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LIMITING DISTRIBUTIONS FOR L1 REGRESSION
ESTIMATORS UNDER GENERAL CONDITIONS1

By Keith Knight

University of Toronto

It is well known that L1-estimators of regression parameters are
asymptotically normal if the distribution function has a positive derivative
at 0. In this paper, we derive the asymptotic distributions under more
general conditions on the behavior of the distribution function near 0.

1. Introduction. Consider the linear regression model

Yi = β0 + β1x1i + · · · + βpxpi + εi�(1)

where β0� β1� 	 	 	 � βp are unknown parameters and �εi� are unobservable in-
dependent, identically distributed (i.i.d.) random variables each with median
0. For simplicity, we will assume that the xki’s are nonrandom although the
results will typically hold for random xki’s. We will consider the asymptotic
behavior of L1-estimators of � = �β0� 	 	 	 � βp�; that is, β̂0� β̂1� 	 	 	 � β̂p minimize
the objective function

gn��� =
n∑
i=1

�Yi −φ0 −φ1x1i − · · · −φpxpi�

over all � = �φ0� 	 	 	 � φp�.
The asymptotic behavior of L1-estimators in regression is well known, at

least in the case where the errors have a distribution function F�t� which is
differentiable at 0 with the derivative positive. In particular, if we denote this
derivative by λ = F′�0�, we have �XT

nXn�1/2��̂ − �� converges in distribution
to a �p + 1�-variate normal distribution with mean vector 0 and covariance
matrix �4λ2�−1I provided that

max
1≤i≤n

xTi �XT
nXn�−1xi → 0 as n→ ∞�

where xTi = �1� x1i� 	 	 	 � xpi� and Xn is the n × �p + 1� matrix whose ith
row is xTi . [Note that xTi �XT

nXn�−1xi, i = 1� 	 	 	 � n, are simply the diagonal
elements of the so-called hat matrixXn�XT

nXn�−1XT
n .] If n−1�XT

nXn� → C for
some positive definite matrix C, then it will follow that

√
n��̂ − �� converges

in distribution to the �p + 1�-variate normal distribution whose covariance
matrix is �4λ2�−1C−1. [See, e.g., Bassett and Koenker (1978), Bloomfield and
Steiger (1983), Bai, Chen, Wu and Zhao (1990) and Pollard (1991) for various
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756 K. KNIGHT

approaches to proving the asymptotic normality.] Second order results are
given by Arcones (1996a, b), Babu (1989) and He and Shao (1996).

A natural question to ask is what happens when the distribution function
does not have a positive derivative at 0. While these cases may seem pathologi-
cal, they are, in fact, far from it. Indeed, while assuming the existence of a den-
sity seems reasonable, it is an assumption which is difficult to verify. In fact,
previous work suggests that the asymptotic behavior of L1-estimators is very
sensitive to this assumption. For i.i.d. observations, Smirnov (1952) identifies
four possible types of limiting distributions for sample quantiles and charac-
terizes their domains of attraction. Jurečková (1983) considers the asymptotic
behavior of M-estimators of location under nonregular conditions; her results
include the L1-estimator of location (namely, the sample median) as a special
case. On another front, Arcones (1994) considers the asymptotic behavior of
so-called Lp-median (i.e., minimizers of

∑n
i=1 �Yi − θ�p) for 0 < p ≤ 1/2 and

shows that the convergence rate is slower than Op�n−1/2�.
To consider the asymptotic behavior of L1-estimators, we will start by defin-

ing (for some sequence of constants an),

�n�t� =
∫ t

0

√
n
(
F�s/an� −F�0�)ds�(2)

which for each n is a convex function. If the limit of ��n�t�� exists for each t,
define

��t� = lim
n→∞�n�t��(3)

��t� (if it exists) is a convex function taking values in �0�∞�; note that ��t�
may equal ∞ although typically ��t� will be finite. [See Examples 3 and 4, in
Section 3, for cases where ��t� = ∞ for certain t.]

