�1
, the random
variables X�t� and Y�t� have finite expectation EX�t� = f�t� and EY�t� =
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g�t�, respectively. The errors �εi� ηi�t form a two-dimensional triangular array
of rowwise independent random variables with expectation 0 and unknown
variances, respectively. Observe that we do not only allow the variances but
also the entire distributions of the errors ε and η to be different. Define new
random variables Zi = Xi − Yi, i = 1� 
 
 
 � n and estimate δ2 = δ2�f�g� by
the quadratic form

δ̂2
n = ZtWZ−ZtDnZ�(4.5)

where Dn is defined by (2.19). In order to apply Theorem 3.1, denote σ2
z =

V	Zi
 and observe that δ2�f�g� =M2�f−g� where the distance M2 is calcu-
lated with respect to the subspace U0 = �0�. Hence, under the assumptions
(A1)–(A4) (transferred to the present situation), it follows that

� �n1/2�δ̂2
n − δ2�� → � �0�4σ2

z δ
2 + 17/9σ4

z � as n→∞
(4.6)

Thus as an immediate consequence of this result we obtain a test for the
classical hypothesis H0 f = g and for the precise hypothesis

H�0
 δ2 > �0 versus K�0

 δ2 ≤ �0
(4.7)

Hence, our approach allows one to show that f and g are similar with respect
to δ2 at a controlled type I error rate. Confidence intervals for the discrepancy
δ2 between f and g can be obtained in the same way as in (4.2). Observe that
the relation (4.6) and the resulting applications do not require the indepen-
dence of the errors εi and ηi.

5. Numerical results.

5.1. Accuracy of the asymptotic law. In order to get more insight into the
finite sample properties of the asymptotic approximation in Theorem 3.1, we
performed an extensive simulation study of the statistic

Hn = n1/2 M̂2
n −M2( 17

9 S
4
ε + 4S2

εM
2
)1/2(5.1)

for various sample sizes n. We considered three different models

g1�x� = a1 + a2x+ exp�κx� model I�

g2�x� = a1 + a2x+ �κx�2 sin�κx� model II�

g3�x� = a1 + a2x+ κx2 model III�

where κ is a fixed parameter which determines the L2-distance to the linear
regression model U2 = span�1� x�. As a design we used

ti� n =
i− 1
n− 1

� i = 1� 
 
 
 � n�(5.2)
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which corresponds to the design density h ≡ 1 in (A1) and (2.1). The weights
for the numerical quadrature were chosen in accordance with (2.12) and (A2)
to be

wi�n =



�n− 1�2
n�n− 2� � if i = 2� 
 
 
 n− 1�

n− 1
2n

� if i = 1� n�

(5.3)

which allows an exact integration of the functions 1� x� x2.
In Table 1 we display for n = 20 the accuracy of the approximation of the

α-quantiles of the standard normal distribution. The numbers of outcomes
which were smaller than the corresponding quantile of the normal distribution

Table 1
Simulated deviation from the normal distribution for the sample size n = 20

M 2 0 0.5

Quantile 0.05 0.1 0.9 0.95 0.05 0.10 0.9 0.95

0.09 0.042 0.085 0.915 0.962 0.050 0.091 0.879 0.936

f1 σ2 0.25 0.042 0.085 0.915 0.962 0.056 0.102 0.891 0.945
1 0.042 0.085 0.915 0.962 0.056 0.107 0.906 0.956
4 0.042 0.085 0.915 0.962 0.047 0.093 0.915 0.959

0.09 0.042 0.085 0.915 0.962 0.031 0.070 0.884 0.938

f2 σ2 0.25 0.042 0.085 0.915 0.962 0.042 0.083 0.901 0.948
1 0.042 0.085 0.915 0.962 0.048 0.091 0.917 0.956
4 0.042 0.085 0.915 0.962 0.041 0.081 0.919 0.963

0.09 0.042 0.085 0.915 0.962 0.058 0.099 0.881 0.939

f3 σ2 0.25 0.042 0.085 0.915 0.962 0.065 0.112 0.896 0.946
1 0.042 0.085 0.915 0.962 0.060 0.113 0.910 0.955
4 0.042 0.085 0.915 0.962 0.050 0.093 0.916 0.959