The exact form of � in (3) can be more easily obtained by considering the
limit of

√
n�F�t/an� −F�0��; if

lim
n→∞

√
n�F�t/an� −F�0�� = ψ�t��(4)

then typically

��t� =
∫ t

0
ψ�s�ds	

In the case whereF�x� is differentiable at x = 0 [withF′�0� > 0] then an = √
n

and ψ�t� = λt, where λ = F′�0�, and so��t� = λt2/2. More generally, condition
(4) includes cases where F has one-sided derivatives at 0 [ψ�t� = λ+t for
t > 0 and ψ�t� = λ−t for t < 0 where an = √

n] or is regularly varying in a
neighborhood of 0. These conditions are very similar to those given by Smirnov
(1952). These assumptions are somewhat weaker than those used in Jurečková
(1983) for the location case. In particular, notice that it is not necessary to
assume that F is absolutely continuous (with respect to Lebesgue measure);
in fact, F can contain discrete components.
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We will show that (under suitable regularity conditions on the design)
an��̂n−�� converges in distribution. To do this, we will first modify the objec-
tive function gn as follows:

Zn�u� =
an√
n

n∑
i=1

[∣∣εi − xTi u/an
∣∣− �εi�

]
	(5)

It is easy to see that the vector ûn which minimizes Zn is simply an��̂n − ��.
If one now regards �Zn� as a sequence of random convex functions on Rp+1

and if the finite-dimensional distributions of Zn�u� converge in distribution
to those of some function Z�u� which has a unique minimum U, then it will
follow that

Un = an
(
�̂n − �

)→d U = argmin�Z�
as n→ ∞ [see Hjørt and Pollard (1993) and Geyer (1996)].

2. Limiting distributions. We will now formally state the regularity
conditions needed to find the limiting distribution of the L1-estimator:

(A1) �εi� are i.i.d. random variables with median 0 with distribution function
F continuous at 0.

(A2) For some positive definite matrix C,

lim
n→∞

1
n
XT
nXn = C	

(A3) For each u,

lim
n→∞

1
n

n∑
i=1

�n�uTxi� = τ�u�

for some convex function τ�u� taking values in �0�∞�, where ��n�t�� is
defined as in (2) (for some sequence �an�).

At this point, it is worth making a few comments on the regularity condi-
tions. Condition (A2) is standard and implies, for example, that

1
n

max
1≤i≤n

xTi xi → 0	

Condition (A3) is similar in spirit to (A2); it is essentially another moment
condition for the xi’s. If ��t� [defined in (3)] is finite for all t, then τ�u� in (A3)
can sometimes be evaluated as

τ�u� = lim
n→∞

1
n

n∑
i=1

�
(
uTxi

)
(assuming the convergence of �n to � is sufficiently uniform). If this is the
case and (4) holds with ψ�t� = λt, then ��t� = λt2/2 and so (A3) is implied by
(A2) with

τ�u� = λ
2

uTCu	
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Note that conditions (A2) and (A3) rule out certain designs for which the
moment conditions are not appropriate; for example, consider xTi = �1� i�. In
such cases, it may be possible to reformulate conditions (A2) and (A3) so that
a nondegenerate limiting distribution exists.

Theorem 1. Assume the model (1) forY1�Y2� 	 	 	 and defineZn�·� as in (5).
If assumptions (A1), (A2) and (A3) hold, then for any �u1� 	 	 	 �uk�,(

Zn�u1�� 	 	 	 �Zn�uk�
)→d

(
Z�u1�� 	 	 	 �Z�uk�

)
�

where

Z�u� = −uTW + 2τ�u�
with W a �p + 1�-variate normal random vector with mean vector 0 and co-
variance matrix C.

(The minus sign in front of uTW is obviously unnecessary but will be useful
in the sequel.)

Corollary 2. Under the hypotheses of Theorem 1, ifZ�u� has unique min-
imum (with probability 1), then

an��̂n − �� →d argmin�Z�	

Proof of Theorem 1. We will use the identity

�x− y� − �x� = −y[I�x > 0� − I�x < 0�]+ 2
∫ y

0

[
I�x ≤ s� − I�x ≤ 0�]ds�

which is valid for x �= 0. [I�A� is the indicator function of the set A.] Now

Zn�u� = Z�1�
n �u� +Z�2�

n �u��
where

Z
�1�
n �u� = − 1√

n

n∑
i=1

xTi u
[
I�εi > 0� − I�εi < 0�]

and

Z
�2�
n �u� = 2an√

n

n∑
i=1

∫ vni
0

[
I�εi ≤ s� − I�εi ≤ 0�]ds

=
n∑
i=1

Z
�2�
ni �u�

(with vni = xTi u/an). By the Lindeberg–Feller central limit theorem, for
each u,