M 2 1 2

Quantile 0.05 0.10 0.9 0.95 0.05 0.10 0.9 0.95

0.09 0.044 0.078 0.869 0.927 0.033 0.067 0.853 0.918

f1 σ2 0.25 0.051 0.096 0.883 0.939 0.045 0.082 0.871 0.930
1 0.058 0.107 0.900 0.951 0.055 0.097 0.891 0.945
4 0.050 0.098 0.912 0.958 0.055 0.104 0.905 0.955

0.09 0.028 0.059 0.867 0.930 0.023 0.052 0.857 0.922

f2 σ2 0.25 0.040 0.080 0.892 0.942 0.037 0.078 0.880 0.935
1 0.052 0.092 0.907 0.952 0.051 0.098 0.902 0.946
4 0.045 0.089 0.920 0.960 0.054 0.097 0.917 0.955

0.09 0.053 0.091 0.873 0.933 0.043 0.082 0.863 0.926

f3 σ2 0.25 0.060 0.104 0.887 0.941 0.056 0.095 0.877 0.936
1 0.063 0.116 0.902 0.951 0.065 0.112 0.896 0.946
4 0.054 0.102 0.913 0.959 0.060 0.113 0.910 0.955
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were counted and divided by the total number of simulations. For the sample
size and α-quantiles we chose n = 20, 50, 100 (only n = 20 is displayed in
Table 1) and α = 0
05, 0.1, 0.9, 0.95, respectively [note that the 5% and 10%
quantiles are needed in (4.3) while the 90% and 95% quantiles are used in
(4.1)]. For each study we have performed 5000 replications with an SAS-IML
random generator. The error, ε, was assumed to be normally distributed with
variance σ2 where σ2 = 0
09, 0.25, 1, 4. For the distance M, we chose the
values M2 = 0, 0.5, 1, 2. From this simulation study, the following conclusions
can be drawn. First of all, we found that the quality of the approximation
depends only slightly on this distance. Observe further, that, in general, the
estimated probabilities increase whenever the variances increase. When M =
0 (or equivalently κ = 0) we find that the variance σ2 does not affect the
distribution of the test statisticHn which is in accordance with the observation
that Hn in (5.1) is invariant with respect to the group of scale transformations
acting on R

n, whenever M = 0. From Table 1, we draw further that, even for
relatively small sample sizes, the approximation of the level is surprisingly
accurate, independent of M2 and the unknown variance σ2.

For example, when n = 20 we find from Table 1 that the maximal observed
deviation between the estimated and nominal probabilities is always less than
60% of the nominal probability q. Further simulations (not displayed for the
sake of brevity) show that increasing sample size increases the accuracy of
the approximation rapidly. For example, when n = 50, the maximal deviation
between nominal and actual probabilites was always found to be less than
15% of q and when n = 100� less than 5%. We found similar results for
different distributional assumptions, even in the case of a nonsymmetric error
distribution. For example, if ε ∼ σ2�χ2

1 − 1�/√2, M2 = 0
5, σ2 = 0
25, n = 50,
we obtained in model III 0
044, 0
097, 0
896 and 0
944 as approximations for
the probabilities 0
05, 0
10, 0
90 and 0
95. Other results are omitted for the
sake of brevity and are available from the authors on request.

5.2. A power study. As pointed out by the referees and the Associate Edi-
tor, a comparison of our approach with other procedures for a model check is
of some interest. The work most similar in spirit is the work of Eubank and
Hart (1992). In order to understand the features of this test completely, a short
description of Eubank and Hart’s procedure is given here. In addition to the
regression functions f1� 
 
 
 � fd� define n− d functions ujn�·�, j = 1� 
 
 
 n− d,
such that f1� 
 
 
 fd, u1n� 
 
 
 � un−d�n are linearly independent. Consider the
sample Fourier coefficients

α̂jn =
1
n

n∑
r=1

ujn�tr�Yr� j = 1� 
 
 
 � n− d

and determine k̂ ∈ �0� 
 
 
 � n− d� such that

n∑
r=1

{
Yr −

d∑
j=1

bjnfj�tr� −
k∑
j=1

α̂jnujn�tr�
}2

+ cαS2
ε�d+ k�
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is a minimum. Here bn = �b1n� 
 
 
 � bdn�t is the least squares estimator in the
model Ud and cα denotes a critical value which can be obtained from Table 1
in Eubank and Hart (1992). If the functions ujn are orthonormal with respect
to the uniform measure at the design points, this optimization reduces to the
minimization of

r�k� =
k∑
j=1

α̂2
jn −

S2
εcαk

n
� k = 0� 
 
 
 � n− d�

	r�0� = 0
 and the hypothesis H0 f ∈ Ud is rejected if k̂ ≥ 1. Eubank and
Hart (1992) showed that under mild assumptions this test can detect local
alternatives converging to the null at the rate n−1/2.

First of all, we remark, that in a concrete application Eubank & Hart’s test
depends sensitively on the choice of the functions u1n� 
 
 
 � un−d�n. Moreover,
even if these functions are fixed, the test still depends on the ordering of the
functions. This is illustrated in a small example, where we also compare the
Fourier analytic approach with the test presented in this paper. Following
the work of Eubank and Hart (1992) (Example 1), we consider the problem of
testing for no effect of the regression variable, that is, H0 g�·� ≡ β, versus
K0 g�·� �≡ β which corresponds to d = 1, f1�·� ≡ 1. In the sequel we consider
the alternatives g�x� = 1 + c cos�10πt� for various values of c. The design
points are chosen equidistant tr = �r − 1/2�/n, �r = 1� 
 
 
 � n� and the set
of additional regression functions is �√2 cos�πjt�!j = 1� 
 
 
 � n − 1�. In the
following Monte Carlo study, we compare the effect on size and power of the
test of Eubank and Hart (1992) for three different orderings of these functions:

ujn�t� =
√

2 cos�πjt�� j = 1� 
 
 
 � n− 1�(5.4)

ujn�t� =
√

2 cos�π�n− j�t�� j = 1� 
 
 
 � n− 1�(5.5)

ujn�t� =



√

2 cos�10πt�� if j = 1�√
2 cos�π�j− 1�t�� if j = 2� 
 
 
 �9�√
2 cos�πjt�� if j = 11� 
 
 
 � n− 1


(5.6)

For a sample size of n = 100 and standard normal distributed errors, we
calculated the power of the test proposed in this paper by (4.1) and the three
tests of Eubank and Hart which emerge from the different orderings of the
functions in (5.4), (5.5) and (5.6). Then 5000 simulations were performed and
the number of rejections of H0 g�·� ≡ β counted. The results are listed in
Table 2. We find that the power of the test proposed in this paper is comparable
with the power of Eubank and Hart’s test if the natural ordering (5.4) is
chosen. If the inverse ordering (5.5) is used the last named test has a nearly
constant power function ρ ≡ α and cannot be recommended. On the other
hand, the ordering (5.6) produces an extremely powerful version of Eubank
and Hart’s test in order to detect the specific alternative g�x� = 1+c cos�10πx�.
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Table 2

Power of the test (4.1) and the test of Eubank and Hart (1992) for different orderings of the function
ujn�t� =

√
n cos�πjt�∗

Test of Eubank and Hart

� c Test (4.1) (5.4) (5.5) (5.6)

5% 0.00 0.0440 0.0564 0.0424 0.0620
0.25 0.0754 0.0586 0.0394 0.4114
0.50 0.1912 0.0994 0.0418 0.9268
0.75 0.4868 0.3994 0.0374 0.9988
1.00 0.8164 0.8612 0.0432 1.0000

10% 0.00 0.0966 0.1124 0.0834 0.1150
0.25 0.1400 0.1256 0.0876 0.5170
0.50 0.3074 0.2416 0.0876 0.9592
0.75 0.6270 0.6744 0.0866 0.9996
1.00 0.8964 0.9688 0.0924 1.000

∗The alternative considered here is g�t� = 1+ c cos�10πt� and the sample size is n = 100.

This is rather obvious because we have first chosen the regression function
which is most similar to the alternative cos�10πx�.

We observed similar effects in other set-ups. Summarizing these results,
we remark that in many cases the test (4.1) proposed in this paper has power
behavior similar to Eubank and Hart’s test. However, the last named test is
extremely sensitive with respect to the choice and ordering of the additional
functions ujn�·� �j = 1� 
 
 
 � n − d�. This property yields to a substantial im-
provement of the power, if the experimenter wants to guard against specific
alternatives. Note that the set of these alternatives depends on the sample
size. However, Eubank and Hart’s procedure loses some of its appeal in many
practical applications from the dependence of the test decision on the spe-
cific ordering of the set of these specific regression functions. The simulations
show that a misspecification of these alternatives leads to a serious loss in
power. Therefore, if no information about specific alternatives is available, we
strongly recommend the use of the omnibus test (4.1).