Z
�1�
n �u� →d −uTW
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[using the fact that n−1�XT
nXn� converges to C] and the convergence in dis-

tribution holds for any finite collection of u’s. For Z�2�
n �u�, we have

Z
�2�
n �u� =

n∑
i=1

E
(
Z

�2�
ni �u�

)+ n∑
i=1

(
Z

�2�
ni �u� −E

(
Z

�2�
ni �u�

))
	

Letting vi = xTi u = anvni, it follows that

n∑
i=1

E�Z�2�
ni �u�� = 2an√

n

n∑
i=1

∫ vni
0

(
F�s� −F�0�)ds

= 2
n

n∑
i=1

∫ vi
0

√
n

(
F

(
s

an

)
−F�0�

)
ds

= 2
n

n∑
i=1

�n
(
uTxi

)
→ 2τ�u�	

For the remainder term in Z�2�
n �u�, we have

Var�Z�2�
n �u�� =

n∑
i=1

E
[(
Z

�2�
ni �u� −E�Z�2�

ni �u��
)2]

≤ 2√
n

max
1≤i≤n

�xTi u�
n∑
i=1

E
(
Z

�2�
ni �u�

)
= 2√

n
max
1≤i≤n

�xTi u�E(Z�2�
n �u�)	

Thus if τ�u� <∞,

Z
�2�
n �u� −E�Z�2�

n �u�� →p 0 as n→ ∞�

and so Z�2�
n �u� →p 2τ�u�. If τ�u� = ∞, then

P
(∣∣Z�2�

n �u� −E(Z�2�
n �u�)∣∣ > εE(Z�2�

n �u�)) ≤ Var
(
Z

�2�
n �u�)

ε2E
(
Z

�2�
n �u�)2

≤ 2
max1≤i≤n

∣∣xTi u
∣∣/√n

ε2E�Z�2�
n �u��

→ 0�

which implies that Z�2�
n �u� →p ∞ = τ�u�. Thus we have

Zn�u� →d −uTW + 2τ�u� = Z�u�
and the finite-dimensional convergence holds trivially. ✷
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Proof of Corollary 2. If Z�u� has a unique minimum, then by the con-
vexity of the Zn’s it follows that

argmin�Zn� = an��̂n − �� →d argmin�Z�
as n→ ∞. [See, e.g., Geyer (1996).] ✷

In general, argmin�Z� will have a multivariate normal distribution if, and
only if, τ is a quadratic function. Moreover, τ will be quadratic if, and only if,
the function ψ defined in (4) is linear. When τ is differentiable (with gradient
∇τ) then

an��̂n − �� →d U�

where U satisfies the equation

2∇τ�U� = W	

Under appropriate regularity conditions, we can evaluate ∇τ as

∇τ�u� = lim
n→∞

1
n

n∑
i=1

xiψ�uTxi��

where ψ is defined in (4).
Cases where τ�u� is infinite for u outside some compact set K can occur

in many ways. For example, suppose that F is absolutely continuous with
density f, where

lim
x→0−

f�x� = ∞ and lim
x→0+

f�x� = λ > 0	

In this case, we have an = √
n and

��t� =
{∞� if t < 0�

λt2/2� if t ≥ 0	

Therefore, τ�u� will take infinite values. This case is considered further in
Example 3 below; see also Example 4.

The results given in this section can be extended in numerous directions.
For example, we can obtain similar results for so-called regression quantiles
[Koenker and Bassett (1978)] by replacing �x� by the function ρq�x� = �x� −
�2q − 1�x for some 0 < q < 1. Similarly, we could consider regression M-
estimators with discontinuous “ψ” functions similar to Jurečková (1983).

3. Examples. The limiting distributions for an��̂n − �� are, in general,
quite complicated (but not impossible) to determine in closed form.

In Examples 1 and 2, we assume that the εi’s have a distribution function
satisfying

F�x� −F�0� = λ sgn�x��x�αL��x��(6)
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for x in a neighborhood of 0 where α > 0 and L is a slowly varying function
at 0 [sgn�x� = 1 if x is positive and −1 if x is negative]. In this case, we can
take

an = n1/�2α�L∗�n� and ψ�t� = λ sgn�t��t�α�
where L∗ is a slowly varying function at infinity. For example, if F�x�−F�0� =
λx ln��x�−1� (for x close to 0), then we can take an = √

n ln�n�/2 and ψ�t� = λt.
Moreover, for distributions satisfying (6), we have

��t� = λ

α+ 1
�t�α+1	

Thus, for larger α, condition (A3) is a more stringent “moment” condition on
the xi’s.