6. Remarks and conclusions.

Remark 6.1. If the random errors εi�n in (1.1) are i.i.d. and E�ε3
i� n� = 0,

then, under conditions (A1)–(A4), it can be proved that

lim
n→∞V	n

1/2YtTY
 = �m4 − 1�σ4 + 4σ2M2�

where m4 = E	ε4
i� n
σ−4. Surprisingly, this shows that the estimation of σ2 by

S2
ε reduces the (asymptotic) variability of the statistic

n1/2�M̂2
n −M2� = n1/2�YtTY− �1− d/n�S2

ε −M2�
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compared with that of

n1/2�M2
n −M2� = n1/2�YtTY− σ2 −M2�

whenever m4 ≥ 26/9. In the case of a normally distributed error, we observe
a maximum reduction by a relative amount of approximately 6%, which is
attained for M = 0.

Remark 6.2. For testing H0 versus K0, one would reject the null hypothe-
sis whenever (4.1) is valid. Then, asymptotically, the power function πϕ of the
test ϕ with critical region (4.1) is

πϕ�n� κ� = 1−A�u1−α�1+ 36/17κ�−1/2

− n1/2�17/9κ−2 + 4κ−1�−1/2� + o�1��
(6.1)

where κ =M2/σ2. This approximation can be used for computing the required
sample size in order to control the type II error of the test (4.1) of the classical
hypothesis H0 g ∈ Ud. Such calculations require only information about σ2

and M2 = M2�g� but not about the particular alternative g ∈ L2. Similar
computations can be performed for the test (4.3) of the “precise” hypothesisH�.

Remark 6.3. It is worthwhile to mention that the definition of the test
statistic in (2.21) requires the explicit knowledge of the design density h in
(2.1). If such knowledge is not available, the density has to be estimated from
the data. To this end the estimates of the inner products in (2.6) and (2.7)
have to be defined differently, that is,

�Y�fl�n�n =
1
n

n∑
i=1

wi�nfl�ti� n�Yi�(6.2)

�Y�Y�n =
1
n

n∑
i=1

wi�nY
2
i 
(6.3)

Similary the inner products �fl� fk� =
∫ 1

0 fl�t�fk�t�h�t�dt in !�f1� 
 
 
 � fd� in
(2.21) have to be estimated by

�fk�n� fl�n�n =
1
n

n∑
i=1

wi�nfk�ti� n�fl�ti� n�
(6.4)

It can be shown that all results of this paper remain true if the estimates
(2.6) and (2.7) are replaced by (6.2) and (6.3) and the inner products of the
the regression functions are replaced by their empirical counterparts in (6.4).
To this end we require a o�n−3/2� instead of o�n−1/n� in the asymptotic Sacks-
Ylvisaker condition (A1). Applying similar arguments, our approach can also
be extended to the case of random predictors. For a random design, an ana-
logue of Theorem 3.1 is valid with a different limiting variance which reflects
the randomness of the predictor variable. For details, the reader is referred to
the work of Dette and Munk (1997).
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APPENDIX

Lemma A.1. Consider the homoscedastic regression model (1.1) and the ma-
trices R, T, Bn, Dn defined by (3.4), (3.2), (2.20) and (2.19) in Sections 2 and 3.
Let gn = �g�t1�� 
 
 
 � g�tn��t. Under assumptions (A1)–(A4) we have the follow-
ing:

(i) gtnTgn −M2 = o�n−1/2�;
(ii) gtnBngn = o�n−1/2�;

(iii) εt�R−T�ε = op�n−1/2�, εt�R−T�gn = op�n−1/2�;
(iv) Yt�Bn −Dn�Y = op�n−1/2�;
(v) εt�R− n−1In�ε = op�n−1/2�.

Proof. For (i), (ii), consider an arbitrary v ∈ Hölγ	0�1
, where γ > 1/2;
then assumption (A2) yields∣∣∣∣

n∑
i=1

�iwih�ti�v�ti� −
∫ 1

0
v�x�h�x�dx

∣∣∣∣
≤

n∑
i=2

∫ ti

ti−1

�v�ti�h�ti� − v�x�h�x��dx+ o�n−1/2�

≤ nC
n

max
i=2

∫ ti

ti−1

�x− ti�γ dx+ o�n−1/2� = o�n−1/2��

(A.1)

where we have used h� v ∈ Hölγ	0�1
, γ > 1/2, in the second inequality. Ap-
plying this result to g2, gf1� 
 
 
 gfd proves part (i). Part (ii) of Lemma A.1
follows similarly.

(iii) By assumption (A2) we have

V	n1/2εt�n−1In −W�ε
 = n
n∑
i=1

��iwih�ti� − n−1�2V	ε2
i 


≤ Ch n
2
(

max
i=1�


�n

��ih�ti� − n−1�
)2

+ o�1� 


A straightforward calculation shows∣∣∣∣�ih�ti� − 1
n

∣∣∣∣ ≤
∣∣∣∣h�ti�h�ξi�

∣∣∣∣
∣∣∣∣
∫ ti

ti−1

h�x�dx− 1
n

∣∣∣∣+ 1
n

∣∣∣∣h�ti�h�ξi�
− 1

∣∣∣∣�
where ξi ∈ �ti−1� ti� (i = 1� 
 
 
 � n). Assumptions (A1) and (A3) now imply (note
that the design density is positive on 	0�1
)

n
max
i=2

∣∣∣∣�ih�ti� − 1
n

∣∣∣∣ = o

(
1
n

)
�(A.2)

which implies V�εt�n−1In −W�ε� = o�n−1�. Observing (A.1) we have

E	εt�n−1In −W�ε
 = σ2
( n∑
i=1

�iwih�ti� − 1
)
= o�n−1/2�
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and it follows

εt�n−1In −W�ε = op�n−1/2�

In the same way we obtain for the other terms

εt�Wfl�nf
t
l� nWt − n−2fl�nf

t
l� n�ε = op�n−1/2�� l = 1� 
 
 
 � d�

which proves the first part of Lemma A.1(iii). The second part is shown by
similar arguments.

(iv) From Whittle (1964) we draw that

V	Yt�Bn −Dn�Y
 = σ4�n− 2�−2{2 tr	�B−D�2
 + �m4 − 3�
n∑
i=1

�B−D�2ii
}

+ o
(

1
n

)
�

where m4 = E	ε4
i 
σ−4. A straightforward calculation shows

tr	�B−D�2
 =
n−3∑
i=3

�c2
i−1ai−1bi−1 − 1/6�2

+ �bi−1c
2
i−1 + aic2

i − 2/3�2 + �c2
i−1b

2
i−1 + c2

i + a2
i+1c

2
i+1 − 1�2

+ �bic2
i + ai+1c

2
i+1 − 2/3�2 + �c2

i+1ai+1bi+1 − 1/6�2 +O�1�
and

n∑
i=1

�B−D�2ii =
n−3∑
i=3

�c2
i−1b

2
i−1 + c2

i + a2
i+1c

2
i+1 − 1�2 +O�1�


Condition (A1) implies

max
i=1�


�n−1

��i/�i+1 − 1� = o�1��

which shows that

max
i=2�


�n

�bi − 1/2� = o�1�� max
i=2�


�n

�ai − 1/2� = o�1�

and

max
i=2�


�n

�c2
i − 2/3� = o�1�


Combining these arguments we obtain V�Yt�Bn−Dn�Y� = o�n−1�. By similar
arguments it can be shown that

E	Yt�Bn −Dn�Y
 = gtn�Bn −Dn�gn + σ2 tr�Bn −Dn� = o�n−1/2��
which proves part (iv).
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(v) Let S = R − n−1In =
∑d

l=1 fl�nf
t
l� n and κ4 = m4 − 3m2

2 where mk =
E	εkj
/σk, k = 1� 
 
 
 �4 Then we draw from Whittle (1964) for the variance of
εtSε,

V	εtSε
 = κ4σ
4

n∑
j=1

s2
jj + 2σ4

n∑
i�j=1

s2
ij

= κ4σ
4

n∑
i=1

( d∑
l=1

f2
l �ti�

)2

+ 2σ4
n∑

i�j=1

( d∑
l�k=1

fl�ti�fk�tj�
)2

�

which leads to V	εtn−2Sε
 = o�n−1�. The corresponding statement for the
expectation is obvious and assertion (v) of Lemma A.1 follows. ✷
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