Example 1. Suppose that Y1�Y2� 	 	 	 are i.i.d. random variables with Yi =
µ+εi, where µ is the median of the distribution of theYi’s. The sample median
µ̂n minimizes

gn�θ� =
n∑
i=1

�Yi − θ�	

If we assume that the distribution function of the εi’s satisfies (6) for some
α > 0, then the limit of Zn�u� as defined in (5) is

Z�u� = −uW+ 2λ
α+ 1

�u�α+1�

whereW is normal with mean 0 and variance 1;Z�u� is minimized atU which
satisfies

2λ�U�α sgn�U� =W
and so U = sgn�W��W/�2λ��1/α; the density of U [and hence the limiting
density of an�µ̂n − µ�] is

f�x� = λα
√

2√
π

�x�α−1 exp�−2λ2�x�2α�	

[See also Smirnov (1952) and Jurečková (1983), Corollary 1.] Note that the
density has a singularity at 0 if α < 1 and that the density is bimodal if α > 1.

Example 2. Suppose that Yi = β0 + β1xi + εi, where the εi’s are i.i.d.
random variables whose distribution satisfies (6) for some α > 0. Suppose also
that half of the xi’s are 1 and the other half are −1. Then

1
n

n∑
i=1

�u0 + u1xi�α+1 → 1
2

(�u0 − u1�α+1 + �u0 + u1�α+1)	
The limit of Zn�u0� u1� is

Z�u0� u1� = −�u0W0 + u1W1� +
λ

α+ 1

(�u0 − u1�α+1 + �u0 + u1�α+1)�
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where W0 and W1 are independent normal random variables each with mean
0 and variance 1. If U0 and U1 minimize Z�u0� u1�, then they satisfy the
equations

λ
[�U0 +U1�α sgn�U0 +U1� + �U0 −U1�α sgn�U0 −U1�

] =W0�

λ
[�U0 +U1�α sgn�U0 +U1� − �U0 −U1�α sgn�U0 −U1�

] =W1	

The joint density of �U0�U1� is then

f�u0� u1� =
2λ2α2

π
�u2

0 − u2
1�α−1 exp

[−λ2(�u0 + u1�2α + �u0 − u1�2α
)]
	

Thus an�β̂n0−β0� and an�β̂n1−β1� are asymptotically independent if, and only
if, α = 1. The asymptotic marginal densities are, in this example, identical; if
α ≤ 1/2, the marginal densities will have a singularity at 0. Figures 1 and 2
give these limiting densities for α = 1/2 and α = 3/2 (with λ = 1). (Note
that the limiting joint distribution could also be deduced from the limiting
distribution in Example 1.) It is also possible to see that, as α → ∞, the
asymptotic distribution concentrates around the points �0�1�, �0�−1�, �1�0�
and �−1�0� with equal probability.

Example 3. Suppose that Yi = β0+β1xi+εi, where the xi’s are uniformly
distributed over the interval �−1�1�. In this case, we have

1
n
XT
nXn → C =

(
1 0

0 1/3

)
	

Fig. 1. Marginal density for α = 1/2	
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Fig. 2. Marginal density for α = 3/2	

We will assume that the distribution function F of the εi’s satisfies

lim
n→∞

√
n
(
F�t/√n� −F�0�� =

{−∞� if t < 0�

λt� if t ≥ 0�

and so

��t� =
{∞� if t < 0�

λt2/2� if t ≥ 0	

Thus, given that the xi’s are contained in �−1�1�, we have

τ�u0� u1� =
{
λ�u2

0/2 + u2
1/6�� if u0 ≥ �u1��

∞� otherwise	

Then letting W0 and W1 be independent 0 mean normal random variables
with variances 1 and 1/3, respectively, it follows that

√
n

(
β̂0n − β0

β̂1n − β1

)
→d

(
U0

U1

)
�

where

U0 =



W0/�2λ�� if W0 ≥ 3�W1��
3�W0 +W1�/�8λ�� if 0 < W0 +W1 < 4W1�

3�W0 −W1�/�8λ�� if 0 < W0 −W1 < −4W1�

0� if W0 ≤ −�W1��
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and

U1 =



3W1/�2λ�� if W0 ≥ 3�W1��
3�W0 +W1�/�8λ�� if 0 < W0 +W1 < 4W1�

3�W1 −W0�/�8λ�� if 0 < W0 −W1 < −4W1�

0� if W0 ≤ −�W1�	
Note that much of the limit distribution is concentrated on the set B =
��u0� u1�� u0 = �u1��; a straightforward computation gives

P
[�U0�U1� ∈ B

] = P[W0 < 3�W1�
]

= 1

π
√

3

∫ ∞

0

∫ x
−∞

exp
(
−1

6
�3t2 + x2�

)
dtdx

= 5
6
	

Likewise, P�U0 = U1 = 0� = P�W0 ≤ −�W1�� = 1/6.

Example 4. As in Example 3, suppose that Yi = β0 +β1xi+εi, where the
xi’s are uniformly distributed on the interval �−1�1�. Suppose that the density
of the εi’s is

f�x� = 1
2x2

exp�−�x�−1�

so that its distribution function is

F�x� = 1
2

(
1 + sgn�x� exp�−�x�−1�)	(7)

It is now easy to see that

√
n
(
F�t/ ln�n�� −F�0�)→ ψ�t� =


0� for �t� < 2�

sgn�t�1/2� for �t� = 2�

sgn�t�∞� for �t� > 2�

so that

�n�t� → ��t� =
{

0� for �t� ≤ 2�
∞� for t > 2	

Defining Zn as in (5) with an = ln�n�, it is easy to determine that

Zn�u0� u1� →d Z�u0� u1� = u0W0 + u1W1 + τ�u0� u1��
where W0, W1 are independent normal random variables with mean 0 (vari-
ances 1 and 1/3, respectively) and

τ�u0� u1� =
{

0� if −2 ≤ u0 + u1 ≤ 2 and −2 ≤ u0 − u1 ≤ 2�

∞� otherwise	
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[We have

1
n

n∑
i=1

�n�uTxi� → τ�u�

since the xi’s are contained in a compact set.] Thus determining the limiting
distribution of ln�n���̂n − �� depends on minimizing u0W0 + u1W1 over the
region

A = {�u0� u1�� −2 ≤ u0 + u1 ≤ 2 and −2 ≤ u0 − u1 ≤ 2
}
	

Since P�W0 =W1� = P�W0 = −W1� = 0,Z�u0� u1� has an almost sure unique
minimum; the minimizer will be one of the four corners of the region A with
probability 1/4 for each corner. [Likewise, if Yi = µ+ εi, where the εi’s have
the distribution function (7), then it is easy to show that for the sample median
µ̂n of Y1� 	 	 	 �Yn we have

ln�n��µ̂n − µ� →d U�

where P�U = 2� = P�U = −2� = 1/2; this is one of the four types of limiting
distribution for the sample median given by Smirnov (1952).]

The convergence to the limiting distribution is very slow (as might be ex-
pected). Figures 3 and 4 show plots of ln�n��β̂n0 − β0� versus ln�n��β̂n1 − β1�
for n = 100 and n = 100�000 based on 1000 simulations; note the tendency
for the points to concentrate around the corners of A. However, even for the
extremely large sample size, there is little evidence that the limiting distribu-
tion would be a good approximation to the true distribution. (The simulations
were done using S-PLUS with the pseudorandom variates generated using an
inverse transformation of uniform pseudorandom variates.)

Fig. 3. Scatterplot of ln�n��β̂n1 − β1� versus ln�n��β̂n0 − β0� for n = 100	
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Fig. 4. Scatterplot of ln�n��β̂n1 − β1� versus ln�n��β̂n0 − β0� for n = 100000	

More generally, when Yi = xTi �+ εi for i.i.d. εi’s with distribution function
(7) then

Zn�u� →d Z�u� = uTW + τ�u��
where W is �p+ 1�-variate normal with mean 0 and covariance matrix

C = lim
n→∞

1
n
XT
nXn

and

τ�u� =
{

0� if u ∈ A�
∞� otherwise�

with

A =
{

u� lim
n→∞

1
n

n∑
i=1

I
(�uTxi� ≤ 2

) = 1
}
	

Note that A is always nonempty in that it will always contain 0. Moreover,
in order to obtain a nondegenerate limit distribution, the xi’s need to be
“essentially” bounded in the sense that a negligible fraction lies outside a
bounded set.

4. Other comments.

4.1. Efficiency. It is interesting to compare the rate of convergence of L1-
estimators to the best attainable rate of convergence. In this section, we will
show that L1-estimators are not “ratewise robust” when α �= 1 when α is
defined as in (6).
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When an = o�√n� then L1-estimators have an asymptotic relative effi-
ciency of 0 since

√
n-consistent estimators of � exist. When F′�0� = λ > 0,

the L1-estimators are
√
n-consistent; this is typically the optimal rate of con-

vergence in this case. However, the situation is less clear when an/
√
n→ ∞.

Intuitively, it seems possible to improve on the rate of convergence obtained
by L1-estimators by choosing an estimation method which more fully exploits
the concentration of εi’s near 0.

In order to find the best possible rate of convergence, we will apply the
theory developed by Akahira and Takeuchi (1981, 1995). Assume that εi has
a symmetric density

f�x� = �x�α−1L��x���
where α < 1 and L is a slowly varying function at 0. In this case, it follows
that

F�x� −F�0� = sgn�x��x�αL∗��x���
where L∗��x��/L��x�� → α as x→ 0. Define �bn� so that

n
(
F�x/bn� −F�0�)→ sgn�x��x�α	

(Note that bn = an2 and so bn/an → ∞.) Then it follows that

n

bn
f

(
x

bn

)
→ α�x�α−1	

Define

Kn�θ� = −
∫ ∞

−∞
�lnf�x− θ/bn� − lnf�x��f�x�dx	

It follows that

Kn�θ� ∼
α�1 − α�
n

∫ ∞

−∞
�ln��x− θ�� − ln��x��� �x�α−1 dx

= α�1 − α�
n

�θ�α
∫ ∞

−∞
�ln��x− 1�� − ln��x��� �x�α−1 dx	

Then provided that

lim sup
n→∞

1
n

n∑
i=1

�uTxi�α <∞�

it follows from Theorem 3.5.2 of Akahira and Takeuchi (1995) that there can-
not exist a sequence of “regular” estimators ��̂n� of � with cn��̂n−�� = Op�1�
and cn/bn → ∞.

We will now give a heuristic demonstration of the existence of a bn-
consistent estimator of �. Consider estimating � by minimizing

n∑
i=1

�Yi − �Txi�r
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over all �, where r > 0 and r+ α < 1. Define

Zn�u� = brn
n∑
i=1

[�εi − uTxi/bn�r − �εi�r
]

=
∫ ∞

−∞

[�v− uTx�r − �v�r] νn�dv× dx��

where νn is a random measure with

νn�A×B� =
n∑
i=1

I�bnεi ∈ A�xi ∈ B�	

Under appropriate regularity conditions, �νn� converges in distribution (with
respect to the vague topology) [Kallenberg (1983)] to a Poisson random mea-
sure ν with

E
(
ν�A×B�) = λ�B� ∫

A
αxα−1 dx�

where

1
n

n∑
i=1

I�xi ∈ B� → λ�B�	

Using standard methods, it can be shown that

Zn�u� →d Z�u� =
∫ ∞

−∞

[�v− uTx�r − �v�r] ν�dv× dx��

where Z�u� is finite if ∫
�uTx�r+αλ�dx� <∞	

The function Zn is not convex so the bn-consistency is not immediate, but
this argument can be tightened up (albeit with some difficulty) to yield bn-
consistency of the estimator. Note that this result does not depend on the exis-
tence of a density. Some related results are given in Ibragimov and Has’minskii
(1981).

4.2. Second-order results. The proof of Theorem 1 implies that we can
approximate the function Zn by

Z∗
n�u� = −uTWn + 2τ�u��

where

Wn = 1√
n

n∑
i=1

xi
[
I�εi > 0� − I�εi < 0�]	

The convexity of Zn and Z∗
n implies that we can approximate an��̂n − �� =

argmin�Zn� by argmin�Z∗
n�.
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The asymptotic behavior of argmin�Zn� − argmin�Z∗
n� follows from the

asymptotic behavior of Zn − Z∗
n. In particular, it can be shown (under ap-

propriate regularity conditions including twice-differentiability of τ) that

n1/4�Zn −Z∗
n� →d V

(where V is a differentiable Gaussian process defined on Rp+1), from which it
follows that

n1/4�argmin�Zn� − argmin�Z∗
n�� →d −H−1�U�D�U��

whereH is the Hessian matrix of τ, D is the gradient ofV and U is the limit of
argmin�Zn� = an��̂n−��; it can be shown that U is independent of D. Details
are given in Knight (1997). Under the classical assumption that F′�0� = λ > 0
such “weak” Bahadur–Kiefer representations [Bahadur (1966), Kiefer (1967)]
are given by Arcones (1996a, b). “Strong” Bahadur–Kiefer representations in
the classical case are given by He and Shao (1996) as well as Arcones (1996b).
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